Ministério de Minas e Energia

CPRM – Serviço Geológico do Brasil

"CARTAS DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÕES"

GEOFÍSICA

(Nova Itaberaba - SC)

Autores: Jairo J. C. Andrade; Rafael R. Severino; Luiz G. R. Pinto

São Paulo, 28 de Fevereiro de 2019

Sumário

INTRODUÇÃO	3
MATERIAIS e MÉTODOS	3
Métodos Elétricos	3
Sondagem Elétrica Vertical	4
Caminhamento Elétrico	5
Equipamentos Utilizados	6
AQUISIÇÃO DOS DADOS	7
PROCESSAMENTO DOS DADOS	9
Sondagem Elétrica Vertical	9
Caminhamento Elétrico	10
INTERPRETAÇÃO	12
Sondagem Elétrica Vertical	12
Caminhamento Elétrico	13
REFERÊNCIAS	15
APÊNDICE	16

INTRODUÇÃO

No projeto "Cartas de Suscetibilidade a Movimentos Gravitacionais de Massa e Inundações" foi realizada campanha de geofísica terrestre, levantamento elétrico, objetivando estimar a espessura do solo e profundidade do topo do cristalino rochoso nas regiões de interesse.

O levantamento se deu na região que abrange o Município de Nova Itaberaba nos dias 13 e 14 de fevereiro de 2019, com equipe composta por dois geofísicos.

MATERIAIS e MÉTODOS

Métodos Elétricos

Os métodos elétricos utilizam correntes contínuas ou alternadas de baixa frequência para investigar as propriedades elétricas da subsuperfície. Nesse trabalho foi utilizado método de eletrorresistividade a fim de estudar descontinuidades horizontais e verticais nas propriedades elétricas do solo e associá-las aos objetivos do projeto. No método de eletrorresistividade, correntes elétricas geradas artificialmente são introduzidas no solo e as diferenças de potencial resultantes são medidas na superfície.

A resistividade elétrica é uma das propriedades físicas mais variáveis. A maior parte dos minerais formadores das rochas é isolante e a corrente elétrica é conduzida através de uma rocha principalmente pela presença de íons nas águas dos poros. Assim, o aumento da porosidade e do conteúdo de sais são os principais fatores que diminuem resistividade de rochas. Secundariamente, a presença de argilo-minerais, minerais sulfetados e granulação grosseira.

A resistividade elétrica é calculada pela seguinte equação:

$$\rho = K. \frac{\Delta V}{I} \tag{1}$$

Onde (I) é a corrente elétrica introduzida no solo, (ΔV) é a diferença de potencial medida e (K) é um fator geométrico que depende das técnicas e

arranjos utilizados nos levantamentos. As técnicas de campo utilizadas foram a Sondagem Elétrica Vertical (SEV) e o Caminhamento Elétrico (CE).

Sondagem Elétrica Vertical

A técnica da SEV consiste numa sucessão de medidas de um parâmetro geoelétrico efetuadas a partir da superfície do terreno (investigação 1D com observação da variação vertical da resistividade elétrica). São injetadas correntes (I) no solo através de dois eletrodos nos pontos A e B, e é medida a diferença de potencial (ΔV) entre os outros dois eletrodos nos pontos M e N (Figura 1).

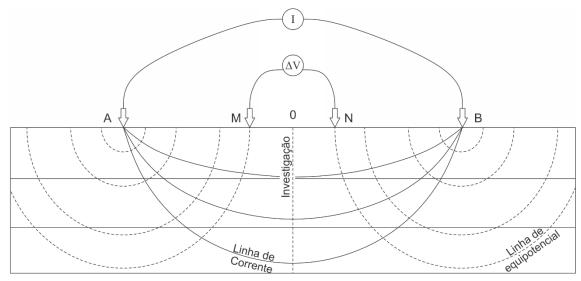


Figura 1 - Técnica da sondagem elétrica vertical (SEV).

Uma vez que se conhece as distâncias \overline{AM} e \overline{AN} , pode-se medir a corrente (I) injetada e a diferença de potencial (ΔV), e calcular a resistividade aparente (ρ_a) com a seguinte equação:

$$\rho_a = \pi \cdot \frac{\overline{AM} \cdot \overline{AN}}{\overline{MN}} \cdot \frac{\Delta V}{I} \tag{2}$$

O arranjo utilizado foi o Schlumberger em que os eletrodos (AB) são afastados do centro do arranjo a cada leitura, investigando cada vez mais profundo, e os eletrodos (MN) se mantém fixos. As leituras deste arranjo estão menos sujeitas as variações laterais no parâmetro físico medido, irregularidades na superfície topográfica e ruídos produzidos por fontes artificiais (Braga, 2016).

Caminhamento Elétrico

A técnica do CE se baseia na análise e interpretação de um parâmetro geoelétrico, obtido com base em medidas efetuadas na superfície do terreno, com espaçamento constante entre os eletrodos AMNB. Por meio desta técnica, investigam-se, ao longo de linhas, as variações laterais do parâmetro físico a uma ou mais profundidades determinadas; com isso, a direção da linha de investigação permanece fixa e o centro do arranjo AMNB varia com o seu desenvolvimento. Para o desenvolvimento desta técnica, podem ser usados vários tipos de arranjos de desenvolvimento, como Schlumberger, Wenner, gradiente, dipolo-dipolo, polo-dipolo etc.

O Arranjo utilizado foi o dipolo-dipolo, com espaçamento entre os eletrodos de 5 m, em que os eletrodos de corrente (AB) e de potencial (MN) são alinhados em uma mesma direção com espaçamento constante (Figura 2). Este arranjo apresenta vantagem em relação aos outros arranjos, porque é um arranjo simétrico e, como resultado desta simetria, facilita o melhor posicionamento de uma anomalia. Neste levantamento foram utilizados simultaneamente 10 dipolos de recepção (MN) disposto ao longo do sentido de aquisição de dados (cada dipolo corresponde a um nível de investigação).

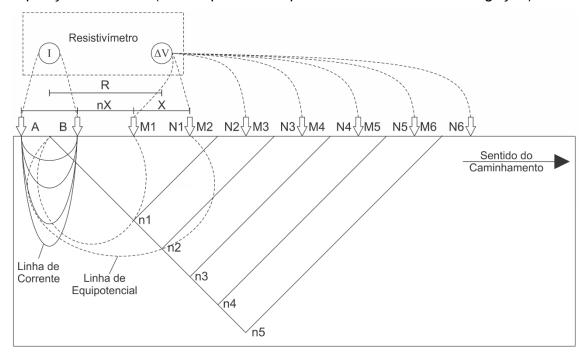


Figura 2 - Esquema do CE, arranjo dipolo-dipolo.

Estes parâmetros foram escolhidos visando obter maior profundidade de investigação e melhor resolução possível.

Deste modo é possível calcular a resistividade aparente (ρ_a) com a seguinte equação:

$$\rho_a = 2\pi GX. \frac{\Delta V}{I}$$

Com

$$G = \frac{1}{\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}} \tag{3}$$

Em que: (X) é o espaçamento dos dipolos (AB) e (MN) adotado; (n) é o nível de investigação correspondente (Braga, 2016).

Equipamentos Utilizados

No levantamento foi utilizado o resistivímetro Syscal Pro (Figura 3), que possui 10 canais de leitura integrados. Para a SEV estavam disponíveis quatro rolos de cabos sendo dois de 100 m e dois de 350 m. Para o CE estava disponível um cabo com abertura máxima, entre cada canal, de 5 m e com 10 canais de medidas cada, permitindo leituras automáticas em todos os eletrodos. Os equipamentos auxiliares foram: duas baterias de 12 V; eletrodos metálicos para injeção de corrente elétrica e medição do potencial elétrico; cabos para conexões entre equipamento e eletrodos; marretas para fixação dos eletrodos e trenas para marcar as posições dos eletrodos.

Figura 3 - Syscal Pro.

As coordenadas foram registradas com o GPS portátil Garmin 62sc, admitindo-se um precisão máxima horizontal de 5 m e vertical de 10 m. Essas são também as precisões dos produtos geofísicos gerados.

AQUISIÇÃO DOS DADOS

A programação inicial previa 5 alvos a serem estudados no município (Figura 4), mas devido às condições climáticas, chuva forte, foram realizados apenas 1 CE e 1 SEV.

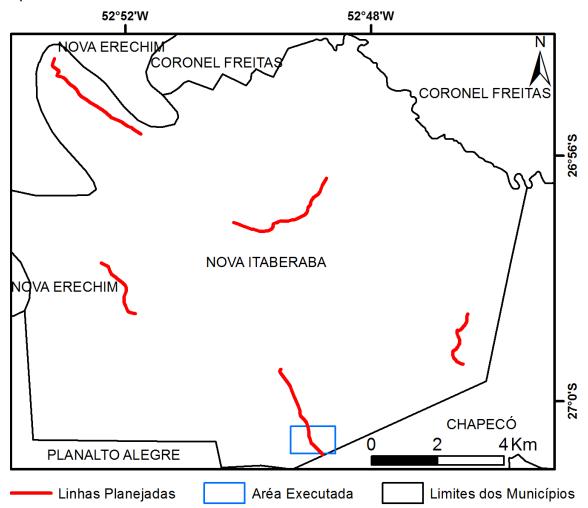
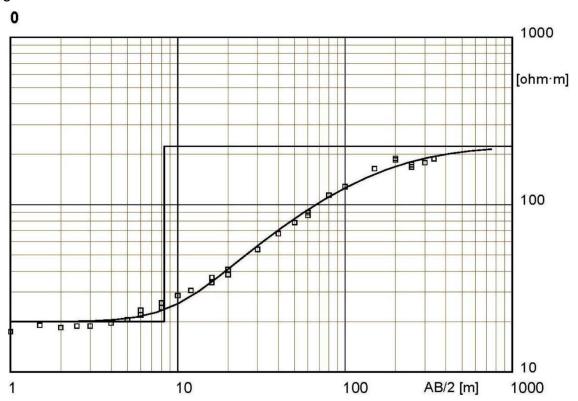


Figura 4 – Linhas vermelhas indicam a localização dos alvos programados.

O CE foi realizado visando mapear a variação lateral do solo e, consequentemente, o comportamento da topografia do embasamento. A SEV foi realizada na posição 205 m do CE, a fim estabelecer a média da resistividade elétrica do solo e do embasamento, corroborando na interpretação do perfil elétrico (Figura 5).


Figura 5 – Área de execução da SEV e CE.

PROCESSAMENTO DOS DADOS

Sondagem Elétrica Vertical

Para o processamento dos dados da SEV foram utilizados os Softwares Prosys II; versão 03.11.02. desenvolvido por IRIS Instruments e o WinSev; versão 6.3 desenvolvido por W-GeoSoft. O método de inversão utilizado foi automático, realizando mínimas intervenções manuais, apenas quando o ajuste cria modelos muito complexos com várias camadas.

A inversão da SEV 1 (Figura 6) resultou num modelo de 2 camadas geoelétricas.

Localização X = 52°48'52.39"O Y = 27° 0'46.47"S Z = 471 Azim = 0

Modelo Resistividade	Espessura	Profundidade	Cota
[ohm·m] 20	[m] 8.3	[m]	[m] 471
223	0.0	8.3	462.7

Figura 6 – Ajuste dos dados medidos e calculados da SEV 1.

A tabela de dados encontra-se no apêndice.

Caminhamento Elétrico

Para o processamento dos dados do CE foram utilizados os Softwares Prosys II; versão 03.11.02. desenvolvido por IRIS Instruments e o Res2dinv; ver. 3.4; 2D Resistivity and IP Inversion. (desenvolvido por Geotomo Software Malaysia). O método de inversão utilizado foi o robusto e foi utilizado o modelo de discretização com refinamento (Modelo com células com metade do espaçamento).

Estudos preliminares foram realizados para verificar qual espaçamento entre os eletrodos se adequaria melhor ao objetivo do levantamento e verificouse que o espaçamento de 5m obteve os melhores resultados.

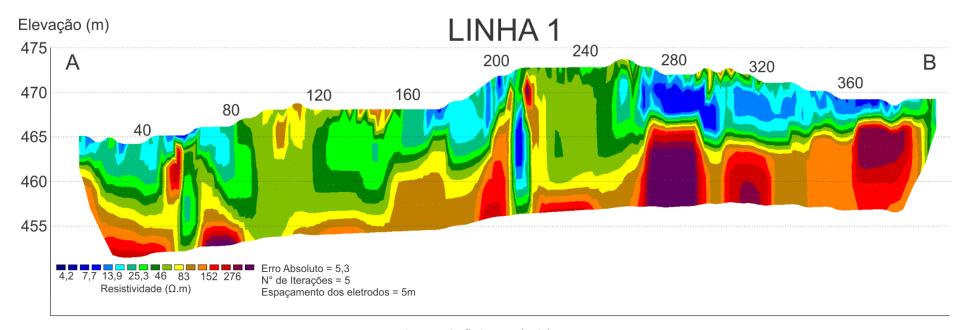


Figura 7 - Seção inversa da Linha 1.

A Pseudo-Seção medida, calculada e Seção Invertida do CE encontra-se no apêndice.

INTERPRETAÇÃO

Sondagem Elétrica Vertical

A SEV apresenta modelo geoelétrico de 2 camadas (Figura 8) que foram interpretadas como solo argiloso e embasamento. O contexto geológico verificado nos afloramentos e valor da resistividade indicam que o embasamento deve tratar-se de basalto (Telford et al., 1990). A SEV está localizada aproximadamente sobre região que apresenta descontinuidade lateral no CE da Linha 1 (Figura 9), mas não foi possível verificar a existência de descontinuidades elétricas na SEV. Esta descontinuidade podem estar associadas a possíveis estruturas geológicas, como fraturas ou falhas.

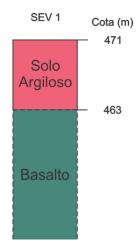


Figura 8 - Interpretação do modelo de camadas da SEV 1.

Caminhamento Elétrico

A Linha 1 (Figura 9) apresenta modelo de duas camadas que, assim como na SEV, foram interpretadas como solo argiloso e embasamento basáltico. Existem regiões no perfil que contém material rochoso no solo, que poderiam ser interpretado como megablocos do embasamento, residuais no processo erosivo. Na posição de 210 m no CE existe uma descontinuidade lateral, sub verticalizada, possivelmente associada a uma falha normal que estaria preenchida por material saturado. O solo apresenta espessura variando de 2 a 14 m, que, por conta do período chuvoso, estaria saturado.

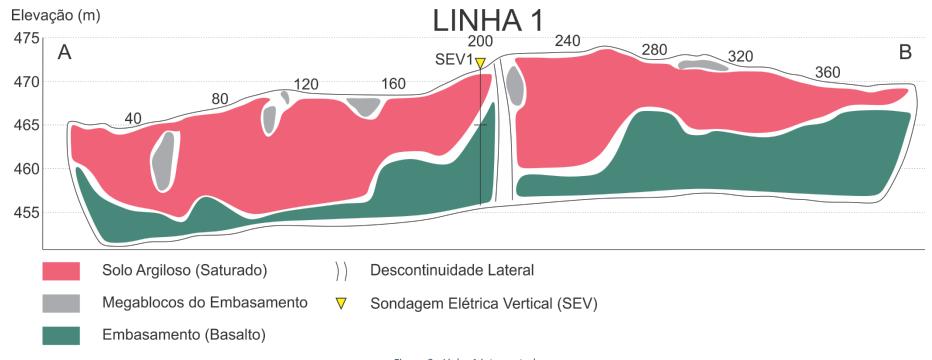


Figura 9 - Linha 1 interpretada.

REFERÊNCIAS

BRAGA, A.C.O., **Geofísica Aplicada: Métodos Geoelétricos em Hidrigeologia.** São Paulo: Oficina de Textos, 2016, 159p.

TELFORD, W.M., GELDART, L.P. & SHERIFF, R.A., **Applied geophysics** 2nd ed. New York: Cambridge University Press, 1990.

APÊNDICE

MN/2	AB/2	DeltaV	1	K	Resistivity
[m]	[m]	[mV]	[mA]	[-]	[ohm·m]
.2	1	21286.1	9211	7.54	17.4
.2 .2	1.5	10444.9	9553	17.36	19
.2	2	4042.9	6845	31.1	18.4
.2	2.5	3179.3	8227	48.77	18.8
.2	3	1903.8	7109	70.37	18.8
.2 .2 .2 .2	4	1231.3	7869	125	19.6
.2	5	719	6861	196	20.5
.2	6	658.1	8487	282	21.9
1 .2	6	3627	8518	54.98	23.4
	8	280.6	5818	502	24.2
1	8	1470	5608	98.96	25.9
1	10	1375.3	7503	156	28.6
1	12	685.8	5032	225	30.7
1	16	625.9	7334	401	34.2
4	16	2842.2	7290	94.25	36.7
1	20	498.6	8209	627	38.1
4	20	2236.5	8235	151	41
4	30	1507	9692	347	54
4	40	966	8961	622	67.1
4	50	639.8	7988	975	78.1
4	60	551.3	8987	1407	86.3
10	60	1463.5	8997	550	89.5
4	80	374.4	8266	2507	114
10	80	959.4	8315	990	114
10	100	677.1	8226	1555	128
10	150	403.5	8645	3519	164
10	200	243.4	8062	6267	189
40	200	988.6	8060	1508	185
10	250	141.9	8054	9802	173
40	250	555.6	7920	2392	168
40	300	430.9	8396	3471	178
40	340	348.4	8313	4477	188

Figura 10 - Dados da SEV 1.

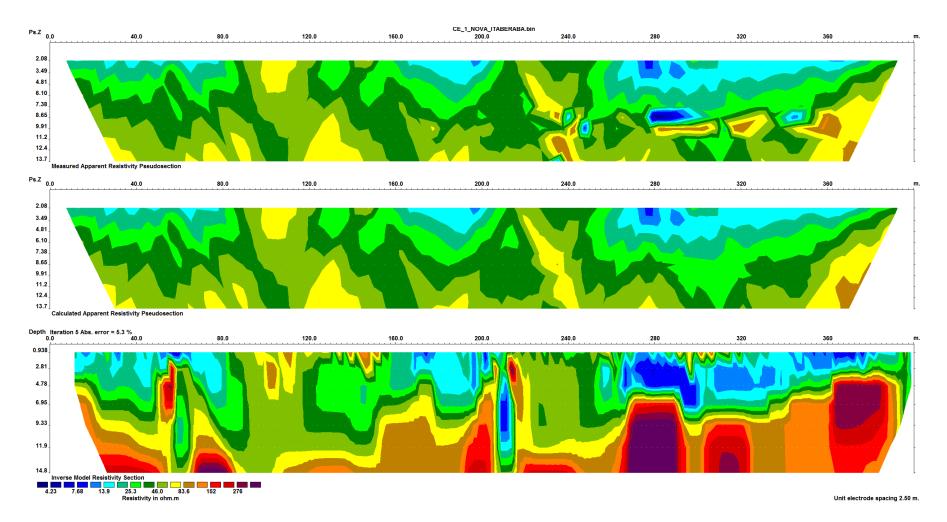


Figura 11 – Pseudo-Seção medida, calculada e Seção Invertida da Linha 1.