#### INDÚSTRIA NORDESTINA DE CARNES S/A - INCA

PROJETO INCA

RELATÓRIO FINAL DO POÇO 4 CB-02-PI

196

Antonio Fernando Duarte Santos

| CPRM          | SUR        |             | <b></b>  |
|---------------|------------|-------------|----------|
| Refatorio n.º | ARQUIVO TE | CNICO       | .a.a4    |
| N," de Velu   |            | V. <u>.</u> | <u> </u> |
| ph)           | 09159      |             | -        |
|               |            | ·           |          |

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS

SUPERINTENDÊNCIA REGIONAL RECIFE

#### <u>sumário</u>

#### 1 - GENERALIDADES

- 1.1 Localização
- 1.2 Histórico do Projeto
- 1.3 Objetivo do Contrato
- 1.4 Locação

#### 2 - GEOLOGIA

- 2.1 Geologia Regional
- 2.2 Geologia Local

#### 3 - ASPECTOS HIDROGEOLÓGICOS

#### 4 - SONDAGEM

- 4.1 Perfuração
- 4.2 Complementação
- 4.3 Desenvolvimento
- 4.4 Teste de Produção

#### 5 - EQUIPAMENTO UTILIZADO

#### 6 - ANEXOS

- 6.1 Mapa de Situação
- 6.2 Dados Gerais Sobre o Poço
- 6.3 Distribuição das Horas de Trabalho
- 6.4 Descrição das Amostras de Calha
- 6.5 Teste de Produção (Tabela)
- 6.6 Perfil de Sondagem

- 6.7 Tempo de Penetração
- 6.8 Análise Química da Água

#### INTRODUÇÃO

Conforme o Contrato nº 367/DAD/77 celebrado em 10 de agosto de 1977, entre a Companhia de Pesquisa de Recursos Minerais - CPRM e a Indústria Nordestina de Carnes S/A INCA, ficou a CPRM, obrigada a perfurar um poço tubular na Fazenda INCA no município de Canto do Buriti.

A viabilidade econômica do contrato se torna evidente, tendo em vista a demanda exigida pelo Projeto e, le vando-se em consideração as precárias condições de armaze namento de águas residuais, devido as precipitações irregulares e solos bastantes permeáveis.

#### 1 - GENERALIDADES

#### 1.1 - Localização

O suporte físico do Projeto INCA é a fazenda INCA, localizada aproximadamente a 10 km a noroeste da cidade Canto do Buriti. O acesso é feito pela Rodo via Transpiauí km - 7, partindo de Canto do Buriti em direção à Itaueiras, percorrendo ainda 7 km em estradas carroçáveis até chegar à sede da Fazenda.

#### 1.2 - Histórico do Projeto

O Projeto INCA com apoio da SUDENE, tem sua base física na Fazenda INCA no município de Canto do Burití e, visa a implantação da cultura bovina na região.

#### 1.3 - Objetivo do Contrato

O presente contrato objetiva a perfuração, complementação e desenvolvimento do Poço 4CB-02-PI, para captação de água subterrânea, visando atender às necessidades do rebanho bovino.

#### 1.4 - Locação

A locação do poço 4CB-02-PI ficou sob a responsabilidade da contratante e, acha-se situado a 50 metros de um outro poço que vinha abastecendo precariamente o Projeto.

#### 2 - GEOLOGIA

#### 2.1 - Geologia Regional.

As rochas que ocorrem na área do Projeto INCA, são pertencentes a bacia sedimentar do Maranhão. É so bretudo uma bacia paleozóica, embora apareçam retalhos sob a forma de testemunhos tabuliformes, pertencentes a era mesozóica, tais como as Formações Pastos Bons, Motuca e Sambaíba, repousando sobre a sequência Paleozóica.

Toda a borda oriental da bacia, caracterizada pela zona de afloramento das Formações Paleozóicas, é cortada por intrusões diabásicas, em forma de di ques e sills, que ocasionaram modificações tectônicas muito localizadas. O tectonismo da bacia, foi tipicamente epirogenético, do que decorrem dobra mentos suaves, além de um pronunciado fraturamento das camadas incompetentes.

Na história da Bacia do Maranhão depositaram-se ...
3.000 metros de sedimentos dos quais 2.500 metros pertencem do Paleozóico e 500 metros do mesozóico, divididos em três grandes ciclos sedimentares (Petrobrás 1964).

O ciclo inferior transgrediu sobre as rochas cambro-ordovicianos e Pré-cambrianos compreendendo o período de sedimentação entre o Siluriano Superior e o Carbonífero inferior. Consiste de arenitos de cor cinza, marinhos, e folhelhos escuros do Siluriano e Devoniano, com zonas de sedimentos continen

tais na parte basal, continua com arenitos do car bonífero inferior, marinhos, deltáicos e continen tais no topo da sequência, finalizando o ciclo. Pre dominou durante o ciclo inferior um clima úmido e temperado.

O segundo ciclo, após uma pequena inconformidade 'com a sequência anterior, se caracterizou por depó sitos de clima semi-árido e quente, representados por arenitos eólicos do carbonífero superior, anhidrita, dolomitos vermelhos, finas intercalações de calcários marinhos, arenitos eólicos, e, sedimentos vermelhos, prosseguindo com as camadas do Permiano constituídas de "chert", anhidrita, dolomitos, arenitos eólicos e camadas vermelhas; finalizando a sequência aparecem os arenitos fluviais e eólicos do Triássico.

Finalmente o terceiro ciclo, representado por sedimentos cretácicos, recobre as camadas do Paleozói co, Triássico e Jurássico, no norte da bacia. A se quência do ciclo superior se separa do ciclo Per mo-Pensilvaniano - Triássico por um hiato durante o qual foram injetados e derramados na bacia basalto e diabásio.

Engloba a coluna estratigráfica definida no poçoda CIAN as formações Paleozóicas cabeças (Dc) e Longá (Dl), isto é, faixa média - superior do primeiro ciclo.

A natureza litológica das formações que constituem a sequência Paleozóica é predominantemente clásti

|                 |                                         | Δ                                                                                                              |               | Δ        |                          |            | MARANHAO                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|----------|--------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Contraction | PERIO                                   | 00                                                                                                             | FORMA-<br>ÇÃO | MEMBRO   |                          | LITOLOGIA  | DESCRIÇÃO                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4               | ` 0                                     |                                                                                                                | TAPECURU      |          | 2500+<br>em \$80<br>Luis | -V W       | ARENITO vermelho/rosa, verde, granulação fina/muito fina, micóceo; SILTITO vermelho mia; ARGILITO vermelho/varde, sitiao, micóceo; CONTINENTAL                                                                                                                                                                                                                                                                                                |
|                 | RETACE                                  | NFERIOR                                                                                                        | CODÓ          |          | 220                      |            | FOLHELHO cinza ciara/esverde ada, fiss II, micro-micaceo; MARINHO ARENITO cinza ciara/esverde ada, granulação muito fina/muito grossa, subanquiar, mal se recionado, micaceo;  FOLHELHO cinza escuro/marfom/preta, betuminosa, fissil; MARGA castanha, mole; ANIDRITA CALCARIO marrom ciara, cristatino fina, fossilitaro; LACUSTRINE-MARES REMANESCENTES CALCARIO marrom ciara, cristatino fina, fossilitaro; LACUSTRINE-MARES REMANESCENTES |
|                 | <u>o</u>                                |                                                                                                                | CORDA         |          | 58                       |            | ARENITO branco, granulocão fino/grossero, subangular/arredonacidas, terruginosa; CONTINENT.                                                                                                                                                                                                                                                                                                                                                   |
|                 | JRÁSSIC                                 | •                                                                                                              | BASALTO       |          | 175                      |            | BASALTO preto, afanitico, amigdaloidal; BOLEIRAS DE DIABASIO (intrudidas nas formações abaixo)                                                                                                                                                                                                                                                                                                                                                |
|                 | - O O O O O O O O O O O O O O O O O O O | SHOFFOR                                                                                                        | SAMBABA       |          | 400                      |            | ARENITO vermalho/roso, granulação fina/media, seixas ocasionals, mai selectorado. sub/<br>bem arredondado, ocasionalmente ferruginoso, feldspático, argitoso, friavel,<br>z-estratificado;<br>CONTINENTAL: FLUVIAL-EOLEO                                                                                                                                                                                                                      |
|                 |                                         | FFRIOR                                                                                                         | PASTOS        |          |                          |            | Lillo vermelho/verde.micoceo: FOLHELHO vermelho/cinzales/erdecon às vezes proto cor-                                                                                                                                                                                                                                                                                                                                                          |
|                 |                                         |                                                                                                                | BONS          |          | 70.                      |            | Cioso de peixes no di promento (Lentes de Mozimo); comodos finas de orenito Sregioso  Cioso  FOLHELMO vermelho tijolo, C/silex secsional; SILTITO vermeiho/verde;                                                                                                                                                                                                                                                                             |
|                 | ANO                                     |                                                                                                                | MOTUCA        |          | 265                      |            | ANIDRITA                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | PERE                                    |                                                                                                                | PEDRA         |          | 200                      |            | ARENITO vermelho, granulação fina/média, subonquiar/bem arredandodo, ôcos ferrugin<br>FOLHELHO violeto/cinza, ocasionalmente marrom e cinza escura;<br>DOLOMITO vermelho:<br>SILEX (muito abundante nos leitos finos e substituições de dolomitos;<br>ANIDRITA                                                                                                                                                                                |
|                 | ANIANO                                  |                                                                                                                | FOGO          | SUP.     | 250                      |            | COLOMITO-SILEX  ARENITO tranco/berje, granulação média, caolinítico, friável, arredondado;  FOLHELHO vermelho/verde, síltico, midaceo;  DOLOMITO vermelho;CALCÁRIO vermelho c/fósseis marinhos;                                                                                                                                                                                                                                               |
|                 | NUSYLV                                  |                                                                                                                | PIAU!         | INF.     | 170                      |            | ANIDRITA  MARES REMANESCENTES, EOLEO  C/CALCARIOS MARINHOS OCASIONAIS  ARENITO branco/vermeino, granuloção fina/média/grasseira, c/saixos/conglome*  rático, arredondados, bem sulecionado, friával.                                                                                                                                                                                                                                          |
|                 | DE DE                                   | <u> </u>                                                                                                       |               |          |                          |            | CONTINENTAL: FLUVIAL-EULIAN.  ARENITO branco/cinza ciere, ocasionelmente esverdecdo, granuloção fina, subengulas,  e/zoos projeses felespético, ercésico, muito micaceo, carbonaso, carvão                                                                                                                                                                                                                                                    |
|                 | SISSIPPLA                               |                                                                                                                | POTI          |          | 300                      |            | ocasional e residuos de plantas; ocasionalmente conglomerático.  SILTITO cinza/cinza média, muito micáceo, carbonosa, male.  FOLHELHO prêto, micáceo, carbonoso/betuminoso nos partes inferiores  CONTINENTAL-DELTAICO A MARINHO NA BASE                                                                                                                                                                                                      |
|                 | <b>X</b>                                | OT C                                                                                                           | LONGA         |          | 150                      |            | FCLHELHC preto, betuminoso, micócea, piritoso;<br>SILTITO cinza, muito micáceo, silicoso, finamente laminado, c/leito retorcidos<br>MARINHO                                                                                                                                                                                                                                                                                                   |
|                 |                                         | ָרָלָה ( בְּיִרָּיִהְיִי                                                                                       | CABEÇAS       |          | 300                      |            | ARENITO cinza clara, granulação fino/média, c/seixos ocasionais, c/folhelho micá-<br>ceo e sittito tominada Alguns tipos deltaicos de x-estratificações, mas<br>principalmente MARINHO.                                                                                                                                                                                                                                                       |
|                 |                                         |                                                                                                                |               |          |                          |            | FOLHELHO cinza escuro/marrom, tissil, finamente micáceo, partador de escaras, betuminosa, piritasa c/laminas finas de siltita e arenita de granulação                                                                                                                                                                                                                                                                                         |
|                 | 2                                       | <b>.</b>                                                                                                       | R A S         | PICOS    | 300-                     |            | muito fina, c/fosseis ocasionais  MARINHO                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 |                                         |                                                                                                                |               |          |                          |            | ARENITO cinza ciaro, granulação fino, angular/subangular, silicoso, ocasionalmen- le (cssilifero; FOLHELHO cinza escuro/prêto, fissil, micácea; MARINHO                                                                                                                                                                                                                                                                                       |
|                 | C                                       |                                                                                                                |               | ITAIM    | 400                      |            | ARENITO cinzo/rese, granuleção fina/média/grosseira, c/seixos ocasionais, feldapático;                                                                                                                                                                                                                                                                                                                                                        |
| ;               |                                         |                                                                                                                |               |          |                          |            | ARENITO cinza, granulação fina/micaceo. c/láminas de slitito micaceo e folhetho;  SILTITO castanha/marram/cinza/ciiva, abundante e grasseiramente micaceo;                                                                                                                                                                                                                                                                                    |
|                 |                                         | ار الحال | SERRA         | SUPERICH | 170                      |            | FOLHELHO cinza escuro/aliva, muito micóceo, betuminoso;  ARENITO pranca/cinza, granulação fino, bem selecionado, grasseiramente micácea MARINHO  ARENITO cinza claro/verse, grunulação fino c/seixos acasionais, arabsica;                                                                                                                                                                                                                    |
|                 |                                         |                                                                                                                | GRANDE        | INFERIOR | 200-                     |            | ARENITO cinza ciaro, branco, granuloção lina/média E/seixos e matacões, friável, feldspática MARINHO-CONTINENTAL                                                                                                                                                                                                                                                                                                                              |
|                 |                                         |                                                                                                                | D. BAMBUI     |          | 1000                     | + Hainb.ii | ARENITO violeto, muitu micóceo, arcásico, granulação fina, bem selecionada                                                                                                                                                                                                                                                                                                                                                                    |
|                 | PRI                                     |                                                                                                                |               | •        |                          |            | Metamorticas<br>/                                                                                                                                                                                                                                                                                                                                                                                                                             |

ca, embora não deixem de ocorrer sedimentos de origem química, tais como anidrita, calcários etc. As camadas afloram segundo uma direção geral N-Se NE-SW, com um ligeiro mergulho para W e NW, formando uma estrutura homoclinal, cuja espessura pode atim gir centenas de metros. Do extremo leste, onde a sua representação basal, repousa discordantemente' sobre o cristalino, ao extremo ocidente da bacia, distinguem-se segundo Mesner e Wooldridge (1964), as formações inseridas na coluna estratigráfica em anexo.

#### 2.2 - Geologia Local

A área da Fazenda INCA se situa sobre os sedimen tos da Formação Longa, constituindo-se de siltitos, folhelhos cinza, cinza-arroxeado e avermelhados com algumas intercalações de arenito cinza claro de granulometria fina.

As rochas aflorantes pertencem à Formação Longá que tem seu contato com a Formação Cabeças aos 147, 00 metros.

A Formação Cabeças que aflora em direção ao sul tem o seu horizonte de contato com a Formação Longá' constituido de arenito claro passando gradualmente de fino a grosseiro, apresentando algumas interca lações de folhelhos cinza laminado e siltito cinza e creme.

Poços perfurados nas redondezas constataram para esta formação, espessura superior a 160,00 metros.

O poço 4CB-02-PI atingiu a profundidade final de 304,20 metros correspondendo a uma penetração na formação Cabeças de 157,20 metros.

#### 3 - ASPECTOS HIDROGEOLÓGICOS

Conforme coluna estratigráfica em anexo, foram atra vessados pela sondagem no Poço 4CB-02-PI, dois sistemas aquíferos:

I - Aquifero Longá

II - Aquifero Cabeças

#### I - AQUÍFERO LONGÁ

A Formação Longá constituída de numa alternância constante de folhelhos avermelhados a roxo-avermelhados e siltitos avermelhados, micáceos, com intercalações de a renitos creme claro a avermelhado de grão fino a médic com fração grossa e, ocasionalmente com fração conglome rática. A presença de folhelhos alternando com arenitos, acarreta uma situação pobre de aquíferos na Formação Longá, proporcionando baixas vazões específicas, como a do poço construido anteriormente, não atendendo às necessidades do contratante.

#### II - AQUÍFERO CABEÇAS

O Aquifero Cabeças representado por uma sequência de camadas de arenitos de granulometria variada, com es pessura na ordem de 300 metros, se contitui a melhor opção para o suprimento d'água de Empreendimentos Agríco

colas e agropecuários no sul do Estado do Piauí.

Conforme testes de vazão orientados para serem de terminados os valores de transmissividade e armazenamen to do aquífero Cabeças na Região do Vale do Gurgueia, a 150 km do sul da área da INCA, foram obtidos para os Parâmetros transmissividade, Permeabilidade e Armazena — mento, os valores médios de:

$$T = 1.81 \times 10^{-7} \text{ m}^2/\text{seg}$$
 $K = 6.87 \times 10^{-5} \text{ m/seg}$ 
 $S = 1.99 \times 10^{-5}$ 

#### 4 - SONDAGEM

Para a execução dos trabalhos relativos a sondagem, utilizou-se uma sonda Failing 2.500 devidamente equipada para o tipo de serviço contratado.

#### 4.1 - Perfuração

Os trabalhos de perfuração tiveram início no dia 04 de setembro e sua duração foi de 14 dias, não se verificando qualquer anormalidade durante sua rea lização.

Após sua conclusão, o poço ficou aberto nos seguin tes diâmetros:

#### 4.2 - Completação

Concluída a perfuração, foi iniciado a etapade com pletação do poço. Também nesta fase não se verificou nenhum problema que acarretasse atraso nos ser viços. O poço ficou revestido e cimentado de acor do com o perfil no anexo 6.6, da seguinte maneira:

#### Revestimento:

0.00 m - 170.00 m - canos de 9.5/8" 0.D.

Cimentação do espaço anular:

0,00 m - 20,00 m 70,00 m - 170,00 m

#### 4.3 - Desenvolvimento

Após a completação teve início o desenvolvimento do poço. Esta fase sofreu pequeno atraso em virtude da falta d'água, pois o poço que nos supria revelou-se insuficiente para os trabalhos e também tivemos problemas mecânicos com nosso carro pipa dem das dificuldades de acesso do mesmo ao canteiro das obras em virtude das chuvas que tornaram as estradas intransitáveis para veículos de grande por te.

Sanadas as dificuldades (que duraram cerca de 04 dias). Foi injetado no poço uma mistura de água , Con-det, hexametafosfato de sódio e depois realiza do a limpeza através de haste furada, objetivando um melhor rendimento do compressor no desenvolvimen

to final do poço.

#### 4.4 - Teste de Produção`

O teste de produção (vide tabela no anexo 6.5) foi executado com um compressor ATLAS COPCO PR 600 e te ve a duração de 24:00 horas.

A linha de ar ficou da seguinte maneira:

Descarga - canos de 5 1/2" = 145,00 m Tubos de ar - canos de 1 1/2" = 132,00 m Medida - canos de 3/4" = 138,00 m

A vazão obtida foi de 21,6 m<sup>3</sup>/h para um rebaixame<u>n</u> to de 2,16 m.

A água, do aquifero cabeças, conforme analises qui micas (vide anexo 6.8), é de ótima qualidade.

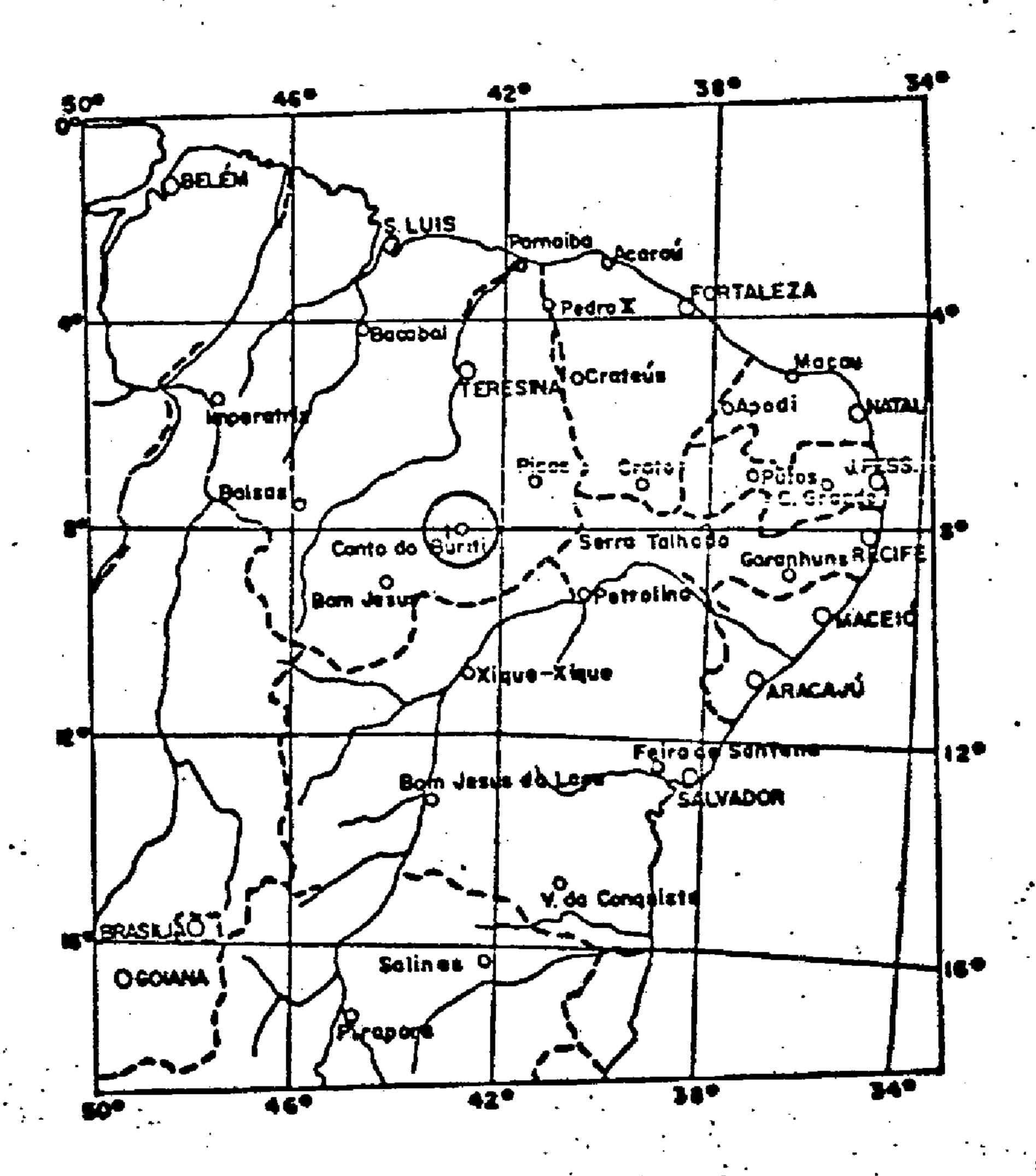
#### 5 - EQUIPAMENTO UTILIZADO

Para realização do projeto, foi utilizado o seguin te equipamento:

- Uma sonda Failing 2.500 devidamente equipada
- Um cavalo mecânico Scania mod. L75
- Uma carreta Randon de 22 ton.
- Um pipa tanque com capacidade para 16.000 litros
- Uma pick-up Ford F-75
- Um Volkswagen Brasília
- Um conversor de solda elétrica
- Um conjunto Oxi-Acetileno
- Um Torno de Bancada nº 8
- Um Grupo Gerador Perkins de 30 KVA

- Uma Barraca Completa
- Uma Pipa para transporte de combustível de capa cidade 1.500 litros
- Um Laboratório BAROID, para análise de lama.

EXOS


•

6.1 - MAPA DE SITUAÇÃO

## MAPA DE LOCALIZAÇÃO

MUNICÍPIO DE CANTO DO BURITI

ESCALA 1:50.000



6.2 - DADOS GERAIS SOBRE O POÇO

#### 6.2 - Dados Gerais Sobre o Poço

Poço : 4 CB-02-PI

Local : Fazenda INCA - Município de Canto do Bu

riti

Estado : Piauí

Início: 04/09/77

Conclusão: 02/10/77

Interessado: Indústria Nordestina de Carnes S/A

INCA

Profundiade: 304,20 metros

Diâmetros de Perfuração:

17 1/2" de 0,00 m até 3,00 m

12 1/4" de 3,00 m até 170,60 m

8 5/8" de 170,60 m até 196,00 m

7 7/8" de 196,00 m até 304,20 m

Revestimento: 0,00 m até 170,00 m - canos 9 5/8"

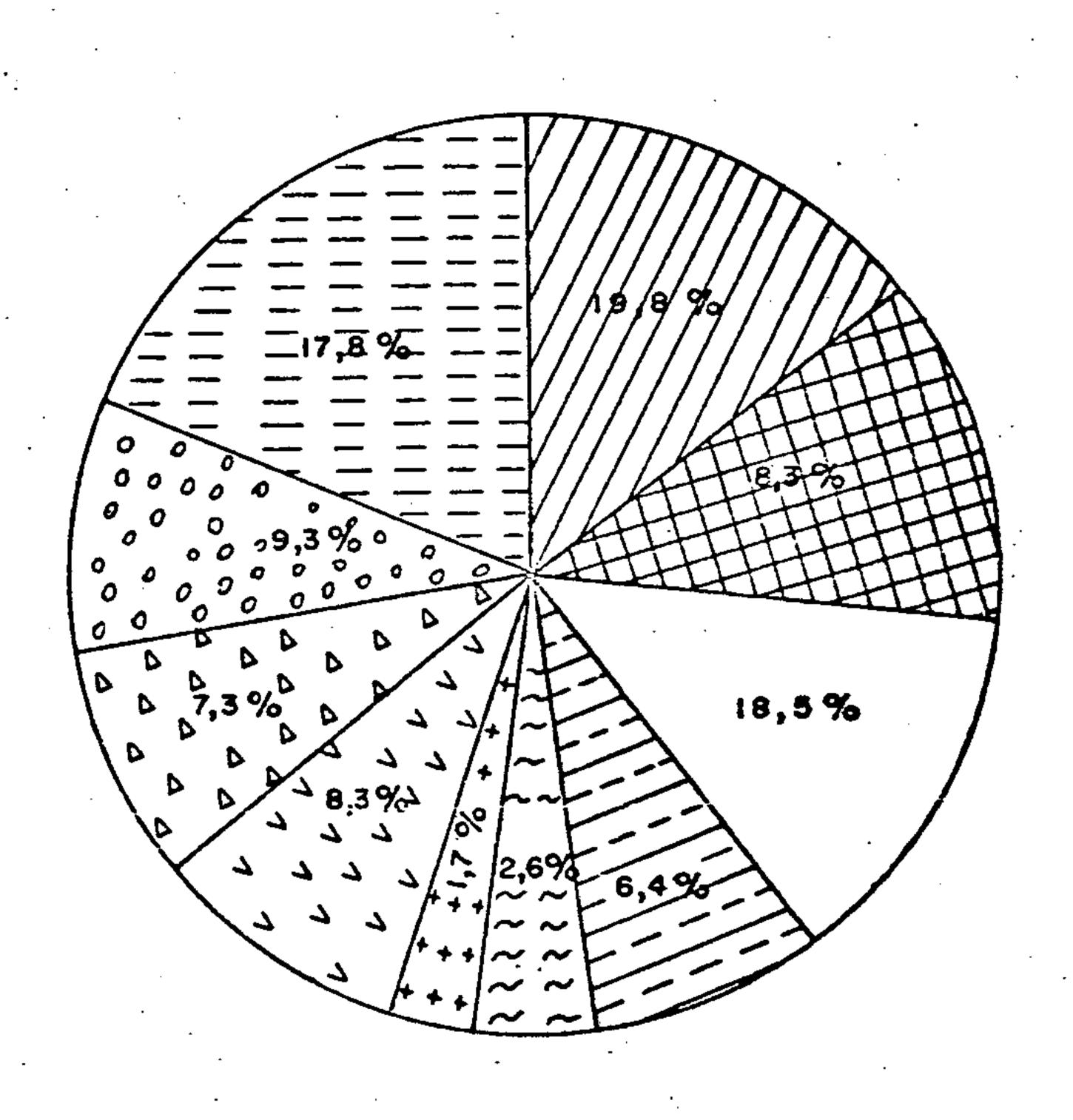
O.D

Cimentação: 0,00 m até 20,00 m

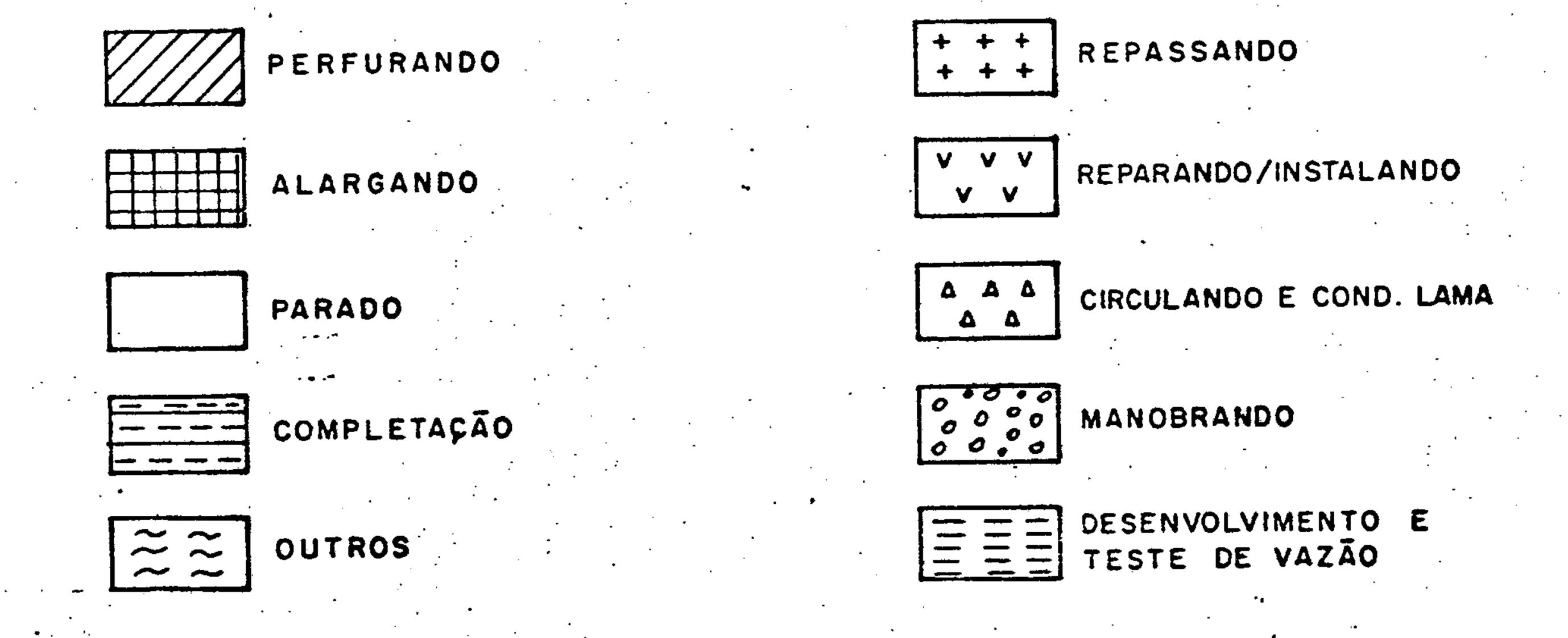
70,00 m até 170,00 m

TESTE DE PRODUÇÃO:

N.E = 88,34 m


N.D = 90,50 m

 $Vazão = 21,6 m^3/h$ 


Vazão Específica = 10 m<sup>3</sup>/h/m

6.3 - DISTRIBUIÇÃO DAS HORAS DE TRABALHO

# 6.3 - DISTRIBUIÇÃO DAS HORAS DE TRABALHO PROJETO INCA GRÁFICO PERCENTUAL DAS HORAS DE TRABALHO POÇO 4 CB - 02 - PI



LEGENDA



6.4 - DESCRIÇÃO DAS AMOSTRAS DE CALHA

#### 6.4 - Descrição das Amostras de Calha

- 0 6 = Solo arenoso avermelhado
- 6 39 = Arenito avermelhado conglomerático c/ intercalações de siltito argiloso cin za claro.
- 39 48 = Folhelho cinza escuro, laminado c/ in tercalações de arenito fino, cinza escuro pouco compacto.
- 48 66 = Arenito cinza escuro, grão fino c/ in tercalações de folhelho cinza escuro, laminado.
- 66 108 = Arenito cinza claro, grão fino amédio c/fração conglomerática e muita inter calação de folhelho cinza escuro, la minado.
- 108 147 = Arenito cinza escuro, grão fino, con glomerático c/intercalações de folhe lho cinza escuro c/alguns máficos.
- 147 168 = Arenito cinza a creme, grão fino, mal classificado, pouco compacto, c/quart zo e alguns máficos. Intercalações de folhelho cinza escuro laminado e folhelho marron avermelhado.
- 168 183 = Arenito creme, grão fino, mal classificado, baixo grau de arredondamento'
  c/raras intercalações de folhelhos cin
  za arroxeado.

- 183 195 = Arenito creme claro, grão fino a conglomerático, quartzoso, raras intercalações de folhelho cinza e avermelhado.
- 195 201 = Arenito claro grosseiro a conglomerático, quartzoso c/alguns máficos.
- 201 270 = Arenito creme a cinza, grão fino a médio c/quartzo sub-arredondado e alguns máficos, intercalações de folhelho cinza arroxeado, micáceo.
- 270 282 = Arenito creme, grão fino a médio, c/
  fração conglomerática, pouco compacto;
  quartzoso e alguns máficos. Raras in
  tercalações de folhelho cinza e marron
  avermelhado, micáceo.
- 282 304,20 = Siltito cinza c/intercalações de arenito fino, claro c/fração média a
  grosseira e folhelho cinza arroxeado.

6.5 - TESTE DE PRODUÇÃO (TABELA)

•

6.5 - Teste de Produção

|             | Bombeamento                  |               | N.E = 88,34  m |                    |  |
|-------------|------------------------------|---------------|----------------|--------------------|--|
| TEMPO (min) | VAZÃO<br>(m <sup>3</sup> /h) | N.E<br>(m)    | N.D RI<br>(m)  | EBAIXAMENTO<br>(m) |  |
| 5           | 22,5                         |               | 89,86          | 1,52               |  |
| 10          | 22,5                         | _             | 90,01          | 1,67               |  |
| 15          | 22,5                         | _             | 90,18          | 1,84               |  |
| 20          | 18,0                         | . <del></del> | 90,35          | 2,01               |  |
| 30          | 18,0                         | · _           | 90,43          | 2,09               |  |
| 40          | 18,0                         | _             | 90,46          | 2,12               |  |
| 60          | 18,0                         | _             | 90,49          | 2,15               |  |
| 90          | 18,0                         |               | 90,50          | 2,16               |  |
| 120         | 18,0                         | <del></del>   | 90,50          | 2,16               |  |
| 180         | 21,6                         | _             | 90,50          | 2,16               |  |
| 240         | 21,6                         |               | 90,52          | 2,18               |  |
| 300         | 21,6                         | _             | .90,55         | 2,21               |  |
| 360         | 21,6                         |               | 90,47          | 2,13               |  |
| 420         | 21,6                         | ——            | 90;52          | 2,18 .             |  |
| 480         | 21,6                         |               | 9Ò,56          | 2,22               |  |
| 540         | 21,6                         | · _ ·         | 90,50          | 2,16               |  |
| 600         | 21,6                         |               | 90,50          | 2,16               |  |
| 660         | 21,6                         |               | 90,50          | 2,16               |  |
| 720         | 21,6                         | _             | 90,50          | 2,16               |  |

#### Recuperaçao

|       |     | TEMPO (min) | N.D<br>(m) |   |
|-------|-----|-------------|------------|---|
|       |     | . 5         | 89,00      | · |
|       | •   | 10          | 88,85      |   |
|       | •   | 15          | 88,83      |   |
| •     | •   | 20          | 88,80      | • |
| -     |     | . 30        | 88,77      |   |
| •     |     | 40          | 88,66      |   |
|       |     | 60          | 88,56      |   |
|       | . • | 90          | 88,53      |   |
|       |     | 120         | 88,50      |   |
| -     |     | 180         | 88,48      |   |
|       | •   | 240         | 88,47      |   |
|       |     | 300         | 88,43      |   |
|       | •   | 360         | 88,40      | • |
|       |     | 420         | 88,34      |   |
| •     |     | 480         | 88,34      |   |
|       |     | 540         | 88,34      |   |
|       |     | .600        | 88,34      |   |
|       | •   | 660         | 88,34      |   |
| •     |     | 720         | 88,34      |   |
| <br>- |     | •           | •          |   |
|       |     | •           |            |   |

6.6 - PERFIL DE SONDAGEM

| 3 17 1/2" Solo armoso avermelhad                                                                                                                                                                                                                                                                                | lo                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arenitc avermelhado con siltitc argiloso  12 1/4*  9 5/8"  Folhelh: cinza escuro  Arenitc cinza c/folhelh nado  Arenitc cinza claro c/i folhelh: cinza escuro,  Arenitc cinza escuro,  Arenitc cinza escuro,  Arenitc cinza escuro,  12 1/4"  Arenitc cinza escuro,  13 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 | no cinza, lami intercalações de laminado                                                                                                                   |
| Arenito cinza a creme, pacto, 'quartzo e máficos de folhelho arrox  Arenito cinza a creme, pacto, 'quartzo e máficos, dercalades de folhelho arrox  Arenito cinza cinza, folhelho cinza cintero, fino a pacto  Arenito creme, fino a pacto  Siltito cinza cintero nito ciro, fino cifra sa e folhelho cinza     | ricos, intercala reado  fino c/raras in no arroxeado  rino, quartzoso ro a conglomerá  fino a médio algumas interca nza  médio, pouco com  calações de are |
| 304                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |

6.7 - TEMPO DE PENETRAÇÃO

6.7 - Tempo de Penetração

|   | Intervalo (m) | Tempo<br>···(min)·· |        | Intervalo<br>(m) | Tempo (min) |
|---|---------------|---------------------|--------|------------------|-------------|
| • | 0 - 1         | 15                  |        | 26 – 27          | 10          |
|   | 1 - 2         | 15                  |        | 27 – 28          | 10          |
|   | 2 - 3         | 10                  |        | 28 - 29          | 10          |
|   | 3 - 4         | 25                  |        | 29 – 30          | 10          |
|   | 4 - 5         | 15 .                |        | 30 - 31          | 20          |
|   | 5 – 6         | 15                  | -      | 31 – 32          | 15          |
|   | 6 - 7         | 25                  |        | 32 <b>–</b> 33   | 10          |
|   | 7 – 8         | 15                  |        | .33 - 34         | 20          |
|   | 8 - 9         | 20                  |        | 34 – 35          | 20          |
|   | 9 - 10        | 15                  |        | 35 – 36          | 30          |
|   | 10 - 11       | 20                  | ·<br>· | 36 - 37          | 25          |
|   | 11 - 12       | 25                  |        | 37 – 38          | 25          |
|   | 12 - 13       | 20                  | ;      | 38 – 39          | 30          |
|   | 13 - 14       | 10                  | ,<br>, | 39 - 40          | 25          |
|   | 14 - 15       | 10                  |        | 40 - 41          | 35          |
|   | 15 - 16       | 20 -                | ,      | 41 - 42          | 30          |
|   | 16 - 17       | 10                  |        | 42 - 43          | 25          |
|   | 17 - 18       | 10                  |        | 43 - 44          | 15          |
|   | 18 - 19       | 10                  |        | 44 – 45          | 15          |
|   | 19 - 20       | 10                  |        | 45 - 46          | 15          |
|   | 20 - 21       | 10                  |        | 46 - 47          | 10          |
|   | 21 – 22       | 20                  |        | 47 – 48          | 10          |
|   | 22 – 23       | 30                  |        | 48 – 49          | 20          |
|   | 23 – 24       | 10                  |        | 49 – 50          | 10          |
| • | 24 – 25       | 10                  |        | 50 - 51          | 15          |
|   | 25 – 26       | 15                  |        | 51 – 52          | 10          |

|         |               |             |             | •                    |             | · • • |
|---------|---------------|-------------|-------------|----------------------|-------------|-------|
| ,       | •             |             |             | ••                   |             |       |
|         | Intervalo (m) | Tempo (min) |             | Intervalo<br>(m)     | Tempo (min) |       |
| •       | 52 - 53       | 15          |             | 79 – 80              | 25          |       |
| -  <br> | 53 - 54       | 15          | -           | 80 - 81              | 15          |       |
| •       | 54 - 55       | 10          |             | 81 – 82              | 20          |       |
| •       | 55 – 56       | 15          |             | 82 – 83              | 25          |       |
|         | 56 - 57       | 10          |             | 83 – 84              | 25          |       |
|         | 57 - 58       | 10          |             | 84 – 85              | 25          |       |
|         | 58 - 59       | 40          | ·<br>·      | 85 – 86 <sup>-</sup> | 30          |       |
| •       | 59 – 60       | 25          | · · ·       | 86 – 87              | 35          |       |
| •       | 60 - 61       | 15          |             | 87 – 88              | 20          |       |
|         | 61 - 62       | 40          | ·<br>·      | 88 – 89              | 25          | ,     |
|         | 62 - 63       | 20          | •           | 89 – 90              | 20          |       |
|         | 63 - 64       | 15          | •           | 90 - 91              | 70          |       |
| •       | 64 – 65       | 30          | •<br>•      | 91 – 92              | 80          |       |
|         | 65 - 66       | 75          | · ·         | 92 - 93              | 100         |       |
|         | 66 - 67       | 90          | -<br>-      | 93 - 94              | 75          |       |
|         | 67 – 68       | 60          | -<br>-<br>- | 94 – 95              | 40          |       |
|         | 68 – 69       | 25          |             | 95 – 96              | 35          |       |
|         | 69 - 70       | 20          |             | 96 – 97              | 45          |       |
|         | 70 - 71       | 20          |             | 97 - 98              | 35          |       |
|         | 71 - 72       | 30          |             | 98 – 99              | 40          |       |
|         | 72 - 73       | 20          |             | 99 - 100             | 55          |       |
|         | 73 - 74       | 25          |             | 100 - 101            | 35          |       |
|         | 74 - 75       | 30          |             | 101 - 102            | 40          |       |
| •       | 75 - 76       | 25          |             | 102 - 103            | 20          |       |
|         | 76 - 77       | 30          |             | 103 - 104            | 40          |       |
|         | 77 _ 78       | 35          |             | 104 - 105            | 60          |       |
|         | 78 _ 70       | 25          |             | 105 - 106            | 45          |       |
|         |               |             |             |                      |             |       |

•

|   | · · · · · · · · · · · · · · · · · · · |            |     | ·<br>        |             |
|---|---------------------------------------|------------|-----|--------------|-------------|
|   | Intervalo                             | Tempo      |     | Intervalo(m) | Tempo (min) |
|   | (m)                                   | ··(min)··· |     | ( ш )        | (111.11.)   |
|   | 106 - 107                             | 60         |     | 133 - 134    | 35          |
|   | 107 - 108                             | 50         |     | 134 - 135    | 35          |
|   | 108 - 109                             | 45         |     | 135 - 136    | 35          |
|   | 109 - 110                             | 60         |     | 136 - 137    | 35          |
|   | 110 - 111                             | 140        |     | 137 - 138    | 30          |
|   | 111 - 112                             | 55         |     | 138 - 139    | . 25        |
|   | 112 - 113                             | . 65       |     | 139 - 140    | 25          |
| • | 113 - 114                             | 35         |     | 140 - 141    | 55          |
| • | 114 - 115                             | 25         |     | 141 - 142    | 115         |
|   | 115 - 116                             | 25         | · ; | 142 - 143    | 100         |
|   | 116 - 117                             | 25         |     | 143 - 144    | 55          |
|   | 117 - 118                             | 30         |     | 144 - 145    | 95          |
|   | 118 - 119                             | 30         |     | 145 - 146    | 80          |
| - | 119 - 120                             | 25         |     | 146 - 147    | 55          |
|   | 120 - 121                             | 25         |     | 147 - 148    | 20          |
|   | 121 - 122                             | 20         |     | 148 - 149    | 50          |
|   | 122 - 123                             | 25         |     | 149 - 150    | 50          |
| • | 123 - 124                             | 25         |     | 150 - 151    | 70          |
| • | 124 - 125                             | 20         |     | 151 - 152    | 70          |
| • | 125 - 126                             | 25         |     | 152 - 153    | 60          |
|   | 126 - 127                             | 30         |     | 153 - 154    | 35          |
| • | 127 - 128                             | 25         |     | 154 - 155    | 40          |
|   | 128 - 129                             | 40         |     | 155 - 156    | 80          |
|   | 129 - 130                             | 25         |     | 156 - 157    | 80          |
|   | 130 - 131                             | 25         |     | 157 - 158    | 95          |
|   | 131 - 132                             | 40         |     | 158 - 159    | 95          |
|   | 132 - 133                             | 30         |     | 159 - 160    | T00         |
|   |                                       | •          |     | 1            | •           |
|   | · · ·                                 |            |     |              | •           |
| - | · .                                   | •          |     | •            |             |

--

| Inter (m                | _   | Tempo (min) |        | Inter<br>(m | ` i            | Tempo<br>(min) |
|-------------------------|-----|-------------|--------|-------------|----------------|----------------|
| 160 -                   | 161 | 110 .       |        | 188 -       | 189.           | 15             |
| 161 -                   | 162 | . 90        |        | 189 -       | 190            | 15             |
| 162 -                   | 163 | 100         | ·      | 190 -       | 191            | 15             |
| 163 -                   | 164 | 80          |        | 191 -       | 192            | 12             |
| 164 -                   | 165 | 110         |        | 192 -       | 193            | 13             |
| 165 -                   | 166 | 110         |        | 193 -       | 194            | 13             |
| 166 -                   | 167 | 35          |        | 194 -       | 195            | 12             |
| 167 -                   | 168 | 60 ·        |        | 195 -       | 196            | 13             |
| 168 -                   | 169 | 60          |        | 196 -       | 197            | 17             |
| 169 -                   | 170 | 50          |        | 197 -       | 198            | 12             |
| 170 -                   | 171 | . 80        |        | 198 -       | 199            | 13             |
| 171 -                   | 172 | 20          |        | 199 -       | 200            | 17             |
| 172 -                   | 173 | 15          | :      | 200 -       | - 201          | 13             |
| 173 -                   | 174 | 20          |        | 201 -       | - 202          | 13             |
| 174 -                   | 175 | 1.7         |        | 202 -       | 203            | 23             |
| 175 -                   | 176 | 20          |        | 203 -       | 204            | 15             |
| 176 -                   | 177 | 20          |        | 204 -       | - 205          | 14             |
| . 177 -                 | 178 | 20 -        | ·<br>: | 205 -       | - 206          | 12             |
| 178 -                   | 179 | 25          |        | 206 -       | - 207          | 12 ·           |
| 179 -                   | 180 | 15          |        | 207 -       | - 208          | 15             |
| 180 -                   | 181 | 20          |        | 208 -       | - 209          | 15             |
| 181 -                   | 182 | 10          |        | 209         | - 210          | 18             |
| 182 -                   | 183 | 10          |        | 210 -       | - 211          | 24             |
| 183 -                   | 184 | 10          |        | 211 -       | - 212          | 21             |
| 184 -                   | 185 | 10          |        | 212         | - 213          | 17             |
| 185 -                   | 186 | 15          |        |             | - 214          | 23             |
| 185 -<br>186 -<br>187 - | 187 | - 15<br>12  |        | 214 -       | - 215<br>- 216 | 38             |
| 187 -                   | 188 | . 12        | ,      | 215         | - 216          | 32             |

| Intervalo        | Tombo   |         | Intervalo                 | Tempo |
|------------------|---------|---------|---------------------------|-------|
| intervale<br>(m) | 1 , - 1 |         | - · · · · · (m) · · · · · | 1 /   |
| 216 - 217        | 25      |         | 244 - 245                 | 05    |
| 217 - 218        | 35      |         | 245 - 246                 | 10    |
| 218 - 219        | 30      | ·<br>-  | 246 - 247                 | 15    |
| 219 - 220        | 30      | · - · · | 247 – 248                 | 15    |
| 220 - 221        | . 55    |         | 248 - 249                 | 10    |
| 221 - 222        | 80      |         | 249 – 250                 | 10    |
| 222 - 223        | 05      |         | 250 <b>–</b> 251.         | 05    |
| 223 - 224        | 20      |         | 251 - 252                 | 08    |
| 224 - 225        | 10      |         | 252 – 253.                | 09    |
| 225 – 226        | 10      | · · ·   | 253 - 254                 | 10    |
| 226 - 227        | 10      | ;<br>;  | 254 – 255                 | 15    |
| 227 – 228        | 10      |         | 255 - 256                 | 15    |
| 228 - 229        | 05      |         | 256 – 257                 | 15    |
| 229 - 230        | 05      |         | 257 - 258                 | . 15  |
| 230 - 231        | . 10    |         | 258 – 259                 | 20    |
| 231 - 232        | 10      | •       | 259 – 260                 | 20    |
| 232 – 233        | 12      |         | 260 – 261                 | 10    |
| 233 - 234        | 1.3     |         | 261 - 262                 | i     |
| 234 – 235        | 15      |         | 262 – 263                 | 20    |
| 235 - 236        | 15      |         | 263 – 264                 | 23    |
| 236 – 237        | 15      |         | 264 – 265                 | 22    |
| 237 - 238        | 10 .    |         | 265 – 266                 |       |
| 238 - 239        | 10      |         | 266 – 267                 | 40    |
| 239 - 240        | 10      |         | 267 – 268                 | 20    |
| 240 - 241        | 10      |         | 268 – 269                 | 30    |
| 241 - 242        | 10      |         | 269 – 270                 | 25    |
| 242 - 243        | 10      |         | 270 - 271                 | 25    |
| 243 - 244        | 10      |         | 271 - 272                 | 30    |

•

|   | Intervalo (m) | Tempo (min) |              | Intervalo<br>(m) | Tempo (min) |   |
|---|---------------|-------------|--------------|------------------|-------------|---|
|   | 272 – 273     | 30          |              | 300 - 301        | 55          |   |
|   | 273 - 274     | 50          |              | 301 - 302        | 60          |   |
|   | 274 – 275     | 42          | •            | 302 - 303        | 55          |   |
|   | 275 – 276     | 33          | ·<br>·       | 303 – 304        | 100         |   |
|   | 276 – 277     | 30 .        | - :<br> <br> | 304 - 304,20     | 90          |   |
|   | 277 – 278     | 40          |              |                  |             |   |
|   | 278 – 279     | 45          |              |                  | a           |   |
| • | 279 – 280 :   | 35          |              |                  |             |   |
|   | 280 - 281     | 50          |              |                  |             | • |
|   | 281 – 282     | 45          |              |                  |             |   |
| • | 282 – 283     | 55          | :            |                  |             | • |
|   | 283 – 284     | 65          |              |                  |             |   |
|   | 284 – 285     | 65          |              |                  |             |   |
|   | 285 – 286     | 70          |              |                  |             |   |
|   | 286 – 287     | 70          |              |                  |             |   |
|   | 287 – 288     | 25          |              |                  |             |   |
|   | 288 – 289     | 35          |              |                  |             |   |
|   | 289 – 290     | 30          |              |                  |             |   |
|   | 290 - 291     | 35          |              |                  |             |   |
|   | 291 - 292     | 50          |              |                  |             |   |
|   | 292 – 293     | 40          |              |                  |             |   |
|   | 293 - 294     | 55          |              |                  |             |   |
|   | 294 – 295     | 45          |              |                  |             |   |
|   | 295 – 296     | 50          |              |                  |             | • |
| • | 296 – 297     | 25          |              |                  |             |   |
|   | 297 – 298     | 35          |              |                  |             |   |
|   | 298 – 299     | 25          | · :          |                  |             |   |
| • | 299 – 300     | 35          | 1 .          | · .              | . '         |   |
| • |               | •           |              |                  | •           |   |
|   | •             |             |              | · .              |             | • |

6.8 - ANÁLISE QUÍMICA DA ÁGUA

MININTER D. N. Q. C. S.

## 1.º DR - DIVISÃO DE ESTUDOS E PROJETOS LABORATORIO REGIONAL - SETOR DE ÁGUA

CERTIFICADO Nº 88/77 DATA DA COLETA 04/10 / 77

AMOSTRA Nº 87/77 DATA DO RECEBIMENTO 04/10 / 77

PROCEDÊNCIA POÇO "4C8-02-PI - FAZENDA INCA CANTO DO BURITI".

INTERESSADO C P R M

#### ANÁLISE PARA FINS DE POTABILIDADE

### RESULTADOS (EM ppm)

| ASPECTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cristalina                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| CÔR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| ODOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inodora                                 |
| SABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Insipida                                |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                       |
| CONDUTIVIDADE ELÉTRICA EM micromhos /cm a 25.º C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 148                                     |
| RESÍDUO DE EVAPORAÇÃO A 105.º C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| AMONÍACO EM (NH4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ausencia                                |
| NITRITOS EM (NO 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ausencia                                |
| NITRATOS EM (NO 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ausencia                                |
| DIÓXIDO DE CARBONO (CO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,8 ppm                                 |
| ALCALINIDADE DE HIDRÓXIDOS EM (CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ausencia                                |
| ALCALINIDADE DE CARBONATOS EM (CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ausencia                                |
| ALCALINIDADE DE BICARBONATOS EM (CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91,0 ppm                                |
| CÁLCIO EM (Ca++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14,4 ppm                                |
| MAGNÉSIO EM (Mg++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9,7 ppm                                 |
| DUREZA TOTAL EM (CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76,0 ppm                                |
| SÓDIO EM (Na+) + POTÁSSIO EM (K+) (METODOXDAXDIFERENCA) 5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e 2,1 ppm                               |
| CLORETOS EM (CI.T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,0 ppm                                 |
| SULFATOS EM (SO )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,8 ppm                                 |
| NTERPRETAÇÃO: <u>Agua isenta de suspeita de cont</u> e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | າຫາກຂção                                |
| bacteriológica e de boa potabilidade quanto aos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ; teores                                |
| da sais.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ****** <b>*</b>                         |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                       |
| :<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /#####################################  |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |
| ا مر به ا<br>العمل العمل ا |                                         |
| Teresina. 19/ de sutubro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | de/ 1977                                |