DISTRIBUIÇÃO TEMPORAL E TENDÊNCIA DE PRECIPITAÇÃO NO BIOMA DA MATA ALTLÂNTICA DO ESTADO DE GOIÁS¹

Murilo Raphael Dias Cardoso

Graduando em Geografia, Instituto de Estudos Sócio-Ambientais – Universidade Federal de Goiás muriloshinobi@gmail.com

Thiago Guimarães Faria

Graduando em Matemática, Instituto de Matemática e Estatística – Universidade Federal de Goiás thiagoguimaraesfaria@hotmail.com

Francisco Fernando Noronha Marcuzzo

Eng^o, Doutor, Pesquisador em Geociências / Engenharia Hidrológica francisco.marcuzzo@cprm.gov.br

INTRODUÇÃO

A análise do comportamento das chuvas possibilita detectar tendências ou alterações no clima, em escalas locais ou regionais, e com a devida compreensão tornamse um elemento de análise na organização e no planejamento territorial e ambiental, em função do elevado grau de interferência, impacto e repercussão no tempo e espaço (Sant' Anna Neto, 2000).

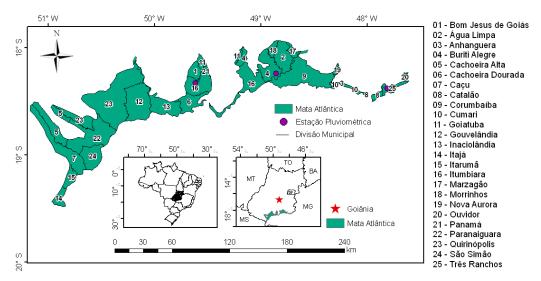
Os estudos de mudanças nas séries hidrológicas temporais, em sua grande maioria, englobam séries pluviométricas e fluviométricas reduzidas de valores médios, máximos e mínimos. Modelos climáticos de circulação global e regional, bem como ferramentas estatísticas, são utilizadas com o propósito de auxiliar esse tipo de avaliação (Alexandre et al., 2010).

Com base em um estudo sobre a precipitação irregular do nordeste, observou-se a necessidade do monitoramento por meio de emprego de índices climáticos. Com base neles, pode-se desenvolver um sistema de acompanhamento das características dos períodos secos ou chuvosos, com informações anuais, sazonais ou mensais, com as quais se podem conhecer profundamente a climatologia de uma região, e verificar os impactos que o clima global causa sobre a distribuição pluviométrica local, ou seja, a regionalização da precipitação para determinado local (Da Silva, 2009).

Em particular, em se tratando da utilização de técnicas estatísticas para detecção de tendências, estudos em diversas partes do mundo (Santos e Portela, 2007;; Lang e Renard, 2007; Douglas *et al.*, 2000; Tucci e Braga, 2003) foram realizados, visando identificar eventuais mudanças em séries hidrológicas temporais. Nesses estudos, os testes mais utilizados foram os de Mann Kendall e o de Regressão Linear. Em todos esses trabalhos, percebe-se, em geral, que são significativas as evidências de alterações em séries

¹ Artigo elaborado a partir do projeto: Atlas Pluviométrico do Brasil e Estudo de Chuvas Intensas. XIV Simpósio Brasileiro de Geografia Física Aplicada - 2011 - Dourados-MS

hidrológicas, sem revelar, no entanto, de forma conclusiva, se essas evidências se devem a mudanças climáticas ou a modificações de uso do solo ou à variabilidade climática natural, tema que causa polêmica e controvérsias entre climatologistas de todo o mundo (Galvin, 2008; Molion, 2008;), ocupando bastante espaço na mídia.


Em um estudo sobre a variação multi-decadal da precipitação de 1901 a 1998, Mauget (2007) identificou as concentrações mais significativas de anos úmidos e secos, dentro da série em regiões continentais, encontrou alta incidência de anos úmidos na América do Norte durante 1972 a 1998, com oito dos dez anos mais úmidos desde 1901, ou seja, oito eventos aconteceram durante esse último período de 27 anos.

Este trabalho teve como objetivo analisar a variação temporal anual da precipitação pluvial no bioma da Mata Atlântica do estado e Goiás, bem como a sua tendência futura utilizando séries históricas de chuvas de 30 anos e cálculos estatísticos para aferir qualitativamente a distribuição de chuvas no período estudado.

FUNDAMENTAÇÃO TEÓRICO-METODOLÓGICA

Caracterização da vegetação, clima e dos mecanismos de formação de chuvas no bioma mata atlântica no estado de Goiás.

O bioma Mata Atlântica do estado de Goiás está localizado na região centro-oeste do Brasil e ao sudeste do estado do Goiás, representa 3,8% (10488,31 km²) da área total de 340219,300 km² da superfície do estado (Figura 1).O estado de Goiás possui 249 municípios, sendo 25 inseridos ou com parte do seu território no bioma da Mata Atlântica (SIEG, 2007).

Figura 1. Localização das estações pluviométricas com 30 anos de dados diários no bioma da Mata Atlântica do estado de Goiás.

O Calculo das áreas foram feitos com base em arquivos vetoriais da divisão territorial do Brasil disponibilizado pelo Sistema Estadual de Estatística e Informação Geográfica de Goiás (SIEG). Foram efetuados os cálculos utilizando do programa ArcGIS através da ferramenta *Calculete Geometry*.

Caracterização climatológica da área

Os principais mecanismos atmosféricos que atuam no estado de Goiás, e, em específico no bioma Mata Atlântica são: massa de ar equatorial continental e massa polar atlântica. A massa de ar continental atua entre na primavera e verão, advinda do efeito térmico e da elevada umidade, deslocando-se para o interior do país no sentido noroeste para sudeste, provocando chuvas. Já a massa polar atlântica, que é caracterizada pelo o acúmulo do ar polar, atua com maior freqüência no inverno, no sentido sul para o norte, e favorece as quedas de temperatura e estiagem (Mendonça & Danni-Oliveira, 2007).

Segundo Peel *et al.* (2007) o clima na região do bioma da Mata Atlântica do estado de Goiás (Figura 1) é temperado úmido com inverno seco e verão temperado (Cwb) em sua porção leste, e na porção oeste o clima é temperado úmido com inverno seco e verão quente (Cwa).

Regressão linear

É um método para se estimar a condicional de uma variável **y**, dados os valores de algumas outras variáveis **x**. A regressão, em geral, trata da questão de se estimar um valor condicional esperado. Em muitas situações, uma relação linear pode ser válida para sumarizar a associação entre as variáveis Y e X.

Assim podemos apresentar um modelo de regressão linear simples:

$$Y = \beta_0 + \beta_1 X \tag{1}$$

em que,

Y= variavel dependente;

 β_0 e β_1 = coeficientes da regressão;

X = variavel independente.

Verificação estatística

Através da estatística descritiva, podemos ter características essenciais para a formação de histograma de freqüências relativas de uma amostra de dados hidrológicos. Para este estudo foram calculadas as seguintes medidas de tendência central e de dispersão.

Medidas de tendências central

A média é a medida de posição mais freqüentemente usada e tem um significado teórico importante na estimativa de amostras. É calculada pela seguinte fórmula:

$$\bar{X} = \frac{X_1, \dots}{N} = \frac{1}{N} \sum_{i=1}^{n} X_i$$
 (2)

em que,

N = tamanho da amostra;

 X_1 até X_n = somatórios da amostra.

A mediana é uma outra medida de posição mais resistente do que a média, por ser imune á eventual presença de valores extremos discordantes na amostra. É calculada pela equação:

$$X_{med} = \frac{X_{\left(\frac{N}{2}\right)} + X_{\left(\frac{N}{2} + 1\right)}}{2} \tag{3}$$

em que,

N = tamanho da amostra;

X = posições das amostras.

Medidas de dispersão:

O desvio padrão é fortemente influenciado pelos menores e maiores desvios, constituindo-se na medida de dispersão mais frequentemente usada.é calculado pela seguinte expressão:

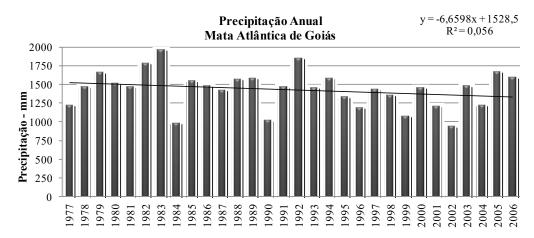
$$S = \sqrt{\frac{1}{N-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$
 (4)

em que,

N = tamanho da amostra;

 X_i = valor de cada amostra;

 \bar{X} = média.


Utilizando-se as medidas de tendência central e de dispersão podemos verificar análiticamente os parâmetros, e observar se as amostras são diferentes ou semelhantes.

CONCLUSÕES

XIV Simpósio Brasileiro de Geografia Física Aplicada - 2011 - Dourados-MS

Distribuição temporal e análise de regressão mensal e anual

A maior precipitação observada no bioma do Cerrado Sul-Mato-Grossense, para a soma histórica anual (Figura 2), foi de 1956,0 mm no ano de 1983 e a menor foi de 931,7 mm no ano de 1984. Já a maior variação de precipitação anual, ocorreu no ano de 1983 (1956,0 mm) para o ano de 1984 (931,7mm). Observa-se também que as oscilações são pequenas, e as tendências de decrescimento da pluviosidade fica em média, na ordem de 5,03%.

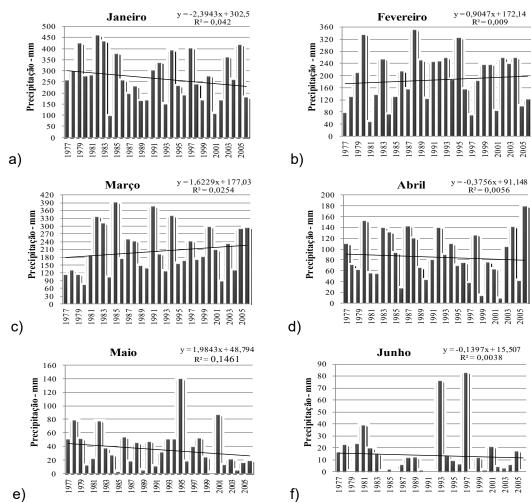
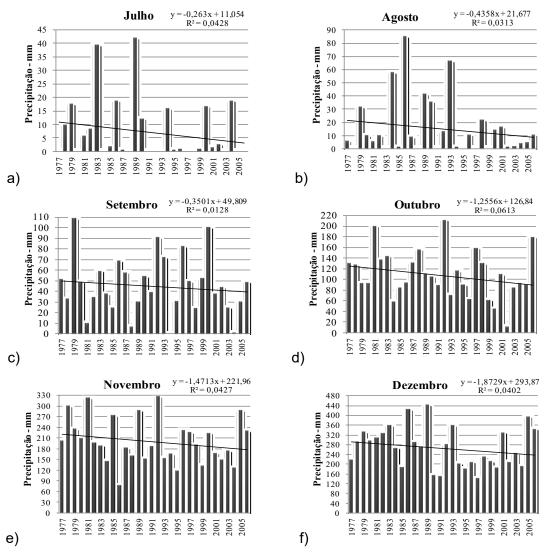


Figura 2. Distribuição temporal e análise de regressão linear da precipitação pluviométrica da média total mensal de 1977 a 2006, para a Mata Atlântica do estado de Goiás.

A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de janeiro Figura 3 (a), foi de 454,5 mm no ano de 1982 e a menor foi de 91,37 mm no ano de 1984. Já a maior variação de precipitação anual para o mês de janeiro, ocorreu do ano de 1983 (429,03 mm) para o ano de 1984 (91,37 mm). Nota-se que entre os anos de 1988 e 1993, houve uma tendência de crescimento gradual da pluviosidade do mês de janeiro, em média, na ordem de 33%. A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de fevereiro Figura 3 (b), foi de 348,3 mm no ano de 1988 e a menor foi de 43,5 mm no ano de 1981. Já a maior variação de precipitação anual para o mês de fevereiro, ocorreu do ano de 1980 (332,0 mm) para o ano de 1981 (43,5 mm). Percebe-se que A partir do ano de 1977 até 1980, houve uma tendência de crescimento gradual da pluviosidade do mês de fevereiro, em média, na ordem de 66%. A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de março Figura 3 (c), foi de 388,5 mm no ano de 1985 e a menor foi de 69,27 mm no ano de 1980. Já a maior variação de precipitação anual para o mês de março, ocorreu do ano de 1984 (97,37 mm) para o ano de 1985 (388,5 mm). Verifica se que entre os anos de 1986 e 1991, houve uma tendência de decrescimento gradual da pluviosidade do mês de março, em média, na ordem de 17%. A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de abril Figura 3 (d), foi de 176,7 mm no ano de 2006 e a menor foi de 6,47 mm no ano de 2002. Já XIV Simpósio Brasileiro de Geografia Física Aplicada - 2011 - Dourados-MS


a maior variação de precipitação anual para o mês de abril, ocorreu do ano de 2005 (38,93 mm) para o ano de 2006 (176,7 mm). Observa —se, que entre os anos de 1986 e 1991. Houve uma tendência de decrescimento gradual da pluviosidade do mês de abril, em média, na ordem de 33%. A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de maio Figura 3 (e), foi de 138,4 mm no ano de 1995 e a menor foi de zero milimetro no ano de 2000. Já a maior variação de precipitação anual para o mês de maio, ocorreu do ano de 1995 (138,4 mm) para o ano de 1986 (51,83 mm). Verifica-se 60% dos meses possuem as precipitações pluviométricas menores que 40,0 mm.

A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de junho Figura 3(f), foi de 81,9 mm no ano de 1997 e a menor foi de zero milimetro nos anos 1979,1984, 1986, 1991, 1992, 1998 e 2006. Já a maior variação de precipitação anual para o mês de junho, ocorreu do ano de 1997 (81,9 mm) para o ano de 1998 nenhuma precipitação. Percebe-se que 83% dos meses possuem as precipitações pluviométricas menores que 20,0 mm.

Figura 3. Distribuição temporal e análise de regressão linear da precipitação pluviométrica do mês de janeiro a junho, para o bioma da Mata Atlântica de Goiás.

A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de julho Figura 4 (a), foi de 41,7 mm no ano de 1989 e a menor foi de zero milimetro nos anos de 1977, 1980, 1984, 1988, 1991, 1992, 1993, 1997, 1998, 2003, 2005 e 2006. Já a maior variação de precipitação anual para o mês de julho, ocorreu do ano de 1988 zero milimetro para o ano de 1989 (41,7 mm). Observa-se que 73% dos meses possuem as precipitações pluviométricas menores que 10,0 mm. A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de agosto Figura 4 (b), foi de 84,9 mm no ano de 1986 e a menor foi de zero milimetro nos anos de 1978,1983, 1988, 1991, 1995, 1997 e 1999. Já a maior variação de precipitação anual para o mês de agosto, ocorreu do ano de 1985 (0,2 mm) para o ano de 1986 (84,9 mm). Verifica-se que 77% dos meses possuem as precipitações pluviométricas menores que 20,0 mm.

Figura 4. Distribuição temporal e análise de regressão linear da precipitação pluviométrica do mês de julho a dezembro, para o bioma da Mata Atlântica de Goiás.

A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de setembro Figura 4 (c) foi de 108,1 mm no ano de 1979 e a menor foi de zero milimetro no ano de 1994. Já a maior variação de precipitação anual para o mês de setembro, ocorreu do ano de 1978 (31,83 mm) para o ano de 1979 (108,1 mm). A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de outubro Figura 4 (d), foi de 209,9 mm no ano de 1992 e a menor foi de 9,57 mm no ano de 2002. Já a maior variação de precipitação anual para o mês de outubro, ocorreu do ano de 1992 (209,9 mm) para o ano de 1993 (68,9 mm). Nota-se, que entre os anos de 1983 e 1989, houve uma tendência de crescimento gradual da pluviosidade do mês de outubro, em média, na ordem de 29%. Já entre os anos de 1996 e 2001, houve uma tendência de decréscimo gradual da pluviosidade, em média, na ordem de 34%. A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de novembro Figura 4 (e), foi de 324,6 mm no ano de 1992 e a menor foi de 75,93 mm no ano de 1986. Já a maior variação de precipitação anual para o mês de novembro, ocorreu do ano de 1985 (270,87 mm) para o ano de 1986 (75,93 mm). Verifica-se, que entre os anos de 1980 e 1985, houve uma tendência de decréscimo gradual da pluviosidade do mês de novembro, em média, na ordem de 22%. A maior precipitação observada no bioma da Mata Atlântica de Goiás, para o mês de dezembro Figura 4 (f), foi de 440,2 mm no ano de 1989 e a menor foi de 140,0 mm no ano de 1997. Já a maior variação de precipitação anual para o mês de dezembro, ocorreu do ano de 1989 (440,2 mm) para o ano de 1990 (150,8 mm). Percebe-se, que entre os anos de 1979 e 1984, houve uma tendência de crescimento gradual da pluviosidade do mês de dezembro, em média, na ordem de 7%.

Tendência futura mensal e anual

Nas Figuras 3 e 4 verifica-se que o melhor coeficiente de determinação da regressão (R^2 = 0,1461) foi para o mês de maio e o pior foi foi para mês de junho R^2 (0,0038). Isto significa que quando o valor é maior, indica o grau de aproximação do modelo as médias, já quando o valor é menor indica o grau de distanciamento do modelo às médias. A soma total da Equação Linear foi y = -6,6598x + 1528,5, para o R^2 0,056 e a soma das médias mensais de precipitação foi 1425,28.

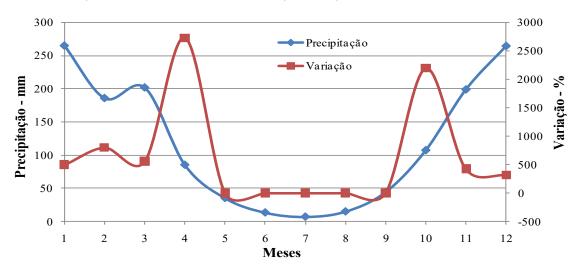
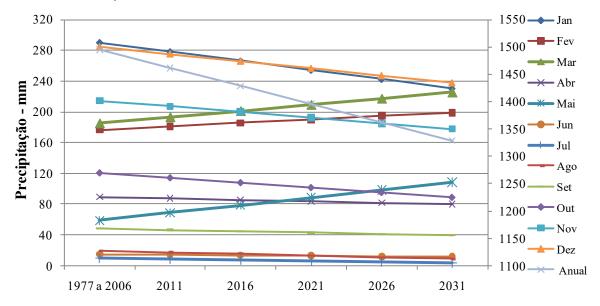

Na Tabela 1 observa-se que, segundo a analise de regressão linear histórica de 1977 a 2006, a previsão de maior crescimento da precipitação pluviométrica foi para o mês de maio e a menor foi para o mês julho. Verifica-se também uma tendência do mês fevereiro para o março de crescimento de precipitação nas variações das previsões, indicando um maior índice pluviométrico.

Tabela 1. Tendência de precipitação pluviométrica para o bioma da Mata Atlântica Goiás, segundo a análise de regressão dos dados históricos de 1977 a 2006.

Previsão de Precipitação Pluviométrica											
Mês	Média	2011	2016	2021	2026	2031	2036				
Jan	265,39	291(9,5%)	279(5%)	267(0,5%)	255(-4,1%)	243(-8,6%)	231(-13%)				
Fev	*186,16	177(-5%)	181(-2,7%)	186(-0,2%)	190(2,2%)	195(4,6%)	199(7%)				
Mar	202,18	185(-8,4%)	194(-4,4%)	201(-0,4%)	209(3,6%)	218(7,6%)	226(11,6%)				
Abr	85,33	89(4,6%)	87(2,4%)	85(0,2%)	84(-2%)	82(-4,2%)	80(-6,4%)				
Mai	35,23	57(66,7%)	69(94,9%)	79(123%)	88(151%)	98(179%)	108(207%)				
Jun	13,34	15(11%)	14(6%)	13(0,5%)	13(-4,7%)	12(-10%)	11(-15,2%)				
Jul	6,98	10(39,6%)	8(20,7%)	7(1,9%)	6(-17%)	5(-35,8%)	3(-54,7%)				
Ago	14,92	19(30,7%)	17(16,1%)	15(1,5%)	13(-13,1%)	11(-27,7)	9(-42,3%)				
Set	44,38	48(8,3%)	46(4,3%)	45(0,4%)	43(-3,6%)	41(-7,5%)	39(11,4%)				
Out	107,38	121(12,3%)	114(6,4%)	108(0,6%)	102(-5,3%)	95(-11,1%)	89(-17%)				
Nov	199,15	215(7,8%)	207(4,1%)	200(0,4%)	193(-3,3%)	185(-7%)	178(-10,7%)				
Dez	264,84	285(7,4%)	275(3,9%)	266(0,4%)	256(-3,2%)	247(-6,7%)	238(-10,3%)				
Total	1425,2	1495(4,9%)	1462(2,6%)	1429(0,2%)	1395(-2%)	1362(-4,4%)	1329(-6,8%)				


^{*} Variação da precipitação em relação à média histórica do período estudado (1977 a 2006).

De acordo com Strahler (1957) as regiões mais secas do globo estão associadas a uma maior variabilidade da precipitação, ou seja, para este autor, nos períodos secos do ano nota-se uma maior discrepância dos dados em séries históricas de períodos secos quando se compara períodos inter-anuais. Neste estudo, confirmando os resultados de Strahler (1977), verifica-se na Figura 5 que a maior variação dos dados para o período seco (maio a setembro) ficou para o mês de abril (2.732%), e a menor variação, para o período úmido (outubro a abril) foi para o mês de dezembro (314,4%).

Figura 5. Precipitação pluviométrica, percentagem de variação dos dados em relação aos extremos observados do período histórico de 1977 a 2006

Na Figura 6, nota-se nota-se que os meses que sofreram decréscimos em sua precipitação pluviométrica foram: janeiro, abril, junho, julho, agosto, setembro, outubro, novembro e dezembro. Ficando os meses de fevereiro, maio, março, e outubro com crescimento da precipitação pluviométrica. No eixo secundário podemos verificar que a média anual teve pouco crescimento, em toda sua extensão.

Figura 6. Distribuição temporal mensal da previsão de precipitação pluviométrica, calculada pelas equações de regressão linear geradas pelos dados históricos, para o bioma da Mata Atlântica do estado de Goiás.

Análise estatística

Na Tabela 2 verifica-se que os valores da média e da mediana foram bem concisos, mostrando que não houve a presença de valores extremos discordantes na amostra. O maior índice de chuva, ou seja, a máxima ocorre no mês de janeiro (454,5mm), já a mínima acontece nos meses de maio, junho, julho, agosto e setembro zero milímetro. Nota-se que todos os meses tiveram uma variação maior que a média anual, indicando uma dispersão no índice pluviomêtrico. No desvio padrão verificou-se a influência do menor desvio que foi no mês de julho (11,2) e do maior desvio que aconteceu no mês de janeiro (102,8), mostrando a dispersão contundente dos dados.

Tabela 2. Medidas de Tendência Central e de Dispersão de para o bioma da Mata Atlântica Goiás, segundo a análise estatística dos dados históricos de 1977 a 2006.

Medidas de Tendência Central e de Dispersão										
Mês	Mediana	Média	Máxima	Mínima	Variação (%)	Desvio Padrão				
Janeiro	254,8	265,4	454,5	91,4	497,4	102,8				
Fevereiro	194,7	186,2	348,3	43,5	800,7	83,8				
Março	179,6	202,2	388,5	69,3	560,9	89,6				
Abril	76,1	85,3	176,7	6,5	2732,0	44,1				
Maio	27,7	35,2	138,4	0,0	0,0	30,3				
Junho	7,0	13,3	81,9	0,0	0,0	20,0				
Julho	0,6	7,0	41,7	0,0	0,0	11,2				
Agosto	7,1	14,9	84,9	0,0	0,0	21,7				
Setembro	40,8	44,4	108,1	0,0	0,0	27,2				
Outubro	98,2	107,4	209,9	9,6	2194,4	44,6				
Novembro	188,1	199,2	324,6	75,9	427,5	62,7				
Dezembro	265,3	264,8	440,2	140,0	314,4	82,2				
Média Anual	1459,1	1425,3	1956,0	931,4	210,0	247,7				

A maior precipitação observada para o bioma da Mata Atlântica do estado de Goiás foi para o mês de janeiro, com 454,5 mm, no ano de 1982, e a menor foi de 91,37 mm, no ano de 1984. Nota-se que os meses que sofreram decréscimos em sua precipitação pluviométrica foram: janeiro, fevereiro, junho, agosto, setembro, novembro e dezembro. Ficando os meses de abril, maio, março, julho e outubro com crescimento da precipitação pluviométrica. Utilizando-se uma análise de regressão matemática linear, observa-se uma tendência de aumento nos índices pluviométricos médios, entre 1977 e 2006, para o bioma da Mata Atlântica do estado de Goiás, na ordem de 5%.

REFERÊNCIAS BIBLIOGRÁFICAS

ANA - **Agência Nacional de Águas**. http://www.ana.gov.br: 11 dez. 2009. CHAPMAN, P. Sorry to ruin the fun, but an ice age cometh. **The Australian** – Online Newspaper of the Year, 2008. Disponível em: http://www.theaustralian. news.com. au/story/0,25197,235833765013480,00.html>. Acesso em: 07 dez. 2008.

Da Silva, D.F. Análise de aspectos climatológicos, agro econômicos, ambientais e de seus efeitos sobre a bacia hidrográfica do rio Mundaú (AL e PE). 2009. Tese (Doutorado em Recursos naturais) – Universidade Federal de Campina Grande, Campina Grande, 2009.

Douglas, E. M.; Vogel, R.M.; Kroll, C. N. Trends in floods and low flows in the United States: impact of spatial correlation, Journal of Hydrology, 240p. 90-105, 2000.

Galvin, C. On AGU's Position Statement, "Human Impacts on Climate, Eos Trans. AGU, vol. 89, n. 46, p. 459-460,2008.

IBGE Instituto Brasileiro de Geografia e Estatística. Brasília:, 2009. Disponível em: http://www.ibge.gov.br/mapas ibge/

Lang, M.; Renard, B. Analyse régionale sur les extremes hydrométriques en France: détection de changements cohérents et recherche de causalité hydrologique. La Houille Blanche, n. 6, p. 83-89, 2007.

Mauget, S.U.M. Índice Padronizado de Precipitação (SPI); C. Springer Science, 2005.

Mendonça, F.; Danni-Oliveira, Inês Moresco. **Climatologia: noções básicas e climas do Brasil.** São Paulo: Oficina de Textos, 2007, p. 206.

Molion, L.C.B. **Desmistificando o Aquecimento Global.** 2008. Disponível em: http://www.msia.org.br/c---t/542. html>. Acesso em: 07 dez. 2008.

Naghettini & Pinto; Hidrologia Estatística. Belo Horizonte: CPRM, 2007. 552p.

Peel M.C.; Finlayson B.L.; McMahon T.A. **Updated world map of the Köppen-Geiger climate classification**, Hydrol. Earth Syst. Sci., 11,p. 1633-1644, 2007.

Sant' Anna Neto, J.L. **As chuvas no estado de São Paulo: a variabilidade pluvial nos últimos 100 anos.** In: Sant' Anna Neto, J.L. & Zavatini, J. A. Variabilidade e mudanças climáticas: implicações ambientais e socioeconômicas, - Maringá: Eduem, 2000; p. 95 -120.

Santos, J.F.; Portela, M M. **Tendências em Séries de Precipitação Mensal em Portugal Continental:** Aplicação do Teste de Mann-Kendall. In: Anais do XVII Simpósio Brasileiro de Recursos Hídricos (CDROM), São Paulo, 2007.

SIEG Sistema Estadual de Estatística e Informação Geográfica do Estado de Goiás. Goiás, 2007. Disponível em: http://www.sieg.go.gov.br/ Acesso em: 16 de março de 2011.

Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Transactions. American Geophysical Union, v38, p.913-920.

Tucci, C. E. M.; Braga, B. Clima e Recursos Hídricos no Brasil, 1a ed. Porto Alegre: ABRH, 348 p., 2003.