

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL DEPARTAMENTO DE GESTÃO TERRITORIAL NÚCLEO DE APOIO DE CRICIÚMA

RELATÓRIO DE ATIVIDADES DE CAMPO SEMESTRE 2023/1 MONITORAMENTO DAS ÁGUAS SUBTERRÂNEAS

PROGRAMA DE RECUPERAÇÃO AMBIENTAL DA BACIA CARBONÍFERA DO SUL DE SANTA CATARINA.

CRICIÚMA, JULHO DE 2023

RELATÓRIO DE CAMPO – Primeiro Semestre de 2023

Programa de Recuperação Ambiental da Bacia Carbonífera do Sul de Santa Catarina.

1. Monitoramento da 27ª Campanha de Águas Subterrâneas

No período de 13/04 à 12/05/2023 foram realizados os trabalhos de campo da 27ª Campanha de Monitoramento das Águas Subterrâneas. Essa campanha é composta por 40 poços, distribuídos conforme a Figura 1 e Tabela 1.

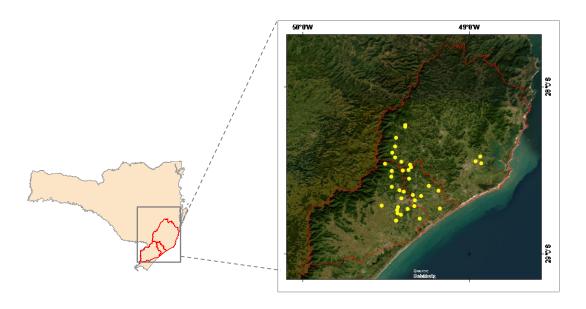


Figura 1: Localização dos pontos monitorados

Tabela 1: Distribuição	dos pocos de	monitoramento n	or bacias hidr	ngráficas e ti	no de coleta.
I uncia II Dini inaiça	dob poçob de	moment among	or pacias inar	ogi alicas c a	po uc coicia.

Bacia Hidrográfica	Quantidade de poços	Tipo de coleta
Araranguá	06	Bailer
	11	Low Flow
Tubarão	12	Low Flow
Urussanga	11	Low Flow

Os trabalhos de campo consistem em amostragem de baixa vazão para os poços de profundidade até 60m, com uso do equipamento da marca *Solinst*, modelo 464 Pump Eletronic. Para poços com profundidades maiores do que 60m é utilizado para a amostragem o amostrador tipo bailer. Os níveis estáticos dos poços são registrados com uso de medidor manual de nível equipado de sensor sonoro e fita milimetrada.

Nas coletas de água subterrânea são medidos em campo os parâmetros pH, OD (mg.L-1), Potencial REDOX (mV), Condutividade Elétrica (µS/cm) e Temperatura (°C) com o auxílio de

uma sonda multiparâmétrica de marca Aquaread, modelo AP-800, sendo coletados 1500 ml de água nos pontos monitorados (1 frasco de plástico com capacidade de 1 L e 1 frasco de 0,5 L).

Após a coleta, as amostras dos frascos de 0,5 L são preservadas em campo com 10 ml de ácido clorídrico. Posteriormente os 1,5 L de água são encaminhados para o Laboratório do CECOPOMIN-SUREG/SP para determinação dos parâmetros abaixo relacionados:

Tabela 2: Parâmetros analisados na última campanha pelo CECOPOMIN.

Parâmetro	Mínimo	Método de Análise
	Detectável	
pH (23°C)	0,1	Potenciométrico
Condutividade (Scm ⁻¹ 23°C)	0,001	Condutivimétrico
Acidez (mgCaCO ₃ L ⁻¹)	1	Potenciométrico
Alcalinidade (mgCaCO ₃ L ⁻¹)	1,7	Potenciométrico
Cloreto (mg.L ⁻¹)	0,1	Potenciometria (Eletrodo Íon-Seletivo)
Sulfato (mg.L ⁻¹)	0,1	Análise Gravimétrica
Ferro Total (mg.L ⁻¹)	0,01/1	Espectrometria de emissão atômica
Ferro II (mg.L ⁻¹)	1	Espectrofotometria de UV-Vis
Alumínio total (mg.L ⁻¹)	0,010	Espectrometria de emissão atômica
Manganês total (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica
Cobre (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica
Chumbo (mg.L ⁻¹)	0,005	Espectrometria de emissão atômica
Arsênio (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica
Mercúrio (mg.L ⁻¹)	0,0003	Espectrometria de emissão atômica
Cádmio (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica
Zinco (mg.L ⁻¹)	0,005	Espectrometria de emissão atômica
Cálcio (mg.L ⁻¹)	0,025	Espectrometria de emissão atômica
Magnésio (mg.L ⁻¹)	0,010	Espectrometria de emissão atômica
Potássio (mg.L ⁻¹)	0,070	Espectrometria de emissão atômica
Sódio (mg.L ⁻¹)	0,070	Espectrometria de emissão atômica

A Tabela 3 apresenta os dados dos parâmetros obtidos em campo durante a 27ª campanha de amostragem de água subterrânea. Importante ressaltar que as amostragens superficiais e subterrâneas ocorram concomitantemente.

Tabela 3: Resultados dos parâmetros analisados em campo durante a 27ª campanha de amostragem de água subterrânea.

Ponto	Tipo_Monit	Data	Temp_C_Cels	pH_C	ORP_C_mV	OD_C_mg_L	Cond_C_uS_cm
PMAPAR001	Subterrâneo	17/04/23	23.80	08.03	+0064.7	03.37	358
PMAPAR002	Subterrâneo	17/04/23	24.33	06.03	+0096.5	00.50	79
PMAPAR003	Subterrâneo	27/04/23	26.40	05.59	+0165.2	03.25	67
PMAPAR004	Subterrâneo	13/04/23	21.60	08.10	-0146.9	00.70	435
PMAPAR005	Subterrâneo	13/04/23	21.80	07.47	-0106.3	00.43	1437
PMAPAR006	Subterrâneo	13/04/23	22.70	06.72	-0084.6	00.72	226
PMAPAR007	Subterrâneo	13/04/23	22.63	06.65	-0015.9	00.09	138

PMAPAR007B	Subterrâneo	13/04/23	23.30	06.16	+0004.6	00.75	150
PMAPAR008	Subterrâneo	17/04/23	23.20	07.83	-0150.4	01.82	372
PMAPAR009	Subterrâneo	24/04/23	23.80	08.17	-0014.3	01.53	702
PMAPAR010	Subterrâneo	24/04/23	25.08	08.83	-0124.9	02.81	408
PMAPAR011	Subterrâneo	24/04/23	23.60	07.95	-0029.9	01.07	6716
PMAPTB01	Subterrâneo	11/05/23	23.60	08.72	-0119.9	00.21	216
PMAPTB01B	Subterrâneo	11/05/23	24.00	11.18	-0033.2	00.81	172
PMAPTB02	Subterrâneo	11/05/23	21.00	06.15	+0292.0	02.22	101
PMAPTB03	Subterrâneo	10/05/23	19.70	05.71	+0118.4	00.05	833
PMAPTB04	Subterrâneo	10/05/23	22.50	07.93	-0057.9	00.04	1034
PMAPTB05	Subterrâneo	10/05/23	21.50	10.05	-0145.0	00.00	733
PMAPTB06	Subterrâneo	05/05/23	20.90	08.96	-0107.4	00.00	465
PMAPTB07	Subterrâneo	05/05/23	21.70	09.03	-0160.5	00.00	281
PMAPTB08	Subterrâneo	05/05/23	21.10	08.08	-0046.9	00.00	166
PMAPUR001	Subterrâneo	26/04/23	20.50	07.90	-0120.2	00.81	318
PMAPUR002	Subterrâneo	26/04/23	22.10	07.38	+0070.8	00.81	244
PMAPUR003	Subterrâneo	26/04/23	20.40	05.91	+0197.5	00.06	92
PMAPUR004	Subterrâneo	26/04/23	21.40	07.86	-0184.0	00.01	254
PMAPUR005	Subterrâneo	27/04/23	24.60	07.67	-0132.4	00.09	239
PMAPUR006	Subterrâneo	27/04/23	23.20	05.75	+0145.0	06.08	106
PMAPUR007	Subterrâneo	27/04/23	25.10	07.02	-0035.2	00.13	160
PMAPUR008	Subterrâneo	28/04/23	22.50	06.43	+0042.8	00.17	129
PMFLTB09	Subterrâneo	12/05/23	24.15	06.51	+0298.9	01.91	90
PMFLTB10	Subterrâneo	12/05/23	21.40	06.96	+0057.5	02.47	5506
PMFLTB11	Subterrâneo	12/05/23	23.68	08.10	-0080.3	00.00	401
PMLAAR001	Subterrâneo	25/04/23	23.00	04.73	+0286.2	01.63	91
PMLAAR002	Subterrâneo	25/04/23	22.10	06.81	+0038.0	00.38	259
PMLAAR002B	Subterrâneo	25/04/23	23.60	07.18	-0111.7	00.01	318
PMLAAR003	Subterrâneo	25/04/23	23.80	07.13	-0075.6	00.84	246
PMLAAR004	Subterrâneo	25/04/23	23.70	06.39	+0005.1	00.10	1825
PMLAUR001	Subterrâneo	28/04/23	22.40	07.51	-0129.0	07.57	271
PMLAUR002	Subterrâneo	28/04/23	22.60	07.41	-0163.4	00.00	268
PMLAUR003	Subterrâneo	28/04/23	23.60	04.95	+0306.6	03.87	254

2. Resumo das atividades de campo do mês de março de 2023

A Tabela 4 apresenta resumo das atividades de monitoramento das águas subterrâneas.

Tabela 4: Resumo das atividades de monitoramento das águas subterraneas.

Período	Pontos	Monitoramento
17 a 28/04	29	Aquífero Profundo
12/05	03	Fluvio Lagunar
25 a 28/4	08	Leques Aluviais

3. Amostras enviadas para laboratório CECOPOMIN/SP

Na Tabela 5 estão apresentados os lotes enviados com as respectivas datas e quantidade de amostras.

Tabela 5: Envio das amostras enviadas ao CECOPOMIN

Data	Lote	Amostras	Monitoramento
15/05/2023	4° lote	40	Águas subterrâneas

4. Conclusão:

Após a conclusão dos trabalhos de monitoramento do primeiro semestre de 2023 foram realizados:

- ✓ Todas as coletas de amostras de águas subterrâneas para as bacias dos rios
 Tubarão, Urussanga e Araranguá, abrangendo os aquíferos profundo, fluviolagunar e leques aluviais;
- ✓ Todas as amostras de água foram enviadas para o Laboratório CECOPOMIN-CPRM/SP;
- ✓ Todos os resultados recebidos do laboratório foram inseridos nas planilhas que compõe o banco de dados.

5. Equipe Técnica

Chefe do Núcleo de Criciúma: Guilherme Casarotto Troian

Pesquisador em Geociências (Eng Ambiental) do Núcleo de Criciúma: Albert T. Cardoso

Estagiária do Núcleo de Criciúma: Victória Pereira dos Santos

Técnico em Geociências na SUREG/PA: Luiz Alberto Costa e Silva **Técnico em Hidrologia no NUMA:** Patrícia Wagner Sotério

Técnico em Hidrologia no NUMA: Helton Roberto Gomes de Sousa Técnico em Geociências na SUREG/PA: Alexandre Ritter Volkmann Técnico em Geociências na SUREG/SP: Reinaldo Rodrigues Gama

Técnico em Geociências na SUREG/SP: Silvia Santana de Souza