Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Departamento de Geologia Programa de Pós Graduação em Geociências PPGL

GEOLOGIA E GEOCRONOLOGIA DE ROCHAS DO DOMÍNIO EMBU NO ENTORNO DO MUNÍCIPIO DE CUNHA-SP

Filipe de Brito Fratte Modesto

Dissertação de Mestrado (Geologia)

UFRJ Rio de Janeiro 2022

UFRJ Rio de Janeiro 2022

Filipe de Brito Fratte Modesto

GEOLOGIA E GEOCRONOLOGIA DE ROCHAS DO DOMÍNIO EMBU NO ENTORNO DO MUNICÍPIO DE CUNHA-SP

Dissertação de Mestrado submetida ao Programa de Pós-graduação em Geologia, Instituto de Geociências, da Universidade Federal do Rio de Janeiro – UFRJ, como requisito necessário à obtenção do grau de Mestre em Ciências (Geologia).

Área de concentração:

Geologia Regional e Econômica

Orientadores:

Rodrigo Vinagre Cintra da Costa - UFRJ Rudolph Allard Johannes Trouw - UFRJ

Rio de Janeiro Setembro de 2022 Modesto, Filipe de Brito Fratte

Geologia e Geocronologia de rochas do Domínio Embu no entorno do município de Cunha-SP- Rio de Janeiro: UFRJ / IGeo, 2022.

xv, 88 f. : il; 30cm

Dissertação (Mestrado em Geologia) – Universidade Federal do Rio de Janeiro, Instituto de Geociências, Programa de Pós-graduação em Geologia, 2022.

Orientadores: Rodrigo Vinagre Cintra da Costa e Rudolph Allard Johannes Trouw

1. Geologia. 2. Geologia Regional e Econômica – Dissertação de Mestrado I. Rodrigo Vinagre Cintra da Costa e Rudolph Allard Johannes Trouw. II. Universidade Federal do Rio de Janeiro, Instituto de Geociências, Programa de Pós-graduação em Geologia. III. Título. Filipe de Brito Fratte Modesto

GEOLOGIA E GEOCRONOLOGIA DE ROCHAS DO DOMÍNIO EMBU NO ENTORNO DO MUNICÍPIO DE CUNHA-SP

Dissertação de Mestrado submetida ao Programa de Pós-graduação em Geologia, Instituto de Geociências, da Universidade Federal do Rio de Janeiro – UFRJ, como requisito necessário à obtenção do grau de Mestre em Ciências (Geologia).

Área de concentração:

Geologia Regional e Econômica

Orientadores:

Rodrigo Vinagre Cintra da Costa - UFRJ Rudolph Allard Johannes Trouw - UFRJ

Aprovada em: / / Por:

Presidente: Silvia Regina de Medeiros,

Universidade Federal do Rio de Janeiro

Renata da Silva Schmitt, Universidade Federal do Rio de Janeiro

Felipe Mattos Tavares, Serviço Geológico do Brasil – SGB/CPRM

> UFRJ Rio de Janeiro 2022

AGRADECIMENTOS

A minha esposa Ivia e filho Fred por estarem sempre ao meu lado em todos os momentos, com doses extras de paciência e compreensão durante a realização dessa dissertação.

Agradeço ao meu pai, Evaldo Modesto, por todo incentivo e ensinamentos durante toda minha vida.

A minha mãe, Nilzy Stelly, por apoiar minhas decisões.

Ao meu professor e amigo Rodrigo Vinagre, pelo apoio, pelo conhecimento e paciência dedicado a mim desde o início da nossa graduação.

Ao professor Rudolph Trouw pelos ensinamentos mesmo diante das dificuldades geradas durante esse período de pandemia.

Aos professores Julio Cezar Mendes, Silvia Regina de Medeiros e Mauro Cesar Geraldes, por permitirem o acesso aos seus laboratórios para preparação e análises dos dados aqui apresentados.

Aos membros da banca Silvia Regina de Medeiros, Renata da Silva Schmitt e Felipe Mattos Tavares.

Agradeço ao Serviço Geológico do Brasil e ao Museu de Ciências da Terra, pelo apoio e financiamento da minha pesquisa.

A equipe do LABSONDA/UFRJ, em especial a Amanda, pelas analises mesmo em período pandêmico.

A equipe do MULTILAB da UERJ, com todas as reverencias ao Raimundo, Felipe e Tiago pela paciência e ensinamentos.

A laminador Vicente do SGB-CPRM que sempre esteve disposto a contribuir mesmo nos momentos mais complicados.

A todos aqueles que colaboraram, ajudaram e incentivaram, que não foram citados nesta lista, mas que estão com certeza no meu coração.

RESUMO

MODESTO, Filipe de Brito Fratte. Geologia e Geocronologia de rochas do Domínio Embu no entorno do município de Cunha-SP – Programa de Pósgraduação em Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2022.

A área estudada está inserida na região de superposição de dois orógenos do sudeste brasileiro, Brasília Meridional (OBM) e Ribeira Central (ORC). As entidades tectônicas principais nesta região são o Lobo Socorro da Nappe Socorro-Guaxupé e o Domínio Embu. A área de trabalho está localizada dentro do Domínio Embu (ORC), incluindo o limite com o Lobo Socorro (OBM), a norte. A estruturação nessa região é tradicionalmente atribuída ao desenvolvimento do Orógeno Ribeira Central, porém, trabalhos recentes trazem dados que mostram uma continuidade para sul de estruturas e metamorfismo com idades correspondentes ao OBM, ultrapassando o limite considerado na literatura entre os orógenos, para dentro do ORC. Por este motivo torna-se necessário entender melhor o Domínio Embu, suas características litológicas, idades de sedimentação, intrusões ígneas e eventos metamórficos realizadas pelo método, U-Pb em zircão (Laser Ablation, LA-ICP-MS, Thermo Finnigan Neptune multicollector). Neste trabalho foi possível identificar cinco unidades de mapeamento na escala 1:50.000. Na folha predominam rochas do Domínio Embu, composto por embasamento de 2066 ± 42 Ma, recoberto por rochas metassedimentares, contendo cristais detríticos com idades de cristalização de zircão paleo, meso e Neoproterozoicos, além de intervalos de idades relacionados aos eventos metamórficos reginais distinto compreendidos entre 789 Ma a 490 Ma, com picos entre 560 Ma a 620 Ma. Na porção sudeste da folha dois corpos intrusivos foram identificados, um metagranitode, aqui identificado como Pluton de Cunha, relacionado como produtos da granitogênese sin-colisional e um granito correlacionado ao Granito Parati. Dados geotermobarométricos também foram analisados neste trabalho, consistentes com a como fácies anfibolito, temperatura e pressão de aproximadamente 612 °C e 6 Kba. Os dados geocronológicos e geotermobarométricos, aqui apresentados, corroboram com a hipótese de que o Domínio Embu é uma extensão gradacional para sul da Nappe Socorro-Guaxupe.

Palavras-chave: Cunha, Domínio Embu; Orógeno Brasilia Meridional; Orógeno Ribeira Central

ABSTRACT

MODESTO, Filipe de Brito Fratte. Geology and Geochronology of rocks in the Embu Domain in the surroundings of the municipality of Cunha-SP.

The studied area is located the overlap two orogens from southeastern Brazil, Brasília Meridional (BMO) and Ribeira Central (RCO). The main tectonic entities in this region are the Socorro Lobe of the Socorro-Guaxupé Nappe and the Embu Domain. The working area is located within the Embu Domain (RCO), including the boundary with Socorro Lobe (BMO), to the north. The structuring in this region is traditionally attributed to the development of the Central Ribeira Orogen, however, recent papers bring data that show a southward continuity of structures, metamorphism and ages, corresponding to the BMO, surpassing the limit considered in the literature between the orogens, into the RCO. For this reason, it is necessary to better understand the Embu Domain, its lithological characteristics, sedimentation ages, igneous intrusions and metamorphic events carried out by the method, U-Pb in zircon. In this work, it was possible to identify five mapping units at a scale of 1:50,000. In the sheet, rocks from the Embu Domain predominate, composed of a basement of 2066 ± 42 Ma, covered by metasedimentary rocks, containing detrital crystals with crystallization ages of Paleo, Meso and Neoproterozoic zircons, in addition to age intervals related to distinct regional metamorphic events between 789 Ma to 490 Ma, with peaks between 560 Ma and 620 Ma. In the southeastern portion of the sheet, two intrusive bodies were identified, a metagranitode, here identified as Pluton de Cunha, related to products of syncollisional granite genesis and a granite correlated to the Parati Granite. Geothermobarometric data were also analyzed in this work, consistent with an amphibolite facies, temperature and pressure of approximately 612 °C and 6 Kba. The geochronological and geothermobarometric data presented here support the hypothesis that the Embu Domain is a gradational southward extension of the Socorro-Guaxupe Nappe.

Key-Words: Cunha, Embu Domain; Southern Brasilia Orogen; Central Ribeira Orogen

LISTA DE FIGURAS

Figura 1: Cenário tectônico do sudeste do Brasil, modificado Trouw et al, (2013). A quadrícula vermelha tracejada corresponde à zona de interferência entre os orógenos Brasília e Ribeira. 1: Bacias Cenozoicas; 2: Plutons alcalinos Cretácicos/Cenozoicos; Craton do São Francisco e anti-país (3-5): 3: Embasamento, 4: Cobertura (Grupo Bambuí); 5: Cobertura (metassedimentos autóctones e alóctones); Orógeno Brasília (6-9); 6: Sistema de Nappes Andrelândia (SNA) e Nappe Passos (P); 7: Nappe Socorro -Guaxupé ; 8: Terreno Embu -Paraíba do Sul; 9: Terreno Apiaí; Orógeno Ribeira (10-14); 10: Domínio Externo; 11: Domínio Juiz de Fora; 12: Arco Rio Negro (Terreno Oriental); 13: Terreno Oriental; 14: Figura 2: Localização da área de estudo, limite dos estados do São Paulo e Rio de Janeiro, Figura 3: Sequência ilustrativas das etapas feitas no laboratório: britador, moinho bateia, secagem na estufa, separação por Bromofórmio, separação magnética com imã de mão e separação magnética no Franz. Após essa etapa é realizada separação, confecção do mout análises geocronológicas pelo método U-Pb e posterior tratamento com o software Glitter...22 Figura 4: Encartes modificados de Trouw et al. (2013), mostrando o contexto tectônico da Figura 6: (A) Aparência megascópica do Hornblenda Ortognaisse Migmatítico. (B) Fotomicrografia dessa fácies com um cristal de hornblenda (Hbl) no centro da imagem.32 Figura 7: (A) Afloramento de Biotita Ortognaisse Migmatítico. (B) Fotomicrografiada mesma Figura 8: (A) Amostra de quartzito representativa da unidade. (B) Fotomicrografia da mesma unidade, com níveis submilimétricos basicamente de quartzo (retângulo amarelo), Figura 9: (A) Amostra de Biotita Mica Xisto representativa da unidade. (B) Fotomicrografia, Figura 10: (A e B) exemplo do metagranitoide com megacristal de K-feldspato, e (C) afloramento mostrando uma incipiente foliação tectônica, a linha de cor amarela mostra o Figura 11: (A) Afloramento referente ao granitoide porfirítico, sem orientação preferencial Figura 12: Estereograma de polos da folição principal com mergulho NW e SE......41 Figura 13: Indicadores cinemáticos do tipo delta (1) e sigma (2), evidenciando o movimento dextral, ponto de campo FM-62.42 Figura 15: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-34......46 Figura 16: Diagrama discórdia Wetherill (1956), da amostra FM-34......47 Figura 17: Diagrama concórdia Wetherill (1956), da amostra FM-34......48 Figura 18: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-12......51 Figura 19: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-12.....52 Figura 20: Diagrama de frequência de idades concordantes entre 90% e 110% da amostra FM-Figura 21: Diagrama de frequência com foco nas idades metamórficas concordantes entre 90% e 110% da amostra FM-12......53

Figura 22: Diagrama concórdia Wetherill (1956), da amostra FM-12
Figura 23: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-8458
Figura 24: Diagrama de frequência de idades concordantes entre 90% e 110% da amostra FM-
84
Figura 25: Diagrama de frequência com foco nas idades metamórficas concordantes entre
90% e 110% da amostra FM-8460
Figura 26: Diagrama concórdia Wetherill (1956), da amostra FM-8460
Figura 27: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-1364
Figura 28: Diagrama concórdia Wetherill (1956), da amostra FM-1365
Figura 29: Localização e imagem representativa do afloramento, amostra laminada e lâmina.
Os pontos amarelos indicam a distribuição dos pontos analisados no cristal de granada68
Figura 30: Diagrama ternário com membros finais de almandina, piropo e espessartita das
granadas. Fonte: Klein e Dutron, 2012
Figura 31: Diagrama ternário de variação composicional micas (Miller et al., 1981)74
Figura 32: Diagrama ternário de nomenclatura de feldspato, baseado em Deer et al., 199276
Figura 33: Encarte modificado de Vernon R. H. Principles of Metamorfhic Petrology (2008).
Figura 34: Diagrama de frequência de idades metamórficas concordantes entre 90% e 110%
mesclando dados do xisto e quartzito (FM-12 e FM-84)

LISTA DE TABELAS

Tabela 1: Resumo dos resultados das idades de cristalização e metamorfismo	44
Tabela 2: Análise isotópica U-Pb em Zircão por LA-MC-ICP-MS da amostra – FM-34	49
Tabela 3: Análise isotópica U-Pb em Zircão por LA-MC-ICP-MS da amostra – FM-12	55
Tabela 4: Análise isotópica U-Pb em Zircão por LA-MC-ICP-MS da amostra – FM-13	66
Tabela 5: Composição química das granadas	70
Tabela 6: Composição química das granadas, continuação	71
Tabela 7: Composição química das biotitas	73
Tabela 8: Composição química das muscovitas	75
Tabela 9: Composição química dos K-feldspatos	77
Tabela 10: Pressões e temperaturas obtidas pelo método Holland & Blundy (1994)	78

AGRAD	DECIMENTOS	VIII
RESUM	Ю	IX
ABSTR	ACT	X
LISTA I	DE FIGURAS	. XI
LISTA I	DE TABELAS	XIII
1 INTRO	DDUÇÃO	.16
1.1 C	Dbjetivo	.17
1.2 L	ocalização	.18
1.3 N 1.3.1	létodos Trabalho de Campo	. .19 20
1.3.2	Trabalho de escritório	.20
1.3.3	Geocronologia U-Pb em Zircão	.20
1.3.4	Química mineral e Geotermobarometria	22
2 CONT		~ 4
2 00111		24
3 GEOL	-OGIA DA ÁREA MAPEADA	24 29
3 GEOL 3.1 Eml	OGIA DA ÁREA MAPEADA	24 29 31
3 GEOL 3.1 Eml 3.1.1	COGIA DA ÁREA MAPEADA Dasamento (A) Hornblenda Ortognaisse Migmatítico (A1)	24 29 31 31
3 GEOL 3.1 Eml 3.1.1 3.1.2	LOGIA DA ÁREA MAPEADA Dasamento (A) Hornblenda Ortognaisse Migmatítico (A1). Biotita Ortognaisse Migmatítico (A2).	24 29 31 33
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass	COGIA DA ÁREA MAPEADA	24 31 31 33
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1	COGIA DA ÁREA MAPEADA Dasamento (A) Hornblenda Ortognaisse Migmatítico (A1) Biotita Ortognaisse Migmatítico (A2) ociação de Rochas Metassedimentares	24 31 33 33 34
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2	COGIA DA ÁREA MAPEADA OGIA DA ÁREA MAPEADA Hornblenda Ortognaisse Migmatítico (A1). Biotita Ortognaisse Migmatítico (A2). Ociação de Rochas Metassedimentares Quartzito / Metaprecipitados (B1). Biotita Muscovita Paragnaisse (B2).	24 31 33 33 34 34
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2 3.2.3	COGIA DA ÁREA MAPEADA OGIA DA ÁREA MAPEADA Hornblenda Ortognaisse Migmatítico (A1). Biotita Ortognaisse Migmatítico (A2). Ociação de Rochas Metassedimentares Quartzito / Metaprecipitados (B1). Biotita Muscovita Paragnaisse (B2). Biotita Muscovita Xisto (C).	24 31 33 33 34 35 36
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2 3.2.3 3.3 Plut	COGIA DA ÁREA MAPEADA OGIA DA ÁREA MAPEADA Hornblenda Ortognaisse Migmatítico (A1). Biotita Ortognaisse Migmatítico (A2). Ociação de Rochas Metassedimentares Quartzito / Metaprecipitados (B1). Biotita Muscovita Paragnaisse (B2). Biotita Muscovita Xisto (C). Cons Intrusivos	29 31 33 34 34 35 36
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2 3.2.3 3.3 Plut 3.3.1	COGIA DA ÁREA MAPEADA Dasamento (A) Hornblenda Ortognaisse Migmatítico (A1) Biotita Ortognaisse Migmatítico (A2) Ociação de Rochas Metassedimentares Quartzito / Metaprecipitados (B1) Biotita Muscovita Paragnaisse (B2) Biotita Muscovita Xisto (C) Cons Intrusivos Metagranitoide com predomínio de megacristais (D).	24 31 33 33 34 35 35 36 37 37
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2 3.2.3 3.3 Plut 3.3.1 3.3.2	COGIA DA ÁREA MAPEADA Destination of the second s	24 31 33 33 34 35 35 36 37 39
3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2 3.2.3 3.3 Plut 3.3.1 3.3.2 3.4 Geo	DOGIA DA ÁREA MAPEADA Desamento (A) Hornblenda Ortognaisse Migmatítico (A1). Biotita Ortognaisse Migmatítico (A2). Ociação de Rochas Metassedimentares Quartzito / Metaprecipitados (B1). Biotita Muscovita Paragnaisse (B2). Biotita Muscovita Xisto (C). Cons Intrusivos Metagranitoide com predomínio de megacristais (D). Granito equigranular a inequigranular (E).	24 31 31 33 34 35 36 37 37 39 39
 3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2 3.2.3 3.3 Plut 3.3.1 3.3.2 3.4 Geo 4 GEOO 	CRONOLOGIA COGIA DA ÁREA MAPEADA OGIA DA ÁREA MAPEADA Dosaamento (A) Hornblenda Ortognaisse Migmatítico (A1). Biotita Ortognaisse Migmatítico (A2). Ociação de Rochas Metassedimentares Quartzito / Metaprecipitados (B1). Biotita Muscovita Paragnaisse (B2). Biotita Muscovita Xisto (C). Cons Intrusivos Metagranitoide com predomínio de megacristais (D). Granito equigranular a inequigranular (E). CRONOLOGIA. CRONOLOGIA.	24 31 33 34 35 36 37 37 39 39 40
 3 GEOL 3.1 Eml 3.1.1 3.1.2 3.2 Ass 3.2.1 3.2.2 3.2.3 3.3 Plut 3.3.1 3.3.2 3.4 Geo 4 GEOC 4.1 Orto 	COGIA DA ÁREA MAPEADA Designation (A) Hornblenda Ortognaisse Migmatítico (A1) Biotita Ortognaisse Migmatítico (A2) Ociação de Rochas Metassedimentares Quartzito / Metaprecipitados (B1) Biotita Muscovita Paragnaisse (B2) Biotita Muscovita Xisto (C) Cons Intrusivos Metagranitoide com predomínio de megacristais (D) Granito equigranular a inequigranular (E) CRONOLOGIA Degnaisse do Embasamento (FM-34)	24 31 33 34 35 36 37 37 39 39 40 44

SUMÁRIO

4.3 Quartzito (FM-84)	57
4.4 Metagranitoides Pluton de Cunha (FM-13)	64
5 QUIMICA MINERAL E GEOTERMOBAROMETRIA	67
6 DISCUSSÕES E CONCLUSÕES	80
REFERÊNCIAS	84

1 INTRODUÇÃO

A sobreposição de estruturas produzidas em diferentes momentos tectônicos na mesma região caracteriza o que é conhecido como zona de interferência tectônica. No caso desse trabalho, estruturas distintas sobrepostas no tempo estão relacionadas à diferentes fases colisionais do Brasiliano.

Na região no entorno do município de Cunha-SP, segundo a literatura, predominam rochas relacionadas ao Terreno Embu (Fernandes, 1991), que incluem um suposto limite com o Lobo Socorro da *Nappe* Socorro-Guaxupé (Campos Neto, 2000; Campos Neto e Caby, 2000; Campos Neto *et al*, 2011 e Trouw *et al*, 2013), para norte (Fig.1).

Figura 1: Cenário tectônico do sudeste do Brasil, modificado Trouw et al, (2013). A quadrícula vermelha tracejada corresponde à zona de interferência entre os orógenos Brasília e Ribeira. 1: Bacias Cenozoicas; 2: Plutons alcalinos Cretácicos/Cenozoicos; Craton do São Francisco e anti-país (3-5): 3: Embasamento, 4: Cobertura (Grupo Bambuí); 5: Cobertura (metassedimentos autóctones e alóctones); Orógeno Brasília (6-9); 6: Sistema de Nappes Andrelândia (SNA) e Nappe Passos (P); 7: Nappe Socorro -Guaxupé ; 8: Terreno Embu -Paraíba do Sul; 9: Terreno Apiaí; Orógeno Ribeira (10-14); 10: Domínio Externo; 11: Domínio Juiz de Fora; 12: Arco Rio Negro (Terreno Oriental); 13: Terreno Oriental; 14: Terreno Cabo Frio.

Em uma perspectiva mais regional, essa área está relacionada ao limite de dois conjuntos tectônicos, a *Nappe* Socorro-Guaxupé a norte (Orógeno Brasília Meridional, OBM), e o Terreno Embu a sul (Orógeno Ribeira Central, ORC).

O Terreno Embu foi, de início, denominado por Hasui (1975), como Complexo, pertencente ao Grupo Açungui, e tinha como característica que o diferenciava das demais unidades do grupo possuir unidades litológicas migmatiticas.

Com o avanço dos estudos, na última década chegou-se a uma nova interpretação desta região (Trouw *et al.*, 2013; Vinagre *et al.*, 2014; Duffles *et al.*, 2016; Vinagre da Costa *et al.*, 2017; Meira *et al.*, 2019), que consideram o Terreno Embu a continuação para sul do Lobo Socorro, o que estende o OBM para essa região. Nesse trabalho, por esse motivo, a entidade tectônica Embu será abordada como Domínio Embu.

Uma das propostas deste trabalho é testar essa nova interpretação explicada anteriormente. Para tal propõe-se prosseguir com o mapeamento geológico detalhado na Folha Cunha (1:50.000), o que pode levar ao reconhecimento de unidades rochosas presentes tanto no Domínio Embu, como no Lobo Socorro. Para isso foram utilizadas ferramentas laboratoriais como análises geocronológicas U-Pb (LA-ICP-MS) e geotermobarométricas, buscando correlacionar rochas, estruturas e metamorfismo entre o Domínio Embu e o Lobo Socorro.

1.1 Objetivo

Este trabalho tem como objetivo estabelecer correlações regionais entre unidades litológicas aflorantes no entorno do município de Cunha, estado de São Paulo, com a evolução dos orógenos Brasília Meridional e Ribeira Central, a partir da sua caracterização geológica e geocronológica. Neste intuito, foram realizadas as seguintes etapas:

- Mapeamento Geológico da área de aproximadamente 700 Km² compreendida na folha topográfica Cunha 1:50.000 (IBGE);
- Descrição petrográfica e microestrutural das unidades mapeadas;
- Determinação das condições de pressão e temperatura de metamorfismos das unidades geológicas mapeadas e comparação com os dados obtidos em regiões adjacentes;
- Determinação geocronológicas pelo método U-Pb em zircão de idades de cristais detríticos em rochas paraderivadas, idades de cristalização em rochas magmáticas, bem como idades de metamorfismo;

1.2 Localização

A área de trabalho compreende a folha topográfica Cunha 1:50.000 (IBGE) com aproximadamente 700 km². O município de Cunha está localizado na porção Leste do estado de São Paulo e limita-se com Ubatuba, São Luiz de Paraitinga, Lagoinha, Guaratinguetá, Lorena, Silveiras, Areias, São José de Barreiro no estado de São Paulo e Angra dos Reis e Paraty no estado do Rio de Janeiro. A área de trabalho está localizada entre os meridianos 45°00'00" e 44°45'00" oeste e entre os paralelos 23°15'00" e 23°00'00" sul (Fig. 2).

O principal acesso à área, tanto a partir da cidade de São Paulo ou do Rio de Janeiro, é a rodovia BR 116 (Via Dutra), até a saída de Guaratinguetá, onde seguese pela Rodovia Paulo Virgínio (SP-171) por 48 km até chegar a Cunha.

Figura 2: Localização da área de estudo, limite dos estados do São Paulo e Rio de Janeiro, folha Cunha (1:50.000). (IBGE, 2021, modificado pelo autor)

1.3 Métodos

Inicialmente foi realizado um levantamento bibliográfico, visando maior entendimento sobre o Domínio Embu e a área de estudo propriamente dita. Posteriormente deu-se início às atividades de campo e as etapas laboratoriais.

As etapas laboratorial e de campo sofreram atrasos com relação aos problemas gerados nesse período pandêmico, pois alguns laboratórios encontravam-se fechados ou com funcionamento intermitente. Já a marcação das etapas de campo, dependeu da abertura das cidades e de exames negativos de COVID-19 dos participantes.

1.3.1 Trabalho de Campo

Foram realizadas duas etapas de campo, onde foram visitados 106 afloramentos na folha Cunha, permitindo a geração de um mapa geológico, auxiliado por análise de lâminas petrográficas.

Devido aos contratempos oriundos do período pandêmico e para otimizar os trabalhos de campo realizou-se amostragens pontuais das principais unidades, transversas nas estruturas regionais e, quando possível, seguindo contatos.

1.3.2 Trabalho de escritório

Esta etapa incluiu descrições petrográficas de lâminas delgadas de rocha (foram confeccionadas e descritas 16 lâminas) e no tratamento dos dados, realizado em diferentes plataformas: o mapa geológico foi vetorizado no programa Qgis 3.24.3, perfis e seções geológicas, e outras figuras foram produzidas no software CoreIDRAW Versão 2021.

1.3.3 Geocronologia U-Pb em Zircão

Foram selecionadas quatro amostras para determinações geocronológicas, método U-Pb (LA-ICP-MS) em zircão, que foram preparadas no laboratório de Amostras Geológicas (LAG) da Universidade Federal do Rio de Janeiro e analisadas no MULTILAB da UERJ.

Destas quatro amostras, uma representa o embasamento, onde foi determinada a idade de cristalização, duas a cobertura supracrustal metassedimentar, para análises de idade de grãos detríticos e a determinação da idade de cristalização de um pluton intrudido no conjunto citado anteriormente.

No LAG foram realizadas as etapas que visam a redução de tamanho e desagregação dos grãos das rochas, com uso de britador de mandíbula e moinho de disco. Ainda no LAG, o material foi submetido a métodos que buscam a separação e concentração de matérias por densidade e propriedade magnética, no seguinte ordenamento: concentrado de bateia, imã de mão, separação em meio denso (Bromofórmio - 2,85g/l) e separação magnética no equipamento Frantz (cinco intensidades de corrente diferentes, 0,3 - 0,5 - 0,8 - 1,0 - 1,5), sendo o Frantz realizado somente nas duas amostras de rochas ortoderivadas.

No MULTILAB da UERJ foi realizada a separação dos grãos de zircão com auxílio de lupa binocular, totalizando cerca de 70 cristais das rochas de origem magmática e 150 das rochas de protólito sedimentar. Não se fez distinção de geometria de grãos, para não tendenciar as análises.

As análises geocronológicas foram realizadas pelo método U-Pb em zircão no MULTILAB da UERJ. O processo utilizado foi o *Laser Ablation Inductively Coupled Plasma Mass Spectometry* (LA-ICP-MS, Thermo Finnigan Neptune *multicollector*), que funciona segundo o método explicado por Bernhard *et al.*, (2009) com os seguintes parâmetros: o gás transportador na câmara de coleta, com um fluxo 0,35-0,45 L/min, foi o He; a frequência do laser foi de 7-10 Hz, 30-36 % da potência, com 0,5 a 1,2 J/cm2 de energia; o diâmetro do feixe foi de 30 µm, que funcionou a uma velocidade de 1 µm/sec. Com essa relação potência x velocidade, em 1 minuto e 1 segundo, se faz 700 leituras de sete isótopos, ²⁰² Pb, ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, ²³² Th, ²³⁸ U. Durante os 25 segundos iniciais, o método está lendo o ``*blank*'', que é leitura apenas do Hélio, responsável por carregar o material a ser analisado, enquanto nos

38 segundos restantes são feitas as leituras do material. Por fim, é feito um tratamento de dados prévio com o *software* Glitter e exportada para planilha em formato Excel de Lana., (2017). (fig 3).

Figura 3: Sequência ilustrativas das etapas feitas no laboratório: britador, moinho bateia, secagem na estufa, separação por Bromofórmio, separação magnética com imã de mão e separação magnética no Franz. Após essa etapa é realizada separação, confecção do *mout* análises geocronológicas pelo método U-Pb e posterior tratamento com o *software* Glitter.

1.3.4 Química mineral e Geotermobarometria

Para esta etapa foi selecionada uma amostra de paragnaisse (FM-43) que foi analisada no LABSONDA, UFRJ, por meio de microssonda eletrônica acoplada a espectrômetro de massa (GEOL JXA-8230) que funciona segundo o método explicado por Gomes (1984). Os parâmetros utilizados para estas análises foram: voltagem do feixe eletrônico: 15.0 kV; corrente do filamento: 20nA; nas análises quantitativas, o diâmetro de feixe eletrônico foi de 10 µm e a forma tipo círculo; nas análises para geração de mapas e perfis a forma do feixe eletrônico foi tipo SPOT.

Para os cálculos geotermobarométricos foi utilizado o *software* THERMOCALC, versão 3.2, de Powell & Holland (1988).

2 CONTEXTO GEOLÓGICO REGIONAL

Um dos primeiros pesquisadores a reconhecer e documentar a presença de xistos e quartzitos na região onde está caracterizado o Domínio Embu foi José Bonifácio de Andrada e Silva no ano de 1820 (Oliveira & Leonardos, 1943).

Desde a década de 1990, uma entidade tectônica supostamente limitada por suturas, localizada entre os estados de São Paulo e Rio de Janeiro, vem sendo denominada de Terreno Embu (Fernandes *et al.*, 1990 e Fernandes, 1991). Este terreno tectônico possui forma alongada com rumo NE-SW e se estende por dezenas de quilômetros desde a cidade de São Paulo até o estado do Rio de Janeiro, onde recebeu o nome de Terreno Paraíba do Sul (Heilbron *et al.*, 2004 e 2017).

O Terreno Embu foi descrito por diversos autores como um produto da orogenia neoproterozoica que edificou o Orógeno Ribeira Central (Heilbron *et al.*, 2004 e 2017). O mesmo estaria limitado a norte e a sul por zonas de cisalhamento dextrais (Rio Jaguari/Buquira/Jundiuvira e Cubatão, respectivamente), o que o separa a norte da *Nappe* Socorro (Campos Neto & Caby, 1999 e 2000) e ao sul do Arco Magmático Rio Negro (Heilbron *et al.*, 2004 e 2017),

Mais recentemente, o Terreno Embu foi considerado como uma continuação para sul da *Nappe* Socorro-Guaxupé (Fig. 4), (Trouw *et al.*, 2013; Vinagre *et al.*, 2014, Duffles *et al.*, 2016 e Vinagre da Costa *et al.*, 2017), desta forma passando a relacionar-se com a evolução do Orógeno Brasília Meridional, que é resultado do cavalgamento do paleocontinente Paranapanema sobre o paleocontinente São Francisco no Neoproterozoico (Campos Neto & Caby, 1999 e 2000; Trouw *et al.*, 2000 e 2013). Essa mudança de interpretação permite tratar o, até então, Terreno Embu como um complexo metamórfico, conforme Hasui (1975) já o discriminava. No entanto, nesse trabalho, está sendo utilizada a nomenclatura genérica Domínio Embu.

Figura 4: Encartes modificados de Trouw *et al.* (2013), mostrando o contexto tectônico da área de estudo.

De acordo com a literatura o Domínio Embu é interpretado como composto por um embasamento paleoproterozoico (Fernandes *et al.*, 1990; Janasi *et al.*, 2003; Heilbron *et al.*, 2004 e 2008; Trouw *et al.*, 2013), recoberto por rochas metassedimentares contendo cristais detríticos de zircão, predominantemente, com as mesmas idades 2,2 – 2,0 Ga, (Janasi *et al.*, 2003; Trouw et al., 2013 e Duffles *et al.*, 2016). Porém, Vinagre da Costa *et al.* (2017) descreveram nas mesmas rochas metassedimentares também cristais de zircão detríticos com idades mesoproterozóicas, com picos de idade entre 1.7 e 1.4 Ga.

Quanto ao metamorfismo, até então, todos os dados geocronológicos publicados mostram eventos metamórficos Neoproterozoicos com idades variando entre 790 Ma (Vlach *et al.*, 2001; Vinagre da Costa *et al.*, 2017) até 570 Ma, com intervalos expressivos entre 670 - 630 Ma e 620 - 600 Ma (Trouw *et al.*, 2013; Duffles *et al.*, 2016; Vinagre da Costa *et al.*, 2017). Estes últimos autores interpretaram as idades mais velhas de metamorfismo, 790-630 Ma como

relacionadas ao funcionamento do Arco Magmático da *Nappe* Socorro instalado na margem continental ativa do Paleocontinente Paranapanema (Campos Neto *et al.*, 2011; Trouw *et al.*, 2013; Vinagre *et al.*, 2014) e apontam a posterior colisão continental com o paleobloco São Francisco como a responsável pelo metamorfismo registrado entre 620 e 600 Ma.

Outro conjunto de idades, entre 590 e 570 Ma é interpretada como derivada de uma segunda colisão entre o já aglutinado paleobloco São Francisco/Paranapanema com a microplaca da Serra do Mar que deu origem à Faixa Ribeira Central e à Zona de Interferência entre as Faixas Brasília Meridional e Ribeira Central (Heibron, 2013).

O Domínio Embu, segundo Janasi *et al.* (2003), abriga numerosas ocorrências de intrusões graníticas Neoproterozoicas, sendo peculiar a abundância de granitos marginal a fracamente peraluminosos que formam dezenas de ocorrências menores, até mesmo alguns batólitos, especialmente na região a leste da cidade de São Paulo. Dentre essas intrusões, destaca-se o corpo metaígneo Serra do Quebra Cangalha (SQC), localizado a sudeste de Guaratinguetá, inicialmente descrito por Janasi & Ulbrich (1992), e posteriormente por Janasi *et al.* (2003) e Alves (2009), como um corpo de aproximadamente 300 km², composto por biotita granito porfirítico associado a muscovita-biotita granitos equigranulares mais diferenciados e com ocorrências locais de granada.

Idades pré-colisionais foram reportadas para a rocha com fenocristais do SQC em pelo menos três publicações distintas. Janasi *et al.* (2003) obtiveram uma idade a cerca de 680 Ma U-Pb em monazita e Alves (2009) uma idade de 658 \pm 1,3 Ma (Pb-Pb em zircão). Trouw *et al.* (2013), publicaram uma idade de 680 \pm 13 Ma, U-Pb em zircão, para o mesmo corpo. Também abundantes no Domínio Embu são as ocorrências de turmalina granitos, destacando-se dentre muitas os maciços Itanhandu e Capivara. O Granito Itanhandu está localizado a noroeste do Maciço Alcalino de Passa-Quatro (Pereira *et al.*, 2005). Os mesmos autores atribuíram para esse granito uma idade Pb-Pb em zircão de 649 ± 6 Ma.

Alguns corpos ortoderivados (Piedade-Ibiúna, Três Córregos e Cachoeira, entre outros) tiveram idades de cristalização U-Pb em zircão determinadas entre 630 e 610 Ma, predominando as idades por volta de 610 Ma (Gimenez Filho *et al.*, 2000; Hackspacher *et al.*, 2003; Janasi *et al.*, 2001 e Prazeres Filho, 2000). Segundo os mesmos autores, essas rochas são interpretadas como produtos de uma granitogênese sin-a tardi-colisional com idades similares às adquiridas para rochas colisionais ocorrentes na *Nappe* Socorro-Guaxupé. Tassinari *et al.* (2004) determinaram para um corpo granítico denominado "Granito do Moinho" uma idade U-Pb em zircão de 620 ± 11 Ma. Esse granito, localizado a leste de Nazaré Paulista e logo a sul da Zona de Cisalhamento Buquira/Jundiuvira, foi interpretado por Campos Neto (1984) como sendo de origem sin-a tardi-tectônico no Ciclo Orogênico Brasiliano. Janasi *et al.* (2003), determinaram para o Granito Turvo uma idade de 610 ± 1 Ma por U-Pb em monazita. Este é um granito a duas micas em parte com granada e turmalina que intrude o Batólito Agudos Grandes, sendo interpretado pelo mesmo autor como produto de anatexia crustal.

Nessa região são descritos diversos corpos graníticos mais jovens, destacando-se os maciços Mauá, Mogi das Cruzes e Jaguari, todos localizados na porção W/SW do Domínio Embu e com idades variando entre 590 e 580 Ma. Outros corpos ocorrem na porção E/NE com idades que variam entre 590 e 560 Ma, são eles: Granitos Campos Alegre, Funil, Bananal, Resgate e pequenas ocorrências de leucogranitos foliados (Machado *et al.*, 1996; Valladares *et al.*, 1997; Pereira *et al.*, 2001; Janasi *et al.*, 2003). Além desses, a sudeste da área, afloram granitos tardi colisionais com destaque ao Complexo Plutônico Parati e Suíte Charnockítica Ilha Grande, com idade variando entre 540 a 510 Ma. (Eirado *et al.*, 2006).

3 GEOLOGIA DA ÁREA MAPEADA

Com os dados obtidos durante o mapeamento de campo, auxiliados por análises de lâminas petrográficas, foi possível identificar sete unidades de mapeamento. Em ordem estratigráfica da mais velha para a mais nova, baseada em relações de campo, são elas: A) Hornblenda Ortognaisse Migmatítico e Biotita Ortognaisse Migmatítico; B) Quartzito / Metaprecipitados Químicos intercalados com Biotita Paragnaisse; C) Biotita, Muscovita Xisto; D) Metagranitoide com Megacristais (Pluton de Cunha); e E) Granito equigranular a porfirítico (Pluton Parati). (Fig. 5).

Figura 5: Mapa geológico da folha Cunha.

Foliação tectônica (Seção

EPSG:31983 - SIRGAS 2000 / UTM zone 23S

Dessas unidades, uma foi interpretada como embasamento (A), separada da sequência superior de rochas metassedimentares (B e C) por uma discordância. Todo conjunto é encaixante das unidades D e E.

Os Quartzitos / metaprecipitados, ocorrem na forma de lentes, raramente quilométricas e fisicamente não conectadas, por vezes intercalados com paragnaisse, predominantemente em contato direto com o embasamento.

Tectonicamente e, provavelmente, estratigraficamente acima dessas unidades ocorre o xisto, que em alguns raros pontos também apresenta uma composição mais quartzosa, onde também ocorrem intercalações com níveis até métricos de quartzito não mapeáveis na escala trabalhada.

3.1 Embasamento (A)

Essa unidade aflora em cortes de estrada e lajedos, tanto nas encostas de morros, como dentro de canais fluviais. É caracterizada pela ocorrência de ortognaisses subdivididos em pelo menos duas fácies, um Hornoblenda Ortognaisse Migmatitico (A1) e um Biotita Ortognaisse Migmatitico (A2). São rochas descritas separadamente, porém com a exposição não contínua de afloramentos, não foi possível a separação em unidades distintas em mapa.

3.1.1 Hornblenda Ortognaisse Migmatítico (A1).

Essa fácies (Fig. 6) é caracterizada por um gnaisse com textura inequigranular do tipo porfirítica reliquial, dada por megacristais de feldspatos que ocorrem em quantidades variadas em relação à matriz. Esses megacristais possuem no máximo 2 cm de comprimento e hábito predominantemente arredondado devido a recristalização. A matriz tem coloração escura, granulação fina a média e índice de cor (IC) variando entre 12% e 15%. Essa rocha é composta essencialmente por quartzo, plagioclásio, K-feldspato, biotita e hornblenda, sendo minerais opacos e allanita as principais fases acessórias. Como secundário ocorre epidoto, substituindo principalmente cristais de plagioclásio, mas também biotita e hornblenda.

Ocorrem raras intercalações de rochas metamáficas, aparentemente anfibolitos com geometria lenticular e tamanho que variam de centimétricos até no máximo 1m ao longo do seu maior eixo. Tais anfibolitos apresentam textura fina sendo compostos majoritariamente por hornblenda e plagioclásio.

Essa fácies possui uma foliação tectônica bem definida e evidências de recristalização. Tem ocorrência intensamente migmatizada com uma estrutura tipo estromática. Os corpos anatéticos são ora lenticulares, ora tabulares com espessuras variando entre 1 e 20 cm. São compostos por granitos leucocráticos finos / médios deformados e paralelizados e dobrados juntamente com a foliação principal da rocha.

Figura 6: (A) Aparência megascópica do Hornblenda Ortognaisse Migmatítico. (B) Fotomicrografia dessa fácies com um cristal de hornblenda (Hbl) no centro da imagem.

3.1.2 Biotita Ortognaisse Migmatítico (A2).

Essa unidade (Fig. 7) é caracterizada por um gnaisse de coloração escura, textura inequigranular do tipo porfirítica reliquial dada por uma variada quantidade de megacristais, compostos por feldspatos com no máximo 1,5 cm e hábito, em geral, arredondado. A matriz é fina / média com IC por volta de 10%. Essa matriz é composta essencialmente por quartzo, plagiclásio e K-feldspato, em proporções parecidas, e biotita (mineral máfico predominante). Como acessórios ocorrem titanita e minerais opacos. Além desses, o epidoto aparece substituindo cristais de plagioclásio e biotita.

Assim como o gnaisse da fácies A1, o Biotita Ortognaisse apresenta uma foliação tectônica bem definida com evidências de recristalização.

Essa unidade mostra um expressivo grau de migmatização dado por corpos anatéticos leucocráticos de composição granítica, dispostos na forma de lentes com espessura que variam de milimétricas até no máximo 20 cm. Tais lentes ocorrem colocadas paralelamente à foliação tectônica, compondo uma textura estromática, dobradas por fases deformacionais posteriores.

Figura 7: (A) Afloramento de Biotita Ortognaisse Migmatítico. (B) Fotomicrografiada mesma unidade, com biotita (Bio) no centro da imagem.

3.2 Associação de Rochas Metassedimentares

Esta associação sempre ocorre por cima tectonicamente e muito provavelmente estratigraficamente dos ortognaisses descritos anteriormente (unidades A1 e A2). Em geral os afloramentos se mostram em avançado estado de alteração intempérica.

3.2.1 Quartzito / Metaprecipitados (B1).

Estratigraficamente, as camadas de quartzito / metaprecipitados, quando com algumas dezenas de metros, ocorrem abaixo do Biotita Muscovita Xisto. No entanto também é observado na forma de corpos lenticulares, raramente tabulares, com espessuras centimétricas a métricas, intercalados tanto nos xistos da unidade C.

Em geral são rochas de coloração clara e granulação fina a média, compostas, além do quartzo, por plagioclásio, K-feldspato, biotita e granada, com ocorrências locais de mica branca e sillimanita. Como fases secundárias ocorrem mica branca e clorita, substituindo feldspatos e biotita, respectivamente.

Por vezes, ocorrem intercalados com lentes quartzíticas esverdeadas compostas, além de quartzo, por clinozoizita, epidoto, titanita e plagioclásio, além de raros cristais de cloritas e actinolita. Essas intercalações, em função da associação mineralógica, são interpretadas como níveis de precipitados químicos intercalados em pacotes quartzo arenosos (fig. 8). Isso indica uma associação litológica de origem híbrida, ora sedimentando clasticamente, ora quimicamente.

Os bancos mais espessos frequentemente apresentam intercalações centimétricas a métricas de paragnaisses e xistos. Quando as intercalações são muito abundantes percebe-se um contato gradacional para a unidade xistosa superior.

Figura 8: (A) Amostra de quartzito representativa da unidade. (B) Fotomicrografia da mesma unidade, com níveis submilimétricos basicamente de quartzo (retângulo amarelo), intercalados com níveis de clinozoizita, epidoto, titanita e plagioclásio.

3.2.2 Biotita Muscovita Paragnaisse (B2).

Essa unidade não possui afloramentos representativos para esta escala de mapeamento. No entanto também é observado na forma de corpos lenticulares, raramente tabulares, com espessuras centimétricas a métricas, intercalados tanto nas unidades B1 e C.

São rochas de coloração escura quando sã, com granulação fina e bandamento composicional, intercalando leitos milimétricos ora ricos em micas, ora quartzo feldspáticos. Localmente, nos afloramentos onde o paragnaisse é mais enriquecido em quartzo, podendo ser classificado como um quartzo xisto, ocorrem intercalações submilimétricas a centimétricas de quartzito fino micáceo.

A rocha é composta por biotita, mica branca, quartzo, plagioclásio e Kfeldspato, podendo ter localmente sillimanita, granada e clorita.

A ausência de fenocristais, o bandamento composicional, as intercalações locais de quartzito e presença de sillimanita + granada, levam essa unidade a ser interpretada como um gnaisse paraderivado com protólito provavelmente semipelítico.

3.2.3 Biotita Muscovita Xisto (C).

Essa unidade ocorre em avançado estado de alteração intempérica (Fig. 9). É a unidade mais abundante, dentre as paraderivadas. Trata-se de xisto com granulação variando de fina a grossa, predominando média, e coloração escura quando sã. Em alguns afloramentos tem um aspecto filítico, não sendo contínua nem mapeável.

A textura varia entre lepidoblástica e porfiroblástica, dependendo da associação mineralógica presente em cada afloramento. É composto por biotita, mica branca, quartzo, silimanita e com menor quantidade de plagioclásio e K-feldspato. Localmente podem ocorrer granada e turmalina. Como fases secundárias são comuns, mica branca e clorita.

Por vezes tem intercalações de quartzito fino, compondo leitos milimétricos a centimétricos. Quando mais enriquecido em quartzo pode ser classificado como quartzo xisto.

A variação textural, presença de sillimanita e granada, além das intercalações com quartzito, permitem classificar essa rocha como paraderivada de protólito pelítico.

Figura 9: (A) Amostra de Biotita Mica Xisto representativa da unidade. (B) Fotomicrografia, da mesma unidade, mostrando a textura da rocha.

3.3 Plutons Intrusivos

Na área estudada foram identificados dois corpos intrusivos, um metagranitoide e um granito, ambos predominantemente inequigranulares. Estas unidades afloram em lajedos, paredões de rocha sã e cortes em estradas. Controlam a morfologia local se destacando no relevo devido à maior resistência à alteração itempérica.

Devido à similaridade entre essas duas rochas e por estarem fisicamente em contato, há uma certa dificuldade na distinção entre esses litotipos na zona limítrofe das unidades. Por isso, além da análise em campo, foram necessárias análises geocronológicas.

3.3.1 Metagranitoide com predomínio de megacristais (D).

A grosso modo esse corpo ocorre alongado na direção NE/SW. Foram observadas duas fácies, com predomínio de uma delas. O contato com as encaixantes ora acompanha aproximadamente a estruturação regional, ora trunca as demais unidades. Aqui neste trabalho esta unidade foi denominada de Pluton de Cunha.

O caráter intrusivo é definido por apófises e diques identificados nas rochas encaixantes próximo às zonas de contato. Também ocorrem xenólitos compostos por ortognaisses do embasamento e por rochas da cobertura paraderivada (Domínio Embu).

O aspecto de campo varia conforme a porção exposta do corpo intrusivo. São rochas que podem ser descritas separadamente, porém devido à falta de continuidade dos afloramentos, não foi possível mapeá-las individualmente.

A fácies D1, sempre associada a porções de borda do corpo, é a menos expressiva. É caracterizada por um metagranitoide claro, variando de cinzento a rosado, equigranular, com granulação fina a média e índice de cor por volta de 7%.

A fácies D2, predominante, é um metagranitoide inequigranular com megacristais, onde a relação fenocristais – matriz é aproximadamente 40% - 60%, respectivamente (Fig. 10). Quando deformado exibe texturas que variam de ortognaisse oftálmica até protomiloníticas e miloníticas. Os megacristais são predominantemente microclina e raro plagioclásio, ambos variando de 1,5 a 5 cm de comprimento. Sua textura porfirítica é bastante diversificada em função de variações na abundância, no tamanho e na forma dos megacristais.

As duas fácies são compostas essencialmente por quartzo, microclina, plagioclásio e biotita, sendo allanita, titanita e minerais opacos, as principais fases acessórias.

Figura 10: (A e B) exemplo do metagranitoide com megacristal de K-feldspato, e (C) afloramento mostrando uma incipiente foliação tectônica, a linha de cor amarela mostra o traço da foliação.
3.3.2 Granito equigranular a inequigranular (E).

Esta unidade possui pelo menos duas fáceis, sendo uma delas, predominante, um granitoide porfirítico e a outra fáceis um granitoide equigranular (Fig. 11). O contato inferido no mapa, mostra o truncamento das unidades encaixantes por esse corpo.

A falta de continuidade dos afloramentos não permitiu a individualização destas fáceis em mapa, porém foram descritas separadamente de acordo com suas características.

A fácies E1, predominante, corresponde a um granitoide inequigranular porfirítico com uma relação fenocristais – matriz de aproximadamente 40% - 60%, respectivamente. Os fenocristais são de K-feldspato euédricos, variando entre 2 e 5 centímetros.

Já a fácies E2 corresponde a um granito equigranular, médio a grosso, leucocratico, de cor cinzenta, localmente rosa claro.

Essa unidade pode corresponder ao plúton descrito na literatura como Granito Parati (Eiraldo *et al.,* 2006).

Figura 11: (A) Afloramento referente ao granitoide porfirítico, sem orientação preferencial dos fenocristais e (B) granitoide equigranular, médio a grosso.

3.4 Geologia Estrutural e Metamorfismo

As estruturas geológicas foram analisadas por meio de feições como foliações tectônicas, lineações (estiramento, mineral e de crenulação), aspectos geométricos de dobras (flancos, eixo e plano axial) e zonas de cisalhamento. Por meio dessas feições foram identificadas quatro fases deformacionais dúcteis: Dn, Dn+1, Dn+2 e Dn+3.

A foliação predominante na área é Sn+1, plano axial de dobras que variam de isoclinais a apertadas que dobram uma foliação pretérita Sn que por sua vez já estava paralelizada ao S0 e a raras lentes quartzo-feldspáticas.

Essa foliação tectônica Sn é identificada nas charneiras de dobras Dn+1, tanto em escala de afloramento, como em escala microscópica, dobras intrafoliais, nas unidades mais enriquecidas em micas (xistos e paragnaisses).

A foliação Sn+1 mergulha tanto para SE como para NW, com ângulos que variam de 20° até subverticais (Fig. 12). Dependendo da litologia, pode ser classificada como contínua (observada em xistos e gnaisses ortoderivados) ou espaçada (normalmente associada aos paragnaisses bandados). Quando contínua, é definida principalmente por micas distribuídas homogeneamente na trama da rocha e orientadas segundo uma direção preferencial. Quando espaçada, intercala trilhas de micas com níveis quartzo-feldspáticos submilimétricos a milimétricos.

Figura 12: Estereograma de polos da folição principal com mergulho NW e SE.

A variação da direção de mergulho da foliação tectônica Sn+1 está associada a dobramentos sin Dn+2. Essa fase Dn+2 produziu uma série de dobras ligeiramente assimétricas, abertas, com flancos ora mergulhando, aproximadamente, 50° para NW, ora, aproximadamente, 30° para SE, sugerindo, a grosso modo, uma vergência para NW. Os eixos dessas dobras possuem caimento suave para SW, fazendo com que em mapa os antiformais tenham fechamento de bico para SW e os sinformais para NE.

Em um momento tardio da fase deformacional Dn+2, foram formadas zonas de cisalhamento transpressivas com movimento transcorrente dextral, evidenciadas pela lineação de estiramento sub-horizontal, com caimento suave também para 70°N, contida nas foliações miloníticas com atitude média 160/50°. Em cortes paralelos à lineação de estiramento e perpendiculares à foliação milonítica Sn + 2, ocorrem porfiroclastos de feldspatos que funcionam como indicadores cinemáticos, deltas e sigmas, que mostram movimento em planta dextral.

Figura 13: Indicadores cinemáticos do tipo delta (1) e sigma (2), evidenciando o movimento dextral, ponto de campo FM-62.

A orientação e cinemática dessas zonas de cisalhamento sugerem, a grosso modo, que o campo de tensões que as produziu foi um encurtamento aproximadamente E-W.

Por fim, um último evento compressional foi verificado pelo redobramento das dobras assimétricas Dn+2, produzindo dobras suaves Dn+3 regionais com eixo sub-horizontal, rumo aproximadamente N-S, e plano axial subvertical, somente verificado em mapa.

As condições de metamorfismo foram analisadas por meio das associações minerais identificadas, principalmente, em rochas com protólitos sedimentares do tipo pelítico, semipelítico e precipitados químicos. Além disso, também foi levado em consideração o grau de migmatização das unidades mapeadas, em função da abundância dos corpos anatéticos presentes nas unidades. Percebe-se um contraste metamórfico entre as rochas do embasamento e da cobertura paraderivada. Os ortognaisses do embasamento são rochas migmatíticas com alto grau de fusão parcial. Esses ortognaisses possuem composições intermediárias com razoável quantidade de hornblenda e intercalações de lentes anfibolíticas que também apresentam evidências de anatexia. Como sabido, Yardley (1994), rochas com tal composição possuem pouca H₂O e para que haja fusão parcial desses litotipos é necessária uma temperatura pelo menos igual ou maior que as vigentes na fácies anfibolito. A hornblenda, quando presente nesses ortognaisses, ocorre parcialmente substituída por biotita, que compõe as foliações mais jovens, crescidas durante os metamorfismos posteriores que afetaram a cobertura paraderivada em menor grau.

Com relação às rochas pertencentes à cobertura metassedimentar, foram utilizadas basicamente as rochas xistosas para a caracterização do metamorfismo, que nesse caso não foi tão severo quanto ao que afetou as rochas do embasamento, inclusive mostrando um menor grau de migmatização. Os xistos da área são compostos por biotita + mica branca + quartzo + plagioclásio ± K-feldspato ± veios quartzo feldspáticos ± granada ± sillimanita fibrosa, raramente prismática ± clorita. Essa paragênese sugere um grau metamórfico fácies anfibolito superior e com uma pressão variando de média a baixa por causa da silimanita.

4 GEOCRONOLOGIA

As quatro amostras analisadas representam as principais unidades encontradas na área de mapeamento (fig. 13): um ortognaisse do embasamento (FM-34); duas de rochas paraderivadas do Domínio Embu (Biotita Muscovita Xisto, FM-12 e Quartzito / Metaprecipitado, FM-84); além de uma amostra de metagranitoide do Pluton de Cunha (FM-13) (Tab. 01).

r			
	Cristalização	idades de cristais detríticos	Metamorfismo
FM-34	2066 Ma		551 Ma
FM-12		2100 - 1700 Ma;	789 - 620 Ma;
		1600 - 1100 Ma.	613 - 590 Ma;
			580 - 490 Ma.
FM-84		2556 Ma;	700 - 620 Ma;
		2300 Ma;	620 - 590 Ma;
		1500 - 1300 Ma.	580 - 490 Ma.
FM-13	624 Ma		

Tabela 1: Resumo dos resultados das idades de cristalização e metamorfismo. * (-) interpretação de intervalos de idades.

Figura 14: Localização das amostras analisadas para geocronologia.

4.1 Ortognaisse do Embasamento (FM-34)

Os cristais de zircão, de modo geral, são incolores, com poucas inclusões e pouco fraturados. Possuem terminações piramidais e excentricidades 2:1 e 3:1. As imagens de catodoluminescência, mostram zoneamentos internos bem definidos, típica característica de desenvolvimento magmático. (Fig. 14)

Figura 15: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-34.

No total foram analisados 48 pontos entre bordas e núcleos, onde 11 análises resultaram em idades concordantes, em geral com razões Th / U altas, o que corrobora com a origem ígnea dos cristais de zircão (Tab. 2). O diagrama (Fig. 16) mostra uma idade concórdia de 2066 ± 42 Ma obtida a partir de 5 grãos.

Já o diagrama discórdia (Fig. 15), apresenta interceptas superior e inferior, onde a idade intercepta superior se sobrepõem a da idade concórdia, levando em consideração os erros. A intercepta inferior, uma idade de aproximadamente 551 ± 42 Ma, pode ser considerada uma idade de abertura do sistema geocronológico, possivelmente relacionada a metamorfismo.

Figura 16: Diagrama discórdia Wetherill (1956), da amostra FM-34.

Figura 17: Diagrama concórdia Wetherill (1956), da amostra FM-34.

Amostra	Obs.	% conc	207Pb	206Pb	U (µg g- 1) a	Th/U	207Pb/ 206Pb	2s%	207Pb/ 235U	2s%	206Pb/ 238U	2s%	RHO	207Pb/ 206Pb	2s%	207Pb/ 235U	2s%	206Pb/ 238U	2s%
			CPS	CPS												Age			
FM34_011	Centro	98	185701,2	25560,3	110,426	1,588	0,139	4,38	6,908	4,395	0,361	4,959	1,128	2212,289	75,979	2099,68	39,753	1986,723	85
FM34_010	Centro	98	211378,5	27939,73	122,448	1,374	0,133	4,059	6,797	4,076	0,371	4,912	1,205	2138,475	70,977	2085,311	36,734	2031,894	86
FM34_013	Centro	100	242430,8	31935,5	159,873	0,879	0,132	4,227	6,158	4,24	0,337	4,731	1,116	2131,096	73,978	1998,501	37,734	1872,8	77
FM34_05	Centro	99	164256,3	21479,52	93,429	1,434	0,132	4,458	6,863	4,474	0,377	4,982	1,114	2123,414	78,085	2093,866	40,444	2063,94	89
FM34_09	Centro	95	210944,8	27648,72	121,681	1,039	0,132	4,248	6,763	4,264	0,372	4,958	1,163	2122,351	74,421	2080,9	38,442	2039,274	87
FM34_014	Centro	91	213275	27872,19	145,936	1,209	0,132	4,131	5,899	4,144	0,325	4,94	1,192	2120,623	72,38	1961,138	36,629	1813,615	79
FM34_016	Borda	93	257061,5	33226,61	179,448	0,693	0,13	4,521	5,711	4,533	0,318	5,15	1,136	2098,638	79,416	1932,97	39,94	1782,253	81
FM34_06	Centro	92	253043	31832,53	144,682	1,135	0,126	4,397	6,545	4,413	0,375	4,968	1,126	2049,053	77,674	2051,912	39,636	2054,76	88
FM34_018	Centro	94	182254,1	21736,86	134,695	1,155	0,12	3,992	4,815	4,003	0,29	5,079	1,269	1959,636	71,254	1787,443	34,225	1643,678	74
FM34_035	Centro	92	249463,1	16490,91	635,714	0,663	0,067	7,015	0,802	7,016	0,087	2,017	0,288	828,733	146,322	598,199	32,221	539,193	10
FM34_040	Centro	91	165678	10829,43	412,498	0,016	0,066	4,896	0,787	4,896	0,086	5,22	1,066	812,074	102,382	589,274	22,13	533,083	27

Tabela 2: Análise isotópica U-Pb em Zircão por LA-MC-ICP-MS da amostra - FM-34

4.2 Biotita Muscovita Xisto (FM-12)

Os cristais de zircão, de modo geral, são incolores, com poucas inclusões, podendo ser observadas fraturas em alguns grãos. Os grãos variam de arredondados a prismáticos, com excentricidades variando entre 1:1 e 2:1. As imagens de catodoluminescência mostram grãos com zonamento melhor definido em alguns grãos, no entanto outros se mostram nebulosos ou sem luminescência, provavelmente pelo excesso de ²⁰⁷Pb. (Fig. 17 e 18)

No total foram analisados 182 pontos entre bordas e núcleos dos grãos, sendo 66 pontos concordantes em uma margem de 90% a 110%, apresentados na tabela 3.

Levando em consideração a tabela 3 e o diagrama (Fig. 19), percebe-se que a maioria das análises correspondem a idades de cristalização com alto Th / U no paleoproterozoico entre 2.100 e 1.600 Ma, predominando entre 1.900 e 1.800 Ma. Ocorrências menores de idades ígneas, também são observadas entre 1.500 1.100 Ma, durante o mesoproterozoico.

Através da leitura (Tab. 3), e levando em consideração tanto as imagens de catodoluminescência, como as razões Th / U, foi possível interpretar uma idade de 816 \pm 14 Ma (FM12-137, Fig. 18), como sendo o cristal ígneo detriticos mais jovem do conjunto, no Neoproterozoico. Por outro lado, uma idade de 789 \pm 11 Ma (FM12-108) apresentada por um grão com aspecto nebuloso e razão Th / U por volta de 0,1, é interpretada como a idade metamórfica mais velha do conjunto.

Figura 18: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-12.

Figura 19: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-12.

Figura 20: Diagrama de frequência de idades concordantes entre 90% e 110% da amostra FM-12.

Figura 21: Diagrama de frequência com foco nas idades metamórficas concordantes entre 90% e 110% da amostra FM-12

O diagrama concórdia (Fig. 21) mostra uma idade de 562 ± 11 Ma obtida a partir de cinco análises concordantes. A leitura da tabela 3 que aponta baixas razões Th / U para a maioria dessas análises, mais as imagens de catodoluminescência (Fig. 16 e 17), permitem interpretar essa idade como uma idade de metamorfismo. Além dessa idade metamórfica, foi possível observar (Fig. 20), uma concentração de idades entre 600 – 560 Ma e 520 – 480 Ma.

Figura 22: Diagrama concórdia Wetherill (1956), da amostra FM-12.

Amostra	Obs.	% conc	207Pb	206Pb	U (µg g-1) a	Th/U	207Pb/ 206Pb	2s%	207Pb /235U	2s%	206Pb /238U	2s%	RHO	207Pb/ 206Pb	2s%	207Pb / 235U	2s%	206Pb/ 238U	2s%
			CPS	CPS												Aq	e		
FM12_3	Centro	101	109420,218	14594,851	48,988	0,443	0,135	4,322	7,518	4,341	0,404	3,271	0,754	2165,691	75,345	2175,145	39,664	2185,181	60,915
FM12_63	Centro	102	73599,208	8832,523	33,083	0,611	0,122	4,115	6,205	4,131	0,367	2,749	0,665	1992,664	73,16	2005,152	36,785	2017,296	47,791
FM12_6	Centro	97	99600,696	13252,018	48,995	0,595	0,134	4,167	6,804	4,183	0,367	2,641	0,631	2155,983	72,73	2086,287	37,727	2016,4	45,898
FM12_130	Centro	93	546572,233	64578,585	148,66	1,142	0,119	3,881	5,974	3,898	0,366	1,764	0,453	1934,031	69,48	1972,038	34,487	2008,474	30,521
FM12_19	Centro	102	68796,003	8143,971	35,505	2,15	0,121	4,414	6,061	4,429	0,365	3,002	0,678	1964,083	78,736	1984,654	39,354	2004,461	51,933
FM12_97	Centro	99	109967,878	13802,374	63,966	1,159	0,127	4,692	6,326	4,706	0,361	3,253	0,691	2057,133	82,805	2022,12	42,124	1988,001	55,886
FM12_95	Centro	98	206614,432	26113,321	121,686	0,951	0,127	4,181	6,259	4,197	0,357	2,985	0,711	2060,048	73,767	2012,683	37,422	1966,845	50,801
FM12_45	Centro	100	117130,099	14283,006	60,42	1,359	0,124	3,949	6,073	3,965	0,356	2,974	0,75	2008,545	70,078	1986,322	35,169	1965,04	50,576
FM12_43	Centro	98	103728,63	12902,382	54,287	0,677	0,126	3,807	6,106	3,824	0,351	2,918	0,763	2043,875	67,293	1991,099	33,921	1940,66	49,085
FM12_142	Centro	91	429058,907	54626,739	137,788	3,124	0,128	3,947	6,153	3,963	0,35	1,945	0,491	2066,274	69,589	1997,842	35,216	1932,354	32,564
FM12_96	Centro	97	91830,355	11728,897	55,343	0,451	0,13	4,379	6,235	4,393	0,349	3,155	0,718	2094,039	76,956	2009,429	39,186	1928,149	52,795
FM12_15	Centro	93	76883,667	10637,571	42,112	1,451	0,141	5,459	6,666	5,47	0,344	4,423	0,809	2235,718	94,443	2068,133	49,479	1904,157	73,341
FM12_17	Centro	96	160188,943	20290,208	88,429	2,72	0,128	4,41	6,012	4,424	0,341	2,947	0,666	2069,033	77,727	1977,586	39,26	1891,334	48,495
FM12_126	Centro	94	278551,701	34162,618	58,46	1,56	0,123	4,063	5,763	4,078	0,34	1,811	0,444	2000,915	72,174	1940,854	35,908	1885,082	29,662
FM12_4	Centro	96	309439,289	38885,594	164,861	0,532	0,126	4,058	5,899	4,072	0,339	2,566	0,63	2045,276	71,711	1961,049	35,985	1882,242	42,019
FM12_44	Borda	96	112464,298	14180,002	61,22	0,33	0,128	4,226	5,95	4,239	0,338	3,02	0,712	2067,654	74,49	1968,573	37,539	1875,692	49,342
FM12_51	Centro	95	232181,092	29957,219	127,118	1,376	0,13	3,976	6,009	3,99	0,336	2,919	0,732	2095,122	69,859	1977,139	35,34	1866,336	47,469
FM12_131	Centro	92	337894,937	39458,755	100,403	0,279	0,117	3,96	5,406	3,974	0,335	1,808	0,455	1913,498	71,064	1885,767	34,638	1860,687	29,289
FM12_123	Centro	96	811816,248	100482,768	173,393	0,854	0,124	3,969	5,705	3,983	0,334	1,648	0,414	2014,135	70,384	1932,118	35,005	1856,58	26,638
FM12_61	Centro	96	63371,119	7780,392	31,426	0,671	0,126	4,298	5,769	4,311	0,333	2,792	0,648	2037,693	76,024	1941,778	38,011	1853,148	45,131
FM12_69	Centro	95	90756,616	11352,045	45,274	1,911	0,127	4,156	5,8	4,169	0,331	2,688	0,645	2057,55	73,337	1946,373	36,764	1843,614	43,247
FM12_29	Centro	103	71865,356	7531,657	34,968	0,711	0,107	5,022	4,848	5,033	0,329	3,293	0,654	1744,136	92,01	1793,32	43,278	1835,909	52,825
FM12_134	Centro	92	697238,746	90741,926	214,747	0,288	0,13	3,437	5,801	3,452	0,323	1,75	0,507	2102,55	60,346	1946,633	30,349	1803,486	27,593
FM12_32	Centro	97	217992,384	25592,196	108,397	0,978	0,118	4,063	5,252	4,076	0,322	2,853	0,7	1928,28	72,783	1861,088	35,374	1801,537	45,004
FM12_127	Centro	94	93533,834	10832,079	29,095	0,32	0,117	4,095	5,166	4,108	0,32	1,971	0,48	1914,111	73,484	1846,979	35,559	1787,971	30,849
FM12_38	Centro	96	153378,24	18289,321	77,017	0,639	0,12	4,416	5,303	4,428	0,319	3,101	0,7	1963,046	78,791	1869,335	38,55	1786,212	48,557
FM12_27	Centro	93	96629,371	12249,454	58,113	1,049	0,129	4,194	5,556	4,206	0,313	2,86	0,68	2081,111	73,81	1909,379	36,85	1755,354	44,093
FM12_30	Centro	94	208602,088	25421,295	107,727	1,045	0,123	4,269	5,254	4,28	0,31	2,996	0,7	1996,433	75,869	1861,4	37,186	1742,921	45,912
FM12_14	Centro	92	198544,022	25070,649	117,548	0,338	0,127	4,187	5,345	4,198	0,305	2,622	0,624	2057,55	73,893	1876,116	36,562	1716,697	39,636
FM12_1	Centro	91	110225,124	13506,981	68,607	0,571	0,124	4,264	4,956	4,273	0,29	2,67	0,625	2012,274	75,63	1811,826	36,764	1642,728	38,838
FM12_109	Centro	99	1357793,34	249403,168	218,107	0,327	0,184	3,935	7,245	3,945	0,286	1,401	0,355	2689,258	65,032	2142,077	35,824	1619,404	20,089
FM12_133	Centro	92	516838,524	59737,928	191,989	0,714	0,116	3,693	4,278	3,702	0,268	1,719	0,464	1894,074	66,417	1689,071	30,935	1528,913	23,435

Tabela 3: Análise isotópica U-Pb em Zircão por LA-MC-ICP-MS da amostra – FM-12

Amostra	Obs.	% conc	207Pb	206Pb	U (µg g-1) a	Th/U	207Pb/ 206Pb	2s%	207Pb /235U	2s%	206Pb /238U	2s%	RHO	207Pb/ 206Pb	2s%	207Pb / 235U	2s%	206Pb/ 238U	2s%
			CPS	CPS										Age					
FM12_115	Centro	98	82405,969	8391,119	22,157	1,155	0,103	4,389	3,765	4,397	0,265	1,942	0,442	1678,514	81,076	1585,219	35,905	1516,035	26,295
FM12_144	Centro	90	371480,695	46461,586	165,619	0,544	0,126	3,982	4,359	3,989	0,252	1,827	0,458	2036,989	70,426	1704,676	33,497	1447,597	23,733
FM12_36	Centro	97	122348,393	10825,982	89,067	0,732	0,089	4,161	2,715	4,167	0,22	2,861	0,687	1412,744	79,608	1332,474	31,401	1283,09	33,369
FM12_114	Centro	98	482735,43	57856,359	161,448	0,438	0,12	3,992	3,533	3,998	0,213	1,619	0,405	1959,636	71,254	1534,735	32,144	1245,578	18,359
FM12_143	Centro	91	492475,645	58990,794	270,236	0,554	0,12	4,027	3,39	4,032	0,205	1,833	0,455	1959,191	71,87	1502,134	32,116	1199,77	20,1
FM12_116	Centro	98	511169,971	60073,66	182,5	0,667	0,118	3,968	3,247	3,973	0,2	1,628	0,41	1925,092	71,117	1468,382	31,324	1173,547	17,488
FM12_113	Centro	99	573549,391	66411,833	212,1	0,324	0,116	4,029	3,088	4,033	0,193	1,66	0,412	1898,103	72,427	1429,641	31,415	1136,363	17,318
FM12_128	Centro	94	306571,65	30816,289	159,489	0,252	0,101	3,648	2,658	3,653	0,191	1,753	0,48	1640,179	67,721	1316,892	27,318	1127,439	18,156
FM12_37	Borda	97	91753,96	6986,664	87,468	0,443	0,077	4,706	1,793	4,709	0,168	3,003	0,638	1129,97	93,736	1043,066	31,174	1002,076	27,928
FM12_105	Centro	100	1163394,3	142472,093	328,183	0,204	0,123	3,937	2,757	3,94	0,163	1,384	0,351	1999,326	69,94	1343,865	29,791	971,32	12,488
FM12_121	Centro	97	176676,406	14124,562	80,114	0,855	0,08	4,274	1,744	4,277	0,157	1,781	0,416	1208,776	84,156	1025,127	27,988	941,253	15,617
FM12_132	Borda	92	386649,458	40746,852	249,212	0,144	0,106	3,779	2,251	3,782	0,154	1,718	0,454	1729,127	69,359	1197,212	26,946	924,799	14,817
FM12_111	Centro	99	888826,287	93937,001	277,75	0,127	0,106	4,001	2,145	4,004	0,147	1,431	0,357	1731,206	73,418	1163,413	28,113	883,001	11,815
FM12_117	Centro	98	429626,954	50953,562	223,814	0,234	0,119	3,988	2,252	3,99	0,137	1,644	0,412	1946,814	71,277	1197,478	28,451	826,769	12,771
FM12_137	Centro	91	365219,248	36426,764	268,884	0,389	0,1	3,99	1,867	3,992	0,135	1,777	0,445	1628,912	74,165	1069,437	26,744	816,61	13,645
FM12_108	Centro	99	754981,521	100256,445	265,963	0,184	0,134	4,038	2,401	4,04	0,13	1,497	0,371	2147,517	70,54	1242,925	29,382	789,12	11,132
FM12_145	Borda	90	323135,473	32242,959	288,279	0,185	0,1	3,985	1,741	3,987	0,126	1,828	0,459	1631,135	74,055	1023,981	26,046	763,975	13,183
FM12_110	Centro	99	770838,065	104033,704	321,027	0,084	0,136	3,999	2,066	4,001	0,11	1,453	0,363	2177,257	69,632	1137,593	27,748	673,619	9,298
FM12_129	Centro	93	380449,817	40695,845	353,161	0,17	0,108	3,751	1,591	3,753	0,107	1,727	0,46	1760,865	68,577	966,512	23,669	655,942	10,781
FM12_136	Borda	91	358865,252	29313,763	350,157	0,058	0,082	3,605	1,154	3,606	0,102	1,766	0,49	1248,142	70,575	778,962	19,807	625,534	10,539
FM12_107	Centro	99	326763,033	30683,399	148,296	0,073	0,095	4,014	1,319	4,015	0,101	1,435	0,357	1521,516	75,674	854,254	23,461	620,735	8,495
FM12_118	Centro	97	527571,975	31979,152	383,256	0,099	0,061	5,026	0,829	5,027	0,098	1,885	0,375	649,077	107,933	613,129	23,406	603,441	10,869
FM12_12	Centro	104	123049,199	6961,802	231,577	0,09	0,057	4,619	0,757	4,62	0,096	2,813	0,609	497,712	101,747	571,999	20,406	590,866	15,901
FM12_102	Centro	100	1480088,73	97909,81	714,555	0,406	0,066	4,043	0,868	4,045	0,095	1,421	0,351	815,231	84,516	634,675	19,269	585,158	7,952
FM12_106	Centro	100	265877,007	31403,397	128,712	0,117	0,12	4,082	1,562	4,083	0,095	1,477	0,362	1949,357	72,948	955,201	25,598	583,627	8,249
FM12_135	Centro	91	416520,644	28203,657	446,459	0,093	0,068	3,989	0,872	3,99	0,093	1,779	0,446	874,335	82,598	636,725	19,051	571,84	9,741
FM12_13	Centro	93	34911,403	2225,647	73,429	0,038	0,066	6,265	0,779	6,266	0,086	3,085	0,492	798,746	131,3	584,778	28,244	531,184	15,751
FM12_31	Borda	100	112055,203	6519,033	212,177	0,127	0,059	6,388	0,695	6,388	0,085	3,13	0,49	585,075	138,645	535,503	26,939	523,937	15,769
FM12_138	Centro	91	2624612,46	156018,122	3204,691	9,82	0,059	3,9	0,668	3,901	0,081	1,719	0,441	584,71	84,666	519,384	15,987	504,653	8,351
FM12_112	Centro	99	628672,643	48258,158	357,544	0,04	0,077	4,045	0,858	4,046	0,081	1,426	0,352	1124,553	80,629	628,918	19,148	500,061	6,864
FM12_33	Borda	93	52743,574	3301,687	105,872	0,087	0,065	5,97	0,716	5,971	0,08	3,13	0,524	774,013	125,615	548,126	25,61	495,347	14,941
FM12_35	Borda	102	38271,046	2122,552	77,865	0,042	0,058	7,418	0,627	7,418	0,079	3,236	0,436	518,389	162,832	494,167	29,447	488,956	15,256
FM12_100	Borda	102	788251,397	151143,739	625,821	0,056	0,197	3,98	1,569	3,981	0,058	1,471	0,37	2801,336	65,105	958,142	24,992	362,11	5,182
FM12_119	Centro	97	517135,89	102516,842	649,145	0,122	0,2	4,59	1,569	4,59	0,057	2,289	0,499	2829,782	74,887	958,223	28,876	356,074	7,935

4.3 Quartzito (FM-84)

Os cristais de zircão são prismáticos bipiramidais com textura euédrica a subedrica nas excentricidades entre 3:1 e 4:1. As imagens da fig. 22, mostram uma maioria de cristais com pouca luminescência, talvez pela alta concentração de ²⁰⁷Pb.

Levando em consideração a tabela 4 e o diagrama (Fig. 22), foram interpretadas como idades de cristalização: duas idades arqueanas 2556 e 2307 Ma, além de ocorrências de idades ígneas observadas entre 1.500 e 1.100 Ma, durante o mesoproterozoico.

Figura 23: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-84.

No total foram analisados 160 pontos entre bordas e centro dos grãos, sendo 93 análises entre 90% e 110% concordantes (Tab. 4). A maioria das análises concordantes foram obtidas no centro dos grãos.

A leitura da tabela 4, mostra uma maior densidade de idades entre 673 e 580 Ma. Além de, de raras idades arqueanas e mesoproterozoica (Tab. 4 e fig. 23 e 24). As razões Th / U não se mostram confiáveis para distinção de idades ígneas e metamórficas nessa amostra. Pois, até as idades mais jovens obtidas em bordas de grãos, apresentam razões elevadas.

O diagrama (Fig. 25), mostra uma idade concórdia 613 ± 2,5Ma obtida a partir de 11 análises. Mesmo com a maioria dessas 11 análises terem razões Th / U acima de 0,1, raramente abaixo disso, tal idade, por conta de interpretações de imagens dos cristais, é interpretada como uma idade de metamorfismo.

Figura 24: Diagrama de frequência de idades concordantes entre 90% e 110% da amostra FM-84.

Figura 25: Diagrama de frequência com foco nas idades metamórficas concordantes entre 90% e 110% da amostra FM-84

Figura 26: Diagrama concórdia Wetherill (1956), da amostra FM-84.

Amostra	obs.	% conc	207Pb	206Pb	U (µg g-1) a	Th/U	207Pb/ 206Pb	2s%	207Pb/ 235U	2s%	206Pb/ 238U	2s%	RHO	207Pb/ 206Pb	2s%	207Pb/ 235U	2s%	206Pb/ 238U	2s%
			CPS	CPS												Age		-	
FM84_70	Borda	98	379432,826	68514,143	169,625	2,37	0,18527	4,037	12,433	4,067	0,487	1,274	0,313	2700,621	66,656	2637,696	38,955	2556,47	27
FM84_46	centro	90	469657,223	91805,126	237,484	0,144	0,19647	3,95	11,657	3,973	0,43	2,951	0,743	2797,095	64,633	2577,239	37,851	2307,115	57
FM84_9	centro	99	179456,09	16898,7	130,038	0,599	0,09584	4,299	3,436	4,307	0,26	3,134	0,728	1544,638	80,797	1512,734	34,45	1490,047	42
FM84_36	centro	101	285481,405	24987,128	222,795	1,695	0,08855	4,427	2,947	4,433	0,241	1,226	0,277	1394,444	84,906	1394,095	34,18	1393,867	15
FM84_77	centro	91	343370,426	33893,238	375,679	0,99	0,10005	4,718	2,989	4,723	0,217	3,207	0,679	1625,013	87,743	1404,949	36,584	1264,467	37
FM84_22	centro	101	491854,943	31975,11	699,067	0,299	0,06525	4,169	1,192	4,171	0,133	2,98	0,715	782,408	87,591	797,081	23,298	802,339	23
FM84_8	centro	104	321183,851	19062,231	523,084	0,418	0,05965	4,091	0,952	4,092	0,116	2,982	0,729	590,902	88,699	678,925	20,465	705,766	20
FM84_14	centro	99	493692,146	31155,295	827,05	0,041	0,06383	4,261	0,99	4,263	0,112	2,978	0,699	736,002	90,213	698,681	21,764	687,135	19
FM84_3	centro	96	449842,467	29404,99	778,723	0,619	0,06567	4,02	0,986	4,022	0,109	2,94	0,731	795,875	84,288	696,468	20,474	666,066	19
FM84_97	borda	93	1103199,59	74791,422	1085,382	0,038	0,06849	4,614	1,023	4,615	0,108	2,168	0,47	883,418	95,403	715,659	23,983	663,333	14
FM84_82	centro	99	132136,64	8195,243	291,629	0,627	0,06353	5,793	0,941	5,794	0,107	3,165	0,546	726,021	122,829	673,424	28,928	657,805	20
FM84_136	centro	98	1080830,33	68709,085	1075,106	0,395	0,06372	4,018	0,942	4,019	0,107	0,858	0,213	732,35	85,104	673,977	19,991	656,641	5
FM84_34	centro	90	366476,737	26176,147	643,991	0,487	0,07192	4,338	1,063	4,339	0,107	1,194	0,275	983,678	88,321	735,316	22,962	656,466	7
FM84_133	centro	99	510745,161	31915,377	508,372	0,339	0,06271	4,082	0,927	4,084	0,107	2,146	0,526	698,411	86,955	665,82	20,141	656,233	13
FM84_134	centro	94	634480,886	42750,311	631,946	0,241	0,06762	4,082	0,998	4,083	0,107	0,859	0,21	856,929	84,752	703,022	20,927	655,826	5
FM84_73	Borda	98	603067,149	38217,23	1336,959	0,2	0,06356	4,783	0,937	4,784	0,107	3,132	0,655	727,022	101,403	671,454	23,778	655,01	20
FM84_126	centro	91	586953,257	41145,696	588,62	0,235	0,07038	4,092	1,032	4,093	0,106	2,115	0,517	939,46	83,879	719,986	21,333	651,574	13
FM84_2	centro	94	125746,924	8380,824	224,274	0,878	0,06772	5,316	0,986	5,317	0,106	3,265	0,614	859,996	110,329	696,922	27,171	647,435	20
FM84_25	borda	101	114745,41	6925,035	204,905	0,67	0,06154	4,94	0,895	4,941	0,105	3,033	0,614	658,162	105,921	649,104	23,977	646,502	19
FM84_142	Centro	91	588879,21	40698,061	597,177	0,3	0,06937	4,094	1,006	4,095	0,105	0,875	0,214	909,763	84,307	706,861	21,071	644,694	5
FM84_131	centro	93	566181,254	38268,601	576,351	0,313	0,06783	4,069	0,98	4,07	0,105	2,1	0,516	863,364	84,403	693,577	20,664	642,361	13
FM84_35	centro	96	236195,068	15345,274	425,696	0,369	0,06538	4,283	0,942	4,284	0,105	1,186	0,277	786,589	89,927	674,036	21,324	640,844	7
FM84_90	centro	98	245119,44	15397,327	557,862	0,594	0,06325	4,111	0,909	4,112	0,104	1,19	0,289	716,647	87,299	656,284	20,073	638,859	7
FM84_86	centro	93	239992,679	16112,365	547,666	0,678	0,06774	4,311	0,972	4,312	0,104	3,032	0,703	860,609	89,454	689,309	21,809	637,224	18
FM84_76	centro	93	228088,339	15398,677	520,951	0,404	0,06804	4,233	0,974	4,234	0,104	3,034	0,717	869,773	87,713	690,461	21,436	636,698	18
FM84_140	Centro	90	753566,95	53177,109	774,793	0,295	0,07084	4,065	1,013	4,067	0,104	0,868	0,213	952,8	83,163	710,526	20,999	636,29	5
FM84_146	Borda	92	1237408,04	84444,923	1276,199	0,057	0,06872	4,715	0,98	4,716	0,103	0,967	0,205	890,347	97,385	693,562	23,98	634,42	6
FM84_147	Centro	91	972569,159	67444,096	933,683	0,517	0,06955	4,083	0,989	4,085	0,103	2,036	0,498	915,097	84,019	698,244	20,836	632,784	12
FM84_7	centro	90	197758,618	13817,939	361,398	0,376	0,07065	4,246	1,004	4,248	0,103	3,006	0,708	947,304	86,935	706,05	21,845	632,609	18
FM84_71	Centro	96	214312,925	13727,153	493,242	0,452	0,06463	4,209	0,918	4,21	0,103	3,009	0,715	762,314	88,718	661,318	20,668	632,083	18
FM84_12	centro	100	233140,359	14121,549	426,47	0,458	0,06103	4,129	0,867	4,13	0,103	2,961	0,717	640,292	88,8	633,834	19,663	632,025	18
FM84_151	Centro	97	857788,547	54603,793	824,771	0,264	0,06379	4,139	0,906	4,14	0,103	2,039	0,493	734,675	87,634	654,794	20,177	631,849	12
FM84_75	centro	94	174317,575	11503,983	401,777	0,464	0,06666	4,44	0,945	4,442	0,103	3,062	0,689	827,169	92,638	675,75	22,158	631,206	18
FM84_33	centro	90	369793,365	26059,525	677,699	0,372	0,07094	4,285	1,005	4,287	0,103	1,187	0,277	955,685	87,621	706,553	22,059	630,739	7

Tabela 4: Análise isotópica U-Pb em Zircão por LA-MC-ICP-MS da amostra – FM-84.

Amostra	obs.	% conc	207Pb	206Pb	U (µg g-1) a	Th/U	207Pb/ 206Pb	2s%	207Pb/ 235U	2s%	206Pb/ 238U	2s%	RHO	207Pb/ 206Pb	2s%	207Pb/ 235U	2s%	206Pb/ 238U	2s%
			CPS	CPS												Age			
FM84_74	centro	99	218728,628	13554,694	504,826	0,485	0,06246	4,227	0,885	4,228	0,103	3,018	0,714	689,896	90,157	643,523	20,355	630,388	18
FM84_138	Borda	90	1555402,79	108215,293	1616,826	0,256	0,06977	4,071	0,987	4,072	0,103	0,858	0,211	921,592	83,669	697,238	20,749	629,686	5
FM84_49	centro	93	164811,027	11016,312	349,828	0,333	0,06762	4,673	0,956	4,674	0,103	3,024	0,647	856,929	97,034	681,09	23,463	629,102	18
FM84_132	centro	92	810902,323	54900,142	844,736	0,398	0,06791	4,064	0,959	4,065	0,102	2,1	0,516	865,809	84,272	682,634	20,409	628,4	13
FM84_98	centro	92	643796,827	44011,185	672,293	0,315	0,06859	4,024	0,966	4,025	0,102	2,057	0,511	886,434	83,166	686,231	20,28	626,762	12
FM84_20	centro	99	132283,356	8072,956	244,882	0,644	0,06197	5,616	0,869	5,617	0,102	3,243	0,577	673,074	120,115	635,285	26,877	624,715	19
FM84_16	centro	97	236246,857	15001,135	437,381	0,57	0,06398	4,126	0,898	4,128	0,102	2,948	0,714	740,969	87,284	650,441	20,02	624,656	18
FM84_124	centro	98	673895,326	41820,465	707,402	0,264	0,06218	4,053	0,871	4,054	0,102	2,116	0,522	680,305	86,583	636,187	19,348	623,837	13
FM84_4	centro	96	179710,179	11533,82	333,756	0,44	0,06478	4,199	0,906	4,2	0,101	3,006	0,716	767,199	88,442	655,05	20,48	622,959	18
FM84_109	centro	93	1957352,21	131038,93	2058,503	0,027	0,06717	6,193	0,939	6,194	0,101	1,184	0,191	843,049	128,88	672,366	30,924	622,55	7
FM84_87	centro	91	142458,579	9773,837	333,238	0,413	0,06945	4,55	0,971	4,551	0,101	1,223	0,269	912,136	93,663	688,773	23,02	622,374	7
FM84_92	centro	102	1247887,61	73756,319	1314,19	0,124	0,05922	3,918	0,827	3,919	0,101	2,123	0,542	575,193	85,174	611,797	18,17	621,73	13
FM84_121	centro	93	620681,157	41589,078	653,988	0,449	0,06721	4,107	0,938	4,108	0,101	2,124	0,517	844,288	85,439	671,882	20,392	621,613	13
FM84_128	centro	92	532791,344	36197,355	561,714	0,45	0,0682	4,047	0,951	4,048	0,101	2,125	0,525	874,638	83,797	678,802	20,24	621,262	13
FM84_99	centro	101	817437,738	48555,56	866,346	0,21	0,05949	4,102	0,825	4,103	0,101	2,137	0,521	585,075	89,024	610,974	19,012	617,983	13
FM84_83	centro	102	118256,643	6993,143	279,02	0,479	0,05992	4,406	0,83	4,407	0,1	3,035	0,689	600,687	95,38	613,737	20,504	617,28	18
FM84_64	centro	99	184981,501	11321,749	400,574	0,45	0,06171	4,213	0,855	4,214	0,1	1,174	0,279	664,074	90,253	627,358	19,917	617,221	7
FM84_57	centro	91	140144,891	9611,835	303,693	0,852	0,06952	4,373	0,962	4,374	0,1	2,988	0,683	914,209	89,987	684,576	22,019	616,811	18
FM84_107	centro	101	690132,181	41100,405	734,123	0,286	0,0597	4,422	0,825	4,423	0,1	0,918	0,207	592,719	95,859	610,9	20,51	615,815	5
FM84_148	Centro	98	558605,33	34474,706	553,885	0,397	0,06187	4,008	0,852	4,01	0,1	2,053	0,512	669,618	85,786	625,675	18,903	613,588	12
FM84_38	centro	94	255227,533	16780,447	483,401	0,431	0,06624	4,348	0,908	4,349	0,099	1,186	0,273	813,969	90,896	656,199	21,24	611,244	7
FM84_111	centro	101	1697957,52	100359,654	1820,721	0,167	0,05926	4,252	0,813	4,254	0,099	0,885	0,208	576,661	92,431	603,856	19,548	611,126	5
FM84_52	centro	93	154316,501	10257,278	337,801	0,6	0,06712	4,291	0,92	4,292	0,099	3,018	0,703	841,499	89,313	662,306	21,099	610,892	18
FM84_116	centro	103	1457243,73	84684,132	1568,123	0,118	0,05818	4,125	0,795	4,126	0,099	0,848	0,205	536,547	90,275	593,94	18,727	609,074	5
FM84_144	Centro	91	966919,315	66094,044	1041,333	0,108	0,06858	4,024	0,937	4,026	0,099	0,868	0,216	886,133	83,182	671,05	19,963	608,78	5
FM84_106	centro	98	952343,31	58994,423	1025,426	0,324	0,06213	4,185	0,848	4,186	0,099	0,889	0,212	678,586	89,428	623,737	19,698	608,722	5
FM84_125	Borda	94	1487036,16	96950,622	1602,611	0,029	0,06532	4,103	0,891	4,104	0,099	2,071	0,505	784,66	86,179	647,097	19,832	608,37	12
FM84_40	borda	91	145560,27	9904,986	277,477	0,62	0,06891	4,47	0,939	4,471	0,099	1,194	0,267	896,047	92,239	672,316	22,224	607,49	7
FM84_48	centro	92	215169,419	14411,657	474,301	0,373	0,06755	4,56	0,919	4,561	0,099	3,09	0,678	854,778	94,708	662,024	22,427	606,845	18
FM84_37	centro	90	223738,266	15406,167	427,196	0,447	0,06944	4,32	0,945	4,321	0,099	1,196	0,277	911,839	88,938	675,292	21,541	606,551	7
FM84_103	centro	102	1591536,87	93661,39	1721,145	0,173	0,05905	4,132	0,803	4,133	0,099	2,181	0,528	568,94	89,932	598,397	18,863	606,199	13
FM84_108	Borda	94	1577606,4	102426,452	1707,986	0,078	0,0651	4,608	0,884	4,609	0,098	0,873	0,189	777,57	96,905	643,165	22,202	605,554	5
FM84_42	centro	101	143513,596	8494,112	274,883	0,805	0,0598	4,548	0,811	4,55	0,098	1,2	0,264	596,346	98,539	602,969	20,9	604,732	7
FM84_113	centro	100	655591,467	39325,825	711,361	0,265	0,06018	4,121	0,815	4,122	0,098	0,855	0,207	610,053	89,072	605,483	18,976	604,262	5
FM84_104	centro	98	595498,908	36894,906	647,672	0,249	0,06213	4,185	0,84	4,186	0,098	2,142	0,512	678,586	89,428	619,067	19,59	602,912	12

Amostro	obo	%	207Dh	206Dh	U (µg g-1)		207Pb/	20%	207Pb/	209/	206Pb/	209/		207Pb/	2.0%	207Pb/	20%	206Pb/	209/
Amostra	005.	COLIC	207FD		a	11/0	200FD	25%	2350	25%	2360	25%	KIU	200FD	25%	2350	25%	2300	2570
EM84 10	contro	07	296900 706	24002.76	744 655	0 1 4 4	0.062/1	4.22	0.942	1 221	0.008	2.064	0.7	699 199	00.254	Age	10.921	601 707	17
FIVI04_19	Dordo	97	386800,796	24003,70	744,000	0,144	0,00241	4,23	0,042	4,231	0,090	2,904	0,7	742,202	90,204	621,203	19,031	601.227	5
FIVI64_115	Borda	95	2359176,54	150361,41	2572,959	0,047	0,06405	4,059	0,003	4,001	0,096	0,639	0,207	743,202	00,000	031,992	19,200	500.20	5 47
FIVI84_51	centro	97	151968,057	9510,677	339,944	0,447	0,06323	4,302	0,848	4,303	0,097	2,981	0,693	715,976	91,367	623,559	20,249	598,39	17
FIM84_118	centro	101	544535,007	32327,873	598,408	0,431	0,05959	4,296	0,797	4,297	0,097	0,866	0,201	588,719	93,189	595,262	19,542	596,98	5
FM84_21	centro	102	115914,062	6762,264	225,202	0,432	0,05912	4,33	0,79	4,331	0,097	2,991	0,691	571,518	94,202	591,38	19,603	596,569	1/
FM84_155	Borda	95	2023384,47	129430,69	2073,349	0,027	0,06407	3,933	0,854	3,934	0,097	2,07	0,526	743,942	83,159	626,638	18,566	594,629	12
FM84_41	centro	90	172513,64	11801,48	336,519	0,553	0,06912	4,456	0,92	4,457	0,097	1,201	0,27	902,324	91,868	662,539	21,924	594,276	7
FM84_117	Borda	91	1753471,86	118184,826	1941,154	0,078	0,06771	4,785	0,899	4,786	0,096	0,914	0,191	859,69	99,315	651,316	23,274	592,807	5
FM84_157	Centro	92	433685,114	29024,035	448,338	0,358	0,06726	3,985	0,888	3,986	0,096	2,14	0,537	845,835	82,881	645,426	19,218	589,631	12
FM84_110	centro	108	1711813,76	91925,676	1906,119	0,113	0,05376	3,943	0,71	3,945	0,096	0,856	0,217	361,009	88,965	544,636	16,765	589,513	5
FM84_18	centro	98	171144,651	10541,794	336,954	0,58	0,0624	4,936	0,823	4,937	0,096	3,083	0,625	687,846	105,319	609,834	22,889	589,042	17
FM84_156	Centro	104	2363053,7	133417,065	2453,911	0,033	0,05649	3,753	0,743	3,754	0,095	2,045	0,545	471,679	83,046	563,96	16,376	587,1	11
FM84_58	centro	90	155086,209	10633,292	354,798	0,525	0,0695	4,259	0,911	4,26	0,095	1,178	0,276	913,617	87,652	657,805	20,838	585,688	7
FM84_152	Centro	93	570075,825	37418,733	594,176	0,351	0,06589	3,946	0,863	3,947	0,095	2,105	0,533	802,883	82,641	631,796	18,738	585,04	12
FM84_28	centro	90	174961,237	12043,014	348,733	0,649	0,06972	4,475	0,909	4,476	0,095	3,016	0,674	920,118	92,005	656,273	21,869	582,155	17
FM84_53	centro	102	50272,871	2919,381	115,791	0,524	0,05987	5,479	0,78	5,479	0,094	3,281	0,599	598,879	118,637	585,391	24,675	581,919	18
FM84_17	centro	98	117248,733	7099,916	236,807	0,551	0,06279	10,193	0,807	10,193	0,093	3,592	0,352	701,126	217,013	601,041	47,324	574,847	20
FM84_11	centro	91	96386,505	6409,904	197,264	0,298	0,06763	4,436	0,859	4,437	0,092	3,041	0,685	857,236	92,103	629,324	21,027	567,768	17
FM84_150	Centro	96	850853,953	52614,778	936,3	0,183	0,06206	3,932	0,77	3,933	0,09	2,167	0,551	676,177	84,053	579,731	17,521	555,419	12
FM84_153	Borda	94	2100850,28	132323,199	2359,016	0,039	0,06309	4,248	0,767	4,249	0,088	2,098	0,494	711,266	90,292	578,078	18,902	544,764	11
FM84_26	centro	92	168085,897	10989,245	359,527	0,589	0,06669	6,238	0,81	6,238	0,088	3,293	0,528	828,107	130,116	602,355	28,747	544,113	17
FM84_158	Borda	97	1345578,15	80044,547	1640,206	0,022	0,05968	3,552	0,668	3,553	0,081	1,97	0,554	591,992	77,013	519,749	14,558	503,46	10
FM84_119	centro	91	555900,399	35824,805	737,848	0,24	0,06535	5,815	0,724	5,815	0,08	2,427	0,417	785,625	122,119	553,073	25,107	498,271	12
FM84_114	centro	109	2299066,74	117460,267	3059,767	0,046	0,05119	4,688	0,565	4,689	0,08	0,899	0,192	249,395	107,904	455,096	17,346	496,839	4

4.4 Metagranitoide Pluton de Cunha (FM-13)

Os cristais de zircão estão bem formados, no geral incolores, com hábito prismático, bi terminados, com excentricidade variando entre 3:1 e 4:1 na razão comprimento / largura e poucas fraturas observadas. Pode ser observado zoneamento nos grãos sem truncamentos e os altos valores de razão Th/U, o que é interpretado como uma característica de grãos magmáticos. (Fig. 26)

Figura 27: Imagens de catodoluminescência dos cristais de Zircão, amostra FM-13.

No total foram analisados 28 pontos entre núcleo e borda, sendo 10 pontos concordantes (Tab. 5), sendo possível identificar a idade de cristalização em 624 (±5.5) milhões de anos, conforme diagrama de idade concórdia (Fig. 27).

Figura 28: Diagrama concórdia Wetherill (1956), da amostra FM-13.

T I I A A (II I (/)			-
l abela 4: Análise isotopica	U-Pb em Zircao po	or LA-MC-ICP-MS da amostra – F	·M-13.

		%			U (µg g-		207Pb/2		207Pb/		206Pb/			207Pb/20		207Pb/23		206Pb/23	
Amostra	obs.	con	207Pb	206Pb	1) a	Th/U	06Pb	2s%	235U	2s%	238U	2s%	RHO	6Pb	2s%	5U	2s%	8U	2s%
			CPS	CPS												Ag	le		
FM13_01	Centro	97	162831,056	10344,397	443,833	1,435	0,064	8,313	0,943	8,313	0,106	5,376	0,647	757,414	175,371	674,227	41,807	649,592	33,308
FM13_10	Centro	100	351821,652	21718,501	974,598	0,413	0,062	4,573	0,893	4,574	0,104	4,745	1,037	677,898	97,726	648,177	22,153	639,676	28,960
FM13_11	Centro	100	178588,721	11067,444	497,291	1,035	0,063	5,750	0,896	5,751	0,104	4,914	0,855	695,011	122,544	649,533	27,975	636,523	29,855
FM13_018	Centro	96	250770,660	15535,176	700,040	0,755	0,062	4,355	0,892	4,356	0,104	4,975	1,142	689,896	92,889	647,182	21,064	635,004	30,155
FM13_019	Centro	99	324071,161	19872,431	917,694	0,817	0,062	6,004	0,872	6,005	0,102	5,194	0,865	672,728	128,426	636,554	28,803	626,411	31,077
FM13_023	Centro	99	341773,506	21378,623	972,492	2,498	0,063	4,263	0,880	4,265	0,102	4,726	1,108	703,498	90,738	641,109	20,477	623,545	28,151
FM13_024	Borda	99	233210,684	14605,186	566,403	0,764	0,063	4,442	0,865	4,443	0,100	5,275	1,187	709,243	94,456	632,834	21,144	611,654	30,854
FM13_025	Centro	97	192271,788	11649,484	467,679	1,722	0,061	4,194	0,836	4,195	0,099	5,232	1,247	640,644	90,189	617,158	19,589	610,774	30,563
FM13_026	Centro	99	291400,418	17549,440	710,298	1,109	0,061	4,227	0,828	4,228	0,099	5,294	1,252	623,643	91,162	612,541	19,637	609,543	30,864
FM13_028	Borda	98	379325,969	23936,641	824,856	0,470	0,063	5,488	0,867	5,489	0,099	5,095	0,928	722,010	116,449	633,721	26,211	609,250	29,687

5 QUIMICA MINERAL E GEOTERMOBAROMETRIA

A única amostra analisada é um paragnaisse relacionado ao muscovita xisto do Domínio Embu (FM-43, fig. 28). As análises foram obtidas na microssonda eletrônica (ME) do Instituto de Geociências da UFRJ.

A rocha é composta por granada, biotita, muscovita, quartzo e K-feldspato, com granulação fina e bandamento composicional. Para a análise de química mineral foi selecionada a seguinte associação mineral: granada (grt), biotita (bt), muscovita (ms) e feldspato (kf).

Figura 29: Localização e imagem representativa do afloramento, amostra laminada e lâmina. Os pontos amarelos indicam a distribuição dos pontos analisados no cristal de granada.

<u>Granada</u>

Foram analisados quatro cristais (GR1_01; GR1_02; GR1_03 e GR1_04) dessa fase mineral, sendo realizados perfis com cinco pontos (Fig. 28) (Tab. 6 e 7; P1, P2, P3, P4 e P5).

Os cristais de granada analisados mostram uma variação composicional pouco significante quando comparados os núcleos com as bordas (Tab. 6 e 7). Quanto à classificação, como pode ser visto (Fig. 29), predomina a molécula almandina, aproximadamente 80%, seguida por piropo (~9%), espessartita (~6%) e grossulária (~4%).

Figura 30: Diagrama ternário com membros finais de almandina, piropo e espessartita das granadas. Fonte: Klein e Dutron, 2012.

Amostra					FM	43	o granadao.			
Grão	C1_01_P1	C1_01_P2	C1_01_P3	C1_01_P4	C1_01_P5	C1_02_P1	C1_02_P2	C1_02_P3	C1_02_P4	C1_02_P5
SiO2	36.53	36.35	36.43	36.60	36.58	36.51	36.34	36.48	36.16	36.68
TiO2	0.04	0.00	0.02	0.07	0.06	0.00	0.10	0.05	0.00	0.01
AI2O3	20.88	20.99	20.81	20.79	20.54	20.66	20.51	20.69	20.11	20.52
Cr2O3	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
FeO	36.44	37.45	37.92	37.79	38.29	38.73	38.12	38.40	39.29	38.92
MnO	1.71	1.69	1.75	1.69	1.77	1.89	1.97	1.89	1.83	1.89
MgO	2.38	2.36	2.40	2.44	2.46	1.98	2.11	2.17	2.12	1.90
CaO	1.03	1.02	1.02	1.10	1.05	0.74	1.03	1.01	0.80	0.88
Na2O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.68	100.54	101.02	101.15	101.42	101.18	100.85	101.36	100.98	101.46
Si	2.975	2.948	2.947	2.954	2.953	2.959	2.954	2.950	2.951	2.967
Ti	0.003	0.000	0.001	0.004	0.004	0.000	0.006	0.003	0.000	0.001
AI	2.004	2.007	1.985	1.978	1.955	1.975	1.965	1.972	1.934	1.957
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe3	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
Fe2	2.481	2.541	2.566	2.551	2.585	2.625	2.591	2.597	2.681	2.633
Mn	0.118	0.116	0.120	0.115	0.121	0.129	0.136	0.130	0.126	0.129
Mg	0.289	0.286	0.290	0.293	0.296	0.239	0.255	0.261	0.258	0.229
Са	0.090	0.088	0.088	0.095	0.091	0.065	0.090	0.088	0.070	0.076
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
K	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Soma	8.000	8.027	8.038	8.032	8.045	8.033	8.037	8.041	8.062	8.033
0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0

Tabela 5: Composição química das granadas

Amostra					FM	43				
Grão	C1_03_P1	C1_03_P2	C1_03_P3	C1_03_P4	C1_03_P5	C1_04_P1	C1_04_P2	C1_04_P3	C1_04_P4	C1_04_P5
SiO2	36.65	37.14	36.86	36.83	36.73	36.78	36.87	36.58	36.81	36.65
TiO2	0.05	0.08	0.08	0.09	0.09	0.08	0.07	0.06	0.11	0.06
AI2O3	20.55	20.68	20.58	20.77	20.79	20.67	20.52	20.68	20.62	20.45
Cr2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
FeO	38.90	38.38	38.51	38.57	38.68	37.97	38.69	38.15	38.49	38.54
MnO	1.80	1.67	1.73	1.60	1.78	1.88	1.83	1.86	1.84	1.90
MgO	2.00	2.35	2.42	2.39	2.37	2.22	2.20	2.18	2.11	1.93
CaO	1.11	1.12	1.18	1.14	1.16	0.99	1.04	1.15	1.23	0.99
Na2O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	101.74	102.11	102.04	102.06	102.27	101.27	101.89	101.35	101.89	101.18
Si	2.957	2.972	2.957	2.953	2.943	2.967	2.965	2.955	2.960	2.970
Ti	0.003	0.005	0.005	0.005	0.005	0.005	0.004	0.004	0.007	0.004
AI	1.955	1.951	1.947	1.963	1.964	1.966	1.946	1.970	1.955	1.953
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe3	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
Fe2	2.625	2.569	2.584	2.586	2.593	2.563	2.602	2.577	2.589	2.612
Mn	0.123	0.113	0.118	0.109	0.121	0.129	0.124	0.127	0.125	0.130
Mg	0.241	0.281	0.290	0.285	0.283	0.267	0.264	0.263	0.253	0.233
Ca	0.096	0.096	0.102	0.098	0.100	0.086	0.090	0.099	0.106	0.086
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
K	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Soma	8.041	8.027	8.044	8.040	8.049	8.024	8.037	8.036	8.035	8.029
0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0

Tabela 6: Composição química das granadas, continuação.

<u>Biotita</u>

Foram analisados sete grãos, sendo dois inclusos em granada (BIOT_C1_01_I e BIOT_C1_02_I) e cinco (BIOT_C1_03, BIOT_C1_04, BIOT_C1_05, BIOT_C1_06, BIOT_C1_07) compondo a matriz da rocha. Os cristais da matriz foram analisados nas regiões de centro e borda.

Analisando os valores composicionais (Tab. 8) foi possível observar que os grãos inclusos em granada, quando comparados aos grãos dispersos na matriz, são mais enriquecidos em TiO₂ (por volta de 6%) e MgO. Por outro lado, esses grãos possuem menores concentrações de FeO.

Essas variações composicionais podem indicar que os cristais de biotita inclusos em granada foram gerados em condições de temperaturas maiores que os cristais dispersos na matriz da rocha.

	1				Tabela 7: C	Jomposição d	uimica das i	olotitas.				
Amostra							FM 43					
Grão	BIOT C1_01_I	BIOT C1_02_I	BIOT C1_03_N	BIOT C1_03_B	BIOT C1_04_N	BIOT C1_04_B	BIOT C1_05_N	BIOT C1_05_B	BIOT C1_06_N	BIOT C1_06_B	BIOT C1_07_N	BIOT C1_07_B
SiO2	35.32	34.56	34.27	34.38	34.26	34.50	34.33	34.44	34.18	34.65	34.50	34.50
TiO2	6.97	6.02	4.33	4.06	3.87	4.44	4.28	4.27	3.53	3.87	3.63	3.62
Al2O3	17.41	17.86	18.89	19.22	19.77	18.51	19.18	19.10	18.99	19.15	18.58	18.37
Cr2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	19.46	20.98	21.47	21.58	21.20	21.76	21.13	21.06	21.55	20.93	22.21	21.75
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	8.46	7.22	6.39	6.53	6.40	6.75	6.69	6.57	7.34	7.22	6.91	7.04
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na2O	0.29	0.16	0.08	0.09	0.07	0.04	0.11	0.11	0.07	0.08	0.14	0.11
K2O	9.75	9.91	10.17	10.11	9.76	10.25	10.17	10.25	10.34	10.37	10.10	10.12
Total	97.65	96.71	95.61	95.98	95.33	96.25	95.90	95.81	96.01	96.27	96.08	95.49
Si	2.638	2.630	2.645	2.641	2.638	2.649	2.636	2.647	2.631	2.648	2.658	2.670
Ti	0.392	0.345	0.252	0.235	0.224	0.256	0.247	0.247	0.204	0.223	0.211	0.210
AI	1.533	1.602	1.719	1.741	1.794	1.676	1.736	1.730	1.724	1.725	1.688	1.676
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe2	1.216	1.336	1.386	1.387	1.365	1.398	1.357	1.354	1.388	1.337	1.431	1.407
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.941	0.819	0.736	0.748	0.735	0.772	0.766	0.752	0.842	0.823	0.794	0.812
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.042	0.024	0.012	0.014	0.011	0.007	0.016	0.017	0.010	0.012	0.021	0.016
K	0.929	0.962	1.001	0.991	0.959	1.004	0.996	1.005	1.015	1.011	0.993	0.999
Soma	7.690	7.718	7.751	7.757	7.726	7.763	7.756	7.753	7.816	7.780	7.796	7.790
0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0

Tabela 7: Composição química das biotitas

<u>Muscovita</u>

Quanto a essa fase, apenas dois grãos foram identificados e analisados (MC_C1_01 e MC_C1_02), tanto em borda, como em núcleo. A variação composicional (Tab. 9) permite interpretar essas micas como muscovita, conforme apresentado no gráfico, baseado em Miller *et al.*,1981. (Fig. 30)

Figura 31: Diagrama ternário de variação composicional micas (Miller et al., 1981).
Amostra		FM 43				
Grão	MC_C1_01_N	MC_C1_01_B	MC_C1_02_N	MC_C1_02_B		
SiO2	45.86	45.94	45.51	44.95		
TiO2	0.61	0.78	0.63	0.95		
Al2O3	37.11	36.67	36.33	36.49		
Cr2O3	0.00	0.00	0.00	0.00		
Fe2O3	0.75	0.75	0.75	0.75		
FeO	0.29	1.07	1.14	1.42		
MnO	0.00	0.00	0.00	0.00		
MgO	0.24	0.26	0.38	0.32		
CaO	0.00	0.00	0.00	0.00		
Na2O	0.24	0.25	0.28	0.26		
K2O	9.01	9.68	9.99	9.09		
Total	94.11	95.40	95.00	94.22		
Si	3.045	3.036	3.030	3.007		
Ti	0.030	0.039	0.032	0.048		
AI	2.905	2.857	2.851	2.878		
Cr	0.000	0.000	0.000	0.000		
Fe3	0.038	0.037	0.038	0.038		
Fe2	0.016	0.059	0.063	0.079		
Mn	0.000	0.000	0.000	0.000		
Mg	0.023	0.025	0.037	0.032		
Ca	0.000	0.000	0.000	0.000		
Na	0.031	0.032	0.036	0.034		
K	0.763	0.817	0.848	0.775		
soma	6.852	6.903	6.936	6.892		
0	11.0	11.0	11.0	11.0		

Tabela 8: Composição química das muscovitas.

Feldspato

Os grãos de feldspato analisados compõem a matriz da rocha, totalizando seis cristais (FELD_01, FELD_02, FELD_03, FELD_04, FELD_05 e FELD_06), sendo cada um pesquisado no núcleo e na borda. Os cristais de feldspato têm composições química (Tab. 10) bastante semelhantes e quando comparados com gráfico ternário de nomenclatura apresentado por Deer *et al.,* 1992, trata-se de ortoclásio. (Fig. 31)

Figura 32: Diagrama ternário de nomenclatura de feldspato, baseado em Deer et al., 1992.

Amostra		FM 43										
Amostra												
Grão	01_N	01_B	02_N	02_B	03_N	03_B	04_N	04_B	05_N	05_B	06_N	06_B
SiO2	61.14	61.83	60.67	53.91	61.49	61.65	61.66	61.63	61.00	61.23	60.77	58.42
TiO2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al2O3	18.19	18.20	17.43	15.95	17.95	17.77	17.93	17.79	18.11	17.95	18.08	17.01
Cr2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CaO	0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00
Na2O	0.92	1.11	1.00	0.78	0.97	1.10	1.06	1.32	1.36	1.30	0.95	0.96
K2O	19.05	18.81	18.98	16.92	19.11	18.84	18.88	18.71	18.48	18.36	18.54	18.36
Total	99.34	99.95	98.11	87.57	99.52	99.36	99.53	99.45	98.97	98.85	98.35	94.75
Si	2.920	2.927	2.937	2.922	2.930	2.939	2.934	2.935	2.919	2.930	2.924	2.929
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AI	1.024	1.016	0.995	1.019	1.009	0.999	1.006	0.999	1.022	1.012	1.026	1.006
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe3	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe2	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000
Na	0.085	0.102	0.094	0.082	0.090	0.102	0.098	0.122	0.126	0.121	0.088	0.093
K	1.161	1.136	1.172	1.170	1.162	1.146	1.146	1.137	1.129	1.121	1.138	1.174
soma	5.192	5.184	5.200	5.195	5.192	5.186	5.186	5.195	5.198	5.185	5.177	5.203
0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0

Tabela 9: Composição química dos K-feldspatos.

A determinação do equilíbrio entre as fases minerais analisadas na microssonda, granada, biotita, ortoclásio e muscovita, permitiram calcular as condições de pressão e temperatura presentes na rocha através do *software* Thermocalc (item 1.3.3)

Os cálculos de temperatura e pressão foram realizados levando em consideração duas combinações de análises: um, para determinações de condição pretérita, onde foram relacionados dados de biotita inclusa em granada, mais o núcleo da granada, mais o núcleo de feldspato, mais núcleo de muscovita; e dois, determinação de condição mais jovem, onde foram relacionados dados obtidos exclusivamente nas bordas dos cristais (Tab. 11).

Devido à deficiência de fases minerais, tal como, plagioclásio, os resultados não foram totalmente satisfatórios, conforme os erros observados na tabela 11. O mesmo problema de deficiência de fases minerais foi identificado nas outras lâminas petrográficas, com ausências de granadas, anfibólios e plagioclásios.

Tabela 10: Pressões e temperaturas obtidas pelo método Holland & Blundy (1994)

Rocha	Amostra (FM-43)	Temperatura °C	Pressão kbar
Paragnaisse	Inclusão e Núcleo	612 ± 132	6.47 ± 1.60
	borda	614 ± 251	6.27 ± 1.59

Figura 33: Encarte modificado de Vernon R. H. Principles of Metamorfhic Petrology (2008).

6 DISCUSSÕES E CONCLUSÕES

Na área de estudo foi possível identificar cinco unidades mapeáveis, sendo quatro delas datadas neste trabalho pelo método U-Pb em zircão.

A unidade interpretada como a mais antiga do conjunto, um ortognaisse de embasamento, foi confirmada por meio de geocronologia, apresentando uma idade de cristalização de 2066 \pm Ma (MSWD = 10,7).

Essa mesma unidade também possui uma idade de intercepto inferior, interpretada como evento metamórfico (Fig. 15) com idade de 551 \pm 42 Ma. A idade foi interpretada como metamórfica pela sua semelhança com outras idades metamórficas para a região.

Possivelmente essa idade de metamorfismo de aproximadamente 551 Ma, pode ter relação com o evento orogenético principal associado à evolução do Orógeno Ribeira Central (Heilbron *et al.* 2013).

Em discordância a esta unidade foram depositados sedimentos do Domínio Embu, dentre eles, cristais detríticos de zircão com idades de cristalização predominantemente paleoproterozoicas, entre 2.100 e 1.700 Ma e mesoproterozoicas entre 1.600 e 1.100 Ma, herdadas das rochas do embasamento. Em específico, na rocha quartzítica / metaprecipitado, a única diferença com relação à rocha xistosa foi a ocorrência de um grão ígneo arqueano de aproximadamente 2.556 Ma.

Quanto à interpretação dos dados metamórficos observados no Domínio Embu nessa área (Fig. 32), foi possível identificar, ao menos, três eventos metamórficos principais: um primeiro a partir 789 \pm 11 Ma até aproximadamente 620 Ma, interpretado como um evento de aquecimento regional, coincidente com dados reportados por diversos autores a respeito do funcionamento de um arco magmático durante a subducção da paleoplaca São Francisco por baixo da paleoplaca Paranapanema. (Trouw *et al.* 2013; Vinagre *et al.* 2014; Duffles *et al.* 2016).

Um segundo evento, ao final da subducção entre as paleoplacas São Francisco e Paranapanema, coincide com a colisão continental que rendeu um pico metamórfico na região apresentada no diagrama concórdia $613 \pm 2,5$ Ma (Fig. 25) se estendendo até no máximo 590 Ma. (Campos Neto & Caby, 1999 e 2000; Trouw *et al.* 2000; Trouw *et al.* 2013; Vinagre *et al.* 2014; Duffles *et al.* 2016)

Um terceiro evento regional detectado, está associado a uma janela de incidência entre 580 e 490 Ma, com um pico em 562 ± 11 Ma, observado no diagrama concórdia (Fig. 21), que pode estar associada a uma segunda colisão entre o já aglutinado paleobloco São Francisco/Paranapanema com a microplaca da Serra do Mar (Heilbron *et al.* 2013).

Com a interpretação das idades ígneas e metamórficas obtidos na análise geocronológica dos grãos de zircão detriticos das rochas metassedimentares do Domínio Embu aqui analisadas, foi possível estimar que nessa região o período de sedimentação da Bacia Embu foi de aproximadamente 30 Ma. Sendo a primeira idade metamórfica identificada, 789 ± 11 Ma (FM12-108), sugere o início do primeiro evento metamórfico, indicando o final da fase sedimentação da Bacia Embu. Já o grão ígneo mais jovem interpretado no conjunto metassedimentar, de 816 ± 14 Ma (FM12-137), pode indicar o período inicial de sedimentação na bacia.

Figura 34: Diagrama de frequência de idades metamórficas concordantes entre 90% e 110% mesclando dados do xisto e quartzito (FM-12 e FM-84).

Ocupando a parte centro sul da folha, foi mapeado um Metagranitoide Sin tectônico, aqui denominado de Pluton de Cunha, com idade de cristalização de aproximadamente 624 Ma. Segundo análise de Gimenez Filho *et al.*, (2000); Hackspacher *et al.*, (2003); Janasi *et al.*, (2001) e Prazeres Filho, (2000), em outros corpos ortoderivados com idades correlatas, os corpos ígneos são interpretados como produtos de uma granitogênese sin-a tardi-colisional com idades similares às adquiridas para rochas colisionais ocorrentes na *Nappe* Socorro-Guaxupé.

Quanto aos dados de geotermobarometria encontrados na amostra FM-43, a temperatura de 612 ± 132 °C e pressão de $6,47 \pm 1,60$ kbar são consistentes com a fácies anfibolito superior. Os dados obtidos em núcleos e bordas foram muito similares, mesmo com os erros significativos, e por isso podem ser interpretados como o pico metamórfico da colisão principal entre as paleoplacas São Francisco e Paranapanema nessa região (Trouw *et al.* 2008; Trouw *et al.* 2000, 2013; Duffles *et al.* 2013; Vinagre *et al.* 2014). A fácies anfibolito se justifica em função da distância da área estudada para a sutura dessa colisão, localizada a mais de 150

Km para norte (Fig. 1). Os dados sugerem, portanto, que essas rochas metamórficas se encontram em um nível crustal mais raso.

REFERÊNCIAS

ALVES, A., 2009. Petrogênese de plútons graníticos do leste paulista: geocronologia, geoquímica elemental e isotópica. Tese de Doutorado- USP-Instituto de Geociências, São Paulo.

BERNHARD N., BERNER S., DE WILD M., WIELAND M. The binary TiZr alloy - A newly developed Ti alloy for use in dental implants. Forum Implantol. 2009; 5:30–39.

CAMPOS NETO, M. C., 1984. Geometria e fases de dobramentos brasilianos superpostos no oeste de Minas Gerais. Revista Brasileira de Geociências, São Paulo, Brasil, v. 14, n. 1, p. 60-68.

CAMPOS NETO M.C. 2000. Orogenic systems from southwestern Gondwana, an approach to Brasiliano-pan African Cycle and orogenic collage in southeastern Brazil. In: CORDANI U.G., MILANI E.J., THOMAZ FILHO A., Campos D.A. (eds.) Tectonic evolution of South America. 31st International Geological Congress. Rio de Janeiro, p. 335-365.

CAMPOS NETO, M.C. and CABY, R., 1999. Tectonic constrain on Neoproterozoic hig-pressure metamorphism and nappe system south of São Francisco craton, southeast Brazil. Precambrian Research, v. 97, p. 3-26.

CAMPOS NETO, M.C. & CABY, R. 2000. Lower crust extrusion and terrane accretion in the Neoproterozoic nappes of southeast Brazil. Tectonics, 19:669-687.

CAMPOS NETO M.C., BASEI M.A.S., JANASI V.A., MORAES R. 2011. Orogen migration and tectonic setting of the Andrelândia Nappe System: an Ediacaran western Gondwana collage, south of São Francisco Craton. Journal of South American Earth Sciences, 32(4):393-406.

DEER, W.A; HOWIE, R.A: ZUSSMAN. J. Minerais constituintes das Rochas/Uma Introdução. Tradução de Luis E. Nabais Conde. Fundação Calouste Gulbencian/Lisboa. 1966.

DUFFLES, P.; TROUW, R.A.J.; MENDES, J.C.; GERDES, A.; VINAGRE, R. 2016. U–Pb age of detrital zircon from the Embu sequence, Ribeira belt, SE Brazil. Precambrian Research, 278: 69-86.

EIRADO, G L., HEILBRON, M., ALMEIDA, J. C. H., 2006. Os Terrenos Tectônicos da Faixa Ribeira na Serra da Bocaina e na Baía da Ilha Grande, Sudeste Do Brasil 2006, Revista Brasileira de Geologia, v. 36(3), p. 426 – 436.

FERNANDES, A.J., CAMPOS NETO M.C., FIGUEIREDO M.C.H., 1990. O Complexo Embú no leste do Estado de São Paulo: limites e evolução geológica. In: SBG, CONGRESSO BRASILEIRO DE GEOLOGIA, Natal, 1990. Anais..., 6, 2755-2763.

FERNANDES, A. J., 1991. O Complexo Embu no Leste do Estado de São Paulo: Contribuição ao conhecimento da litoestratigrafia e da evolução estrutural e metamórfica. Dissertação de Mestrado - Instituto de Geociências. Universidade de São Paulo. São Paulo.

GIMENEZ FILHO, A. G.; JANASI, V. A; CAMPANHA, G. A. C.; TEIXEIRA, W.; TREVIZOLI JR., L. E., 2000. U-Pb dating and Rb-Sr isotope geochemistry of the Eastern portion of the Três Córregos Batolith Ribeira Fold Belt, São Paulo, Brazil. Revista Brasileira de Geociências, v. 30, n. 1, p. 45-50.

GOMES C.B. 1984. Microssonda eletrônica: princípios e aplicações na geologia In: GOMES C.B. (ed.) Técnicas analíticas aplicadas à geologia. São Paulo, Edgar Blücher /Pró-Minério, p. 159-208.

HACKSPACHER, P. C.; FETTER, A. H.; EBERT, H. D.; JANASI, V. A.; DANTAS, E. L.; OLIVEIRA, M. A. F.; BRAGA, I. F.; NEGRI, F. A., 2003. Magmatismo há 660- 640 Ma no Domínio Socorro: registros de convergência pré-colisional na aglutinação do Gondwana Ocidental. Geologia USP. Série Científica, São Paulo, v. 3, p. 85-96.

HASUI, Y., 1975. Evolução polifásica do Pré-Cambriano a oeste de São Paulo. Boletim Ig, São Paulo, v. 6, p. 95-103.

HEILBRON, M., PEDROSA-SOARES, A.C., CAMPOS NETO, M., SILVA, L.C., TROUW, R.A.J., JANASI, V.C., 2004. A Província Mantiqueira. In: MANTESSO NETO, V., BARTORELLI, A., CARNEIRO, C.D.R., BRITO NEVES, B.B. (Eds.), O desvendar de um continente: a moderna geologia da América do Sul e o legado da obra de Fernando Flávio Marques de Almeida, 203-234.

HEILBRON M., VALERIANO C.M., TASSINARI C.C.G., ALMEIDA J.C.H., TUPINAMBÁ M., SIGA JUNIOR O., TROUW R.A.J. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. In: PANKHURST R.J.

HEILBRON, M., TUPINAMBÁ, M., VALERIANO, C. de M., ARMSTRONG, R., do EIRADO SIVA, L. G., MELO, R. S., ... MACHADO, N. (2013). The Serra da Bolívia complex: The record of a new Neoproterozoic arc-related unit at Ribeira belt. Precambrian Research, 238, 158–175. doi:10.1016/j.precamres.2013.09.014

HEILBRON, M.; RIBEIRO, A.; VALERIANO, C.M.; PACIULLO, F.V.; ALMEIDA, J.C.H.; TROUW, R.A.J.; TUPINAMBÁ, M.; EIRALDO, L.G. 2017. Ribeira Belt. Cap. 15: 277-302. In: HEILBRON, M., CORDANI, U.G., ALKMIM, F.F. (editors). São Francisco Craton, Eastern Brazil. Springer, 331p.

HOLLAND T. & BLUNDY J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphiboleplagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4):433-447.

IBGE - Instituto Brasileiro de Geografia e Estatística, Malha municipal, 2021. Página inicial. Disponível em: https://www.ibge.gov.br/geociencias/organizacao-do-

territorio/malhas-territoriais/15774-malhas.html?=&t=acesso-ao-produto>. Acesso em: 05 de jun. de 2021.

JANASI V.A. e ULBRICH H.H., 1992. Inventário bibliográfico de granitos do Estado de São Paulo. Boletim IG-USP Publicação Especial nº 11, São Paulo, 253 p.

JANASI, V. A.; LEITE, R. J.; VAN SCHMUS, W. R., 2001. UPb chronostratigraphy of the granitic magmatism in the Agudos Grandes Batholith (west of São Paulo) – implications for the evolution of the Ribeira Belt. Journal of South American Earth Sciences, v. 14, p. 363-376.

JANASI V.A., ALVES A., VLACH S.R.F., Leite R.J. 2003. Granitos peraluminosos da porção central da Faixa Ribeira, Estado de São Paulo: Sucessivos eventos de reciclagem da crosta continental no Neoproterozóico. Geologia USP, Série Científica, 3(1):13-24.

KLEIN e DUTRON 2012. Manual de ciências dos minerais, 23° edição (Porto Alegre, Brasil)

Lana C., Farina F., Gerdes A., Alkmim A., Gonçalves G.O., and Jardim A.C. (2017). Characterization of zircon reference materials via high precision U-Pb LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32, 2011-2023.

MACHADO N., VALLADARES C., HEILBRON M., VALERIANO, C., 1996. U-Pb geochronology of the Central Ribeira Belt (Brazil) and implications for the evolution of the Brazilian Orogeny. Precambrian Res., 79: 347-361.

MEIRA, V. T., GARCIA-CASCO, A., HYPPOLITO, T., JULIANI, C., & SCHORSCHER, J. H. D. (2019). Tectono-metamorphic evolution of the Central Ribeira Belt, Brazil: A case of late Neoproterozoic intracontinental orogeny and flow of partially molten deep crust during the assembly of West Gondwana. Tectonics, 38, 3182–3209.

MILLER, C.F.; STODDARD, E.F.; BRADFISH, L.J.; DOLLASE, W.A. 1981. Composition of plutonic muscovite: genetic implications. Can. Mineral., 19: 25-34.

OLIVEIRA, A. I.; LEONARDOS, O. H., 1943. Geologia do Brasil Rio de Janeiro: Serviço Informação Agrícola/Ministério da Agricultura. 813 p.

PEREIRA, R. M.; ÁVILA, C. A.; MOURA, C.A.V., 2001. Geologia da região entre Resende e São José do Barreiro e idade ²⁰⁷Pb/²⁰⁶Pb do Granito do Funil, segmento central da Faixa Ribeira (RJ/SP) Brasil. Geociências (São Paulo), v. 20, n.1/2, p. 37-48.

PEREIRA, R. A. N.; SALIBA, E. O. S.; MOTTA, W. F. ; BERTECHINI, A. G. ; DONATO, D. C. Z. ; DUARTE, M. R. ; CHAVES, M. L., 2005. LIPE® marker for estimating total faecal production and dry matter apparent digestibility in growing rabbits. Proc. 8th World Rabbit Congress, September 7-10, 2004, Pueblo, Mexico, 930-935

POWELL AND HOLLAND, 1988. R. Powell, T.J.B. Holland An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program J. Metamorph. Geol., 6 (2) (1988), pp. 173-204.

PRAZERES FILHO, H. J., 2000. Litogeoquímica, geocronologia (U-Pb) e geologia isotópica dos complexos graníticos Cunhaporanga e Três Córregos, Estado do Paraná. Dissertação de Mestrado-USP-Instituto de Geociências, São Paulo.

TASSINARI, C. C. G.; BABINSKi ; NUTMAN, A. P., 2004. A Idade e Natureza da Fonte do Granito do Moinho, Faixa Ribeira, Sudeste do Estado de São Paulo. Geologia USP. Série Científica, São Paulo, v. 4, n.1, p. 91-100.

TROUW R.A.J., HEILBRON M., RIBEIRO A., PACIULLO F.V.P., VALERIANO C.M., ALMEIDA J.C.H., TUPINAMBÁ M., ANDREIS R.R. 2000. The central segment of the Ribeira belt. In: CORDANI U.G., MILANI E.J., THOMAZ FILHO A., CAMPOS D.A. (eds.) Tectonic Evolution of South America. Rio de Janeiro, 31th International Geological Congress, p. 287-310.

TROUW R.A.J., PETERNEL R., RIBEIRO A., HEILBRON M., VINAGRE R., DUFFLES P., TROUW C.C., FONTAINHA M., KUSSAMA H. 2013. A new interpretation for the interference zone between the Southern Brasília Belt and the Central Ribeira Belt, SE Brazil. Journal of South American Earth Sciences, 48:43-57.

VALLADARES C.S., HEILBRON M., FIGUEIREDO M.C.H., TEIXEIRA W., 1997.Geochemistry and geochronology of Paleoproterozoic gneissic rocks of the Paraíba do Sul Complex (Quirino unit), Barra Mansa Region, Rio de Janeiro, Brasil. Rev. Bras. Geoc., 27(1):111-120.

VERNON, RONALD HOLDEN, RONALD HOLDEN VERNON, AND G. L. CLARKE. Principles of metamorphic petrology. Cambridge University Press, 2008.

VINAGRE R., TROUW R.A.J., MENDES J.C., DUFFLES P., PETERNEL R., MATOS G. 2014. New Evidence of a Magmatic Arc in the Southern Brasília Belt, Brazil: The Serra da Água Limpa Batholith (Socorro-Guaxupé Nappe). Journal of South American Earth Science, 54:120-139.

VINAGRE, R; TROUW, R. A.J; KUSSAMA, H.; PETERNEL, R.; MENDES, J. C.; DUFFLES, P. Superposition of structures in the interference zone between the southern Brasília belt and the central Ribeira belt in the region SW of Itajubá (MG), SE Brazil. Brazilian Journal of Geology, v. 46, p. 547-566, 2016.

VINAGRE DA COSTA, R.; TROUW, R.A.J.; MENDES, J.C.; GERALDES, M.; TÁVORA, A.; NEPOMUCENO, F.; DE ARAÚJO JUNIOR, E. B. 2017. Proterozoic Evolution of Part of the Embu Complex, Eastern São Paulo State, SE Brazil. Journal of South American Earth Sciences. 79, 170-188.

VLACH S.R. & GUALDA G.A.R. 2000. Micropobe monazite dating and the ages of some granitic and metamorphic rocks from southeastern Brazil. Revista Brasileira de Geociências, 30:214-218.

WETHERILL, G.W. (1956). Discordant uranium-lead ages, I. Transactions, American Geophysical Union 37. doi: 10.1029/TR037i003p00320. issn: 0002-8606.

YARDLEY, B.W.D. 1994. Introdução à petrologia metamórfica. Editora UnB. Brasília. 340 p.