

Rede Cooperativa de Pesquisa

COMPORTAMENTO DAS BACIAS SEDIMENTARES DA REGIÃO SEMI-ÁRIDA DO NORDESTE BRASILEIRO

"HIDROGEOLOGIA DO AQÜÍFERO AÇU NA BORDA LESTE DA BACIA POTIGUAR: TRECHO UPANEMA-AFONSO BEZERRA"

Meta C Caracterização Hidrogeológica dos Aqüíferos

Outubro / 2007

Ministério de

Rede Cooperativa de Pesquisa

COMPORTAMENTO DAS BACIAS SEDIMENTARES DA REGIÃO SEMI-ÁRIDA DO NORDESTE BRASILEIRO

"HIDROGEOLOGIA DO AQÜÍFERO AÇU NA BORDA LESTE DA BACIA POTIGUAR: TRECHO UPANEMA-AFONSO BEZERRA"

Meta C Caracterização Hidrogeológica dos Aqüíferos

Execução:

Serviço Geológico do Brasil - CPRM

Universidade Federal do Rio Grande do Norte - UFRN

REDE COOPERATIVA DE PESQUISA

COMPORTAMENTO DAS BACIAS SEDIMENTARES DA REGIÃO SEMI-ÁRIDA DO NORDESTE BRASILEIRO

Coordenação

Período 2004/2005 – Dr. Waldir Duarte Costa Período 2006/2007 – MSc Fernando A. C. Feitosa

Instituições Participantes

Serviço Geológico do Brasil - CPRM

Coordenação: MSc Fernando Antonio Carneiro Feitosa MSc Jaime Quintas dos Santos Colares

Universidade Federal da Bahia - UFBA

Coordenadora: Dra. Joana Angélica Guimarães da Luz

Universidade Federal de Campina Grande - UFCG

Coordenador: Dr. Vajapeyam Srirangachar Srinivasan

Universidade Federal do Ceará – UFC

Coordenadora: Dra. Maria Marlúcia Freitas Santiago

Universidade Federal de Pernambuco – UFPE

Coordenador: Dr. José Geilson Alves Demetrio

Universidade Federal do Rio Grande do Norte - UFRN

Coordenador: Dr. José Geraldo de Melo

Bacia Sedimentar Potiguar

Hidrogeologia do Aqüífero Açu na Borda Leste da Bacia Potiguar: Trecho Upanema-Afonso Bezerra

Meta A – Relatório Diagnóstico do Estado da Arte

Dr. José Geraldo de Melo - UFRN

MSc José Ivan de Medeiros - UFRN

MSc Franklin de Morais - CPRM

MSc Waldir Duarte Costa Filho - CPRM

MSc Michaelon Belchior de Vasconcelos - UFRN

Sâmara Daniele Oliveira de Morais (estagiária) - UFRN

Meta B – Caracterização Geológica e Geométrica dos Aqüíferos

Item 1 – Revisão Geológica

MSc Dunaldson Eliezer G. A. da Rocha - CPRM

MSc Cristiano de Andrade Amaral - CPRM

Dr. José Geraldo de Melo - UFRN

MSc José Ivan de Medeiros - UFRN

MSc Franklin de Morais - CPRM

MSc Michaelon Belchior de Vasconcelos - UFRN

Sâmara Daniele Oliveira de Morais (estagiária) - UFRN

Item 2 – Levantamento Geofísico por Eletrorresistividade e Gravimetria

Dr. Raimundo Mariano Gomes Castelo Branco - UFC

Dr. David Lopes de Castro – UFC

Dr. Enéas Louzada - UFC

MSc Mauro Lisboa Souza - UFC

MSc Tércyo Rinaldo Gonçalves Pinéo - UFC

Meta C – Caracterização Hidrogeológica dos Aqüíferos Itens 1.1, 1.2, 1.3: 1.4, 1.6, 1.7, 1.8 e 1.10

Dr. José Geraldo de Melo - UFRN

MSc José Ivan de Medeiros - UFRN

MSc Franklin de Morais - CPRM

MSc Waldir Duarte Costa Filho - CPRM

MSc Michaelon Belchior de Vasconcelos - UFRN

Sâmara Daniele Oliveira de Morais (estagiária) – UFRN

José Walquer Roque da Costa - CPRM

Item 1.5 – Nivelamento dos poços

Dr. José Geraldo de Melo – UFRN

Jorge de Vasconcelos Oliveira - CPRM

Julimar de Araújo - CPRM

MSc José Ivan de Medeiros - UFRN

MSc Franklin de Morais - CPRM

MSc Michaelon Belchior de Vasconcelos – UFRN

Carlos Alberto Ramos - CPRM

Armando Arruda Câmara Filho - CPRM

Sâmara Daniele Oliveira de Morais (estagiária) - UFRN

Item 1.9 – Modelagem das águas subterrâneas

Dr. João Manoel Filho - Consultor

Meta D - Caracterização Hidroquímica e de Vulnerabilidade

Item 1 – Estudos Hidroquímicos e Isotópicos

Dr. José Geraldo de Melo - UFRN MSc José Ivan de Medeiros - UFRN MSc Franklin de Morais - CPRM José Walquer Roque da Costa - CPRM MSc Michaelon Belchior de Vasconcelos - UFRN Sâmara Daniele Oliveira de Morais (estagiária) - UFRN

Item 2 – Estudos de Vulnerabilidade e Riscos de Contaminação

Dr. Dr. José Geraldo de Melo - UFRN MSc José Ivan de Medeiros - UFRN MSc Franklin de Morais - CPRM MSc Michaelon Belchior de Vasconcelos - UFRN Sâmara Daniele Oliveira de Morais (estagiária) - UFRN

Meta E – Suporte ao Planejamento e a Gestão das Águas Subterrâneas

Dr. José Geraldo de Melo - UFRN MSc José Ivan de Medeiros - UFRN MSc Franklin de Morais - CPRM MSc Michaelon Belchior de Vasconcelos - UFRN Sâmara Daniele Oliveira de Morais (estagiária) - UFRN

Meta F - Estruturação e Alimentação da Base de Dados em SIG

Coordenação: Francisco Edson Mendonça Gomes – CPRM Eriveldo da Silva Mendonça - CPRM Érika Gomes Brito - CPRM Antônio Celso Rodrigues de Melo - CPRM Vicente Calixto Duarte Neto - CPRM

SUMÁRIO DA META C

CARACTERIZAÇÃO HIDROGEOLÓGICA

01

1. Caracterização Hidrogeológica

1.1 – Resultados do cadastramento de poços	01
1.2 – Dimensões do aqüífero Açu	06
1.3 – Parâmetros hidrodinâmicos	09
1.4 – Rede de monitoramento	27
1.5 – Nivelamento dos poços	31
1.6 – Instalação de equipamentos de medição hidrológica	31
1.7- Comportamento do fluxo das águas subterrâneas	38
1.8- Recarga das águas subterrâneas	45
1.9 – Modelagem das águas subterrâneas	51
1.10 – Reservas e recursos explotáveis	65
Bibliografía	67
LISTA DE ANEXOS	
1 – Cadastro de poços	
2 – Mapa da rede de poços cadastrados	
3 – Mapa da rede de poços monitorados	
LISTA DE FIGURAS	
1 – Distribuição espacial dos poços cadastrados	02
2 – Vazão específica dos poços penetrando aqüífero Açu	04
3 – Distribuição dos poços penetrando aqüífero Açu com perfis litológicos	07
4 – Poços com penetração total no aqüífero Açu	08
5 – Escoador de orifício circular	14
6 — Nivelando suporte coluna vertical contendo mangueira e a escala métrica usada para medição da carga hidráulica.	14
7 – Nivelamento da coluna suporte vertical em detalhe.	15
8 – Nivelando o tubo escoador de orifício circular.	15
9 – Tubo de PVC usados como receptador e condutor da água que sai do tubo escoador de orifício circular.	16

10 – Descarga efetuada diretamente do tubo nos tubos de PVC para evitar acúmulo e infiltração de água no local do teste.	: 16
11 – Visão do conjunto tubo escoador de orifício circular e rede auxiliar de tubos de PVC	17
12 – Visão global do conjunto poço bombeado, tubo escoador de orifício circular com coluna suporte vertical contendo mangueira e escala métrica.	. 17
13 – Curva rebaixamento X tempo durante o bombeamento e recuperação.	23
14 – Distribuição de valores de transmissividade do aqüífero Açu.	25
15 – Distribuição dos poços da rede de monitoramento.	30
16A – Perfis litológicos e construtivos da rede de monitoramento.	33
16B – Perfis litológicos e construtivos da rede de monitoramento	34
16C – Perfis litológicos e construtivos da rede de monitoramento	35
17 – Curvas isopotenciométricas do aqüífero Açu obtidas com base em imagens de RADAR	: 40
18 – Curvas isopotenciométricas do aqüífero Açu (setembro 2005)	41
19 – Curvas isopotenciométricas do aqüífero Açu (dezembro 2005)	42
20 – Curvas isopotenciométricas do aqüífero Açu (maio 2006)	43
21 – Curvas isopotenciométricas do aqüífero Açu (março 2007)	44
22 – Recerga das águas subterrâneas pelo método do balanço de cloreto.	49
23 – Mapa geológico da área de estudo	52
24 – Seções transversais esquemáticas ilustradas do modelo conceitual de uma camada com duas unidades hidrogeológicas de fluxo.	53
25 – Modelo sólido	54
26 – Imagem SRTM da área de estudo	56
27 – Mapa em curvas de nível da distribuição do relevo	56
28 – Cargas iniciais inferidas a partir do mapa topográfico da área de estudo.	57
29 – Distribuição das cargas potenciométrricas e direções de fluxo produzida pelo método MODFLOW	62
30 – Superfície potenciométrica obtida com dados de setembro 2006 e março 2007	63
31 – Mapa potenciométrico obtido através de modelagem analítica para um tempo de bombeamento de 50 anos.	: 64
LISTA DE TABELA	
 1 – Síntese dos resultados de cadastro de poços 2 – Espessura penetrada no aqüífero Açu 3 – Espessuras totais do aqüífero Açu com base em perfis litológicos dos poços 4 – Resumo dos resultados dos teste de bombeamento 5 – Resumo dos parâmetros hidrodinâmicos obtidos com base na interpretação dos testes de bombeamento de poços. 	03 10 12 19 3 24

6 – Relação dos pontos de água que compêm a rede de monitoramento	28
7 – Número de poços da rede de monitoramento por município	28
8 – Resumo dos parâmetros construtivos dos poços da rede de monitoramento	32
9 – Resultado do nivelamento dos poços	36
10 – Variações de cargas potenciométricas em poços do aqüífero Açu	48
11 - Recarga das águas subterrâneas	50
12 – Dados do topo e espessura das unidades hidrogeológicas do modelo estratigráfico	55
13 - Propriedades hidráulicas do aqüífero, fluxo e condutância das lagoas na zona da	57
planície aluvial.	
14 – Parâmetros e fórmulas para o cálculo da condutância hidráulica do rio Açu	58
15 - Parâmetros e fórmulas para o cálculo da condutância hidráulica do dreno	58
16 – Estatística decritiva da condutividade hidráulica	59
17 – Balanço hidrogeológico do sistema aquífero gerado por MODFLOW	60

META C – CARACTERIZAÇÃO HIDROGEOLÓGICA DOS AQÜÍFEROS

Autores: Dr. José Geraldo de Melo – UFRN; MSc. José Ivan de Medeiros – UFRN; MSc Franklin de Morais – CPRM; MSc Mickaekon Belcchior de Vasconcelos – UFRN; Sâmara Daniele Oliveira de Morais (estagiária) - UFRN

1. CARACTERIZAÇÃO HIDROGEOLÓGICA

A área efetiva de trabalho corresponde a zona de ocorrência dada Formação Açu entre Upanema e Afonso Bezerra, que se desenvolve numa superficie aproximada de 1100 km². Neste caso, estão incluídas também as áreas de ocorrências das planícies aluviais e as coberturas terciárias identificadas como cascalheiras (Figura 1). As características hidrogeológicas regionais da área estão contidas no "Relatório do Estado da Arte" apresentado à FINEP em julho de 2005.

A seguir são apresentados os resultados dos estudos hidrogeológicos realizados na área de estudo, seguido da interpretação dos resultados e a definição de parâmetros que permitiram, dentro do conhecimento empreendido, a concepção do sistema em termos potenciais e de explotabilidade, tendo em vista o desenvolvimento dos recursos hídricos da região.

1.1 - Resultados do cadastramento de poços

O cadastramento de poços (Anexo 1) consistiu na identificação e localização de cada unidade com posterior definição de seus parâmetros construtivos (profundidade, diâmetro e altura da boca e material), hidráulicos (nível estático, nível dinâmico e vazão) e hidroquímicos (condutividade elétrica, sólidos totais dissolvidos e temperatura).

Foi cadastrado um total de 493 pontos de água. O número de poços tubulares cadastrados situados na zona de afloramento da Formação Açu e captando águas do aqüífero Açu é de 351 unidades; situados sobre o domínio das coberturas aluviais foram cadastrados 124 poços que captam águas tanto do aqüífero Açu como também do aqüífero aluvial; no domínio da Formação Jandaíra, captando águas do aqüífero Jandaíra foram cadastrados 7 poços, e sobre o embasamento cristalino, captando águas deste aqüífero fissural, 11 poços.

A distribuição espacial dos pontos inventariados é apresentada na figura 1 e no anexo 2, onde se pode observar que a maiorias dos poços estão situados sobre a Formação Açu e captando águas do aqüífero Açu, concentra-se na faixa Norte da Formação Açu, incluindo aqueles situados no domínio das aluviões. Na faixa Sul da área, contígua as rochas do embasamento cristalino, o numero de poços existentes penetrando o aqüífero Açu é relativamente pequeno, notadamente no setor Oriental da área.

Considerando a distribuição dos poços cadastrados por município, no total de 493 poços cadastrados, verifica-se que no Município de Açu foram cadastradas 248 unidades; em Afonso Bezerra, 81 unidades; Ipanguaçu, 85; Upanema, 71; e, Angicos, 8 poços.

Uma síntese dos resultados do cadastramento dos poços é apresentada na Tabela 1, com base na qual é feita a seguir uma caracterização hidráulica e de reconhecimento da salinidade das águas dos mesmos no âmbito de cada unidade hidrogeológica.

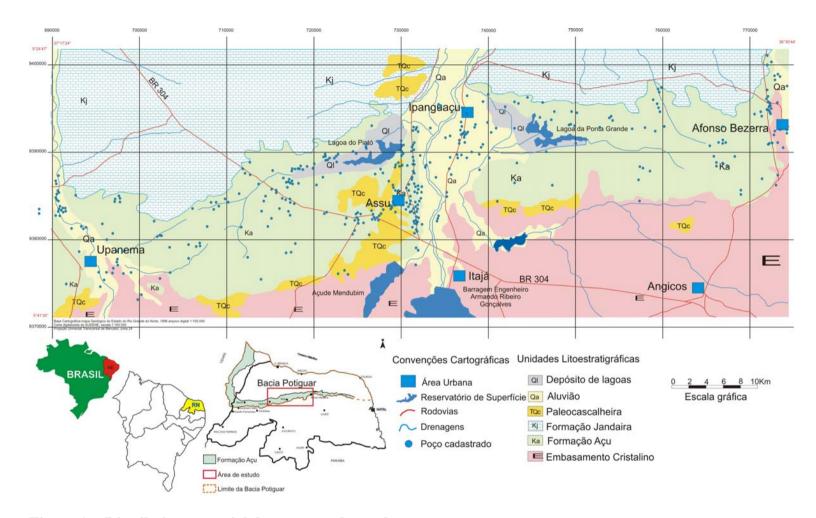


Figura 1 - Distribuição espacial dos poços cadastrados

Tabela 1 - Síntese dos resultados do cadastramento de poços

Sistema Aqüífero	Média	Valor	Valor	N
/Parâmetros		Mínimo	Máximo	
Embasamento – Prof (m)	42,8	18,0	71,0	7
NE (m)	12,2	6,0	19,0	6
Q (m^3/h)	3,0	0,3	5,5	5
Q/s	0,5	0,02	1,6	4
$(m^3/h/m)$				
	1771,0	317,2	2870,0	8
STD(mg/L)				
AçuProf (m)	44,9	15,0	148,0	269
NE (m)	25,7	4,0	138,0	156
	10,2	0,3	60,0	139
Q/s	2,8	0,08	23,2	57
$(m^3/h/m)$				
STD	764,7	109,7	4712,5	201
(mg/L1)				
Jandaíra –Prof (m)	110,0	80,0	120,0	6
Aluviões/Açu- Prof (m)	68,2	5,1	192,0	86
NE (m)	14,3	4,6	42,0	29
$Q (m^3/h)$	12,7	1,5	50,0	15
Q/s	6,3	0,04	81,9	13
$(m^3/h/m)$				
STD	703,6,0	106,0	2717,0	24
(mg/L)				

Prof: profundidade; NE: nível estático; Q: vazão; Q/s: vazão específica; STD: sólidos totais dissolvidos; N: número de informações.

1.1.1 - Características dos poços perfurados no aqüífero Açu

Os poços tubulares que captam água do aqüífero Açu apresentam uma profundidade que varia de um mínimo de 15,00 m e um máximo de 148,00 m, com média de 44.9 m; a vazão mínima de referência é de 0,3m³/h e a máxima de 60 m³/h, com média de 10,2 m³/h; o nível estático varia de um mínimo de 4,0 m e um máximo de 138,00 m, com media de 25,7 m; a vazão específica dos poços variou de 0,08 a 23,2 m³/h/m, com media de 2,8 m³/h/m, sem considerar o poço que abastece a cidade de Ipanguaçu.

A distribuição espacial dos valores de capacidade específica (Figura 2) mostra que este parâmetro cresce de sul para norte. Na faixa contígua as rochas cristalinas a capacidade específica dos poços é da ordem de 1,0 m3/h/m e próximo aos calcários, 6,0 m3/h/m. Na Planície aluvial do Açu, entretanto, a vazão específica dos poços são muito mais elevadas com valores da ordem de 20,0; 23,0 e até 52, 3 m³/h/m no poço que abastece a cidade de Ipanguaçu.

Os sólidos totais dissolvidos daa águas do aqüífero Açu apresentam valor mínimo de 109,7,0 mg/L e máximo de 4712,5 mg/L, com média de 764,7 mg/L. Os poços são em geral equipados com bomba submersa.

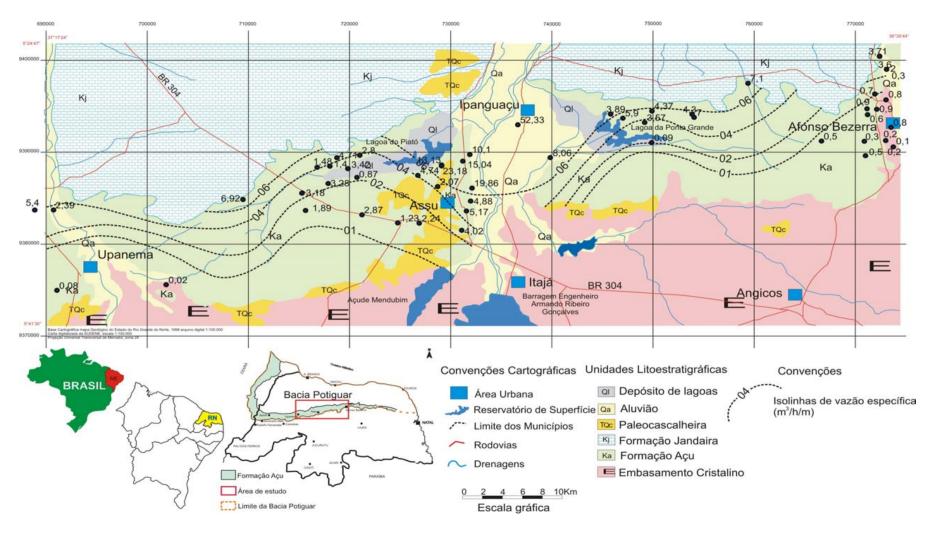


Figura 2 - Vazão específica dos poços penetrando o aqüífero Açu.

A avaliação global das condições de explotação das águas subterrâneas do aqüífero Açu permitiu estimar um volume anual de água explotado da ordem de 3,0 milhões de m³, que se constitui na disponibilidade efetiva de água de suprimento. Esta estimativa foi efetuada tomando por base um regime médio de 4 h de bombeamento para os poços de particulares. Os poços do Sistema Público de abastecimento que suprem as cidades de Upanema, Ipanguaçu e Afonso Bezerra operam em geral em regime contínuo de bombeamento e capta um volume de água da ordem de 4440 m³/dia, o que corresponde a 1,6 milhões de m³/ano. Nestas condições, o volume de água explotado para o abastecimento urbano corresponde a pouco mais de 53% do volume total de suprimento da área de estudo.

Dentre os poços penetrando o aqüífero Açu, dispõe-se dos perfis litológicos e construtivos de 73 unidades, o que corresponde a apenas 15% do total de poços cadastrados. Os poços são em geral perfurados em diâmetros de 10 polegadas e revestidos com tubos cego e filtros de PVC Geomecânico em 6 polegadas, com poucos casos de poços com revestimento de 4 e 8 polegadas. Os poços do Sistema Público de Abastecimento de Upanema, Ipanguaçu e Afonso Bezerra são perfurados em diâmetro de 12 polegadas e revestidos em 6 e 8 polegadas de diâmetro.

1.1.2 - Características dos poços perfurados no aquifero Jandaira

Foram cadastrados apenas 7 poços penetrando o aqüífero Jandaira e mesmo assim dispõe-se apenas da profundidade dos mesmos. Os poços tubulares captando água do aqüífero Jandaíra apresentam um valor mínimo de 80,0 m de profundidade e máximo de 120,0 m, com média de 97,7 m.

O cadastro de poços executado pela CPRM em 2002 apresentam as seguintes características para o aqüífero Jandaira:

A vazão varia de um mínimo de 1m³/h e a máximo de 11,00 m³/h, com média é de 6,00 m³/h; o nível estático apresentou valor mínimo de 10,00 e máximo de 59,00 m, com média 33,00 m; os sólidos totais dissolvidos da água varia de um valor mínimo de 1048,00 mg/L a um máximo de 4397mg/L, com média de 2142mg/L.

O diâmetro dos poços é geralmente de 5 e 6 polegadas. A captação da água é efetuada através de compressores, catavento ou com menor frequencia bombas submersas.

1.1.3 - Características dos poços perfurados no aquífero cristalino

Os poços tubulares perfurados no embasamento cristalino apresentam profundidades que variam de 18,0 a 71,0, com média de 42,8 m; as vazões variam de 0,3 a 5,5 m³/h, com média de 3,0 m³/h e nível estático de 6,0 a 19,0 m, com média de 12,2 m. As águas dos poços apresentaram sólidos totais dissolvidos variando de 317,2 a 2.870,0 mg/L, com média de 1.771,2 mg/l. A maior parte da água é captada é usada geralmente para o uso de animais, sendo considerada ruim para o consumo humano, com potabilidade medíocre a má, e, seu uso para a irrigação é restrito.

O diâmetro dos poços perfurados no embasamento cristalino, é geralmente de 5 polegadas. O sistema de bombeamento dos poços mais comum é o catavento, haja vista a baixa produtividade dos poços.

1.1.4 - Características dos poços perfurados no aqüífero Aluvial

Não foram cadastrados poços captando águas do aqüífero aluvial. As informações apresentadas são baseadas no cadastro da CPRM executado em 2002, que permitiu a obtenção dos seguintes resultados:

A profundidade dos poços perfurados no aquífero aluvial varia de um mínimo de 5,00 m a um máximo de 50,0, com media de 23,0 m; os níveis estáticos variam de 1,0 m e 13,0 m, com uma média de 5,0 m; a vazão variou de 4,0 a 46,0 m³/h, com uma media de 14,0 m³/h; a vazão específica variou de 0,2 a 7,1 m³/h/m, com uma media de 1,75 m³/h/m. Os sólidos totais dissolvidos variaram de 141,00 a 2281,00 mg/L, com uma media de 689,00 mg/L. As águas dos poços perfurados no aquífero alluvial são muito utilizadas na irrigação de culturas, principalmente no vale do Açu.

O diâmetro dos poços é de 2 a 5 metros, quando se trata de poços escavados (cacimbões) ou de 4 a 5 polegadas, quando se trata de poços tubulares.

1.1.5 - Características dos poços perfurados aqüífero aluvião/Açu.

Os poços tubulares perfurados sistema aluvião/Açu apresentam profundidades que variam de 51,0 a 192,0; com média de 68,2 m; as vazões variam de 1,5 a 50,0 m³/h, com média de 12,7 m³/h e nível estático de 4,6 a 42,0 m, com média de 14,3 m. As águas dos poços apresentaram sólidos totais dissolvidos variando de 60,0 a 2.717 mg/L, com média de 703,0 mg/L.

1.2 - Dimensões do aqüífero Açu

As dimensões do aquifero Açu foram avaliadas no domínio da área efetiva de trabalho, que inclui a faixa de afloramento da Formação Açu e a ocorrência deste aquifero em sub-superfície sob o domínio das corberturas aluviais e coberturas Tercio-Quaternárias identificadas como paleocascalheiras. Assim sendo, o aquifero Açu é avaliado numa extensão de pouco mais de 90 km entre Afonso Bezerra e Upanema, no sentido leste-oeste, por uma largura média de 12 km (varia de 9,0 a 15,0 km).

Nestas condições, o aqüífero Açu abrange uma superfície total de aproximadamente 1100 km², da qual 925 km² corresponde a área de exposição do aqüífero Açu (incluindo as coberturas de cascalheira) e 155 km², a área em que o aqüífero Açu está sotoposto ao aqüífero freático aluvial.

Os estudos geofísicos por eletroresistividade apresentam um mapa de isopacas da Formação Açu indicando espessuras que variam de forma crescente e contínua, de sul para norte, de 140,0 a 300,0 m, no setor Oriental da aérea (entre Afonso Bezerra e Ipanguaçu) e espessuras que vão de 100,0 m a 260,0 m, no setor Ocidental da área (entre Ipanguaçu e Upanema).

A figura 3 mostra os perfis litológicos de 72 poços perfurados na área, entre os quais apenas 20 deles são totalmente penetrantes (Figura 4). A distribuição espacial desses poços que penetram totalmente o aquífero Açu é feita de forma bastante irregular e concentrada em alguns locais, o que dificulta uma interpretação em termos da estrutura geológica.

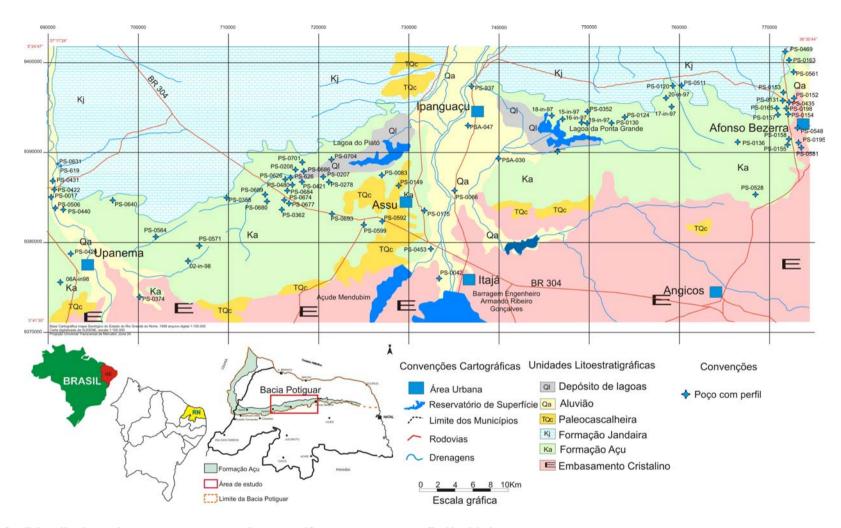


Figura 3 - Distribuição dos poços penetrando o aqüífero Açu com perfis litológicos.

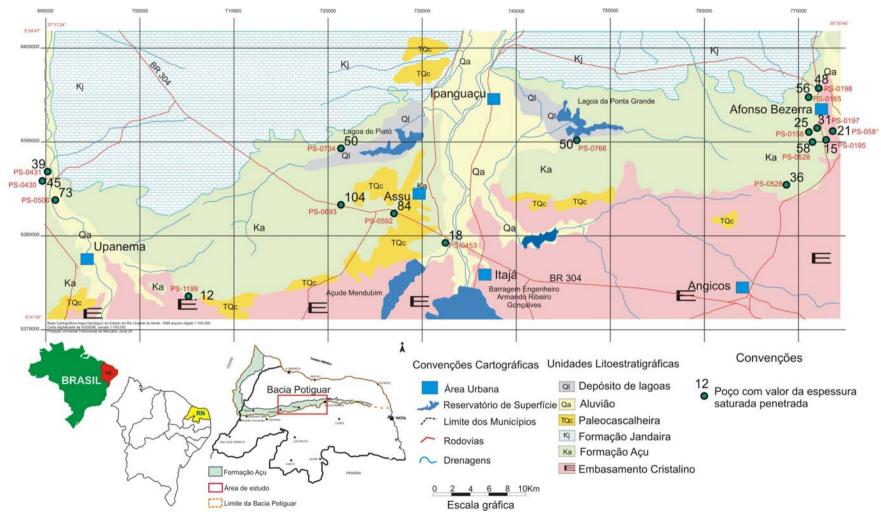


Figura 4 - Poços com penetração total no aqüífero Açu

A Tabela 2 apresenta as espessuras penetradas no aquífero Açu, a espessura saturada penetrada e a espessura efetiva penetrada (neste caso retirando os argilitos e folhelhos). Na avaliação geral, as espessuras penetradas no aquífero Açu variaram de 18,0 a 154,0 m, e, as espessuras penetradas saturadas, de 9,8 a 140,1 m. Retirando as camadas constituídas de argilitos resultou numa variação de espessura saturada penetrada efetiva de 8,0 a 154,0 m (Tabela 2). Considerando os poços que penetraram totalmente o aquífero Açu (Tabela 3), verifica-se uma variação de espessura de 27,0 m (poço PS-0581) a 114,0 (poço PS-0693), espessura saturada de 9,9 m (poço PS-1192) a 84,3 m (poço OS-0506), e, espessura saturada efetiva de 6,0 (poço OS-0195) m a 70,0 m (poço OS-0506).

A correlação dos perfis de poços indica a ocorrência de descontinuidades geológicas evidenciadas com a perfuração dos poços 0704, nas proximidades da Lagoa de Piató, com o topo do embasamento cristalino a 54,0 m de profundidade. Este comportamento não foi detectado nos estudos geofísicos provavelmente devido ao caráter exploratório ou de âmbito regional da prospecção empreendida.

1.3 - Parâmetros hidrodinâmicos

Os parâmetros hidrodinâmicos de um aqüífero são fundamentais nas avaliações dos recursos hídricos subterrâneos de uma determinada região. Estes parâmetros correspondem fundamentalmente a condutividade hidráulica, transmissividade, coeficiente de armazenamento e/ou porosidade efetiva, os quais são avaliados a partir da interpretação de resultados de testes de aqüífero. A conceituação de cada um desses parâmetros é apresentada a seguir:

- **Condutividade Hidráulica**: é a menor ou maior facilidade com que a água se move através dos interstícios da rocha. Tem a dimensão de uma velocidade, e, é expresso em m/s ou m/d.
- **Transmissividade**: é a capacidade de transmissão de água através de toda a espessura saturada do aqüífero, podendo ser expressa em m²/s ou m²/d. Corresponde ao produto da condutividade hidráulica pela espessura saturada do aqüífero (b);
- Coeficiente de Armazenamento: é definido como o volume de água que pode ser liberado ou armazenado dentro de um aqüífero confinado por variação unitária do nível potenciométrico. No caso de aqüíferos livres corresponde à porosidade efetiva, ou seja, corresponde ao volume de água drenável ou gravitativa de uma camada aqüífera com relação ao volume total da camada. Os aqüíferos confinados apresentam coeficientes de armazenamento entre 10⁻³ a 10⁻⁵, enquanto que em aqüíferos livres, a porosidade efetiva pode variar de 10⁻¹ a 10⁻³.

Nos estudos em escala regional, o aqüífero Açu, na Borda Sul da Bacia Potiguar, é considerado como tipicamente livre, conforme descrito anteriormente. Na área específica deste trabalho, o aqüífero Açu é também reconhecido como um sistema livre, porém denota-se em muitas situações condições de semi-confinamento, graças a presença de sedimentos argilosos na parte superior dos perfis, notadamente próximo ao contato com os calcários da Formação Jandaíra.

Tabela 2 - Espessura penetrada no aqüífero Açu (Poços parcialmente penetrantes e poços totalmente penetrantes)

Poços total	Lon	<u>netrantes)</u> Lat	Prof. (m)	NE (m)	e (m)	e _{sp} (m)	e _{ef} (m)
1 000	LUII	Lat	1 101. (111)		e _p (m)	(9,8-	(8-
			(20.0.154.0)	(3,18-	(10 154)		`
DC 0042	722700	0275150	(20,0-154,0)	79,3)	(18-154)	140,1)	154)
PS-0042	733789	9375159	22,0	6,6	22,0	15,4	20,0
PS-0083	727210	9387030	68,0	21,5	68,0	46,5	65,0
PS-0149	729200	9385800	66,0	14,2	66,0	51,9	60,0
PS-0175	732070	9383100	25,0	4,5	25,0	20,5	13,0
PS-0207	721090	9386790	72,0	11,8	72,0	60,2	55,0
PS-0208	717490	9387640	75,0	13,6	75,0	61,4	63,0
PS-0278	721090	9386790	30,0	20.4	30,0	22.6	30,0
PS-0358	709690	9384380	73,0	39,4	73,0	33,6	73,0
PS-0362	715950	9383160	96,0	59,6	96,0	36,4	96,0
PS-0421	718219	9386125	75,0 52.0	24,0	75,0	51,0	65,0
PS-0480	716972	9385657	52,0	10,1	52,0	36,2	23,0
PS-	707250	0201770	07.0	(7.2	04.0	1.6.0	0.4.0
0592*	727350	9381760	87,0	67,2	84,0	16,8	84,0
PS-	705000	0201200	1060		00.0		22.0
0599*	725220	9381300	106,0	72.2	99,0	27.0	33,0
PS-0626	716500	9386700	100,0	72,2	100,0	27,9	100,0
PS-0674	716420	9384260	90,0	41,0	90,0	49,0	90,0
PS-0677	716420	9384260	92,0	52,0	92,0	40,0	86,0
PS-0680	714180	9384152	87,0	44,9	87,0	42,1	45,0
PS-0684	715600	9385070	85,0	40,8	85,0	44,2	85,0
PS-0686	718390	9387560	65,0	16,2	65,0	48,8	65,0
PS-0689	714360	9384560	92,0	44,1	92,0	47,9	56,0
PS-		0000===	440.5	= 0.5		a	40
0693*	721600	9382700	118,0	79,3	114,0	34,7	104,0
PS-0701	718390	9388030	52,0	13,4	52,0	38,6	37,0
PS-	501 ())	0000000	7 0.0	1.4.0	7 .4.0	20.2	7 00
0704*	721600	9388800	58,0	14,8	54,0	39,2	50,0
PS-0839	733846	9399520	22,0	3,2	22,0	18,8	22,0
PS-0066	735540	9385200	20,0	40.5	20,0	20.5	8,0
PS-0352	750650	9394100	88,0	49,5	88,0	38,5	80,0
PS-		0.000					- 0 -
0766*	747130	9389706	56,0	9,0	52,0	47,0	50,0
PS-0017	689900	9384400	88,0	12,3	88,0	75,7	36,0
PS-	6000==	00551:5	- 4 0		4.0.0		6.0
0374*	699850	9373140	54,0		48,0		8,0
PS-0422	690136	9385060	82,0	21,1	82,0	60,9	82,0
PS-0426	692252	9378250	52,0	13,2	52,0	38,8	49,0
PS-							
0431*	689867	9386290	82,0	19,1	39,0	19,9	39,0
PS-0440	690978	9383124	120,0	38,3	120,0	81,7	120,0
PS-0506	690710	9383220	95,0	8,7	93,0	84,3	73,0
PS-							
0571*	706700	9379100	130,0		90,0		56,0
PS-0631	690790	9388230	154,0	13,9	154,0	140,1	154,0
PS-0640	696860	9384200	145,0	44,2	145,0	100,8	128,0
PS-0120	760280	9397150	90,0	28,5	90,0	61,5	36,0

PS-0124	754890	9393410	100,0	26,1	100,0	73,9	78,0
PS-0130	753450	9392560	78,0	24,8	78,0	53,2	24,0
PS-0131	773030	9395470	76,0	18,0	76,0	58,0	35,0
PS-0135	768470	9397470	97,0	53,2	97,0	43,8	29,0
PS-0136	767630	9390800	115,0	60,0	115,0	55,0	37,0
PS-0152	774110	9395330	61,0	14,0	61,0	47,0	51,0
PS-0153	772980	9395980	80,0	20,5	80,0	59,5	52,0
PS-0154	773170	9394300	78,0	20,0	78,0	58,0	68,0
PS-			,	Ź		ĺ	Ź
0155*	773210	9390530	70,0	12,6	64,0	51,4	58,0
PS-0157	772240	9393980	88,0	39,0	88,0	49,0	57,0
PS-			,	Ź		ĺ	Ź
0158*	773530	9390750	60,0	20,0	54,0	34,0	25,0
PS-0163	773450	9400130	110,0	6,5	110,0	103,5	81,0
PS-			,	ŕ	,	,	Ź
0165*	772200	9394360	70,0	17,3	63,0	45,7	56,0
PS-			,	ŕ	ŕ	ŕ	ŕ
0195*	774270	9390790	48,0	11,6	42,0	30,4	15,0
PS-			,	Ź		ĺ	Ź
0198*	773200	9395000	58,0	16,2	48,0	31,8	48,0
PS-0435	773140	9394880	64,0	20,0	64,0	44,0	64,0
PS-0469	772940	9400960	100,0	15,8	100,0	84,2	100,0
PS-0511	761280	9397150	78,0	14,5	78,0	63,5	76,0
PS-			,	ŕ	ŕ	ŕ	ŕ
0528*	769790	9384860	40,0	9,7	36,0	26,3	36,0
PS-0548	774610	9392320	31,0	7,1	31,0	23,9	25,0
PS-0561	774158	9398680	46,0	10,3	46,0	35,7	19,0
PS-							
0581*	774880	9390260	33,0	14,8	27,0	12,2	21,0
PS-0672	767000	9400320	103,0	35,8	103,0	67,2	56,0
PS-							
0357*	717980	9347110	107,0		98,0		98,0
PS-							
1199*	705111	9372811	32,0	18,2	28,0	9,9	11,5
PS-							
0197*	773150	9390540	65,0	15,3	55,0	39,7	31,0
PS-							
0430*	689300	9385300	64,0	8,2	60,0	51,8	45,0
15-in	747745	9393310	87,0	30,8	87,0	56,2	81,0
18-in	746515	9393771	102,0	30,0	102,0	72,0	70,0
16-in	749913	9392844	83,0	26,0	83,0	57,0	63,0
20-in	759543	9395743	76,0	23,0	76,0	53,0	56,0
19-in	750463	9392747	98,0	16,0	98,0	82,0	90,0
06-inA	691060	9374388	41,0	4,0	41,0	37,0	23,0
17-in	760134	9394746	77,0	24,0	77,0	53,0	45,0

^{*} Poços totalmente penetrantes no aqüífero Açu; Prof: profundidade; NE: nível estático; e_p: espessura penetrada; e_{sp}: espessura saturada penetrada; e_{ef}: espessura penetrada efetiva

Tabela 3 - Espessuras totais do aqüífero Açu com base nos perfis litológicos dos pocos

poços								
Poço			Prof.	NE	e			
	Lon	Lat	(m)	(m)	(m)	$e_{ef}(m)$	$e_{s}(m)$	e _{sef} (m)
PS-								
0592	727350	9381760	87	67,2	84,0	84,0	16,8	16,8
PS-								
0599	725220	9381300	106		99,0	96,0		
PS-								
0693	721600	9382700	118	79,3	114,0	108,0	34,7	34,7
PS-								
0704	721600	9388800	58	14,8	54,0	50,0	39,2	39,2
PS-								
0766	747130	9389706	56	9,0	52,0		47,0	47,0
PS-								
0374	699850	9373140	54		48,0	14,0		
PS-								
0431	689867	9386290	82	19,1	39,0	39,0	19,9	10,0
PS-								
0506	690710	9383220	95	8,7	93,0	75,0	84,3	70,0
PS-								
0571	706700	9379100	130		90,0	96,0		
PS-								
0155	773210	9390530	70	12,6	64,0	64,0	51,4	51,4
PS-								
0158	773530	9390750	60	20,0	54,0	31,0	34,0	19,0
PS-								
0165	772200	9394360	70	17,3	63,0	63,0	45,7	45,7
PS-								
0195	774270	9390790	48	11,6	42,0	21,0	30,4	6,0
PS-							• • •	• • •
0198	773200	9395000	58	16,2	48,0	48,0	31,8	31,8
PS-		00000	4.0		2.6.0	260	262	200
0528	769790	9384860	40	9,7	36,0	36,0	26,3	30,0
PS-	55 4000	0200260	2.2	1.4.0	25.0	27.0	10.0	10.0
0581	774880	9390260	33	14,8	27,0	27,0	12,2	12,2
PS-	717000	02.47110	107		00.0	00.0		
0357	717980	9347110	107		98,0	98,0		
PS-	705111	0272011	22	10.2	20.0	11.7	0.0	0.0
1199	705111	9372811	32	18,2	28,0	11,5	9,9	9,9
PS-	772150	0200540	<i>(5</i>	15.2	<i>55</i> 0	41.0	20.7	20.7
0197	773150	9390540	65	15,3	55,0	41,0	39,7	20,7
PS-430	689300	9385300	64	8,2	60,0	49,0	51,8	36,8

Prof.: profundidade; NE: nível estático; e: espessura; e_{ef} : espessura efetiva; e_s : espessura saturada; e_{sef} : espessura saturada efetiva.

Vale ressaltar, que os poços testados na área atingem profundidades de no máximo 154 m (poço PS-0631). Na realidade, a Formação Açu pode apresentar na área de estudo espessuras bem mais elevadas na sua faixa Norte (contígua aos calcários) conforme sugerem os estudos geofísicos descrito anteriormente. De acordo com a estratigrafia da Bacia Potiguar, a parte basal da Formação Açu é formada por clásticos grosseiros, constituindo o melhor nível aqüífero. Convém ressaltar que um poço perfurado pela PETROBRAS na área de Caraúbas (oeste de Upanema, fora da área de estudo) atesta esta informação, com a indicação de melhores níveis aqüíferos a profundidades situadas entre 110 e 185 m (Melo & Stein, 2002). Assim sendo, a faixa Norte (contíguo aos calcários), é possível que venha apresentar transmissividades bem mais elevadas do que as obtidas no âmbito deste trabalho.

1.3.1 - Testes de bombeamento e metodologia

Os parâmetros hidrodinâmicos de um aquífero são avaliados a partir da análise de dados de testes de aquífero, executados em campo, segundo um dispositivo de poços bombeados e observados, com a obtenção de informações sobre o rebaixamento do nível potenciométrico durante a operação de bombeamento. No caso da ausência de poços observados, os rebaixamentos do nível da água são obtidos no próprio poço de bombeamento, e se procede a interpretação dos resultados com a obtenção de valores aproximados.

Os parâmetros hidrodinâmicos do aqüífero Açu foram obtidos a partir da interpretação de testes de bombeamentos realizados e fornecidos pela CAERN (Companhia de Águas e Esgotos do Rio Grande do Norte), SERHID/RN (Secretaria de Recursos Hídricos do Rio Grande do Norte), INCRA (Instituto Nacional de Colonização e Reforma Agrária) e empresas de Perfuração de poços (PROPOÇO-Perfuração de Poços SA e PROSENG). Os dados foram fornecidos por estas empresas sob a forma de fichas técnicas, contendo as tabelas de bombeamento. Dois testes de bombeamento (P-203 e P-472, Tabela 4) foram realizados pela CPRM no âmbito deste projeto. No caso do Teste no poço P-203 foi utilizado dispositivo de poço de observação.

Testes de Bombeamento executados pela CPRM

Os testes de bombeamento executados pela CPRM foram realizados com bombas submersas e em regime de bombeamento com vazão constante utilizando-se para o monitoramento e controle da vazão o escoador de orificio circular. A vantagem deste método é a boa precisão e a possibilidade de se assegurar uma vazão constante, requisito básico para a interpretação dos resultados que levam a determinação dos parâmetros hidrodinâmicos do aquífero, no caso o Açu.

Este recurso usado consiste de um tubo de descarga horizontal que é conectado ao tubo de saída da bomba através de um joelho. O tubo dispõe de um registro, uma placa de aço ou PVC circular perfurada estrangulando a saída e uma tomada piezométrica. A placa circular deve ser lisa e sem irregularidades, assim como as paredes do perímetro do orifício. Suas arestas, entretanto, devem ser agudas. A tomada piezométrica deve ser obtida mediante um furo de 1/8" de diâmetro, na intersecção da parede do tubo de descarga com o plano horizontal que contem o eixo longitudinal. Em seguida, é conectado ao tubo, um niple ou bocal metálico ou de PVC e acoplada uma mangueira transparente e flexível destinada a medição das cargas hidráulicas. Esta medição é feita através de uma escala métrica com precisão milimétrica que deve ser fixada a um suporte na vertical, de forma que o zero da escala coincida com o plano horizontal que corta o eixo do tubo (Figuras 5 a 12).

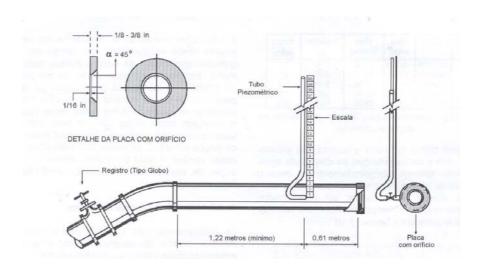


Figura 5 - Escoador de orifício circular. Fonte: Custodio & Llamas,1983

Figura 6 - Nivelando coluna suporte vertical contendo mangueira e a escala métrica usada para medição da carga hidráulica (Arq. DSC0012)

Figura 7 - Nivelamento da coluna suporte vertical em detalhe (Arq. DSC 0013)

Figura 8 - Nivelando o tubo escoador de orificio circular (Arq. DSC0017)

Figura 9 - Tubos de PVC usados como recptador e condutor da água que sai do tubo escoador de orificio circular, evitando-se, assim, o acúmulo e infiltração de águia no local do teste (Arq. DSC0028)

Figura 10 - Descarga efetuada diretamente do tubo nos tubos de PVC para evitar acúmulo e infiltração de água no local do teste (Arq.DSC030)

Figura 11 - Visão do conjunto tubo escoador de orifcio circular e rede auxiliar de tubos de PVC auxiliar usada para conduzir a água que sai do tubo escoador evitando, assim, acúmulo e infilitração no local do teste(Arq. DSC0033).

Figura 12 - Visão global do conjunto poço bombeado, tubo escoador de orifício circular com coluna suporte vertical contendo mangueira e escala métrica, e tubos de PVC (Arq.DSC004)

Na área de estudo foram executados 2 ensaios de bombeamento pela CPRM. Um deles, no poço tubular P-203(DN-104), município de Açu, usando-se o piezômetro construído pela CPRM com profundidade de 90 metros, penetração o Aqüífero Açu, situado a uma distância de 53 metros do poço de bombeamento. O outro teste foi executado no poço P-472 (PS0124B) usando-se como piezômetro um poço tubular já existente P-471 (PS0124A), município de Afonso Bezerra, com profundidade de 94 metros, penetração no aqüífero Açu, situado a uma distancia de 67metros do poço bombeado.

1.3.2 - Resultados dos testes de bombeamento

Dispõe-se dos resultados de 18 testes de bombeamento executados no âmbito da área, os quais são apresentados no Anexo 1. A distribuição dos poços testados está contida na Figura 14. Os dados de rebaixamento foram obtidos nos próprios poços de bombeamento. Sabe-se, entretanto, que a água ao entrar no poço durante o bombeamento está sujeita a perda de carga, causando um rebaixamento adicional no mesmo, muitas vezes bem maior que o rebaixamento no aqüífero. Assim sendo, é possível que os dados de rebaixamento x tempo utilizados resultem em valores subestimados da transmissividade do aqüífero.

A Tabela 4.4 apresenta um resumo dos resultados dos testes de bombeamento realizados no aqüífero Açu. Observa-se que os tempos de bombeamento variaram de 12 a 36 horas, com apenas um caso de poço observado (r = 50 m). As vazões específicas dos poços no final dos bombeamentos variaram de 1 m³/h/m a 12,4 m³/h/m, com valores extremos e anômalos de 0,01 m³/h/m e 65,1 m³/h/m. No primeiro caso devido a baixa penetração do poço do aqüífero Açu e no segundo, devido a contribuição de águas do aqüífero aluvial da Planície aluvial do Açu. Conforme pode ser verificado ano Anexo 2, de um modo geral não houve estabilização dos níveis potenciométricos durante os bombeamentos.

Durante os bombeamentos as vazões se mantiveram em geral constantes e ao serem interrompidos os bombeamentos, foram observados a recuperação dos níveis.

Tabela 4 - Resumo dos resultados dos testes de bombeamento

			NE	ND	s	Q	Q/s	tb
Poço	Município	Prof	(m)	(m)	(m)	(m3/h)	(m3/h/m)	(h)
TUÇU		1101	(111)	(111)	(111)	(1113/11)	(1113/11/111)	(11)
105	Afonso	00.0	40.5	50.0	0.7	2.2	4.0	10
185	Bezerra	88,0	49,5	50,2	0,7	3,3	4,3	12
120	Açu	78,0	36,9	37,63	0,68	8,5	12,4	10
583	Upanema	112,0	61,5	67,4	5,9	6,0	1,0	12
564	Ipanguaçu	40,0	5,1	5,8	0,66	7,9	11,9	12
	Afonso							
323	Bezerra	74,0	34,1	34,9	0,79	4,8	6,0	12
400	Ipanguaçu	150,0	27,0	30,6	3,6	25,0	6,9	12
	Afonso	,	,	,	,	,	,	
afb	Bezerra	85,0	22,1	27,5	5,4	37,8	6,9	12
6in	Upanema	40,0	4,0	25,0	21,0	1,72	0,01	24
15in	Ipanguaçu	87,0	30,8	35,0	4,2	25,0	5,9	24
18in	Ipanguaçu	102,0	30,1	42,9	12,8	50,0	3,9	24
19in	Ipanguaçu	98,0	16,2	27,3	11,1	36,0	3,3	12
	Afonso	,-	- ,		,	,-		
20in	Bezerra	76,0	19,7	31,3	11,6	36,0	3,1	12
UP2	Upanema	142,0	15,1	22,4	7,3	37,8	5,2	12
1A	Ipanguaçu	73,9	4,07	4,4	0,3	21,1	65,1	2
P-203*	Açu ,	90,0	41,2	45,7	4,4 3	15,84	3,5	36
p-472*	Afonso	,-	,-	, .	.,	,-	-,-	-
P	Bezerra	94	28,2	32,6	4,4	18,0	4,1	36
PS0704	Açu	58,0	14,8	18,5	3,7	17,4	4,7	6
	,					*	*	
PS0592	Açu	87,0	67,1	68,7	1,6	3,5	2,2	10

Obs.: Prof.: profundidade; NE: Nível estático; ND: Nível dinâmico; s: rebaixamento; Q: vazão; Q/s: Vazão espedífica; tb: Tempo de bombeamento; * : Teste de bombeamento executado pela CPRM durante execução do projeto.

Dispõe-se de resultados de testes de bombeamento no município de Upanema, com 3 testes; Açu, 4 testes; Ipanguaçu, 7 testes; Afonso Bezerra, 5 testes; e, Angicos, 1 teste.

1.3.3 – Interpretação dos resultados dos testes de bombeamento

A interpretação dos resultados dos testes foi realizada utilizando o *software Aquifer Test* da *Waterloo Hydrogeologyc* (Thomas Röhrich and *Waterloo Hydrogeologyc*, 2002), onde as soluções para as equações em direção a um poço que está sendo bombeado foram obtidas na maioria dos casos através do Método Rebaixamento-tempo de Cooper & Jacob (com correção dos rebaixamentos, no caso de aqüíferos livres) e pelo Método de Recuperação de Theis & Jacob. Em apenas um caso, os parâmetros hidrodinâmicos do aquífero foram estimados aplicando o método de superposição de curvas, cujos dados se ajustaram melhor a curva de Theis.

Método de Theis

Theis (1935) desenvolveu a seguinte equação para descrever os rebaixamentos em um □qüífero confinado a uma determinada distância r de um poço que está sendo bombeado:

$$s = \frac{Q}{4\pi T} \int_{u}^{\infty} \frac{e^{-u} du}{u}$$
onde: (4.1)

$$u = \frac{r^2 S}{4Tt}$$

r = distância do poço bombeado ao observado (m)

s = rebaixamento a uma distância r do poço bombeado (m)

Q = vazão de bombeamento (m³/s ou m³/d)

 $T = \text{transmissividade } (\text{m}^2/\text{s ou m}^2/\text{d})$

S = coeficiente de armazenamento (adimensional)

t = tempo a partir do início do bombeamento (s)

Nesta equação a função exponencial integral pode ser desenvolvida como indicado a sedguir:

$$s = \frac{Q}{4\pi T} \left(-0.5772 - \ln u + u - \frac{u^2}{2.2!} + \frac{u^3}{3.3!} + \dots \right)$$
(4.2)

A equação de Theis de forma simplificada pode ser escrita:

$$s = \frac{Q}{4\pi T}W(u) \tag{4.3}$$

As condições admitidas para aplicação dos métodos de Theis são as seguintes:

- O aquifero é confinado;
- Poços com penetração total, onde a sua zona filtrante abrange a totalidade da espessura do aquifero;
- Aquifero homogêneo, isotrópico (onde em todas as direções o aquifero possui condutividade hidráulica iguais) e com espessura uniforme sobre a área de influência do bombeamento;
- Aquiferos infinitamente extensos, ou seja, não sendo limitados por barreiras hidrogeológicas impermeáveis (falha, maciço impermeável, etc.) ou limites de recarga (rios, lagos ou o mar);
- Superficie potenciométrica horizontal antes do bombeamento;
- Poço bombeado a vazão constante;
- A água removida do armazenamento é descarregada instantaneamente com a diminuição de carga;
- Diâmetro do poço pequeno de modo que o armazenamento seja negligenciável;

Método de Cooper & Jacob

O método de Cooper & Jacob é baseado na equação de Theis (equação de não-equilíbrio). As condições para aplicação desse método, entretanto, são bem mais restritas que o método de Theis..

Observe na equação de Theis (4.2) que o valor de "u" decresce quando o tempo de bombeamento "t" aumenta (da equação $u = r^2S/4Tt$). Nestas condições, para grandes valores de "t" e subseqüentemente pequenos valores de "r", o valor de u torna-se muito pequeno, e, portanto, desprezível para fins práticos.

Com base nisso, Jacob mostrou que a equação Theis pode ser simplificada para:

$$s = \frac{Q}{4\pi T} \left(-\ln u - 0.57772\right) \tag{4.4}$$

Substituindo u pelo seu valor (r²S/4Tt) e fazendo a transformação de logaritmo neperiano para logaritmo de base decimal e operando, obtêm-se:

$$s = \frac{0.183Q}{T} \log \frac{2.25Tt}{r^2 S} \tag{4.5}$$

Para um mesmo ponto de observação, situado a uma distância r, tomando diferentes tempos t₁ e t₂, obtêm-se os rebaixamentos s₁ e s₂, respectivamente. Assim:

$$s_1 = \frac{0.183Q}{T} \log \frac{2.25Tt_1}{r^2 S}$$

$$s_2 = \frac{0.183Q}{T} \log \frac{2.25Tt_2}{r^2S}$$

Subtraindo-se s₂ de s₁, obtêm-se:

$$s_1 - s_2 = \Delta s = \frac{0.183Q}{T} \log \frac{t_2}{t_1} \tag{4.6}$$

Esta é a equação é conhecida como "equação do rebaixamento".

No ponto de rebaixamento nulo (s = 0), tem-se que:

$$\frac{0.183Q}{T}\log\frac{2.25Tt}{r^2S} = 0$$

e, desde que T, Q, r e S são constantes, a condição necessária e suficiente é que:

$$\log \frac{2.25Tt_0}{r^2S} = 0$$

Ou

$$\frac{2.25Tt_0}{r^2S} = 1$$

e, portanto, o coeficiente de armazenamento (S) é:

$$S = \frac{2.25Tt_0}{r^2}$$

Além das condições limite apresentadas para o Método de Theis, o Método de Jacob-Theis estabelece que o valor de u deve ser pequeno (u<0.01), isto é, "r" é pequeno e "t" é grande.

Método de Recuperação de Theis & Jacob

Os resultados de testes de recuperação de poços bombeados são em geral considerados mais adequados na estimativa da transmissividade do aquífero do que os dados de rebaixamento devido as condições de fluxo mais favoráveis. Neste caso os dados de rebaixamento residual ou recuperação são lançados com uma disposição dos rebaixamentos sobre o eixo do y em escala numérica, e a taxa t/t' (tempo inicial de bombeamento pelo tempo final) no eixo x, em escala logarítmica e a transmissividade do aquífero estimada.

De acordo com Theis o rebaixamento residual após o bombeamento é:

$$s' = \frac{Q}{4\pi T}W(u) - W(u') \tag{4.7}$$

sendo que:

$$u = \frac{r^2 S}{4Tt}$$
 e $u' = \frac{r^2 S}{4Tt}$

Onde:

s' = rebaixamento residual (m);

r = distância do poço bombeado ao observado (m);

T = transmissividade do aquífero (m²/s);

S a S' são os valores de armazenamento durante o bombeamento e recuperação respectivamente;

t e t' representam o espaço de tempo entre o início e o final do bombeamento respectivamente.

Usando a aproximação para a função poço w(u), mostrado no método de Cooper & Jacob, essa equação torna-se:

$$s' = \left(\frac{Q}{4\pi T}\right) \left(\ln \frac{4Tt}{r^2 S} - \ln \frac{4Tt'}{r^2 S'}\right)$$

Quando S e S' são constantes e iguais, e o tempo é constante, esta equação pode ser reduzida para:

$$s' = \frac{2.3Q}{4\pi T} \log\left(\frac{t}{t'}\right) \tag{4.8}$$

A figura 13 apresenta o comportamento da curva rebaixamento x tempo durante o bombeamento de um poço e sua respectiva recuperação.

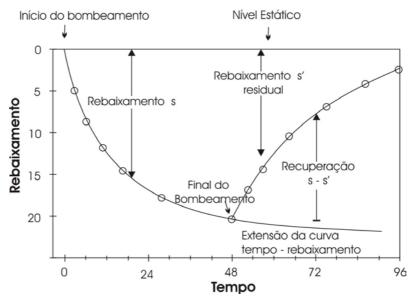


Figura 13 - Curva rebaixamento x tempo durante o bombeamento e recuperação.

Correção de Jacob para aquífero livre

As equações apresentadas para o aqüífero confinado podem ser aplicadas no caso de aqüífero livre mediante a correção de rebaixamento proposta por Jacob:

$$s' = s - \left(\frac{s^2}{2h_0}\right) \tag{4.9}$$

Onde.

s' = rebaixamento corrigido (m);

s = rebaixamento medido (m);

 h_0 = espessura saturada efetiva do \square qüífero (m).

A Tabela 5 apresenta um resumo dos parâmetros hidrodinâmicos obtidos com base na interpretação dos resultados dos respectivos ensaios realizados.

Os ensaios realizados permitiram avaliar principalmente a transmissividade (T) e a condutividade hidráulica (K) do aqüífero Açu, já que em geral foram utilizados dados de rebaixamento obtidos dos próprios poços de bombeamento. Apenas um teste foi realizado com dispositivo de poço de observação, e, neste foi feita uma estimativa do coeficiente de armazenamento (S) ou porosidade efetiva (μ) .

Para efeito de interpretação e avaliação dos parâmetros hidrodinâmicos foram selecionados os melhores testes de bombeamento, assim considerados: bombeamento com vazão constante; maior número de informações sobre rebaixamento e tempo; disponibilidade de perfis litológicos e construtivos dos poços.

A figura 14 apresenta a distribuição espacial dos poços testados com os respectivos valores das transmissividades obtidas com base na interpretação dos testes. Como pode ser observado, o número de informações obtidas é muito pequeno com grandes espaços vazios no mapa, principalmente na faixa sul da área na direção das rochas do embasamento cristalino.

Tabela 5 - Resumo dos parâmetros hidrodinâmicos obtidos com base na interpretação dos testes de bombeamento de poços

		UTM-		T	T	K	K	
Poço	Município	E	UTM-N	(m^2/s)	(m^2/d)	(m/s)	(m/d)	S
	Afonso			3,04*10-		7,90*10-		<u> </u>
185	Bezerra	750706	9394238	3	263	5	6,82	
				5,10*10-		1,24*10-		
120	Açu	729420	9385460	3	441	3	107,13	
				1,04*10-		2,97*10-		
583	Upanema	702675	9379913	3	90	5	2,56	
				4,48*10-		1,28*10-		
564	Ipanguaçu	737600	9391761	3	387	4	11,1	
	Afonso					1,26*10-		
323	Bezerra	757059	9392330	5,0*10-3	432	4	10,8	
400	T	727 070	0206065	5,03*10-	12.5	4,19*10-	2.54	
400	Ipanguaçu	737978	9396965	3	435	5	3,54	
a	Afonso	760000	0205220	2 (*10 2	211	1,09*10-	0.42	
afb	Bezerra	760020	9395220	3,6*10-3	311	4	9,43	
Cin.	I In on one o	691060	9374388	1,43*10- 5	1 22	1,43*10-	0.12	
6in	Upanema	091000	93/4388	3 2,68*10-	1,23	6 7,94*10-	0,12	
15in	Ipanguaçu	747745	9393310	3	231,5	7,94 · 10- 5	6,86	
13111	ipanguaçu	141143	9393310	9,64*10-	231,3	2,68*10-	0,80	
18in	Ipanguaçu	746515	9393771	7,04 10- 4	83,2	5	2,31	
10111	ipangaaça	740313	7373111	9,23*10-	03,2	2,56*10-	2,31	
19in	Ipanguaçu	750463	9392747	4	79,7	5	2,21	
17111	Afonso	700105)	•	, , , ,	1,79*10-	_,_ 1	
20in	Bezerra	759543	9395743	1,3*10-3	97,6	5	1,54	
		, , , , ,	, , , , , ,	1,97*10-	,,,,	2,33*10-	-,- :	
UP2	Upanema	687847	9382512	3	171	5	2,01	
	1			2,39*10-		4,59*10-	,	
1 ^a	Ipanguaçu	736991	9390728	2	2065	4	39,65	
CPRM1	1 0 ,			1,72*10-		3,83*10-	,	8,1*10-
	Açu	715626	9385088	3	149	5	149	2
CPRM2	Afonso			2,40*10-		4,79*10-		
	Bezerra	754577	9393690	3	211	5	4,13	
PS-				4,19*10-		1,27*10-		
0404	Açu	721600	9388800	3	362	4	10,96	
DN-286	Angicos	770045	9385323	3,4*10-4	30			

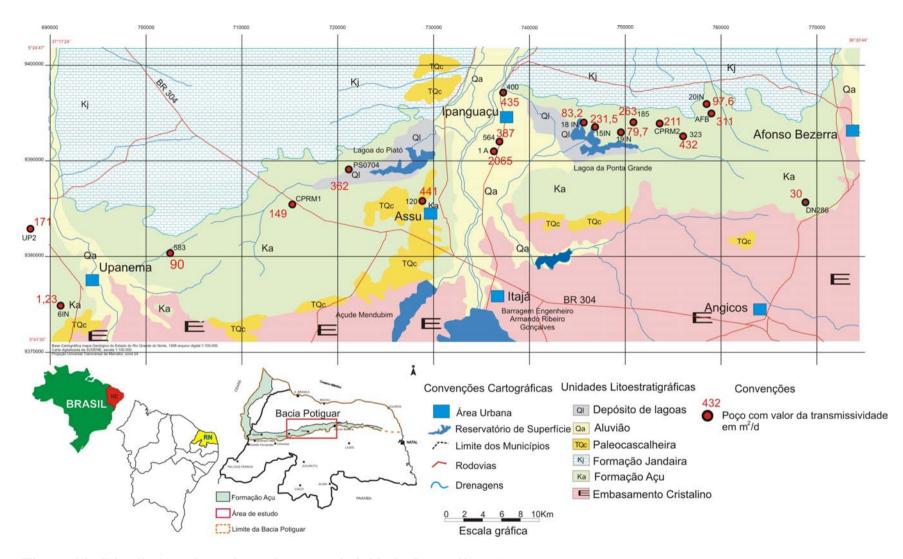


Figura 14 - Distribuição dos valores de transmissividade do aqüífero Açu

A transmissividade do aqüífero variou de um mínimo de 1,43x10-5 m/s (1,23 m2/dia) a um máximo de 2,39x10-2 m2/s (2065 m2/dia). A condutividade hidráulica do aqüífero variou de um mínimo de 1,43x10-6 m/s (0,12 m/d) a 1,24x10-3 m/s (107,13 m/dia).

O maior número de informações sobre os parâmetros hidrodinâmicos do aquifero Açu está situada na faixa Norte da área, principalmente do Setor Oriental da área. Neste domínio, os valores de transmissividade obtidos do aquífero variaram de 79,7 m2/dia a 432,0 m2/dia. No faixa Norte do setor Ocidental da área, apesar de se dispor de muito pouca informação, percebe-se uma tendência geral de que as transmissividades são elevadas, cujos valores variam de 90,0 m2/dia a 441,0 m²/dia. Na parte Central da área os valores de transmissividade se apresentam relativamente muito elevados, com valores compreendidos entre 387,0 m²/dia e 2065 m²/dia, provavelmente por influência de contribuições do agüífero aluvial durante o bombeamento dos poços. Na faixa Sul da área de estudo, entre Upanema e Afonso Bezerra (faixa contígua as rochas do embasamento cristalino) existem informações de apenas dois poços, indicando para o setor Oriental da área uma transmissividade de 30,0 m²/dia e no setor Ocidental de 1,23 m²/dia. Essas informações apesar de bastante reduzidas, corroboram com os dados de espessura do aqüífero Açu, de que na faixa Sul da área as espessuras são inferiores quando comparadas com as espessuras da faixa Norte (contígua aos calcários). Este comportamento é similar ao comportamento observado com relação a capacidade específica dos pocos.

Tomando por base os parâmetros obtidos, para efeito de avaliação hidrogeológica, será tomada para o aqüífero Açu na faixa Norte da área uma transmissividade média de 224 m²/dia (média entre os valores obtidos) e na faixa sul como referência um valor médio de 15,0 m²/dia (média entre os valores obtidos). No setor Central da área de influência das coberturas aluviais, com recarga permanente de água superficial do rio Açu, o qual é alimentado pela Barragem Armando Ribeiro Gonçalves, a transmissividade média obtida foi de 962,0 m²/dia.

As informações sobre transmissividade do aqüífero Açu foram obtidas com base em resultados de testes de bombeamento de poços parcialmente penetrantes. Assim sendo, provavelmente a os dados apresentados são inferiores aos que poderão ser obtidos em condições de penetração total no aqüífero Barreiras.

1.3.4 - Relação da transmissividade com a capacidade específica

Tentativas têm sido feitas para avaliar a transmissividade de um aqüífero com base na capacidade específica. A equação abaixo, atribuída a Razack & Huntley (1991), foi desenvolvida através de experimentos em Marrocos (Fetter, 2001), conforme a seguir:

$$T = 15.3 \left(\frac{Q}{h_0 - h}\right)^{0.67} \tag{4.10}$$

Onde: T: transmissividade em m²/d

Q : descarga de bombeamento em m³/d

h₀ – h : rebaixamento no poço (m)

Para efeito de comparação com os valores dos parâmetros obtidos nos testes de aquífero e uma possível ampliação das informações sobre a transmissividade do aquífero Açu, procedeu-se à aplicação desta equação, cujos resultados mostraram-se insatisfatórios.

De fato, os valores de transmissividade obtidos com a aplicação deste método foram bem mais elevados do que àqueles obtidos através dos testes de bombeamento e também não guardaram nenhuma coerência que justificasse a adoção dos mesmos no âmbito deste trabalho. Assim sendo, nesta fase deste estudo serão considerados na avaliação dos recursos hídricos da área apenas os resultados obtidos a partir dos testes de bombeamento com registros dos tempos e respectivos rebaixamentos nas condições apresentadas. Pretende-se, entretanto, aprimorar pesquisas neste sentido em fase posterior a estes estudos visando a obtenção de um maior número de informações sobre a transmissividade do aquífero Açu.

1.4 - Rede de monitoramento

1.4.1 - Definição e operação da rede de poços para monitoramento das águas subterrâneas

A análise dos resultados do cadastro levou à definição de uma rede de pontos de água de natureza quantitativa e qualitativa. No primeiro caso, visando o monitoramento do nível d'água de poços tendo em vista a obtenção de informações sobre as variações das cargas potenciométricas do aqüífero Açu ao longo do tempo e permitir o controle da sua explotação. Associado as medições dos níveis de água dos poços, o monitoramento prevê medição em campo de parâmetros hidroquímicos fundamentais e coleta de amostras de água para análise físico-química completa, tendo em vista o conhecimento das modificações hidroquímicas ao longo do tempo, em especial da salinidade das águas, e o reconhecimento da qualidade das águas. O monitoramento qualitativo contempla também corpos de águas superficiais. A relação dos poços da rede de monitoramento é apresentada na tabela 6 e a distribuição espacial dos pontos da rede na figura 15 e no anexo 3.

A rede de monitoramento ficou composta de 81 poços. O número de poços cadastrados no âmbito de cada município é apresentado na Tabela 4.7, segundo a qual o município de Afonso Bezerra é representado por 12 poços, Angicos com 04, Ipanguaçu com 16 poços, Assu com 31 poços e Upanema com 18 poços.

Foram utilizados os seguintes critérios na definição da rede de monitoramento:

- Distribuição geográfica: Os poços da rede de monitoramento estão distribuídos o mais regularmente possível tendo em vista uma melhor integração entre os dados e facilidades de interpretação de resultados;
- Existência de perfil litológico: A existência de perfil litológico e construtivo do
 poço deve constituir fator preponderante no condução do monitoramento de
 poços, tendo em vista um diagnóstico mais preciso sobre a origem e mecanismos
 de salinização e contaminação das águas subterrâneas. Na avaliação global dos
 critérios somente foi possível dispõe dos perfis litológicos e construtivos de 13
 poços.
- Profundidade do poço: Foram selecionados poços rasos e profundos tendo em vista a avaliação do comportamento das modificações hidroquímicas com a profundidade;
- Facilidades de acesso ao poço: As condições de medição dos níveis d'água no local foram avaliadas e levadas em consideração na seleção dos poços da rede de monitoramento. Também a permissão e interesse despertado pelo proprietário para que sejam efetuados os trabalhos foi considerado.

Tabela 6 - Relação dos pontos de água que compõem a rede de monitoramento

ela 6 - Relação dos pontos de água que compõem a rede de monitorame									
	Amostra		Long	Lat					
	DR 941	Banguê/Assu	726792	9392835					
	PS								
	0083A	Ana Maria/ Assu	727210	9387030					
	DN 095	Fazenda Meladinha/Assu	717295	9383902					
	DN 113	Palheiro IV(Assentamento)/ Assu	712599	9387078					
	PS 0083	Lagoa do Piató/Assu	727210	9387030					
	CT 631	Sítio Sta. Maria/AB	760201	9394779					
	DN 137	Paulista/Assu	708801	9383701					
	DN 279	Santarém/AB	766143	9390330					
	CL 591	Capivara/ IP	739745	9395548					
	UP 004	•	701200	9381600					
	DN 454	Faz pau D'árco/ UP	693387	9380876					
	DN 166	Baixa do Dutra(Assentamento)/UP	702146	9379972					
	DN 160	Baixa do Juazeiro/UP	705402	9377736					
	DN 161		707591	9381047					
	CT 634	Ass. Sta. Maria/AB	758582	9392539					
	CL 589	Canto Claro/IP	743854	9395396					
	CL	CMITO CIMIO/II	, 15 66 1	,,,,,,,					
	895A	Umburana/IP	737801	9394124					
	CL 590	Língua de Vaca/IP	742339	9394957					
	CL 902C	Sítio Deus Nos Guie	746850	9385800					
	S 3468	Cerâmica Portal do Vale do Açu	732000	9378500					
	DN 159	Baixa do Juazeiro/UP	703220	9375640					
	CL 898	Bunta do vadzeno, e i	735520	9384660					
	CL 571	Sítio Ubaeira/ Angicos	758102	9387953					
	CL	Sitto Coucha Tingroos	720102	,,,,,,,					
	902A	Comunidade Porto da Escola/IP	747174	9389767					
	DN 139	Paulista 2/ Assu	706022	9383111					
	UP	1 4411544 2/ 11554	,00022	7505111					
	007A	Faz. Várzea Alegre/UP	697600	9378100					
	DN 286	Fazenda Flores/ Angicos	770045	9385323					
	DN 283	Tapuio/AB	773567	9390801					
	CL 568B	São Francisco/ AB	768162	9387973					
	DN	Suo Truncisco, Tib	700102	7501715					
	141A	Ass. Novo Pingo/ Assu	714655	9381083					
	CL 568	Santarém/AB	766964	9388427					
	CL 584		746515	9393790					
	CL 586		748108	9394263					
	CL 587	Serra do Gado/IP	746820	9395420					
	DN	Seria do Gado/II	740020)J)J=20					
	141B	Bom Lugar 3/Assu	712413	9377518					
	DN	Dom Eugai 3/1/33u	/12413	7311310					
	267A	Canto Branco/AB	773150	9394582					
	DN 278	Faz. São Cirilo/AB	767643	9394582					
	DN 278 DN 293	Sede/AB	773034	9396053					
	PS 0124	Nova Descoberta (Raposo II) AB	754682	9393745					
	CL 585	Tabuleiro Alto, Ass./ IP	747753	9393743					
	DN 104	1 addicted Atto, ASS./ IF	715626	9393381					
	DN 104 DN 141	Rom Lugar 2/Aggu	713626	9383088					
	DN 141	Bom Lugar 2/Assu	/113/0	7301004					

DN 292	São Sebastião/ AB	773083	9399882				
DR 973							
A	Faz. Café Jardim/ Assu	720276	9385853				
DR 945	Areia Branca/Assu	726100	9390269				
DR 969	Lagoa do Mato/Assu	717151	9386496				
DT 415	Comunidade Bavieira/Assu	731396	9386584				
DR 973	Monte Alegre	718077	9386173				
DN 080	Comunidade Sta Clara/Assu	731629	9390626				
CL 580	Tirafogo/AB	750123	9394380				
DN 149	COPASFAL/Assu	724994	9382403				
DT 104	Sítio Olho d'água	731396	9386584				
PS 0401	Campo de Aviação	725877	9381463				
DN 453	Fazenda Pau d'Árco/UP	695100	9381300				
	Comunidade de Lagoa d	lo					
DT 435	Ferreiro/Assu	731328	9384577				
DR 950	Bela Vista do Piató/ Assu	722665	9389278				
DN 164	Bom Lugar/ Assu	705301	9379018				
AB 001	Sede Afonso Bezerra/AB	775113	9391975				
CL 588	Angélica/IP	744963	9396143				
DR 967	Sítio Canto do Marí-Açu	717495	9387650				
UP 002	,	699481	9372436				
DN							
725A	Roçado Grande/UP	697400	9383900				
DN 296	São Francisco/ AB	772391	9386592				
CL 273							
В	Bom Sucesso/NA	757900	9383800				
CL 591							
A	EMPARN	737018	9390764				
DT 452		689354	9380534				

Tabela 7 - Números de poços da rede de monitoramento por município

Afonso	
Bezerra	12
Angicos	4
Ipanguaçu	16
Assu	31
Upanema	18

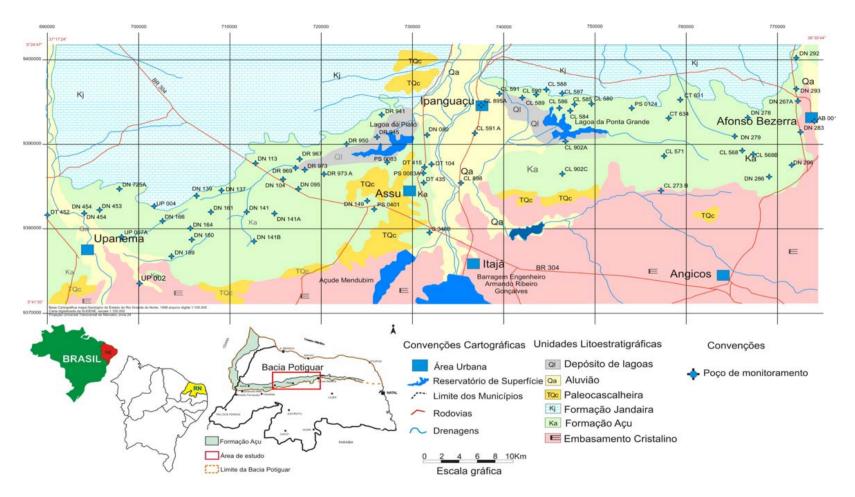


Figura 15 - Distribuição dos poços da rede de monitoramento

O monitoramento dos níveis das águas dos poços e da qualidade das águas subterrâneas e superficiais está programado para ser efetuado trimestralmente. As coletas de amostras de água para análise físico-química, entretanto, terão uma freqüência semestral.

As medições hidroquímicas e de parâmetros indicadores de contaminação previstos para serem efetuadas trimestralmente em campo compreendem: pH; Eh; condutividade elétrica; sólidos totais dissolvidos; cloreto; temperatura e nitrato.

As análises completas a serem efetuadas em laboratório compreendem: aos parâmetros fundamentais pH, Eh, condutividade elétrica e temperatura; os cátions principais sódio, potássio, cálcio e magnésio e os ânions principais cloreto, sulfato, bicarbonato e carbonato, alem dos compostos da série nitrogenada (nitrogênio amoniacal, nitrito e nitrato). Também será avaliado a alcalinidade, dureza e Ferro.

1.4.2 - Características dos poços da rede de monitoramento

Tomando por base os poços da rede de monitoramento dos quais se dispõe do perfil construtivo, verifica-se que a profundidades dos mesmos varia de 20,0 a 118,0 m e níveis estáticos de 5,0 a 79,3 m. O topo dos filtros, nesses poços, situa-se a profundidades que variam de 15,0 a 90,0. O comprimento total dos filtros instalados nos poços varia de 10,0 m a 32,0 m. Os poços em geral são perfurados em diâmetro de 10 polegadas com revestimento e filtros de tubos PVC Geomecânico de 6 polegadas de diâmetro. Todos os poços apresentam proteção sanitária, apesar de em alguns deles esta proteção é insuficiente, ou seja, o espaço anular entre o revestimento e as paredes do poço é cimentada numa extensão de apenas 5,0 m, como é o caso dos poços PS-0083 e OS-0158. Ver tabela 8 e figuras 16A, 16B e 16C.

1.5 - Nivelamento dos Poços

Todos os poços da rede de monitoramentos foram nivelados, ou seja, foram determinadas as cotas do terreno ao lado de cada poço. O nivelamento foi executado utilizando GPS Geodésico. A tabela 9 a seguir apresenta os resultados do nivelamento de poços.

1.6 - Instalação de equipamentos de medição hidrológica

1.6.1 - Instalação de pluviômetros

Na área de estudo foram implantados no período de 05 a 10 de junho de 2006, os pluviômetros tipos Paulistinha do DNAEE, modelo tradicional e o Automático, em duas localidades: Sitio Olho d'Água do Mato próximo ao poço DN-104, município de Açu, e, sitio Nova Descoberta-Raposo II, município de Nova Descoberta, próximo ao poço PS-0124

A chuva se mede pela sua altura que alcançaria sobre uma superfície plana horizontal, antes de sofrer perdas (evaporação, infiltração etc.). As medidas de chuva na área de estudo estão sendo efetuadas usando-se o pluviômetro denominado Paulistinha do DNAEE em substituição do Pluviômetro Ville de Paris; e, um Registrador Digital de Chuvas-Datalog cujas especificações são descritas a seguir.

Tabela 8 - Resumo dos parâmetros construtivos dos poços da rede de monitoramento.

Poço	Profundidade	NE	Topo filtros	Comp. dos filtros
PS- 0124	100	26,1	35	28
PS-	100	20,1	33	20
0066	20	5	15	10
PS-				
0421	75	24,05	55	16
PS-				
0083	68	21,53	40	22
PS-				
0208	75	13,6	19	32
PS-	110	7 0.2	0.0	1.7
0693	118	79,3	90	15
PS- 0592	87	67,2	75	10
PS-	07	07,2	73	10
0358	73	39,4	50	10
PS-		ŕ		
0704	58	14,8	30	25
PS-				
0158	60	20	23	12
PS-				
0163	110	6,5	53	32
PS-	0.0	20.5	42	1.4
0153	80	20,5	43	14
PS-	0.0	40.0	<i>5 1</i>	20
0684 PS-	88	40,8	54	30
0766	56	9	28	12
0/00	30	,	20	1 4

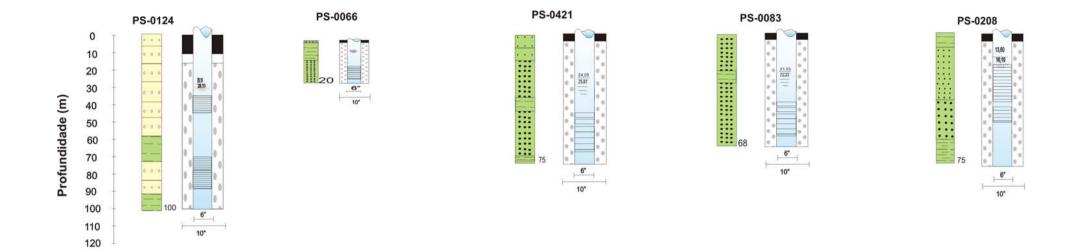


Figura 16A - Perfis litológicos e construtivos dos poços da rede de monitoramento.

Legenda

Arenito grosso

Arenito média

Arenito argiloso Argila

Embasamento cristalino

Filtros

Arenito fino

Folhelho

Nível Dinámico

Calcáreo

Arenito calcifero

Argilito calcifero

Areia grossa

Areia média Areia fina

Areia argilosa

Ne Nível estático

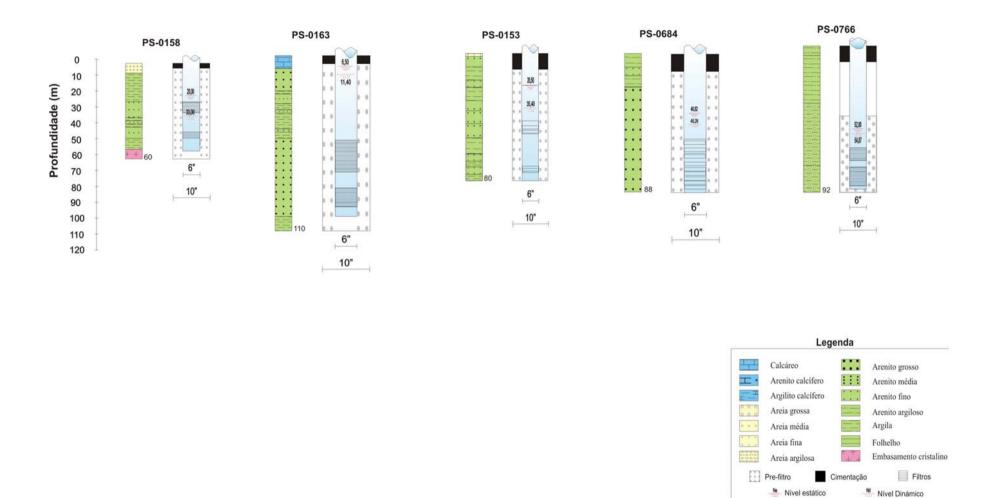


Figura 16B - Perfis litológicos e construtivos dos poços da rede de monitoramento.

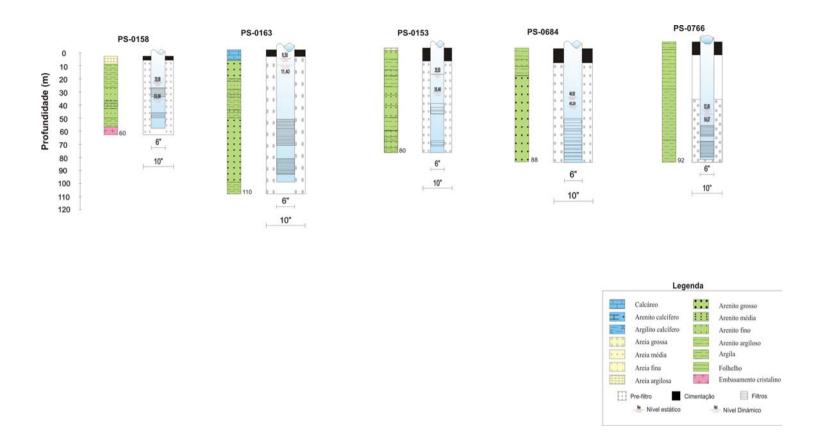


Figura 16C - Perfis litológicos e construtivos dos poços da rede de monitoramento

.

Tabela	a 9 - Resultados do nivelamento dos	poços
Amostra		Altitude
DN 113	Palheiro IV(Assentamento)/ Assu	37,143
PS 0083	Lagoa do Piató/Assu	27,293
CT 631	Sítio Sta. Maria/AB	46,86
DN 137	Paulista/Assu	39,341
DN 279	Santarém/AB	65,63
UP 004		109,384
DN 454	Faz pau D'árco/ UP	43,602
DN 166	Baixa do Dutra(Assentamento)/UP	62,659
DN 160	Baixa do Juazeiro/UP	60,57
DN 161		73,06
CT 634	Ass. Sta. Maria/AB	68,089
CL 589	Canto Claro/IP	43,925
CL		
895A	Umburana/IP	15,624
CL 590	Língua de Vaca/IP	18,256
DN 159	Baixa do Juazeiro/UP	36,605
CL 571	Sítio Ubaeira/ Angicos	82,611
CL		10.724
902A	Comunidade Porto da Escola/IP	18,734
DN 139	Paulista 2/ Assu	78 72 22
DN 283	Tapuio/AB	73,23
DN 141A	Agg Novo Dingo/ Aggy	06.204
CL 568	Ass. Novo Pingo/ Assu Santarém/AB	96,204 106,716
CL 588	Santareni/AD	42,998
CL 584 CL 586		49,014
CL 580 CL 587	Serra do Gado/IP	65,487
DN	Seria do Gado/II	05,407
141B	Bom Lugar 3/Assu	118,434
DN	2011 24841 0/1 1004	110, 10
267A	Canto Branco/AB	51,955
DN 278	Faz. São Cirilo/AB	85,282
DN 293	Sede/AB	53,065
PS 124	Nova Descoberta (Raposo II) AB	51,193
CL 585	Tabuleiro Alto, Ass./ IP	42,08
DN 104		51,768
DN 141	Bom Lugar 2/Assu	57,287
DN 292	São Sebastião/ AB	51,689
DR 973		
A	Faz. Café Jardim/ Assu	33,63
DR 945	Areia Branca/Assu	32,511
DR 969	Lagoa do Mato/Assu	30,071
DT 415	Comunidade Bavieira/Assu	33,304
DR 973	Monte Alegre	37,34
DN 080	Comunidade Sta Clara/Assu	33,526
CL 580	Tirafogo/AB	55,64
DN 149	Copasfal/Assu	104,365
PS 0401	Campo de Aviação	110,03

DN 453	Fazenda Pau d'Árco/UP	44,583
	Comunidade de Lagoa	do
DT 435	Ferreiro/Assu	21,007
DR 950	Bela Vista do Piató/ Assu	25,256
UP 002		57,974
DN 296	São Francisco/ AB	113,426

Pluviômetro Ville de Paris - Destina-se a captação de chuva para posterior medição através de uma proveta graduada. É de uso tradicional e generalizado no Brasil. Possui área de captação de 400 cm², com reservatório para 5litros. Este modelo passou a ser substituído na região semi-árida do nordeste por um modelo similar denominado Paulistinha do DNAEE, de aplicação mais apropriada para esta, por evitar os efeitos da evaporação.

Registrador digital de chuvas-Datalog-Automático: Eletromecânico, com área de captação de 400cm2. Sistema de tipping bucket, no qual cada caçambada corresponde a 0,2mm de chuva. Confeccionado em aço inoxidável contendo bolha niveladora. Possui um sistema moderno de sifon que permite registrar também com precisão as chuvas intensas. Merecem ser destacados os seguintes procedimentos para a operacionalidade deste registrador digital:

Estes pluviômetros, automáticos, são alimentados por pilhas alcalinas de 1,5v, que segundo o fabricante possui uma autonomia acima de seis meses.

Os dados são armazenados na memória do aparelho, configurado para um intervalo de armazenagem de uma hora.

Por ocasião das visitas periódicas, o técnico, com um notebook, conecta-o ao aparelho através de um cabo serial, baixando os dados armazenados desde a última visita de manutenção realizada.

Para efetuar esta tarefa existe um programa, fornecido junto com o aparelho, que permite, além, de baixar os dados, a leitura do nível da bateria, escolher os intervalos de armazenagem (existe varias opções disponíveis), fazer uma leitura instantânea no momento da visita, configurar o nome da estação, consultar ou modificar a data e a hora.

Vale salientar que junto a estes pluviômetros automáticos foram instalados convencionais, com observadores que efetuam o trabalho de leitura de chuva nos convencionais, e zeladoria nos automáticos, isto vai permitir, no futuro, uma comparação entre os dados a serem obtidos com os dois aparelhos.

1.6.2 - Instalação Infiltrômetros

A definição da capacidade de infiltração da água da chuva no terreno não é tão simples. Uma limitação a este tipo de atividade, é quando se pretende estimar um valor médio que possa ser aplicado ao conjunto de um bacia, partindo de certo número de medidas. Isto porque os terrenos são em geral heterogêneos quanto a permeabilidade, e, também, porque nos solos argilosos a capacidade de infiltração varia com a taxa de saturação que por sua vez varia com o tempo. No caso dos terrenos do aquífero Açu, a litologia é predominantemente arenosa, cor cinza esbranquiçada, com granulometria fina a média, podendo ocorrer também terrenos arenosos argilosos de cor amarelada ou avermelhada.

A SUDENE (1967), na Região Nordeste do Brasil, achou mais recomendável que se fizesse a medição da percentagem do volume das precipitações, que efetivamente se infiltra no solo e alimenta as reservas subterrâneas. Houve a preocupação de instalar infiltrômetros a uma profundidade suficiente, função do nível piezométrico, e que a

estrutura do solo não fosse modificada. Dois tipos de infiltrômetros foram recomendados: "CAP BOM" e o de Gaveta. Na área de estudo foram implantados dois infiltrômetros tipo Gaveta. A descrição detalhada deste infiltrômetro é mostrada a seguir.

O infiltrômetro tipo Gaveta compõe-se de duas partes :

Parte superior: recebe as águas de infiltração e tem a forma de uma gaveta fechada lateralmente em 3 lados. Na face paralela ao lado aberto, coloca-se, no ponto mais baixo, um tubo perfurado revestido de tela fina, metálica ou de nylon que funciona como filtro para as águas que se escoam para o reservatório.

Parte inferior: constituída por um reservatório cilíndrico, cuja superfície de base é igual a 1/5 da superfície de recepção da gaveta a fim de ampliar a altura de chuva infiltrada (1mm de chuva infiltrada dará uma altura de 5mm no reservatório). Além disto existe um tubo em forma de L que é soldado na base do reservatório. A parte deste tubo que fica no interior do reservatório é perfurada. Por intermédio de ramo vertical do tubo em L, que ultrapassa de 50 cm a superfície do solo, faz-se a medida

Os infiltrômetros, na área de estudo, foram implantados nos sítios Olho d'Água do Mato e Sitio Nova Descoberta no período de 05 a 10 de junho de 2006 já no final do período chuvoso.

1.7 - Comportamento do fluxo das águas subterrâneas

O comportamento do fluxo subterrâneo foi avaliado com base nos seguintes mapas potenciométricos:

- Mapa potenciométrico obtido com base em cargas hidráulicas de Dezembro 2005 e utilizando base topográfica obtida com imagens de radar;
- Mapas potenciométricos representativos de Setembro 2005; Dezembro 2005; Maio 2006 e Março 2007, os quais foram obtidos utilizando dados de cargas hidráulicas levantadas no projeto e dados de nivelamento topográfico executado com auxílio de GPS Geodésico.

De um modo geral o comportamento observado em todos eles é similar e o efeito de recarga das águas subterrâneas se percebe em muitas situações, conforme apresentado a seguir.

Todos os mapas indicam fluxo subterrâneo regional dirigido para norte com inflexões para nordeste e noroeste em direção aos grandes vales, Açu, Rio do Carmo e Mulungú. A presença de divisores de águas subterrâneas é ressaltada nos extremos leste e oeste da área, pela influência dos vales dos rios Mulungú e Rio do Carmo.

As cargas potenciométricas obtidas com base em imagens de radar provavelmente não são absolutamente precisas, porém em termos de valores relativos os resultados permitem uma boa interpretação (Figura 8). A isto, se atribui a utilização de uma rede pontos de observação com uma densidade de pontos muito maior, enquanto nos demais casos a interpretação fica restrita a utilização de cargas hidráulicas de 52 pontos (poços), correspondentes a poços da rede de monitoramento.

Na elaboração dos mapas potenciométricos (figuras 17, 18, 19, 20 e 21) os pontos cujas cargas hidráulicas poderiam estar visivelmente afetados por bombeamentos não foram considerados.

Tomando por base os mapas potenciométricos, verifica-se que o fluxo subterrâneo nos pontos topográficamente mais elevados seguem o seu trajeto com gradientes elevados, da ordem de 1%, e, no domínio das planícies aluviais os gradientes

são baixos, variando de 0,1% a 0,08%. No quadro geral, há um domínio de gradientes da ordem de 0,35%. O efeito da recarga das águas subterrâneas se reflete na configuração das equipotencias, porem de forma não muito expressiva, deixando algumas situações dúvidas quanto a este comportamento.

Tomando por base a configuração tomada pelas curvas potenciométricas no período seco (Figuras 17 e Figura 18) e considerando ainda a curva potenciométrica de 20 m como referência, foi feita uma estimativa da descarga do fluxo subterrâneo natural.

A vazão total do fluxo subterrâneo "Q" gerada no domínio da área foi avaliada a partir da lei de Darcy mediante a aplicação da seguinte equação:

$$Q=TIL (4.11)$$

Onde:

T = Transmissividade (m2/s);

I = Gradiente hidráulico (adm);

L = Comprimento do fluxo ou largura do escoamento (km)

A transmissividade (T) media do aquífero, aplicada a aos setores oriental e Ocidental da área, foi tomada como correspondente ao valor médio nos correspondentes setores de 1.3x10-3 m²/s; o gradiente hidráulico (I) médio de maior ocorrência de 0.30% e frente de escoamento (L) com aproximadamente 90 km. A descarga do fluxo subterrâneo (Q) obtida foi de 0.35m^3 /s.

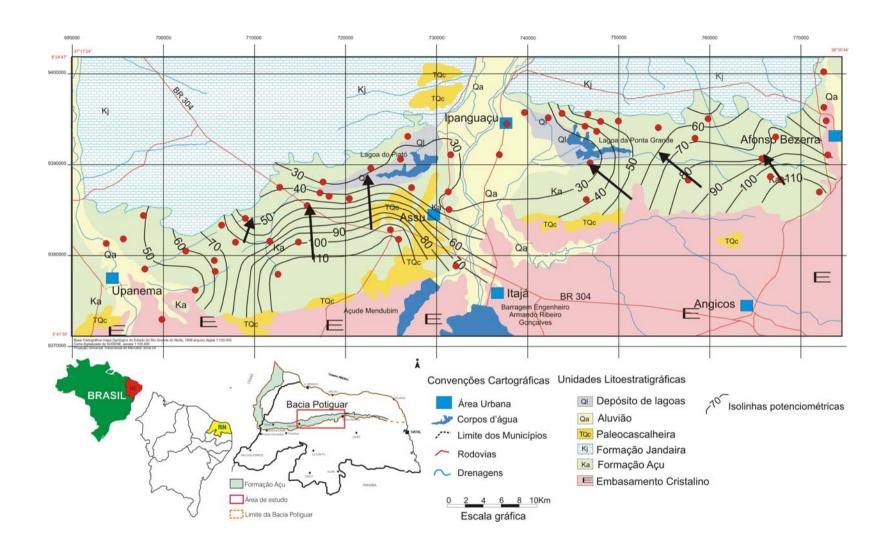


Figura 17 - Curvas isopotenciométricas do aqüífero Açu obtidas com base em imagens de Radar (Dezembro 2005)

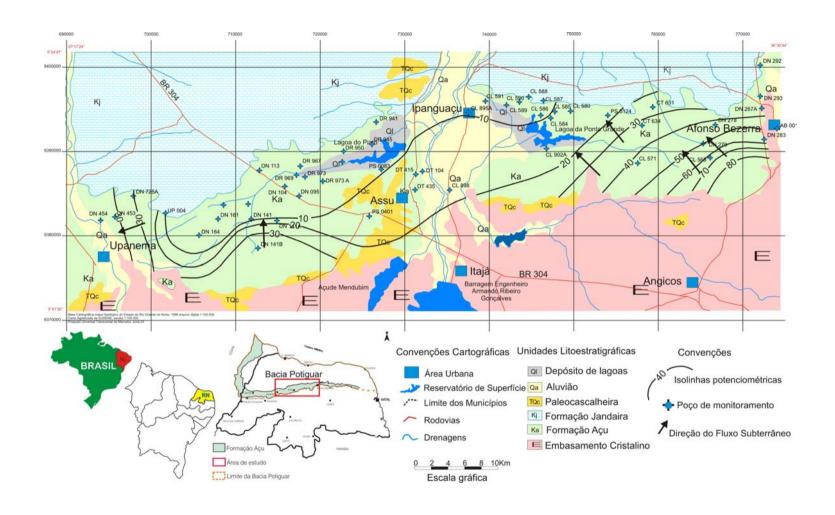


Figura 18 - Curvas isopotenciométricas do aqüífero Açu (Setembro 2005)

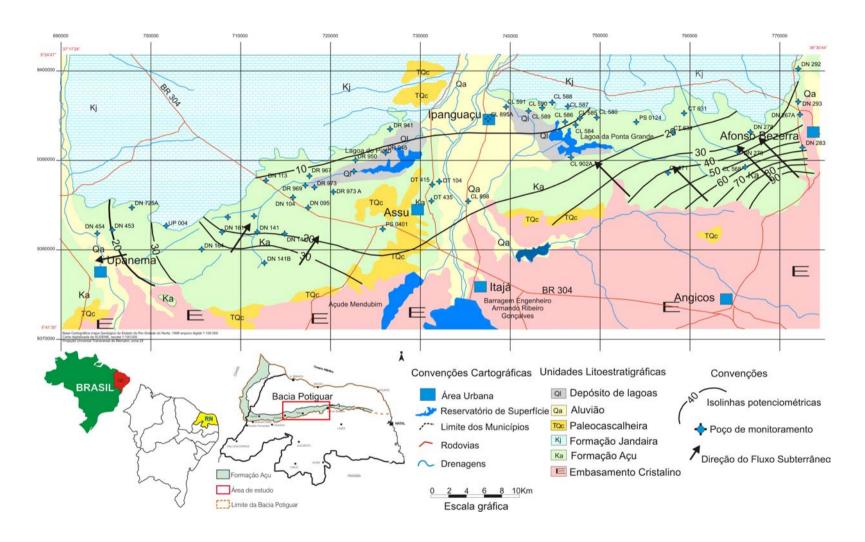


Figura 19 - Curvas isopotenciométricas do aqüífero Açu (Dez 2005)

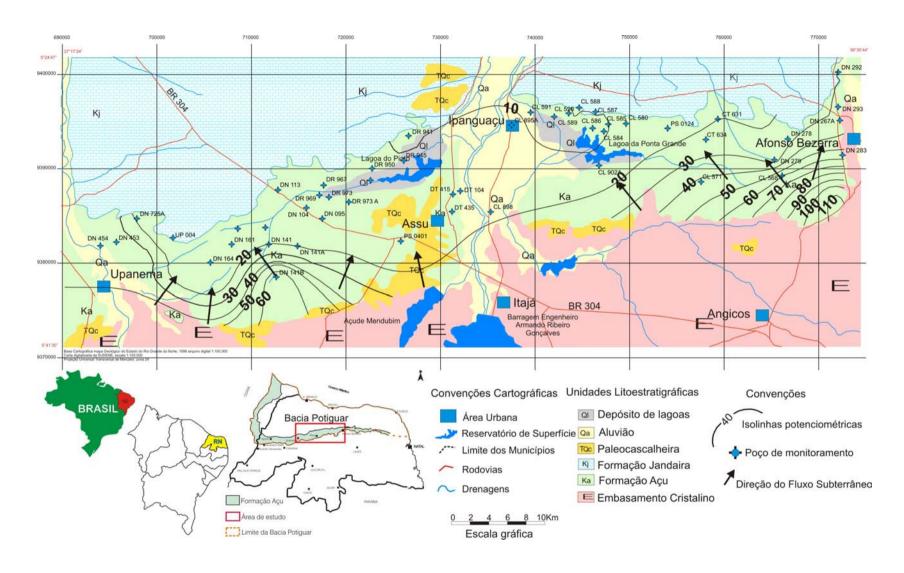


Figura 20 - Curvas isopotenciométricas do aqüífero Açu (Maio 2006)

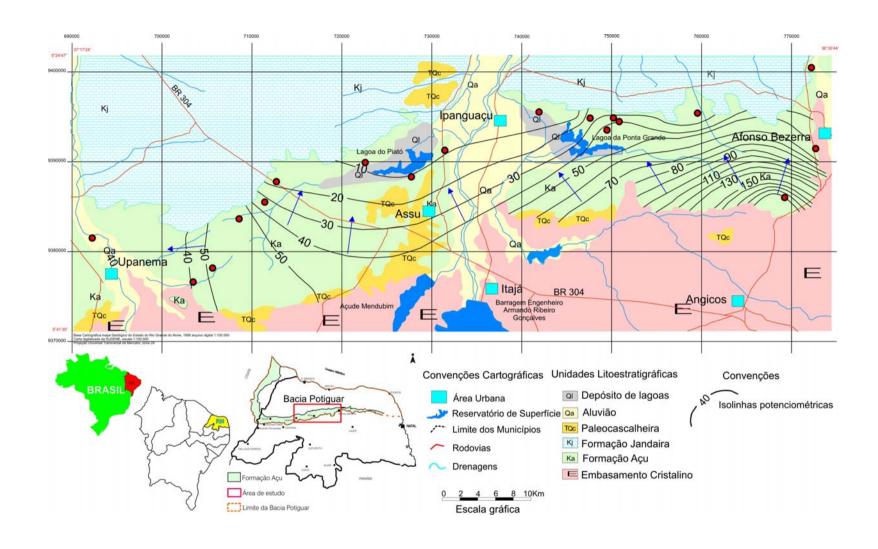


Figura 21 - Curvas isopotenciométricas do aqüífero Açu (Março 2007)

1.8 - Recarga das águas subterrâneas

A recarga de águas subterrâneas constitui um parâmetro de fundamental importância no conhecimento e manejo adequado dos aqüíferos. Em outras palavras não se pode explotar e garantir o uso sustentável de um aqüífero ou reserva de água subterrânea sem o conhecimento dos mecanismos e montante da recarga anual a que o mesmo é submetido. Este parâmetro é, entretanto, muito difícil de ser avaliado notadamente em regiões semi-áridas (Lerner *et. al.*, 1990; Simmers *et al.*, 1997; Lerner, 1997; Healy and Cook, 2002; Sanford, 2002 e Vries and Simmers, 2002). Estas condições se identificam perfeitamente com o que ocorre na região Upanema – Afonso Bezerra.

A recarga das águas subterrâneas na área de estudo se processa principalmente pelas infiltrações das águas de precipitação pluviométrica no terreno. Em menor escala, a recarga pode ocorrer pelo fluxo superficial dos rios que drenam a área, notadamente o rio Açu e ainda de forma pouco expressiva pela drenança vertical de águas através dos níveis areno–argilosos superior da Formação Açu, principalmente no domínio da planície aluvial do Açu. No presente trabalho a avaliação de recarga ficará restrita à infiltração direta das águas de chuva.

O processo de recarga, pelo que se concebe, é dificultado pelas condições de semi-aridez da área, que lhes atribui "déficit" hídrico expressivo; pelo caráter areno-argiloso da parte superior da Formação Açu, que mesmo assim, ainda confere ao aqüífero Açu o caráter de um sistema livre; e pela profundidade do nível das águas subterrâneas, que de um modo geral são profundas. Sabe-se que em situações similares, em termos da litologia do meio poroso insaturado, quanto maior a profundidade do nível das águas maior será o tempo de trânsito às águas subterrâneas, o que, por conseguinte, pode influenciar na recarga efetiva. A profundidade do nível das águas subterrâneas (níveis estáticos) na maior parte da área chega a ser elevada, de 20 a 60 m no setor Ocidental da área e 10 a 40 m, no setor Oriental. Os níveis da água são mais rasos próximos ao cristalino e no domínio das planícies aluviais, atingindo valores inferiores a 10 m..

Existem várias metodologias para avaliar recarga de águas subterrâneas: tanto efetuando medições de fluxo da água no meio poroso insaturado como no meio poroso saturado. No presente trabalhos, na tentativa de realizar estimativas de recarga, foram aplicadas diferentes metodologias, que incluiu balaço hidroclimatológico e métodos que se aplicam ao meio poroso saturado, tais como Lei de Darcy; Variação sazonal do nível potenciométrico e Balanço de cloreto.

1.8.1 - Balanço hídrico

O método do balanço hidroclimatológico é um procedimento elementar que pode fornecer uma primeira indicação potencial sobre o montante da recarga das águas subterrâneas. A equação geral do balanço hídrico estabelece que:

$$P = E + R + I \tag{4.12}$$

Onde:

P = precipitação (mm);

E = evapotranspiração real (mm);

R =escoamento superficial (mm)

I = infiltração (mm).

O excedente anual de água no solo de precipitação (R + I) pode corresponder à lâmina d'água infiltrada no terreno (CASTANY, 1975 e FETTER, 1994).

Os balanços hídricos efetuados no domínio da área de estudo considerando os valores mensais não mostraram a ocorrência de excedentes de água, indicando por conseguinte que os respectivos excedentes são baixos e, por conseguinte, as lâminas de água infiltradas. Convém ressaltar que este procedimento pode fornecer apenas uma primeira indicação da ordem de grandeza sobre a recarga potencial das águas subterrâneas.

1.8.2 - Lei de Darcy

Desde que o sistema aquífero Açu é, em geral, do tipo livre, as potencialidades do mesmo estão condicionadas à infiltração direta das águas de chuva, cujo volume efetivamente infiltrado restitui as reservas de águas subterrâneas que se perdem nos escoamentos naturais e explotação por poços e, também, alimentam o fluxo subterrâneo. Por definição, em condições de equilíbrio, sem considerar a explotação dos poços, a infiltração eficaz é equivalente à vazão do fluxo subterrâneo natural anual. A descarga do fluxo subterrâneo natural obtido foi avaliada em 0,35 m³/s (item 4), o que equivale a 10,5 x 10⁶ m³/ano, que em termos de lâmina de água corresponde a 9,5 mm.

A vazão do fluxo subterrâneo foi avaliada para uma condição no qual o aqüífero estava sendo explotado, e assim sendo, o montante correspondente a explotação anual por poços deve ser considerado na recarga anual, o qual corresponde a 3,0 x 10^6 m³/ano (equivalente a 2,7 mm/anuais). A recarga de água subterrânea, neste caso, será o somatório da vazão de fluxo obtida com o correspondente volume anual explotado, ou seja, 13.5×10^6 m³/ano ou aproximadamente 12,0, mm de lâmina de água infiltrada. A taxa de infiltração, portanto, é de 2,0%, tomando por base a precipitação pluviométrica média de 595,00 mm/ano.

1.8.3 - Variação sazonal do nível potenciométrico

O método da flutuação do nível d'água é baseado na premissa de que a elevação do nível d'água subterrânea em aquíferos livres é devido a água de recarga que chega ao aquífero. A recarga é calculada pela seguinte equação:

$$R = Sy(dh/dt) = Sy(\Delta h/\Delta t)$$
(4.13)

Onde:

Sy = porosidade específica (adm);

h = variação da altura do nível d'água (mm),

t = tempo(s).

O método da flutuação de nível d'água tem sido usado em vários estudos (RASMUSSEN and ANDREASEN 1959; GERHARD 1986; HAL and RISSER 1993) e descrita em detalhe por HEALY; COOK (2002).

A avaliação da recarga das águas subterrâneas a partir das variações sazonais do nível potenciométrico pode se constituir numa ferramenta bastante eficaz. A dificuldade, entretanto, existe e em geral é atribuída a falta de um conhecimento adequado da porosidade específica do material aqüífero sujeito a variação sazonal. Considerando que a vazão do fluxo subterrâneo natural total foi avaliada em 13,5 x 10⁶ m³/ano, as reservas reguladoras e a infiltração eficaz, mantida as simplificações de equilíbrio apresentadas são teoricamente equivalentes a este volume. A porosidade

específica dos estratos sedimentares sujeitos às flutuações sazonais do nível das águas, desta feita, já pode ser estimada pela equação:

$$\mu = \frac{Q}{AdH} \tag{4.14}$$

onde:

 μ = Porosidade específica (adimensional);

 $Q = vazão do fluxo subterrâneo natural (13,5 x <math>10^6 m^3/ano)$;

 $A = \text{área} (1100 \text{ km}^2);$

dh = variação de carga entre os níveis máximos e mínimos (m)

A tabela 10 contém os resultados das variações de carga observadas em no período chuvoso (Maio 2006) e período seco (Dezembro 2005) Está claro que as observações efetuadas não são suficientes para uma caracterização satisfatória das variações sazonais dos níveis potenciométricos, notadamente lembrando que se trata de uma área bastante extensa e um número de observações muito pequeno, entretanto, são tecidas as considerações que se julgam pertinentes.

Alguns pontos observados indicaram uma variação negativa. Isto se traduz em mostrar que os níveis de água ao final da estação seca estão mais rasos que ao final da época chuvosa, refletindo com isto uma defasagem bastante expressiva entre a ocorrência das chuvas e a recarga efetiva das águas subterrâneas, o que pode estar evidenciando um caráter de semi-confinamento do aqüífero Açu. Na situação mais geral, a diferença de carga é positiva, refletindo uma recarga mais rápida ou um condicionamento mais livre para o sistema aqüífero.

Vale ressaltar, entretanto, que estas informações são bastante aproximadas, já que alguns poços observados estavam afetados por bombeamentos, deles próprios ou de poços vizinhos. Para efeito de interpretação, decidiu-se fazer uma seleção dos níveis estáticos mais representativos, ou seja, sem interferência de bombeamentos (Tabela 9). As cargas hidráulicas consideradas mais representativas neste contexto, variaram de 0,11 a 2,04 m, com média de 0,58 m.

Nestas condições, continuando a estimativa da porosidade efetiva (μ) , obteve-se para este parâmetro um valor de 2.1%, que é um valor aceitável para as condições litoestruturais do aquífero.

1.8.4 - Balanço de cloreto

A recarga das águas subterrâneas pode ser avaliada de forma aproximada pelo método do balanço do íon cloreto (Figura 22), o qual pode ser estabelecido pela equação:

$$ICi = PCp (4.15)$$

ou

$$I = P \frac{Cp}{Ci} \tag{4.16}$$

onde:

I = lâmina de água infiltrada no terreno (m);

Ci =concentração de cloreto nas águas subterrâneas (mg/l);

P = precipitação pluviométrica (mm);

Cp = concentração de cloreto na água de chuva (mg/l).

Tabela 10 - Variações de cargas potenciométricas em poços do aqüífero Açu, obtidos ao final das estações seca (Dezembro 2005) e chuvosa (maio 2006).

				h (maio	
Ponto	X	y	h (dez. 2005)	2006)	dh
DT-104	731396	9386584	25,538	26,008	0,47
DN095	717295	9383902	11,02	11,29	0,27
DR945	726100	9390269	9,381	10,061	0,68
DR950	722665	9389278	9,796	10,716	0,92
DR973	718077	9386173	13,16	13,61	0,45
DR967	717495	9387650	16,9	17,03	0,13
DR969	717151	9386496	14,291	14,411	0,12
DR973A	720276	9385853	10,11	10,39	0,28
DN113	712599	9387078	18,253	18,313	0,06
DT415	731396	9386584	13,624	13,734	0,11
DT435	731328	9384577	16,057	16,757	0,7
DN141B	712413	9377518	67,044	67,164	0,12
DN293	773034	9396053	32,155	32,445	0,29
CT634	758582	9392539	21,439	21,609	0,17
PS0124	754682	9393745	13,653	14,033	0,38
CL586-	748108	9394263	9,304	9,534	0,23
CL585	747753	9393381	9,29	9,42	0,13
CL584	746515	9393790	8,938	9,178	0,24
CL898	735520	9384660	16,243	16,583	0,34
CL895A	737801	9394124	11,334	12,154	0,82
CL587	746820	9395420	10,167	10,297	0,13
CL589	743854	9395396	9,915	10,455	0,54
UP004	701200	9381600	51,624	51,854	0,23

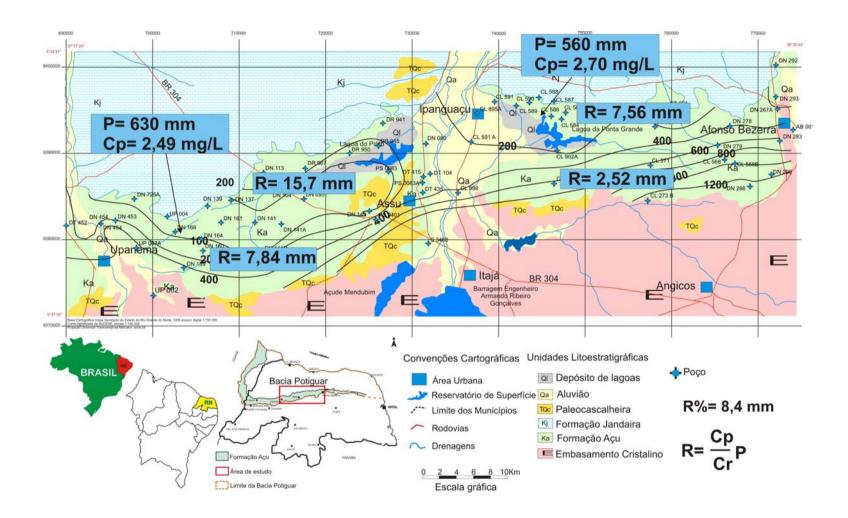


Figura 22 - Recarga das águas subterrâneas pelo Método do Balanço de Cloreto.

Esse método baseia-se no fato de que o íon cloreto é conservativo e não sofre modificações durante a infiltração. Os resultados do balanço do íon cloreto são bons em zonas áridas e zonas arenosas, porém não tanto em zonas úmidas ou com elevado escoamento superficial (CUSTÓDIO, 1973 e CUSTÓDIO & LLAMAS, 2001).

Assim sendo, para aplicação da equação 4.16 são admitidas as seguintes condições:

- a) Região semi-árida;
- b) Cloreto originado das chuvas;
- c) Escoamento superficial desprezível.

No setor Oriental da área as precipitações pluviométricas são da ordem de 560 mm e conteúdo de cloreto nas águas de chuva é da ordem de 2,70 mg/L, em média. Tomando por base que as concentrações de cloreto nas águas de recarga são de 200 mg/L na zona Norte contígua aos calcários e de 600 mg/L, na zona Sul, na direção das rochas cristalinas, resulta valores de recarga de 7,56 mm e 2,52 mm, que equivale a recarga de 1,35% e 0,45%, respectivamente.

No setor Ocidental da área as precipitações são da ordem de 630 mm e o conteúdo de cloreto nas águas de precipitação é de 2,49 mg/L. A concentração de cloreto na água de recarga, foi tomada como equivalente a 100 mg/L na zona Norte, adjacente aos calcários, e, de 200 mg/L, na zona sul próximo ao cristalino, resultando em valores de recarga de 15,7 mm e 7,84 mm, correspondente a taxas de recarga de 2,5% e 1,24%, respectivamente.

Esses resultados mostram que na faixa norte da área adjacente aos calcários, as taxas de recarga variam de 1,35% a 2,5%, e, na faixa sul, adjacente aos calcários, as taxas de recarga são geral inferiores, variando de 0,45% a 1,24%. A média geral de recarga no domínio da área foi tomada como equivalente a esses valores, ou seja, é da ordem de grandeza de 1,4% de conformidade com o método do balanço de cloretos. Considerando a precipitação pluviométrica média de 595 mm, a lâmina de água infiltrada é de 8,33 mm e o volume de água infiltrado de 9,16x10⁶ m³/ano.

1.8.5 - Discussão geral quanto aos valores de recarga obtidos pela aplicação dos diferentes métodos.

A tabela 11 apresenta um resumo das lâminas de água infiltradas, os volumes anuais infiltrados e as respectivas taxas de infiltração obtidas pela aplicação da lei de Darcy e pelo método do balanço de cloretos. A seguir é feita uma apreciação sobre os resultados 0btidos.

Tabela 11 - Recarga das águas subterrâneas

	Balanço	Lei de	Variação	de Balanço
	hídrico*	Darcy	carga**	de cloreto
Lâmina de água infiltrada (mm)		12,0		8,3
Taxa de infiltração (%)		2,0		1,4
Volume de água infiltrado (x10 ⁶ m³/ano)		13,5		9,1

^{*} O balanço mensal realizado não forneceu excedente de água, impedindo que se fizesse estimativa da recarga potencial.

^{**} Recarga não foi avaliada devido ao não conhecimento da porosidade efetiva; Este parâmetro, entretanto, foi avaliado tomando por base o conhecimento da vazão do fluxo subterrâneo natural

A lei de Darcy foi aplicada na avaliação de recarga tomando por base valores de transmissividade obtidos de poços parcialmente penetrantes; estes parâmetros, portanto, é bem possível que estejam subestimados e, por conseguinte a aplicação da lei de Darcy poderia ter fornecido um valor de recarga superior ao obtido, ou seja, de 12,0 mm.

O método do balanço de cloreto tem sido aplicado bastante em regiões semi-aridas, conforme já assinalado anteriormente; a aplicação do método pode fornecer resultados mais baixos que os reais, caso exista um percentual de cloreto nas águas subterrâneas que não tenha sido originado das chuvas. Uma outra dificuldade apontada é quanto a determinação de cloreto na água de chuva devido as mesmas serem bastante diluídas, o que pode facilitar erros de análise. Como as concentrações de cloreto são muito baixas, qualquer variação pode alterar consideravelmente nas avaliações de recarga. Também, a coleta da amostra de água de chuva tem que ser feita com bastante cuidado, para que não haja contaminação da mesma.

1.9 - Modelagem Numérica do aqüífero Açu-Jandaira

Autor: Dr. João Manoel Filho

1.9.1 – Introdução

O mapa geológico da área de estudo, cobre uma superfície de 2.816 km² na borda sul da Bacia Potiguar entre as cidades de Afonso Bezerra e Upanema. Dessa área total aproximadamente 30% (840 km²) se encontram no domínio dos terrenos cristalinos, aqui considerados como limite impermeável. Os 70% restantes da área se dividem entre 1.124 km² (40%) de arenitos aflorantes da Formação Açu, em repouso sobre o embasamento cristalino e 30% de arenitos Açu (852 km²) sobrepostos por calcários da Formação Jandaíra. Recobrindo essas Formações sedimentares, na parte central da área, ocorrem 158 km² de aluviões na planície do rio Açu, incluídas na modelagem como uma zona de condutividade hidráulica mais alta da unidade Açu.

1.9.2 – Modelo Conceitual

Na modelagem numérica dessa área (MODFLOW 2000), adotou-se uma malha de 88 km de comprimento por 32 km de largura formando uma cobertura de 2.816 células de 1 km².

A presente modelagem é focada na área de afloramento do arenito Açu, única unidade a ter sido objeto dos levantamentos de campo e na qual o aqüífero se caracteriza como do tipo livre. Sob os calcários, todavia, admite-se que esses arenitos se comportem como aquífero confinado. Embora nenhuma informação comprovando esse comportamento tenha sido especificamente levantada na área, os estudos anteriores realizados na Bacia Potiguar (Manoel Filho, 1971; Manoel Filho et al. 2003; Feitosa & Demétrio 1997 dentre outros) adotam essa hipótese. Essa descontinuidade de comportamento do aquífero e das camadas, cria dificuldades para a modelagem MODFLOW, que geralmente se baseia numa malha 3D de camadas contínuas.

Diante dessa dificuldade o modelo conceitual adotado foi o MODFLOW 2000 de uma camada contínua cobrindo toda a área sedimentar representando um aquífero de tipo conversível (de livre para eventualmente confinado) contendo duas unidades hidrogeológicas de fluxo: unidade 1 correspondente ao calcário Jandaíra e unidade 2, correspondente ao arenito Açu. A ilustração da estratigrafia desse modelo conceitual é feita através das seções geológicas mostradas na figura 23 e do bloco diagrama 3D apresentado nas figuras 24 a 28. A tabela 12 contém os dados de topo e espessura das referidas unidades.

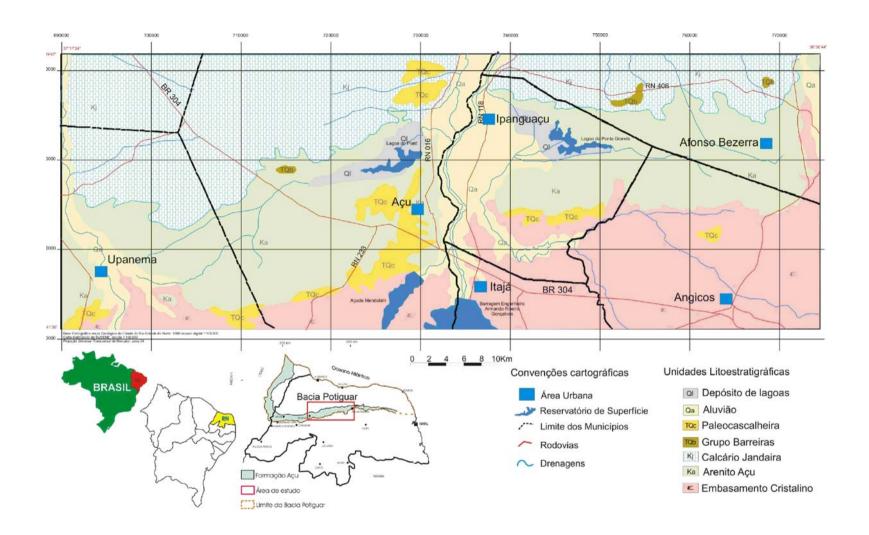


Figura 23 – Mapa geológico da área de estudo.

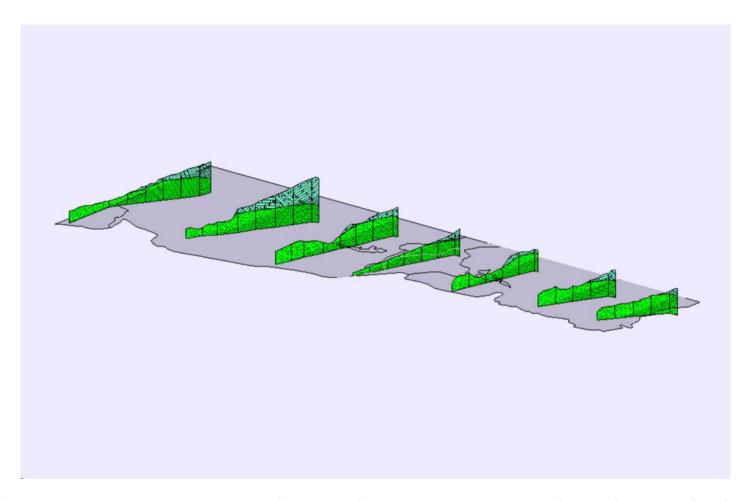


Figura 24 – Seções transversais esquemáticas ilustrativas do modelo conceitual de uma camada com duas unidades hidrogeológicas de fluxo: unidade superior (calcário Jandaíra) recobrindo parcialmente a unidade inferior (Arenito Açu).

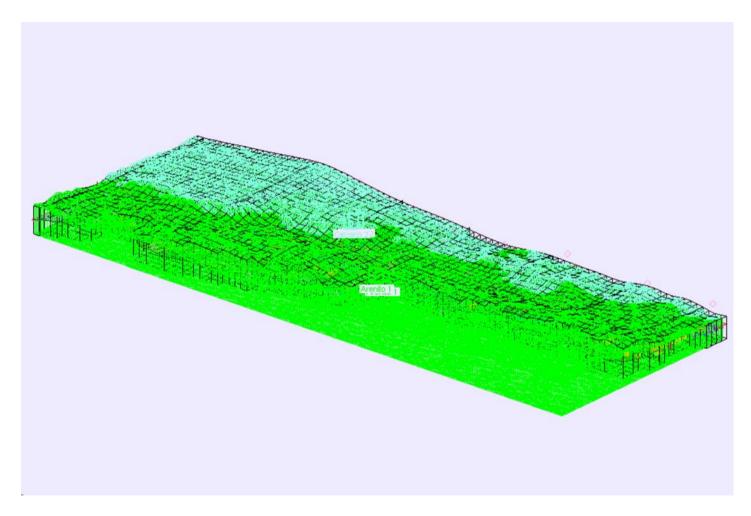


Figura 25 – Modelo sólido – Bloco 3D da região modelada com uma só camada e duas unidades hidrogeológicas: calcário Jandaíra na parte superior e arenito Açu na parte inferior.

Tabela 12 – Dados de topo e espessura das unidades hidrogeológicas do modelo estratigráfico.

Ponto	UTM- E	UTM- N	landaira		Unidade Açu	
	E	11	top_UH1	Esp1	top_UH2	Esp2
A_03	695987	9380480	65	0	65	70
A_04	695975	9384263	110	0	110	150
A_05	695954	9388063	105	40	65	143
A_06	695954	9391862	93	64	29	144
A_07	695975	9395622	87	95	-8	144
A_08	695995	9399422	85	128	-43	145
A_09	695890	9403190	68	164	-96	84
B_02	707970	9374040	142	0	142	72
B_03	707740	9377780	96	0	96	61
B_04	707740	9380950	93	0	93	96
B_05	707970	9384920	138	34	104	142
B_06	707740	9389000	117	49	68	142
B_07	707970	9392960	129	97	32	142
B_08	707739	9397041	131	136	-5	145
B_09	707850	9400890	142	186	-44	138
B_10	708080	9404180	132	210	-78	102
C_02	722240	9375970	114	0	114	98
C_03	722242	9379252	122	0	122	125
C_04	722130	9382200	100	0	100	118
C_05	722240	9386050	42	0	42	82
C_06	722130	9389790	34	0	34	94
C_07	722360	9392960	83	7	76	156
C_08	722130	9396810	82	28	54	154
C_09	722240	9400890	80	47	33	153
C_10	722130	9404070	80	74	6	149
D_02	732941	9379692	27	0	27	25

Ponto	UTM-	UTM- N Unidade Jandaíra Unid				Jandaíra Unidade Açu		çu
	E	IN	top_UH1	Esp1	top_UH2	Esp2		
D_03	733010	9383100	26	0	26	46		
D_04	733010	9386960	25	0	25	68		
D_05	732941	9390465	22	0	22	88		
D_06	732995	9394038	20	0	20	110		
D_07	732995	9397557	18	11	7	120		
D_08	733049	9401129	29	45	-16	121		
D_09	733186	9404759	50	90	-40	120		
E_02	747340	9383485	68	0	68	66		
E_03	747295	9387109	92	0	92	107		
E_04	747295	9390642	29	0	29	63		
E_05	747295	9394175	28	0	28	82		
E_06	747205	9397798	93	29	64	136		
E_07	747159	9401150	70	24	46	138		
E_08	747146	9404719	51	23	28	138		
F_02	760723	9385796	102	0	102	88		
F_03	760770	9389450	117	0	117	133		
F_04	760770	9393153	67	0	67	115		
F_05	760818	9396855	60	14	46	126		
F_06	760960	9400415	63	49	14	124		
F_07	760880	9404290	63	79	-16	126		
G_02	771807	9385156	114	0	114	62		
G_03	771845	9388896	110	0	110	97		
G_04	771845	9392788	84	0	84	110		
G_05	771883	9396490	80	0	80	146		
G_06	771939	9400275	58	18	40	145		
G_07	771980	9404070	60	58	2	146		

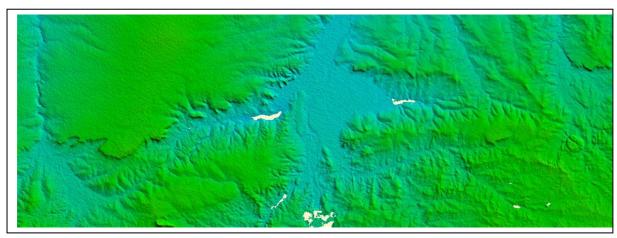


Figura 26 – Imagem SRTM da área de estudo na borda sul da Bacia Potiguar entre as cidades de Afonso Bezerra e Upanema.

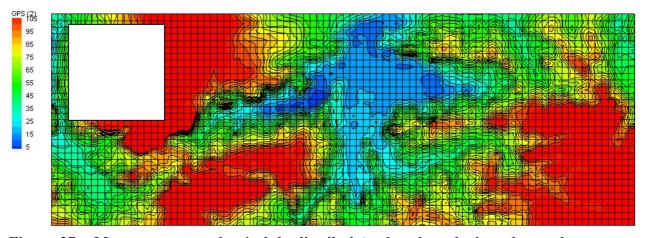


Figura 27 — Mapa em curvas de nível da distribuição do relevo da área de estudo entre as cidades de Afonso Bezerra a leste e Upanema a oeste, com cotas corrigicas usando a relação de Demetrio et al. 2006.

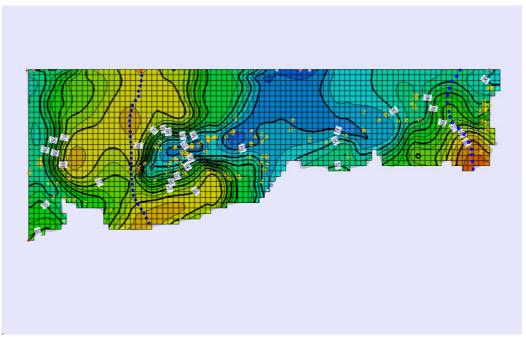


Figura 28 — Cargas iniciais inferidas a partir do mapa topográfico da área de estudo entre Afonso Bezerra e Upanema, com divisores de água subterrânea indicados por pontos azuis, a leste e a oeste da região.

1.9.2.4- Condutância Hidráulica

Seguindo a metodologia proposta por McDonald & Harbaugh 1988, a condutância hidráulica em diferentes condições de contorno é avaliada da forma descrita a seguir:

1.9.2.4.1 Condutância das Lagoas:

As lagoas foram consideradas como limites de carga geral e a condutância hidráulica foi deduzida a partir do fluxo subterrâneo, usando os parâmetros e equações indicadas na tabela.13:

Tabela 13 - Propriedades hidráulicas do aqüífero, fluxo e condutância hidráulica das

Lagoas na zona da planície aluvial.

Parâmetro	Simbolo	Unidade	Valor
Gradiente hidráulico	i	m/km	2,8
Espessura do aqüífero	b	m	53
Condutividade hidráulica	K	m/d	4
Transmissividade mediana	T	m^2/d	211
Perímetro Lagoa Piató	L	m	2230
Perímetro Lagoa Ponta Grande	L	m	2960
Área Lagoa Piató	LW	m^2	$8,12x10^6$
Área Lagoa Ponta Grande	LW	m^2	$8,21x10^6$
Fluxo subterrâneo para Piató	Q=TiL	m^3/d	1317
Fluxo subterrâneo para Ponta Grande	Q=TiL	m^3/d	1748
Condutância Piató	Q/LW	m/d	$1,62 \times 10^{-4}$
Condutância Ponta Grande	Q/LW	m/d	$2,13x10^{-4}$

1.9.2.4.2- Condutância do rio Açu

O rio Açu, perenizado pelo Açude Armando Ribeiro Gonçalves, é influente sobre o sistema aqüífero através das aluviões. Os sedimentos aluviais em quase todos os vales são representados por materiais arenosos com coeficientes de filtração ou velocidades aparentes de infiltração (m/dia), que guardam uma boa correlação com a condutividade hidráulica horizontal K_h do aqüífero (Bize *et al.* 1972, Bourguet, 1970 Bourguet *et al.* 1972, *Apud* Manoel Filho & Silva, 1999). Para uma condutividade hidráulica de 8,64 m/d a velocidade mínima de filtração esperada é de 0,1 m/d. Com base nessa referência foram definidos na tabela 14 os parâmetros e fórmulas para a estimativa do fluxo induzido do rio pelo aqüífero e sua respectiva condutância.

Tabela 14 – Parâmetros e fórmulas para o cálculo da condutância hidráulica do rio Açu

Parâmetro	Simbolo	Unidade	Valor
Condutividade hidráulica	K	m/d	4
Taxa de infiltração	I	m/d	0.04
Extensão do rio	L	m	25120
Largura da seção molhada do rio	W	m	40
Relação	W/M	adimensional	2/3
Fluxo induzido do rio (esperado)	Q= ILW	m^3/d	40192
Condutância hidráulica	C=KLW/M	m^2/d	66986
Condutância hidráulica unitária	C=KW/M	m/d	2,67

1.9.2.4.3 – Condutância do Rio do Carmo (dreno)

O rio do Carmo não é perene e foi simulado como dreno. Para estimar a sua condutância hidráulica tomou-se como base o valor médio das lâminas anuais restituídas no domínio do calcário Jandaíra (5,8 mm) e do arenito Açu (9 mm) (Manoel Filho et al. 2003 op.cit).

O valor médio ponderado é de 7 mm sobre a área de 567 km² drenada pelo rio do Carmo e ocupada pelos arenitos Açu (210 km² ou 37%) e pelos calcários Jandaíra (sobre 357 km² ou 63%) no setor oeste da área de estudo (figura 6). Os parâmetros e a fórmula usada para a estimativa da condutância, bem como o valor final encontrado, podem ser vistos na tabela 15.

Tabela 15 – Parâmetros e fórmula para o cálculo da condutância hidráulica do dreno

Parâmetro	Simbolo	Unidade	Valor
Área de drenagem	A	Km ²	576
Descarga média restituída por km ²	Qu	m^3/km^2 . ano	7000
Descarga total diária	Q	m^3/d	11046
Extensão do rio	L	m	31996
Largura do dreno	W	m	1
Condutância do dreno	C=Q/LW	m/d	0,345

1.9.2.5 – Fontes /Sumidouros

1.9.2.5.1 - Recarga

Os valores de recarga usados no modelo foram de 9 mm/ano (2,47E-5 m/d) sobre a área de 1124 km² de afloramento do arenito Açu e de 5,8 mm/ano (1,59E-5 m/d) sobre a área de afloramento do calcário Jandaíra (852 km²). Sobre a superfície das Lagoas (16,33 km²) foi considerada uma recarga de 500 mm/ano (1,37E-3 m/d), correspondente à precipitação média na área.

1.9.2.5.2 – Poços Produtores

Foram introduzidos no modelo 156 poços com uma produção total de 16279 m³/d.

1.9.5.3 – Evapotranspiração

Para as Lagoas, foi admitida uma perda por evapotranspiração de 1800 mm/ano, (4,93E-3 m/d) sobre uma superfície de 16,33 km.

1.9.2.6- Parâmetros hidráulicos

Como parâmetros hidráulicos representativos do sistema aqüífero foram considerados a condutividade hidráulica mediana de 4 m/d e uma porosidade efetiva 0,08. Convém ressaltar que a estatística descritiva da condutividade hidráulica (tabela 16) revela uma distribuição extremamente heterogênea com elevada assimetria e coeficiente de variação $CV = 25/11,12 \cong 225\%$.

O intervalo de variação vai de um mínimo de 0,12 m/d a um máximo de 107 m/d. O valor médio é de 11,12 m/d, porém diante da elevada assimetria da distribuição de frequência (3,98) o valor mediano de 3,97 é certamente o que melhor se aproxima do valor central.

O intervalo de confiança de 95% da média (11,12 \pm 12,85) é bastante sugestivo da elevada dispersão dos valores.

Desvio Erro **Mediana** Assimetria Mínimo Máximo Média padrão válidos padrão 17 11,12 3,97 25,00 3,98 0,12 107,14 6,06

Tabela 16 – Estatística descritiva da condutividade hidráulica

1.9.3 - Resultados do Modelo

Os resultados da modelagem numérica são considerados satisfatórios na medida em que possibilitam um diagnóstico bastante coerente das condições hidrogeológicas reinantes na área de estudo, como é mostrado a seguir.

1.9.3.1 – Balanço hidrogeológico

O balanço hídrico avaliado através do modelo numérico (tabela 17) apresenta uma diferença de apenas 0,2% entre as entradas e saídas totais do sistema modelado. Segundo esse balanço a recarga média difusa proveniente das chuvas na região é de 54924 m³/d, equivalente a uma lâmina anual de 10 mm.

Tabela.17 – Balanço hidrogeológico do sistema aqüífero gerado pelo MODFLOW

, , ,	Entrada	Saída
Fontes/Sumidouros		
Armazenamento		
Cargas constantes	8981,3	-71646,3
Drenos	0,0	-6764,5
Cargas Gerais	3988,4	-32,1
Rios	548087,9	-506322,8
Poços	0,0	-16279,0
Recarga	119064,3	0,0
Evapotranspiração	0,0	-80531,5
Total Source/Sink	680121,8	-681576,2
	Entrada -	
	saída	Diferença %
Total		
Fontes/sumidouros	-1454,4	-0,2
Recarga Rios	41765,1	
Recarga Lagoas	22372,1	
Recarga difusa	54927,1	
Fluxo para as lagoas	58159.4	

Existe ainda uma recarga fluvial proveniente do rio Açu (perenizado pelo Açude Armando Ribeiro Gonçalves) igual a 41765,1 m^3/d (0,483 m^3/s). Na entrada da área do modelo a descarga média do rio Açu é de 548087.9 m^3/d (6,3 m^3/s) contra uma descarga de 506322,8 m^3/d (5,9 m^3/s) na saída.

As vazões extraídas através de 156 poços tubulares somam $16279 \text{ m}^3/\text{d} (0,188 \text{ m}^3/\text{s})$ enquanto que o fluxo subterrâneo convergente para as lagoas e que se perde por evaporação através do espelho líquido é de $58159,4 \text{ m}^3/\text{d} (0,673 \text{ m}^3/\text{s})$.

1.9.3.2 - Distribuição das cargas hidráulicas

A distribuição das cargas hidráulicas e as direções do fluxo subterrâneo avaliadas pelo modelo são apresentadas na figura 29. De modo geral o fluxo se realiza com gradientes hidráulicos suaves, variáveis de 0,5 a 1,5 m/km. A partir do setor leste as águas subterrâneas escoam para oeste em direção ao vale do Açu e à Lagoa da Ponta Grande. No setor oeste, a partir da zona de montante na borda da bacia, o escoamento geral se realiza nas direções NW, N e, sobretudo, NE, em direção ao vale do Açu com uma convergência significativa para a Lagoa do Piató.

1.9.3.3 - Calibração

Como se pode observar a superfície potenciométrica do mapa da figura 29, resultante da modelagem numérica, é bastante diferente da superfície potenciométrica levantada em campo durante as campanhas de medições realizadas em setembro de 2006 e março de 2007 (figura 30). Admite-se que a dificuldade dessa calibração (ou seja, do modelo numérico reproduzir essa última superfície), resulta principalmente dos efeitos das extrações pontuais

dos poços que exige uma malha muito mais refinada do que a permitida pelas células de 1 km² definidas na modelagem.

De fato, usando os parâmetros do modelo numérico (K=4m/d e Sy=0,08) foi possível obter através de método analítico, uma superfície potenciométrica (figura 31) bastante mais próxima da que foi observada em campo (figura 30).

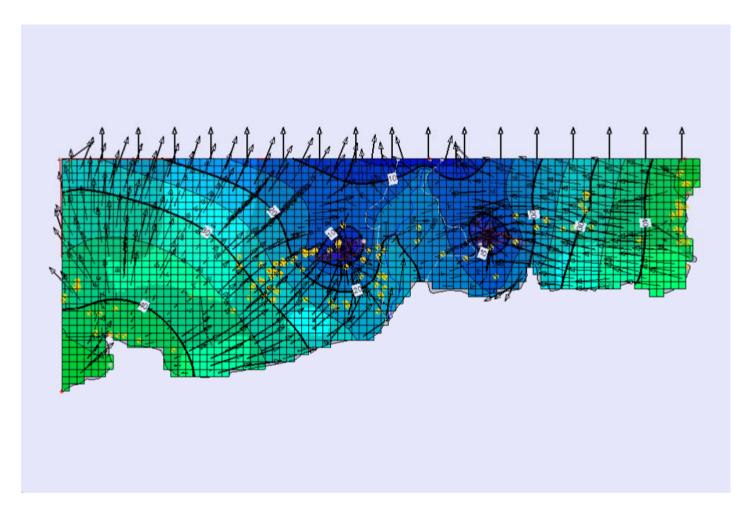


Figura 29 – Distribuição das cargas potenciométricas e direções de fluxo produzidas pelo modelo MODFLOW.

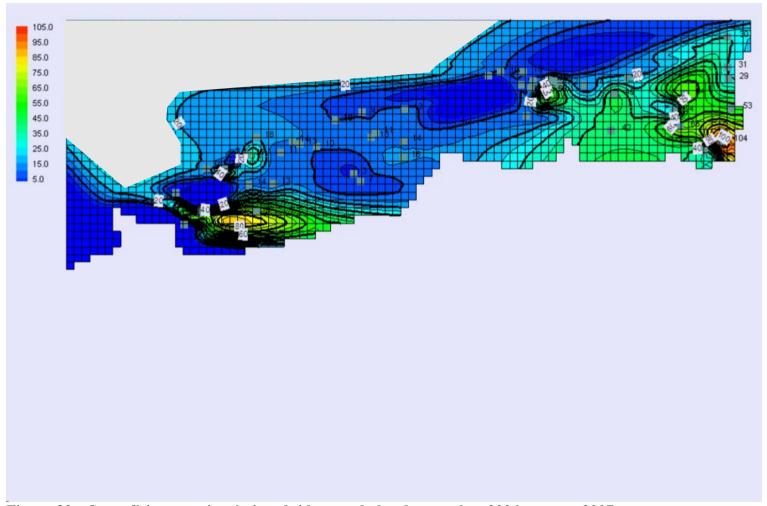


Figura 30 – Superfície potenciométrica obtida com dados de setembro 2006 e março 2007.

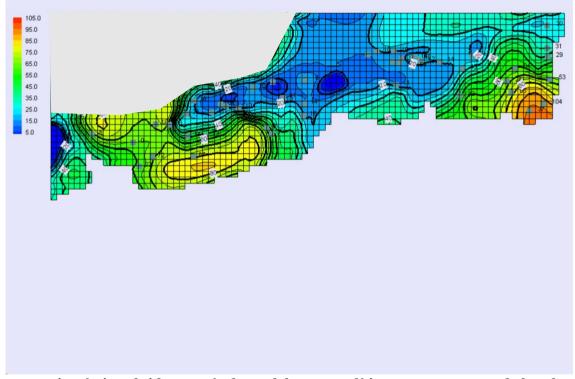


Figura 31 – Mapa potenciométrico obtido através de modelagem analítica para um tempo de bombeamento de 50 anos

1.10 - Reservas e recursos explotáveis

As "Reservas" de águas subterrâneas correspondem ao volume de água armazenado na camada aqüífera. As reservas estão, portanto, condicionadas fundamentalmente a estrutura hidrogeológica, litologia e as dimensões do aqüífero, as quais são determinadas com base em mapeamentos geológicos, perfis de poços e sondagens, e, prospecção geofísica, além de testes de aquífero.

Entende-se como "recursos explotáveis" ao volume de água que se pode extrair de um aqüífero para fins de suprimento sem que haja riscos de super-explotação ou efeitos indesejáveis sobre a qualidade das águas, tais como problemas de salinização ou contaminação. Assim sendo o termo "recursos explotáveis" se traduz em dispor de um volume da água para explotação em condições de sustentabilidade hídrica. Depende fundamentalmente dos parâmetros hidrodinâmicos do aqüífero, em especial da porosidade efetiva.

As reservas são definidas em função do tipo de aqüífero, ou seja, se o mesmo desenvolve características de aqüífero livre ou confinado.

O aquífero livre está limitado na sua base por uma camada impermeável e no topo pela própria superfície potenciométrica, a qual se encontra sob pressão atmosférica. Em outras palavras, trata-se de um aquífero que é alimentado diretamente pelas precipitações pluviométricas que caem sobre a superfície do terreno e nele se infiltra. Assim sendo, as reservas em um aquífero livre estão sujeitas as variações sazonais dos níveis potenciométricos ou da superfície freática.

No caso de aquíferos confinados, os mesmo está limitado no topo e na base por camadas impermeáveis. A explotação deste aquífero é muito mais complexa, principalmente se a zona de recarga situa-se em domínio semi-árido.

O aqüífero Açu na Borda Sul da Bacia Potiguar, na área em apreço, desenvolve características de um sistema livre, embora apresente localmente condições de semiconfinamento, o que para efeito de cálculo não será considerado no âmbito deste trabalho.

No caso de aquíferos livres são definidos três tipos de reservas, conforme definidas a seguir:

- Reservas Reguladoras, que correspondem as variações sazonais dos níveis potenciométricos;
- Reservas permanentes, que é o volume d água situado abaixo do nível potenciomético mínimo. Conhecidas, também, como reservas seculares.
- Reservas totais, que corresponde ao somatório das reservas reguladoras com as reservas permanentes.

Em princípio não se deve explotar no aqüífero livre um volume maior do que o correspondente as reservas reguladoras, para que não haja riscos de superexplotação, ou seja, somente em situações especiais controlada por monitoramento de poços é possível explotar um percentual das reservas permanentes. Em regiões úmidas pouco exploradas, está possibilidade é factível, haja vista que o rebaixamento pode induzir a uma maior recarga. No caso de regiões semi-áridas, entretanto, a baixa recarga associada as baixas taxas pluviométricas tornam difícil ou impedem essa possibilidade.

1.10.1 - Avaliação das reservas do aquífero Açu

1.10.1.1 - Reservas reguladoras

As reservas reguladoras (RR) podem ser avaliadas pela seguinte equação:

$$RR = A.dh.\mu \tag{4.17}$$

Onde:

A = área de ocorrência do aquífero (m2);

Dh = variação sazonal de carga ou variação inverno – verão;

 μ = porosidade eficaz dos estratos sujeitos as variações sazonais de carga (adimensional).

A flutuação sazonal do nível d'água (dh) foi avaliada em 0,54 m (média das variações de carga consideradas mais representativas no período observado; a porosidade eficaz (μ) foi estimada em 2,1%.

Considerando esses valores as reservas, reguladoras na área de estudo com 1100 km^2 , são da ordem de $12.4 \times 10^6 \text{ m}^3$.

1.10.1.2 - Reservas permanentes

As reservas permanentes foram avaliadas pela seguinte equação:

$$RP = A.h. \mu$$
 (4.18)

Onde;

h = altura de carga abaixo do nível potenciométrico mínimo, tomado como equivalente ao valor médio de 26 m (valor obtido com base nos valores das espessuras saturadas efetivas, exluido os argilitos, totalmente penetrantes nos poços de produção);

 μ = porosidade eficaz dos estratos abaixo desse nível mínimo tomando o mesmo valor daquele adotado para as reservas reguladoras, ou seja, 2,1%.

Com base nesses dados, obteve-se para as reservas permanentes o valor 600 x10⁶ m³.

1.10.1.3 - Reservas totais

Considerando que as reservas reguladoras foram estimadas em $12,4 \times 10^6 \text{ m}^3$ e as reservas permanentes em $600 \times 10^6 \text{ m}^3$, verifica-se, portanto, que as reservas totais são da ordem de em $612,4 \times 10^6$. Este é um volume bastante factível de ser armazenado ao longo do tempo. O percentual de renovação deste volume é, entretanto, muito pequeno, representando apenas 2%.

1.10.2 - Recursos explotáveis

Os recursos explotáveis no caso de aqüíferos livres correspondem teoricamente às reservas reguladoras. Assim sendo, os recursos anuais explotáveis do aqüífero Açu na área de estudo, compreendida entre Afonso Bezerra e Upanema, é da ordem de grandeza de em 12,4x10⁶. A explotação de um percentual além deste limite teoricamente não é recomendável. Considerando, entretanto, as extrapolações levadas a efeito no âmbito deste trabalho, entendese ser possível explotar o aqüífero dentro dos limites permissíveis de explotação dos poços de produção mediante rigoroso monitoramento dos níveis d'água.

As informações a serem obtidas, de níveis e de descargas d'água, deverão permitir reavaliar o aquífero periodicamente e por conseguinte otimizar a explotação do aquífero.

BIBLIOGRAFIA

- AIHS 1970. ASSOCIATION INTERNATIONALE D'HYDROLOGIE SCIENTIFIQUE Alimentation artificielle des nappes souterraines. Inventaire international des installations existantes. Publication nº 87. 1970.
- ALMEIDA, F. F. M.; BHUSUI, Y.; BRITO NEVES, B. B. & FUCK, R. A. (1977) Província estrutural brasileira. Atlas VII. Simpósio de Geologia do Nordeste: 363 991.
- APOLUCENO, D. M. (1995) Faciologia e Sistemas Deposicionais das Formações Açu e Jandaíra, Cretáceo Superior da Bacia Potiguar, na região de Apodi, RN. Departamento de Geologia, UFRN, Natal/RN, Relatório de Graduação, 139p.
- ARARIPE, P. T. & FEIJÓ, F. P. (1994) Bacia Potiguar. Boletim Geociências PETROBRAS, Rio de Janeiro, 8 (1): p127-141.
- ARCHANJO, C.J. & SALIM, J. (1986) Posição da Formação Seridó no contexto estratigráfico regional (RN-PB). In: SBG, Simp. Geol. NE, 12, João Pessoa, Boletim, 270-271.
- BACK W (1960). Origin of hydrochemical facies in groundwater in the Atlantic Coastal plain. Proceedings, International Geological Congress (Copenhagen), 1:87-95.
- BACK W (1966). Hydrochemical facies and groundwater flow patterns in northern part of the Atlantic Coastal plain. U. S. Geological Survey Professional Paper 498-A.
- BERTANI, R. T.; COSTA, I. G. & MATOS, R. M. D. (1990) Evolução tectono-sedimentar, estilo estrutural e habitat do petróleo na Bacia Potiguar. In: PETROBRAS (ed.). Origem e Evolução de Bacias Sedimentares. Rio de Janeiro, p291-310.
- BIZE, J.; BOURGUET, L. & LEMOINE, J. 1972.— L'alimentation artificielle des nappes *souterraines*. Masson. Paris.
- BOURGUET, L. 1970. Inventaire international des aménagements d'alimentation artificielle. Dépouillement et synthèse des résponses. SPEPE., rappor Burgéap R. 55-E. 151.
- BRASIL CPRM (2006). Mapa Geológico do Estado do Rio Grande do Norte, escala 1:500.000. DNPM, UFRN, PETROBRAS, CRM.
- CALMBACH, T & WATERLOO HYDROGEOLOGYC, INC. 2002 Aqueous Geochemical Analisys, Plotting and Modeling. AquaChem
- CASTANY, G. (1975) Prospeccnión y explotación de las águas subterráneas. Barcelona: Omega, p. 738.
- COMPANHIA DE ÁGUA E ESGOTO DO RIO GRANDE DO NORTE (2000) Relatório Técnico Captação de Upanema. CAERN/Natal.
- CUSTÓDIO, E. & LLAMAS, M. R. (1983) Hidrogeologia subterrânea. Barcelona: Omega. Tomo I e II.
- DEMETRIO, J. G.; CORREIA, L.C. & SARAIVA, A.L. 2006. Utilização de imagens SRTM na confecção de mapas potenciométricos. XIV CONG. BRAS. DE ÁGUAS SUBTERRÂNEAS. ABAS. Curitiba, 2006.
- DOMENICO, P. A. & SCHWARTZ, F. W. (1990) Physical and Chemical Hydrogeology. John Wiley and Sons Ed., N. York. 824p.
- DREVER, J. I. (1988) The geochemistry of natural waters. Englewood Cliffs, N. J., Prentice Hall. 1988. 437p.
- DRISCOLL, F. G. (1986) Groundwater and wells. 2 ed. Minnesota: H.N. Smyth Comp. Inc., p796-820.
- EDMUNDS WM (1981). Hydrogeochemical investigations. In: Case-studies in groundwater resources evaluation. Ed by J.W. Lloyd. Clarendom Press, Oxford, pp. 87-112.
- FEITOSA, E. C. & DEMETRIO, J. G. A. 1997. Recursos hídricos subterrâneos Relatório Diagnóstico vol 1. PLANO ESTADUAL DE RECURSOS HIDRICOS DO RIO GRANDE DO NORTE. SERHID. HIDROSERVICE. LABHID.
- FENZL, N. (1988) Introdução a Hidrogeoquímica. Universidade Federal do Pará. Belém. 188p.

- FETTER, C. W. (1994) Applied hydrogeology. 3° ed. New Jersey: University of Wisconsin Oshkosh.
- Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 204 p
- HEALY, R. W. & COOK, P. G. -(2002) Using groundwater levels to estimate recharge. Hydrogeology Journal, 10 (1), 91-109.
- HUSSEIN M. T. (2004). Hydrochemical evaluation of groundwater in the Blue Nile Basin, eastern Sudan, using conventional and multivariate techniques. Hydrogeolog J 12 (2):144-158
- HVORSLEV, M. J. (1951) Time Lag and Sail Permeability in Groundwater Observations. US Army Corps of Engineers Waterway Experimentation Station, Bulletin 36.
- JARDIM DE SÁ, E. F. (1994) A Faixa Seridó (Província Borborema, NE do Brasil) e seu significado geodinâmico na Cadeia Brasiliana/Pan-Africana. Universidade de Brasília, Brasília. Tese de Doutorado, n3, 803p.
- LERNER, D. N. (1997) Groundwater recharge. In: Geochemical Processes, Weathering and Groundwater recharge in Catchments. A. A. Balkema, Rotterdam, Brookfield, 109-150.
- LERNER, D. N.; ISSAR, A. S. & SIMMERS, I. (1990) Groundwater recharge: a Guide to understanding and estimating natural recharge. International Association of Hydrogeologists, vol 8. Hannover: Heise.
- Lloyd JW, Heathcote J.A. (1985) Natural inorganic hydrochemistry in relation to groundwater, an introduction. Clarendom Press, Oxford,
- LOGAN, J. (1965) Interpretação de análises químicas de água. Recife: U.S. Agency for International Development. 65p.
- MATHER J. (1997). Relationship between rock, soil and groundwater compositions. In: Geochemical processes, weathering and groundwater recharge in catchments. O.M. Saether & Caritat (eds). Balkema, Rotterdam, Brookfield, pp 305-328
- MATHER, J. (1997) Colletion and analysis of groundwater samples. In: Geochemical Processes, weathering and groundwater recharge in catchments A. A. Balkema, Rotterdam, Brookfield, 167-184.
- McNEELY, R. N., NEIMAINS, V.P., QWYER, L. (1979) Water Quality Sourcebook; A guide to water quality parameters, Ottawa, Canadá. 89p
- McDONALD, M.G. & HARBAUGH, A.W. 1988. A modular three-dimensional finite-difference ground-water flow model. USGS. TWI 6-A1.
- MANOEL FILHO, J. 1971 Inventário Hidrogeológico do Nordeste Folha Jaguaribe NE. SUDENE. DRN. DD. Hidrogeologia, 30.
- MANOEL FILHO J. & SILVA, J. C. 1999. Mapeamento dos aquíferos nas bacias receptoras da transposição do rio São Francisco. Avaliação hidrodinâmica e qualitativa. VBA. Min. Integ. Nacional.
- MANOEL FILHO, J.; DEMETRIO, J. G. & COSTA, W.D. 2003. Diagnóstico da situação atual e possibilidades de ampliação da explotação de água subterrânea na zona oeste da bacia Potiguar RN. FADE-UFPE-LABHI
- MEDEIROS, W. E; DE SÁ, EFJ. MEDEIROS V C, LUCENA LRF (2001). Estrutura geológica do aqüífero Açu na Borda Sul da Bacia Potiguar entre Apodi e Upanema, RN. Convênio CAERN/FUNPEC/UFRN. Relatório Técnico.
- MELO J. G., STEIN, P (2003). Recursos hídricos subterrâneos da Formação Açu na Borda Sul da Bacia Potiguar, RN Faixa Upanema-Apodi. Companhia de Águas e Esgotos do Rio Grande do Norte (CAERN). Natal, RN, Brasil.

- PETALAS CP; DIAMANTIS I.B. (1999) Origin and distribution of saline groundwater in the upper Miocene aquifer system, coastal Rhodope area, Northeastern Greece. Hydrogeology J 7(3):305-316
- RICHTER BC, KREITLER BE (1993) Geochemical techniques for identifying sources of groundwater salinization. C.K Smoley.
- ROBINOVE CJ, LANGFORD RH, BROOKHART JW (1958) Saline water resources of North Dakota. U.S. Geological Survey Water supply Paper 1428, 72 p.
- RÖHRICH, T. & WATERLOO HYDROGEOLOGYC, INC. (2002) Graphical Analysis and Reporting of Test & Slug Test Data. Aquifer test. 268p.
- SANFORD, W. (2002) Recharge and groundwater models: an overview. Hydrogeology Journal, 10 (1), 110-120.
- SCANLON, B. R.; HEALY, R. W.; COOK, P. G. (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10 (1), 18-40.
- SIMMERS, I.; HENDRICKX, J. M. H.; KRUSEMAN, G. P. & RUSHTON, K. R. (1997) Recharge of phreatic aquifers in (semi-) arid areas. International Association of Hydrogeologist, 19, A. A. Balkema, Rotterdam, Brookfield.
- SOUZA, S. M. (1982) Atualização da litoestratigrafia da bacia Potiguar. In: SBG/BA-SE, Congr. Bras. Geol., 32, Salvador, Anais p.509-592.
- SZIKSZAY, M. (1993) Geoquímica das águas. Universidade de São Paulo. Boletim IG-USP. Série Didática n 5. São Paulo.
- THEIS, C. V. (1935) The relation between the lowering of the piezometric surface and rate and duration of discharge of well using groundwater storage, Trans. Am. Geophys. Union, 16th Ann. Meeting, part 2.
- VASCONCELOS, E.P., LIMA NETO, F. F. & ROOS, S. (1990) Unidades de correlação da Formação Açu-Bacia Potiguar. In: SBG/Núcleo Nordeste, Congresso Brasileiro de Geologia, 36, Natal, Anais, 1:227-240.
- VRIES, J. J. & SIMMERS, I. (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal, 10 (1), 5-17.

Anexo 1 - Cadastro de poços

Poço Poço Nº	Cia Perf	Município	Localidade	Proprietário	DT/Perf	Lon	Lat	Prof (m)	Q (m3/h)	Ne (m)	Nd (m)	STD(ppm)
1 DN139		Upanema	Paulista 2	Assent do INCRA	1999	706022	9383111	96,0	9,0	60,0		135,0
2 DN152		Upanema	Sitio Fazenda Nova	Antonio Carlos de Oliveira	1978	695781	9375643	24,0	20,0	6,0		2281,5
3 DN153		Upanema	St Faz Nova	Antonio Carlos de Oliveira	2000	694781	9375658	27,0	22,0	7,0		287,5
4 DN154		Upanema	Fazenda Nova	Prefeitura	2002	696754	9376122	29,0				1989,0
5 DN155		Upanema	Pereiro	Prefeitura	1988	696645	9375548	18,0	5,0	6,0		1404,0
6 DN156		Upanema	Pereiro	Jacinto Carlos	1988	695542	9374900	7,1				278,2
7 DN157		Upanema	Riacho das Carnaubas	José Borges Campina	1986	697851	9375517	18,0	16,0	7,5		2223,0
8 DN158		Upanema	Riacho das Carnaubas	Prefeitura	1997	698695	9375674	32,3	4,5	12,9		383,9
9 DN159		Upanema	Baixa do Juazeiro	Antonio José de Medeiros	2001	703253	9375672	148,0	3,0	138,0		809,0
10 DN160		Upanema	Baixa do Juazeiro	Prefeitura	1983	705402	9377360	72,0				328,0
11 DN161		Upanema	Bom Lugar	Assent do INCRA	01/2002	707588	9381016	120,0	15,0	90,0		120,0
12 DN162		Upanema	Bom Lugar	Assent do INCRA		706756	9378730	120,0				1371,5
13 DN163		Upanema	Bom Lugar	Assent do INCRA		706365	9378673	54,6		38,2		
14 DN164		Upanema	Faz Carnaubinha	Geraldo Etelvino de Medeiros		705301	9379018	102,0		77,0		190,0
15 DN165		Upanema	Baixa do Dutra	Assent do INCRA	10/10/1991	703195	9378671	80,9		43,3		109,7
16 DN166		Upanema	Baixa do Dutra	Asemt do INCRA	1958	702168	9379989	110,0				218,0
17 DN167		Upanema	Baixa do Dutra	Assent do INCRA	08/10/1991	701937	9379962	60,0				
18 DN168		Upanema	Vertente	Hermírio		697090	9376991	70,0				910,0
19 DN169		Upanema	Riacho das Carnaubas	Francisco Duarte Bezerra		697126	9376631	52,0				1365,0
20 DN170		Upanema	Boa Água	Gil Neto		692646	9378073	54,0	20,0	8,0		1365,0
21 DN173		Upanema	Cabano	Raimundo Lopes de Medeiros	1998	697091	9377231	70,4		28,7		884,0
22 DN451		Upanema	Cabeça de Boi	Geraldo Freire de Oliveira	1994	693158	9380732	86,0	20,0	18,0		507,6
23 DN452		Upanema	Cabeça de Boi	Geraldo Freire de Oliveira	26/03/1984	691790	9380794	47,0	10,0	6,0		
24 DN453		Upanema	Cabeça de Boi	Geraldo Freire de Oliveira	1981	695367	9381306	61,0	5,0	7,0		364,0
25 DN454		Upanema	Cabeça de Boi	Elizeu Freire		693387	9380876					443,0
26 DN455		Upanema	Cabeça de Boi	Manoel Quaresma Sobrinho	1984	692885	9380982	60,0		5,0		296,4
27 DN460		Upanema	Carão	Ferraro		689873	9382269					193,4
28 DN461		Upanema	Carão	Ferraro		689882	9382327					211,2
29 DN462		Upanema	Carão	Ferraro		690384	9382326					
30 DN479		Upanema	St Barrocas	Luiz Gonzaga Fernandes		690228	9382778					
31 DN480		Upanema	St Barrocas	Luiz Gonzaga Fernandes		690342	9382802					1560,0
32 DN481		Upanema	St Barrocas	Luiz Gonzaga Fernandes		690788	9382724	82,7		15,2		1599,0
33 DN482		Upanema	St Barrocas	Expedito Ferreira de Souza		690979	9382834	65,7		19,5		2060,5
34 DN483		Upanema	St Barrocas	Expedito Ferreira de Souza		690995	9382834	75,4		13,7		1800,5

35 DN484		Upanema	St Barrocas	Expedito Ferreira de Souza		690263	9382854					
36 DN485		Upanema	St Barrocas	Expedito Ferreira de Souza		690391	9382918					384,2
37 DN723		Upanema	Roçado Grande	Expedito Ferreira de Sousa		697245	9384643	47,0		19,2		
38 DN724		Upanema	Roçado Grande	Antonio Targino Filho	1996	697379	9384271	60,0		16,0		641,5
39 DN725		Upanema	Roçado Grande	Antonio Vicente Eufrásio	09/2002	696776	9383962	143,0				
40 DN725A		Upanema	Roçado Grande	Antonio Vicente Eufrásio		697400	9383900			11,8		1760,0
41 DN734		Upanema	Caraúbas	Julio		690173	9386977					1012,7
42 DN740		Upanema	Várzea Redonda	Edilson Gonçalves	2003	689900	9386053	100,0		30,0		714,3
43 DN741		Upanema	Várzea Redonda	Lucas Evangelista Bezerra	1996	690140	9385238	84,0	24,0	15,0		540,1
44 DN742		Upanema	Independência	Cosme Sidney Medeiros	1999	690195	9385075	86,0	12,0	15,0		
45 DN743		Upanema	Independência	Eliseu Freire Bezerra		689994	9384944					
46 DN744		Upanema	Atoleiros	Anelio Fernandes		690063	9384231	54,0				2717,0
47 DN745		Upanema	Atoleiros	Anelio Fernandes	05/02/1998	690073	9384268	84,0				594,7
48 DN746		Upanema	Atoleiros	Airton Marques Bezerra	2000	690170	9384043	72,0	16,0	12,0		549,2
49 DN747		Upanema	Atoleiros	Antonio Fernando Neto	01/12/01	690224	9384314	84,0	1,8	19,0		537,5
50 DN748		Upanema	Barrocas	Expedito Ferreira de Sousa		690446	9383321					617,5
51 DN749		Upanema	Barrocas	Expedito Ferreira de Sousa		690561	9382884					357,5
52 UP001		Upanema	Baixa do Dutra			701800	9379896					344,0
53 UP001PM		Upanema				695072	9373964					106,0
54 UP002PM		Upanema	Faz. Riacho das Carnaúbas	s Roberto B. de Araújo		699481	9372436					1960,0
55 UP004PTJ		Upanema	Maracajá			701277	9381640					172,0
56 UP005PT		Upanema				696558	9380228					
57 UP006PT		Upanema				695893	9379540					
58 UP007PM		Upanema				697656	9378188					449,6
59 UP007A		Upanema				697100	9378150					461,0
60 *PS0017	SERHID	Upanema	Atoleiro	SUDENE	05/02/1998	689900	9384400	88,0	10,7	12,3	31,6	
61 *PS0374	AR	Upanema	Vila Paraibana	SUDENE	03/02/1999	699850	9373140	54,0				
62 *PS0422	SERHID	Upanema	Sítio Independência	Gov. do Estado	20/08/1999	690136	9385060	82,0	5,7	21,1	29,8	449,6
63 *PS0431	SERHID	Upanema	Várzea Redonda	Comunidade	02/10/1999	689867	9386290	82,0	1,5	19,1	55,8	538,0
64 *PS0440	SERHID	Upanema	Faz. Barrocas	Dr. Expedito	17/12/1999	690978	9383124	120,0	15,3	38,3	23,8	1638,0
65 *PS0506	SERHID	Upanema	Fabr. Gut. Frut.	Dr. Expedito	23/08/2000	690710	9383220	91,0	15,0	8,7	15,0	
66 *PS0571	PROPOÇO	Upanema	Bom Lugar I	Prefeitura	23/03/2001	706700	9379100	130,0				
67 *PS0640	PROSENG	Upanema	Roçado Grande	Vicente Eufrásio	28/08/2001	696860	9384200	145,0	1,4	44,2	47,2	1336,0
68 S9007	CONESP	Upanema	Lagoa Seca	SUDENE		702000	9375000	71,0	0,3	19,0	38,0	
69 P2			CAERN-UP	Bom Jesus		687847	9382512		60,0			
70 IP2						687931	9383048		40,0			

	71	06A IN 98	PROSENG	Upanema	Esperança	INCRA	05/09/1998	3 691060	9374388	40,0	1,7	4,0	25,0
7	2	S3414	CDM	Assu	Panon 2		22/05/1993	730000	9390000	40,0			
7	'3	S3415	CDM	Assu	Faz Sta Gloria 2		03/05/1993	725500	9382500	82,0			
7	4	S3416	CDM	Assu	Faz Sta Gloria		08/03/1993	729582	9382725	70,0			
7	' 5	S3417	CDM	Assu	São Lucas		26/10/1992	730000	9388000	72,0			
7	'6	S3421	CDM	Assu	Paulista		27/05/1992	708900	9383400	90,0			
7	7	S3422	CDM	Assu	Frunorte		08/07/1992	723200	9387300	80,0			
7	'8	S3423	CDM	Assu	Faz Bangüê		21/10/1991	726500	9380000	25,0			
7	'9	S3424	CDM	Assu	Faz São João 1		14/11/1991	723500	9376000	22,0			
8	80	S3426	CDM	Assu	Barro Branco		04/10/1992	730500	9390500	105,0			
8	31	S3427	CDM	Assu	Agro Knoll		03/07/1991	724000	9375500	67,0			
8	32	S3428	CDM	Assu	Agro Knoll 4		12/08/1991	726500	9383500	72,0			
8	3	S3429	CDM	Assu	Faz São João 2		19/11/1991	723000	9375500	16,0			
8	84	S3430	CDM	Assu	Jandui		14/12/1991	722700	9388500	118,0			
8	35	S3437	SONGEO	Assu	Linda Flor	Fund Sesp		732100	9392100	50,0			
8	86	S3438		Assu	Paulista	Fran Serafico		708100	9383800	60,0			
8	37	S3439	DNOCS	Assu	Casinha	Irineu B. Gouveia		710000	9383900	80,0			
8	88	S3440	CONESP	Assu	Linda Flor	Prefeitura		717300	9378000	62,0			
8	89	S3441		Assu	St Mangueira	Justino da Mata		713900	9375000				
9	0	S3442	DNOCS	Assu	Lagoa do Mato	Prefeitura		717000	9386200	80,0			
9	1	S3443	COCESA	Assu	Piato Bela Vista	Prefeitura		721300	9389200				
9	2	S3444	F. SESP	Assu	Matadouro Público	Prefeitura		730300	9383500	120,0			
9	93	S3445		Assu	Horto Florestal	IBDF		729500	9383400	74,0			
9	94	S3446	DNOCS	Assu	Horto Florestal	IBDF		729200	9383900	76,0			
9	95	S3447	DNOCS	Assu	Posto At. Florestal	Org Bargosa Ltda		727000	9382400				
9	96	S3448	DNOCS	Assu	Olho d'água Piató	Prefeitura		730200	9391000	54,0			
9	7	S3449	DNOCS	Assu	St Canteiro	Sandoval M Paiva		725000	9382100	114,0			
9	8	S3450	CONESP	Assu	Lagoa do Ferreiro	CAERN		732500	9385000	37,0			
9	9	S3451	CONESP	Assu	Lagoa do Ferreiro	CAERN		732200	9385000	45,0			
10	00	S3452	CONESP	Assu	Lagoa do Ferreiro	CAERN		732000	9385000	40,0			
10	01	S3453	CONESP	Assu	Lagoa do Ferreiro	CAERN		731800	9384900	34,0			
10	02	S3454	DNOCS	Assu	B. Ver José Bezerra	Mercantil Martins		731900	9383800	50,0			
10	03	S3455	DNOCS	Assu	R. Dr Luiz Ant 339	DNOCS			9383000	65,0			
10	04	S3456	DNOCS	Assu	R. Dr Luiz Anto s/n	Loja Maçonica		732100	9383500	58,0			
10	05	S3457	DNOCS	Assu				731900	9383500	78,0			
10	06	S3458	DNOCS	Assu	R 24 de Junho			731400	9382700	42,0			

107	S3459	F. SESP	Assu	Lavanderia Publica	Prefeitura		732300	9382000					
108	S3460	CDM	Assu	Av. Jõao C. Filho	Merc Produtor		731800	9380300	45,2				
109	S3461	DNOCS	Assu	R. Dr. Luiz Carlos	Hosp Reb FSESP		731600	9383200	43,0				
110	S3462	DNOCS	Assu	St. Belo Horizonte	Lair F Costa		731200	9383600					
111	S3463	SESP	Assu	R Aspirante s/n	Cibrazem		731600	9383000	55,0				
112	S3464	DNOCS	Assu	Posto Jóia	Comerc Oliv Alves		732000	9382800	42,0				
113	S3465	DNOCS	Assu	Col. N.S. das Vitorias	Col N S Vitorias		731700	9382600	36,5				
114	S3466	CONESP	Assu	Av. Jõao C. Filho s/n	CHESF		731800	9381400	35,0				
115	S3467	DNOCS	Assu	Sinwal S/A	SINWAL S/A		732700	9381300	13,5				
116	S3468	CASOL	Assu	Ceramica Portal do Vale	Portal do Vale		732000	9378500	58,0				
117	S3469	CASOL	Assu	Ceramica Portal do Vale	Portal do Vale		732200	9378300	60,0				
118	S3487	CASOL	Assu	Linda Flor	Prefeitura		731700	9392500	84,0				
119	S3488		Assu	Linda Flor			731600	9392200					
120	S3489	CONESP	Assu	Linda Flor	DNOCS		733600	9392500					
121	S3490	CONESP	Assu	Sto Anto	CONESP		734600	9395300	185,0				
122	S3491	CONESP	Assu	Sto Anto	DNOCS		734600	9395200	91,0				
123	S3492	CONESP	Assu	Sto Anto	DNOCS		734700	9395200	108,0				
124	S3493	CONESP	Assu	Sto Anto	DNOCS		734700	9394900	105,0				
125	S6910	PROPOCO	Assu	Palheiro 1- St Simão		15/01/1999	705986	9383069	96,0				
126	S7175	PROPOCO	Assu	Caatinga			717854	9379033	107,0				
127	S7180	HIDROPOCO) Assu	Cumbe	Sebastião(Repres Com)	25/02/1999	731923	9376511	15,5				
128	S8907	CONESP	Assu	Faz Pingos		27/07/1987	715000	9382000	125,0				
129	S8908	CONESP	Assu	Faz Maledinha		14/07/1987	732000	9383000	140,0				
130	S8994	CONESP	Assu	Linda Flor 2		01/07/1971	732000	9392500	62,0				
131	S9013	CONESP	Assu	Linda Flor 2		05/12/1968	731878	9381695	50,0				
132	S9460	CONESP	Assu	Açu(P-12)				9381780	80,0				
133	S9461	CONESP	Assu	Açu(P-13)			731780	9381750					
134	S9464	CONESP	Assu	Açu-I		07/11/1975	731850	9381950	46,0				
135	S9465	CONESP	Assu	Açu-II		16/11/1975	731700	9381700	50,0				
136	S9466	CONESP	Assu	Açu-III		22/11/1975	732100	9382150	61,0				
137	S9467	CONESP	Assu	Açu-IV		15/01/1976	731720	9381700	40,0				
138	S9475	CONESP	Assu	CHESF		27/07/1976	732000	9382000	35,0				
139	PS-0040	SERHID	Assu	Alto do São Francisco	SUDENE	14/05/98	729583	9388179	74,0	1,3	52,1	52,2	557,4
140	*PS-0083	SERHID	Assu	Ana Maria		09/07/98	727210	9387030	68,0	6,1	21,5	22,8	724,8
141	PS-0083A	Proseng	Assu	Ana Maria	Nelter Lula de Queiroz		728120	9387235	98,0		27,7		238,0
142	PS-0085	SERHID	Assu	Faz. Alto Alegre		27/07/98	729580	9388070	64,0	5,4	26,0	26,2	724,8

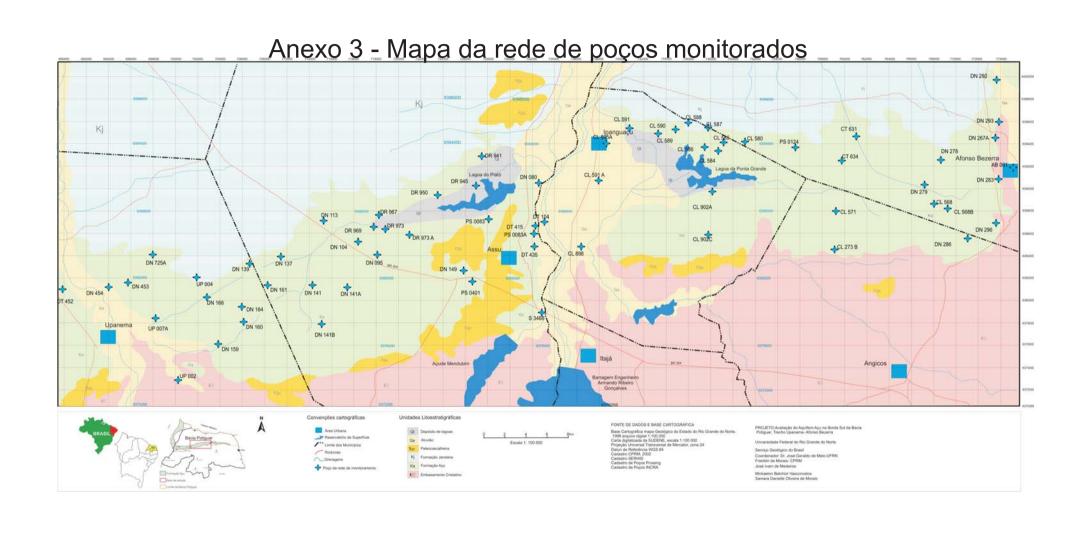
143	*PS-0149	PROSENG	Assu	Piató		12/09/98	729200	9385800	66,0	7,2	14,2	17,6	427,2
144	*PS-0175	SERHID	Assu	Faz. São Lucas		12/09/98	732070	9383100	25,0	6,2	4,5	5,7	811,2
145	*PS-0207	PROSENG	Assu	Faz. Curralinho		14/10/98	721090	9386790	72,0	6,0	11,8	18,7	144,0
146	*PS-0208	PROSENG	Assu	Canto do Umarí		15/10/98	717490	9387640	75,0	7,2	13,6	16,2	558,0
147	PS-0254	SERHID	Assu	Sítio Apolo-II		03/10/98	725200	9381800	116,0	2,6	98,7	100,7	210,4
148	*PS-0278	PROSENG	Assu	Faz. Curralinho		14/10/98	721090	9386790	30,0				
149	*PS-0358	AR	Assu	Assentamento Paulista	SUDENE	06/01/99	709690	9384380	73,0	9,0	39,4	40,7	150,5
150	*PS-0362	PROPOÇO	Assu	Sítio Simão	SUDENE	15/01/99	715950	9383160	96,0	5,4	59,6	65,7	161,4
151	PS-0401	AR	Assu	Campo de Aviação	SUDENE	17/05/99	725117	9381680	104,0				
152	*PS-0421	SERHID	Assu	Sítio Monte Alegre	Gov. do Estado	20/08/99	718219	9386125	75,0	5,8	24,0	25,8	
153	PS-0439	SERHID	Assu	Sítio Bom Jesus	Fer. Abreu	24/11/99	715318	9387488	40,0	2,3	15,3	19,2	
154	PS-0465	SERHID	Assu	Canto do Umari	João Bezerra Silva	06/04/00	719863	9387852	50,0	6,0	15,7	17,5	727,2
155	PS-0479	SERHID	Assu	Lagoa da Mata I	Asterlânio de Melo	09/06/00	717487	9386304	59,0	5,7	32,4	36,2	303,4
156	*PS-0480	SERHID	Assu	Lagoa da Mata III	Sinval Bezerra	22/06/00	716972	9385657	52,0	6,1	10,1	15,8	214,8
157	PS-0488	SERHID	Assu	Baviera	José Amorim	07/07/00	731720	9388600	50,0	15,0	19,2	20,2	676,6
158	PS-0544	SERHID	Assu	Entre Rios	Expedito	16/11/00	732500	9384200	29,0	4,6	4,2	5,2	585,0
159	*PS-0592	SERHID	Assu	Viveiro de Muda	Nilson Pinto	26/05/01	727350	9381760	88,0	3,5	67,2	68,7	
160	*PS-0599	SERHID	Assu	Sítio Descanso	Aluizío Aurélio	11/05/01	725220	9381300	106,0				
161	*PS-0626	PROSENG	Assu	Palheiro IV	Francisco Pinheiro	17/08/01	716500	9386700	100,0	2,5	72,2	77,6	1068,0
162	PS-0634	PROPOÇO	Assu	Novo Horizonte	Antônio Almeida	24/08/01	716870	9377970	60,0				
163	PS-0666	SERHID	Assu	Sítio Casa Forte	Raimundo Borges	23/11/01	732630	9385620	36,0	5,8	12,9	13,1	683,0
164	*PS-0674	SERHID	Assu	Olho d`agua do Mato I	Vicente Lopes	12/02/02	716420	9384260	89,0	13,2	41,0	42,9	194,0
165	*PS-0677	SERHID	Assu	Olho D'água do Mato II	Vicente Lopes	21/03/02	716420	9384260	90,0	5,4	52,0	54,9	266,0
166	*PS-0680	SERHID	Assu	Olho D'água do Mato III	José Duarte	13/04/02	714180	9384152	87,0	3,5	44,9	51,3	288,8
167	*PS-0684	SERHID	Assu	Olho D'Água do Mato IV	Márcio Roberto	27/04/02	715600	9385070	85,0	14,2	40,8	45,3	245,2
168	*PS-0686	SERHID	Assu	Sítio Presépio	Hermenegildo	10/05/02	718390		63,0	15,3	16,2	27,1	927,6
169	*PS-0689	SERHID	Assu	Olho D´Água do Mato V	Fco. Oliveira	25/05/02	714360		89,0	5,4	44,1	49,4	224,0
170	*PS-0693	SERHID	Assu	Sítio Curralinho	Zé do Egito	24/06/02	721600		118,0	9,8	79,3	82,7	301,2
171	*PS-0701	SERHID	Assu	Canto do Umari	João Batista de Souza	14/09/02	718390	9388030	52,0	16,1	13,4	24,2	
172	*PS-0704	SERHID	Assu	Bela Vista	Manoel Rufino	21/09/02	721600	9388800	54,0	17,4	14,8	18,5	
173	PS-1-BV-0	1 SAAB	Assu	Baviera II	Governo do Estado	26/10/01	730240	9389330	86,0	10,0	20,9	21,9	
174	PS-1-BV-0	1 SAAB	Assu	Baviera	Governo do Estado	26/12/01	732400		86,0	10,0	20,9	21,9	
175	PS-2-BV-0	1 SAAB	Assu	Baviera I	Governo do Estado	26/12/01	731600		96,0	10,0	25,2	27,7	
176	PSA-023	SAAB	Assu	Campo de Aviação	SUDENE	30/11/96	725830						
177	PSA-032	SAAB	Assu	Bela Vista do Piató	Cleudon da Mata	06/02/97	721390		58,0	11,6	16,0	20,2	
178	DN074		Assu	Comunidade Linda Flor	Ass. Comunitária Linda Flor		731936	9392186	50,0				484,0

179	DN075	Assu Comunidade Linda Flor	Salete Pinheiro	1968	731875	9392309	50,0		10,0		378,0
180	DN076	Assu Com Linda Flor	Salete Pinheiro		731848	9392322					674,0
181	DN077	Assu Com Sta Clara	Ass Comum	1998	731562	9389911	48,0	6,5	20,0		760,0
182	DN078	Assu Com Sta Clara	Franc Rosino Dantas	1982	731649	9389984	70,0				
183	DN079	Assu Com Sta Clara	Terezinha Maria da Fonseca		731545	9390359	36,0				489,0
184	DN080	Assu Com Sta Clara	Fran Roseno Dantas		731629	9390626	77,0		22,0		513,0
185	DN090	Assu Clube Aquavalr	José Marques	2001	724900	9381887	96,0		9,0		219,0
186	DN091	Assu Campo de Avição	Gerson		724841	9381819					
187	DN092	Assu Curralinho	José do Egito		721250	9382480	88,9		42,9		272,0
188	DN093	Assu Compasa	Fran Bezerra Falcão	2001	717181	9384202	100,0				
189	DN094	Assu Compasa	Prefeitura	17/12/1983	717230	9384097	100,0				
190	DN095	Assu Faz Melandinha3	Hermenegildo Bezerra	1989	717291	9383907	100,0	18,0	20,0		113,0
191	DN096	Assu Olho d'água do Mato	Joaquim Bezerra Neto	1998	717071	9382746	120,0	25,0	72,0		168,0
192	DN097	Assu Faz Meladinha	Francisco Paulo Bezerra	2001	717218	9382321	92,5	13,0	68,5		170,0
193	DN098	Assu Olho d'água do Mato	Vicente Lopes	2002	716455	9384312	91,2		31,6		
194	DN099	Assu Olho d'água do Mato	Silvonez de Farias Freitas	1983	715196	9385333	99,5	20,0	27,0		
195	DN100	Assu Olho d'água do Mato	Ass do Olho d'água do Mato	2002	714207	9384199	88,0		46,0		252,0
196	DN102	Assu Olho d'água do Mato	José Belo da Silva	2002	713889	9382815	95,0	14,0	43,0		194,0
197	DN103	Assu Olho d'água do Mato	Vicente Lopes	2002	714213	9384058	87,4		45,2		246,0
198	DN104	Assu Olho d'água do Mato	Márcio de Eldes	2002	715621	9385089	87,0	14,2	40,8	45,3	128,0
199	DN105	Assu Olho d'água do Mato	Paulo Ferreira		716691	9384093	80,0				152,0
200	DN106	Assu Sta Isabel	José Bezerra Galvão	10/1998	721095	9386733	51,5	30,0	11,5		196,0
201	DN107	Assu Horto Florestal	Nilson Pinto de Medeiros	2001	727377	9381746	105,7	3,0	68,5		517,0
202	DN108	Assu Horto Florestal	Nilson Pinto de Medeiros	1985	727328	9381869	100,0		65,0		452,0
203	DN109	Assu CEPE-Clube da Petrobras	Funcionario da Petrobras		727260	9381882	96,0	10,0			314,0
204	DN110	Assu Alto São Francisco	Centro Comum União	1996	729054	9383405	78,0		45,0		1080,0
205	DN111	Assu Sta Gloria	Alaor Filho	2002	725136	9382467	110,3		92,4		228,0
206	DN112	Assu Olho d'água do Mato	Anto Ivanildo Batista	1998	713650	9386082	70,0				419,0
207	DN113	Assu Palheiro 4	Mauro Paz de Castro	1988	712589	9387108	63,0	10,0	20,0		674,0
208	DN114	Assu Palheiro 4	João Araújo	1998	711992	9387291	65,0	10,0	35,0		298,0
209	DN115	Assu Palheiro 4	Elizabete da Silva Cunha	1998	711780	9387707	69,0	28,0	27,0		285,0
210	DN116	Assu Palheiro 4	Elizabete da Silva Cunha	1999	712405	9388507	49,4	6,0	17,5		1048,0
211	DN136	Assu Palheiro 4	Assent do Incra	2000	709754	9384355	73,0	10,0			
212	DN137	Assu Paiulista 1	Prefeitura		708800	9383698					178,0
213	DN138	Assu Paulista 1	Prefeitura	1992	708703	9383778	91,0	5,7	32,0		295,0
214	DN140	Assu Bom Lugar 3	Assent do INCRA	2001	708437	9382995	120,0	14,0	50,0		196,0

215	DN141A	Assu Novo Pingo	Assent do INCRA	2003	714655	9381083	127,0		83,6		
216	DN141	Assu Bom Lugar 2	Assent do INCRA	2001	711565	9381068	92,0	6,0	50,0		160,0
217	DN141B	Assu Bom Lugar 2	Assent do Incra		712413	9377518	150,0		51,4	133,0	
218	DN142	Assu Palheiros 4	Assent do INCRA	1988	711316	9384863	73,4		23,1		181,0
219	DN143	Assu Canteiro	Valfredo Freire de Carvalho	1970	717761	9383616	70,0	0,3	22,0		632,0
220	DN144	Assu Campo de Aviação	Campo de Pouso de Açu	1995	725877	9381478	112,0	3,6	100,0		323,0
221	DN145	Assu Canteiro	Frunorte		723798	9381977					
222	DN146	Assu Canteiro	Frunorte		723700	9381365	117,5		80,2		296,0
223	DN147	Assu Campode Aviação	João Maria		724694	9380302	93,0		68,6		454,0
224	DN148	Assu Campo de Aviação	Pedro Cícero de Oliveira	1984	724784	9380532					393,0
225	DN149	Assu Copasfal	Copasfal	2001	724994	9382403	120,0	8,0	98,0		170,0
226	DN150	Assu Posto Florestal	B.N.B		727008	9381990					
227	DN151	Assu Campo de Aviação	Edgar Borges Montenegro		726981	9381910	65,5				
228	DN241	Assu Cia Policia Açu	Gov do Estado		732000	9380608	60,0				
229	DN242	Assu CHESF	Gov Federal		732037	9381349	80,0		10,0		1456,0
230	DN243	Assu CHESF	Gov Federal		732043	9381330	60,0		4,0		1827,0
231	DN244	Assu Sede AABB	AABB		731558	9382767	38,0		14,0		448,0
232	DN245	Assu Alto do São Franc Miaco	Johannes Cavalcante	03/12/1974	729035	9383172	80,0				
233	DN246	Assu Posto Jotão 2	Jodailson de Freitas Xavier		732126	9381523					218,0
234	DN247	Assu Motel Aconchego	Francisco Barbalho Bezerra		727496	9382022	110,0		30,0		572,0
235	DN248	Assu Motel Aconchego	Francisco Barbalho Bezerra		727464	9381906					
236	DN249	Assu Sede Posto Frei Damião	Hugo Nobre Cabral	03/12/1974	731863	9383362	42,0	9,0			586,0
237	DN250	Assu Loja Maçonica	Ass dos Mações de Açu		729094	9383236	64,0		40,0		559,0
238	DN251	Assu Sede Granja Dto Anto	José Valmir		727995	9382472					339,0
239	DN252	Assu Sede Hosp da FUNASA	Prefeitura		731015	9383322	75,0		12,0		270,0
240	DN254	Assu Frunorte	Manoel Barreto		731314	9384037	42,0		6,0		488,0
241	DN255	Assu Lj Maçonica Frat.da Suecia	Ass Maçonica Frat da Suecia		730781	9383049	120,0				504,0
242	DN256	Assu St Casa Forte 1	Valdeci Araujo de Nascimento		731785	9385869	20,0	24,0			1190,0
243	DN257	Assu St Casa Forte	Valdeci Araujo de Nascimento		732287	9385892	20,0	24,0			687,0
244	DN258	Assu St Casa Forte	João Walage da Silva		731954	9385777	15,0				1450,0
245	DN259	Assu St Casa Forte	Jõao Walage da Silva		731828	9385722	25,0		10,0		1125,0
246	DR635	Assu Floresta Nacional de Açu	IBAMA		727725	9382525					419,0
247	DR636	Assu Floresta Nacional de Açu	IBAMA		727725	9382531					
248	DR637	Assu Floresta Nacional de Açu	IBAMA		726888	9382839					
249	DR638	Assu Floresta Nacional de Açu	IBAMA		728056	9382994					
250	DR639	Assu Posto São João Batista	Francisco Jaine de Sousa		727119	9382137	110,0	60,0			288,0

251	DR640	Assu Cia de Policia Açu	Governo do Estado		732055	9380534	42,0		8,0		1918,0
252	DR941	Assu Bangue			726794	9392834	68,0	5,0			2100,0
253	DR943	Assu Area Branca	Francisco Jaime de Sousa		726185	9390538	63,0	20,0	18,0		597,0
254	DR945	Assu Areia Branca	Prefeitura	1986	726105	9390268	72,0	20,0	18,0		382,0
255	DR946	Assu Areia Branca	Luiz Gonzaga de Araujo	1996	726120	9390111	72,0	40,0	18,0		354,0
256	DR947	Assu Faz Taepe	Luiz Eufrazio da Silva		724591	9389729	70,0				514,0
257	DR948	Assu Faz Taepe	Maria Eufrazio Camara	1998	724941	9389417	64,0	10,0	17,0		391,0
258	DR949	Assu Bela Vista Piató	Manuel Ferreira B de Carvalho	1985	722946	9389387	62,0	5,0	15,0		482,0
259	DR950	Assu Bela Vista Piató	Fran Xavier de Oliveira	1998	722665	9389275	60,0	12,0	15,0		431,0
260	DR951	Assu Bela Vista Piató	Fran Xavier de Oliveira	1998	722600	9389140	60,0	12,0			478,0
261	DR952	Assu Bela Vista Piató	Elpidio da Rocha		722396	9388931					494,0
262	DR953	Assu Bela Vista Piató	Raimundo Almeida	08/2002	721916	9389016	62,5	30,0	15,0		263,0
263	DR954	Assu Bela Vista Piató	Manuel Rufino	01/09/2002	721663	9388897	50,0	17,0	15,0		383,0
264	DR955	Assu Bela Vista Piató	Cleudo da Mata de Medeiros		721407	9389420					566,0
265	DR956	Assu Bela Vista do Piató	Prefeitura		721165	9389151					828,0
266	DR957	Assu Bela Vista do Piató	Manoel Severiano	2003	721339	9389202	61,0	47,0	13,0		
267	DR958	Assu Lagoa Redonda	Luiz Gonzaga Cavalcante	1998	720165	9388340	60,0	16,0	18,0		394,0
268	DR959	Assu Bela Vista do Piató	João Dantas Bezerra	2000	722881	9389332	66,0	50,0	21,0		421,0
269	DR960	Assu Presepio	Roberto Alves		719286	9387943					458,0
270	DR961	Assu Presepio	Hermenegildo Bezerra	30/10/2002	718787	9387592		32,0			993,0
271	DR962	Assu St Canto do Mari	João Batista de Souza	2002	718411	9387667	50,0				1404,0
272	DR963	Assu St Canto do Mari	Juraci Bezerra da Nóbrega	06/2002	718261	9387676	60,0		25,0		1320,0
273	DR964	Assu St Canto do Mari	João Bonifácio		717491	9387654		4,0			1185,0
274	DR966	Assu St Canto do Mari	João Bonifácio		717803	9387693	41,0		14,0		1398,0
275	DR967	Assu Canto do Mari	João Bezerra da Silva	07/04/2000	717438	9387516	50,0	30,0	17,0		521,0
276	DR968	Assu Lagoa do Mato	Fernando Anto de Abreu	12/1999	715289	9387453	40,0	20,0	15,0		584,0
277	DR969	Assu Lagoa do Mato	Prefeitura	1974	717142	9386494	54,0	5,0	18,0		983,0
278	DR970	Assu Lagoa do Mato	Sinval Bezerra da Nóbrega	2000	716849	9386218	52,0	30,0	20,0		272,0
279	DR973	Assu Monte Alegre	Tiquinho Julião	2000	718077	9386174	75,0	6,0	24,0	25,8	111,0
280	DR973A	Assu Faz Café Jardim	Roberto Freire		720276	9385853	110,0		23,5		429,0
281	DR971	Assu Monte Alegre	Astelanio Tinoco	2000	717474	9386054	64,0		32,0		252,0
282	DR972	Assu Monte Alegre	Flavio Abreu	2000	717276	9386091	80,0		25,0		
283	DT104	Assu St Olho D'água			730257	9389744			26,0		286,0
284	DT401	Assu Com Sta Clara	Venerana Lopes Galdino		731860	9390862	28,0		21,0		1238,0
285	DT402	Assu Com Sta Clara	Franc. Roseno Dantas Filho		731548	9390455					491,0
286	DT403	Assu Com Sta Clara	Franc. Roseno R. A da Silva		731620	9388998					

287	DT405	Assu	Com Olho d'água do Piató	Elder Alves Martins		730326	9389396				384,0
288	DT406	Assu	Com Baviera	José Maria Amorin Marcedo	2000	731658	9388273	50,0			637,0
289	DT407	Assu	Com Baviera	José Maria de Amorim	06/2003	731827	9388232	46,0		16,0	562,0
290	DT408	Assu	Com Baviera	Marcelo		731088	9388136				
291	DT409	Assu	Com Baviera	Marcelo		731075	9388103				
292	DT410	Assu	Com Baviera	Marcelo		731026	9388130				
293	DT411	Assu	Com Baviera	Marcelo		730380	9388111				
294	DT412	Assu	Com Baviera	Marcelo		729817	9388463				
295	DT413	Assu	Com Baviera	Odelmo Rodrigues		731713	9387323				430,0
296	DT414	Assu	Com Baviera	Odelmo Rodrigues		731645	9387369				321,0
297	DT415	Assu	Com Baviera	Ass Comum		731396	9386584				728,0
298	DT416	Assu	Com Baviera	Franc. Augusto		731489	9386761				
299	DT417	Assu	Com Porto Piató	Ass Com Porto Piató		727893	9387674				734,0
300	DT418	Assu	Com Porto Piató	Junior Gregório		727257	9387071				872,0
301	DT419	Assu	Com Porto Piató	Jr Gregório		727288	9386979				
302	DT420	Assu	Faz Nova Conquista	Delcio Cosme		728822	9386288				421,0
303	DT421	Assu	Com Boa Vista	Djanira Torres		729420	9385460				534,0
304	DT422	Assu	Faz Alto Alegre	Rivaldo Pinheiro Tavares		729611	9385164	62,0		31,0	435,0
305	DT423	Assu	Fazenda Alto Alegre	Rivaldo Pinheiro Tavares		729615	9385192				711,0
306	DT424	Assu	Faz Alto Alegre	Rivaldo Pinheiro Tavares		729954	9385141				770,0
307	DT428	Assu	Parque de Vaqueij. São Joã	Lúcio Pinto		730392	9384657				
308	DT429	Assu	Com Lagoa do Ferreiro	Arivanaldo Bezerra Galvão		731090	9385276				
309	DT430	Assu	Com Lagoa do Ferreiro	Arivanaldo Bezerra Galvão		731099	9385266				
310	DT431	Assu	Com Lagoa do Ferreiro	Sebastião Esmerindo	1998	730869	9385519	45,0		12,0	919,0
311	DT432	Assu	Com Lagoa do Ferreiro	Noilson Pinto Medeiros		731110	9385856	23,0		20,0	1270,0
312	DT433	Assu	Com Lagoa do Ferreiro	Noilson Pinto de Medeiros		731129	9385850				1040,0
313	DT434	Assu	Com Lagoa do Ferreiro	Noilson Pinto de Medeiros		731165	9385847				
314	DT435	Assu	Com Lagoa do Ferreiro	Antonio Albano da Silveira		731328	9384577	75,0	52,0	12,0	450,0
315	DT436	Assu	Com Lagoa do Ferreiro	Antonio Albano da Silveira		731294	9384528				
316	DT437	Assu	St Entre Rios	Alfredo Freire		732392	9384103	45,0			582,0
317	DT438	Assu	Faz Entre Rios	DR. Afro		732171	9385247				567,0
318	DT439	Assu	Faz Entre Rios	DR. Afro		731985	9385079				
319	DT440	Assu	Rua Dr. Luis Carlos 3755	Carlos Alberto		730823	9383783				
320	CL580	Ipanguaçu	Tira Fogo	Raimundo Morais		750123	9394380	90,0		42,0	275,0
321	*CL581	Ipanguaçu	Tira Fogo	Raimundo Morais de Oliveira	1999	750706	9394238	85,0			
322	CL582	Ipanguaçu	Tira Fogo	Assent. Olho D'água		749977	9392889	120,0			232,1


323 CL583		Ipanguaçu	Tira Fogo	Assent. Olho d'água	1995	750475	9392746				140,0
324 CL584		Ipanguaçu	Tira Fogo	Assent. Tabuleiro Alto	1997	747749	9393370	87,0			121,0
325 CL585	PROSENG	Ipanguaçu	Tira Fogo	Assent. Tabuleiro Alto	1997	746503	9393796	104,0			146,0
326 CL586	Exercito	Ipanguaçu	Jucazeiro	Henrique de Siqueira Sousa	23/02/1992	748097	9394279	92,0			140,0
327 CL587		Ipanguaçu	Serra do Gado	Francisco Felix da Silva	1993	746820	9395420	110,0			405,0
328 CL588		Ipanguaçu	Angêlica	Prefeitura		744963	9396143	80,0			288,0
329 CL589		Ipanguaçu	Canto Claro	Prefeitura		743842	9395388	60,0			324,0
330 CL590		Ipanguaçu	Lingua de Vaca	Prefeitura	1980	742338	9394954	80,0			241,0
331 CL591		Ipanguaçu	Capivara	Prefeitura	23/09/1983	739738	9395545	60,0			385,0
332 CL591A		Ipanguaçu	EMPARN	EMPARN		737018	9390764			4,6	156,0
333 CL592		Ipanguaçu	Ubarana	Prefeitura	2002	737850	9392091	62,0			158,6
334 CL593		Ipanguaçu	Ipanguassu	Prefeitura		737568	9391401				141,1
335 CL594		Ipanguaçu	Ipanguassu	Prefeitura	28/02/1997	737237	9391706				146,3
336 CL895		Ipanguaçu	Pedrinhas	João Tadeu de Araújo		734528	9382323	14,6			226,9
337 CL895A		Ipanguaçu	Umburana	Prefeitura	2004	737801	9394124				106,0
338 CL896		Ipanguaçu	Pedrinhas	João Medeiros Filho		734495	9381933	5,5			185,9
339 CL897		Ipanguaçu	Pedrinhas	João Medeiros Filho		734502	9382022	5,1			512,3
340 CL898		Ipanguaçu	Baldun	Prefeitura		735515	9384661	60,0			1100,0
341 CL899		Ipanguaçu	Base Física	Gov do Estado		735803	9387702	30,0			209,3
342 CL900		Ipanguaçu	Olho d'água	José Fonseca		736782	9389410	60,0			177,5
343 CL901		Ipanguaçu	Bairro Maria Romana	Prefeitura		737587	9390790				234,0
344 CL902		Ipanguaçu	Com Porto- Faz Itu	Mazza Monteiro Agropastoral		747150	9389704	62,0			858,0
345 CL903		Ipanguaçu	Picado	Mazza Monteiro Agropastoral		747153	9389710				
346 CL904		Ipanguaçu	Sacramentinho	Eduardo Ribeiro		738406	9389653	62,0			
347 CL905		Ipanguaçu	Sacramento	Fran Irineu Sobrinho		739257	9389370	10,0			489,5
348 CL906		Ipanguaçu	Sacramentinho	Prefeitura		739535	9390300	60,0			806,0
349 CL907		Ipanguaçu	St Sacramentinho	Manuel Nascimento		739730	9390597	10,0			351,0
350 CL902A		Ipanguaçu	Comunidade Porto	Público	2004	747174	9389767	65,0	25	5,0	313,0
351 CL902B		Ipanguaçu	Sítio Picada	Manuel de Melo Montenegro	1982	743662	9388288	70,0	20	12,6	890,0
352 CL902C		Ipanguaçu	St Deus nos Guie	Fco Carneiro da Cunha	2002	747850	9385800	140,0	1,9	60,0	1210,0
353 CL902D		Ipanguaçu	Sítio Lagoa de Pedra	Abdon Soares	1982	743408	9386012	78,0	1,8		
354 CL902E		Ipanguaçu	Sítio Lagoa de Pedra	Manuel Fco dos Santos	1982	739338	9387491	60,0			
355 CL901A		Ipanguaçu				739745	9395548				
356 CL901A		Ipanguaçu				737018	9390764				
357 CL895A		Ipanguaçu				737801	9394124				
358 313		Ipanguaçu				737300	9394800				

359 67		Ipanguaçu				737900	9396200					
360 77	7	Ipanguaçu				740300	9396300					
361 79)2	Ipanguaçu				737300	9384300					
362 89	94	Ipanguaçu				743400	9392500					
363 89	95	Ipanguaçu				737200	9393100					
364 91	5	Ipanguaçu				736200	9387200					
365 92	21	Ipanguaçu				735400	9391300					
366 92	22	Ipanguaçu				734300	9386800					
367 92	28	Ipanguaçu				740700	9391900					
368 93	39	Ipanguaçu				741300	9392400					
369 99	90	Ipanguaçu				743500	9395400					
370 12	200	Ipanguaçu				736700	9389000					
371 12	203	Ipanguaçu				741500	9383900					
372 17	90	Ipanguaçu				737900	9389000					
373 17	'98	Ipanguaçu				737200	9389300					
374 *P	S0066 PROSE	NG Ipanguaçu	Baldum	SUDENE	01/06/1998	735540	9385200	20,0				
375 *P	S0352 AR	Ipanguaçu	Tira Fogo	SUDENE	30/11/1998	750650	9394100	88,0	3,28	49,5	50,3	217,0
376 *P	SA030 SAA	3 Ipanguaçu	Itú	Manoel de Melo Montenegro	07/02/1997	740480	9388970	52,0	17,217	6,0	8,2	
377 *P	SA047 SAAE	3 Ipanguaçu	Bairro Manoel Bonifácio	SUDENE	27/02/1997	737210	9392600	54,0	16,744	6,0	6,3	
378 PS	S0395 AR	Assu	Sítio Pal	SUDENE	08/03/99	750627	9390636	62,0	2	24,0	44,0	861,0
379 S	788 PROPO	CO Ipanguaçu	Tira Fogo	Poço publico	30/11/1998	750714	9394201	88,0				
380 S8	3727	Ipanguaçu	Ipanguaçu		16/11/1974	738900	9392900	40,0				
381 S	3728 CONE	SP Ipanguaçu	Ipanguaçu	DNOCS	18/10/1974	738800	9392600	45,0				
382 S8	3729 CONE	SP Ipanguaçu	Ipanguaçu	DNOCS	23/10/1974	738820	9392600	96,0				
383 S8	3730 CONE	SP Ipanguaçu	Ipanguaçu	DNOCS	25/10/1974	737100	9392200	67,0				
384 S8	3731 CONE	SP Ipanguaçu	Ipanguaçu	DNOCS	01/11/1974	737900	9392000	65,0				
385 S8	3732 CONE	SP Ipanguaçu	Ipanguaçu	DNOCS	23/11/1974	737000	9391000	50,0				
386 S8	3733 CONE	SP Ipanguaçu	Ipanguaçu	DNOCS	24/11/1974	737700	9391800	192,0				
387 S8	3986 CONE	SP Ipanguaçu	Mulungu		05/08/1971	737650	9391850	60,0				
388 S8	3988 CONE	SP Ipanguaçu	Ipanguaçu 2		17/08/1971	737650	9392000	51,0				
389 S	9015 CONE	SP Ipanguaçu	Ipanguaçu-Sede			737600	9391700	79,0				
390 S	9457 CONE	SP Ipanguaçu	Ipanguaçu P-8		07/09/1975	737410	9391680	164,0				
391 S	9458 CONE	SP Ipanguaçu	Ipanguaçu P-9		12/12/1974	737595	9391570	109,0				
392 S	9459 CONE	SP Ipanguaçu	Ipanguaçu P-11		20/12/1974	737690	9391680	191,0				
393 S	9462 CONE	SP Ipanguaçu	Ipanguaçu P-15		20/09/1975	737560	9391900	122,0				
394 S	9463 CONE	SP Ipanguaçu	Ipanguaçu P-16		03/10/1975	737410	9391845	98,0				

395 S3425	CDM	Ipanguaçu	Faz Baixa		27/9/1992	736000	9391500	105,0				
396 S3418	CDM	Ipanguaçu	Baixa do		14/9/1992	736000	9389000	96,0				
397 S3413	CDM	Ipanguaçu	Agro Knol	Agro Knol	17/7/1991	733500	9388500	74,0				
398 S3412	CDM	Ipanguaçu	Agro Knol	Agro Knol	8/2/1991	733250	9388250	70,0				
399 S3411	CDM	Ipanguaçu	Agro Knol	Agro Knol	23/1/1991	733000	9388000	70,0				
400 IP1		Ipanguaçu				736991	9390728		50			
401 18 in 97	PROSENG	Ipanguaçu	Sta Maria/Agrovila 1	INCRA	14/04/1997	746515	9393771	102,0	50	30,1	42,9	
402 16 IN 97	PROSENG	Ipanguaçu	Sta Maria/Agrovila 2	INCRA	31/01/1997	749913	9392844	83,0	25	25,6	32,6	
403 15 IN 97	PROSENG	Ipanguaçu	Sta Maria/ Agrovila 1	INCRA	22/01/1997	747745	9393310	87,0	25	30,8	35,0	
404 PS-0395	AR	Ipanguaçu	Sítio Palheiro - II	SUDENE	08/03/99	750627	9390636	62,0	1,68	24,5	43,8	860,8
405 S6971	PROPOCO	Angicos	Riacho da Volta	José Maria da Costa(DEDE)		757857	9386433	64,0				
406 CL571		Angicos	Sítio Ubaeira		15/10/2001	758102	9387953					1200,0
407 CL572		Angicos	Ubaeira		2001	758412	9387823					2158,0
408 CL573		Angicos	Ubaeiras		2001	758486	9387841	50,0				2216,5
409 DN285		Angicos	Faz Flores 1	Ari Tibira de Macedo		769778	9384882	21,0		4,0		3490,5
410 CL573F		Angicos				759274	9387406	80,0				4712,5
411 DN286		Angicos				770045	9385323	40,0	2,0	9,7	19,8	2503,0
412 CL273B		Angicos	Bom Sucesso			757900	9383800					2870,0
413 CL568		Af. Bezerra	Santarém	Francisco Ferreira Sobrinho	06/04/2001	766966	9388428	40,9		32,0		1800,0
414 CL569		Af. Bezerra	Santarém	Justino Marroco	18/03/2001	766646	9388991					3971,5
415 CL570		Af. Bezerra	Santarém	Jodeceno Marroco da Silva	2001	767238	9390735	48,0		30,2		3523,0
416 CT628		Af. Bezerra	St Felicidade 1	Gov Federal	2002	760466	9397108	130,0	60			358,8
417 CT629		Af. Bezerra	St Felicidade 1	Gov Federal	2002	760238	9397133	110,0	50			431,6
418 CT630		Af. Bezerra	St Felicidade 1	Gov Federal	2002	760258	9396666	84,0	30			
419 CT631	PROSEM	Af. Bezerra	St Sta Maria	Gov Federal	05/1997	760201	9394779	72,0	50			199,0
420 CT632	DNOCS	Af. Bezerra	St Sta Maria	Gov Federal	1963	760947	9392619	100,0	10			
421 CT633	PRO-POCO	Af. Bezerra	St Sta Maria	Gov Federal	06/2001	757059	9392330	76,0	35			
422 CT634		Af. Bezerra	St Sta Maria	Gov Federal	06/2001	758582	9392539	90,0	35			219,0
423 CT635	DNOCS	Af. Bezerra	St Sta Maria	Gov Federal	1963	760397	9394348					
424 CT636	PROSEM	Af. Bezerra	St Sta Maria	Gov Federal	09/1997	759565	9395815	84,0	15			315,9
425 CT637	CAERN	Af. Bezerra	St Sta Maria	Gov Federal	12/2002	760021	9395210	72,0	60			
426 DN265		Af. Bezerra	Cantos	Sebastião Roque		773285	9395065	50,0		15,0		2782,0
427 DN278		Af. Bezerra	Faz São Cirilo	Manoel Felix de Medeiros		767643	9392657	101,0				871,7
428 DN279		Af. Bezerra	Santarém	Magnum Guilherme de Sousa		766154	9390358					1160,0
429 DN280		Af. Bezerra	Faz Santarém	Pedro Moreira Lima		767894	9390917	98,0	1,5			1423,5
430 DN281		Af. Bezerra	Tapuio	José Felix da Cunha		773289	9390753	60,0		10,0		2548,0

431 DN282		Af. Bezerra	Faz Dom Bosco	Anto Fernando de Sousa		773193	9390554					1208,4
432 DN283		Af. Bezerra	Tapuio	Luis de Puro		773567	9390801					758,0
433 DN284	PROSENG	Af. Bezerra	Tapuio	José Edson de Lacerda		774220	9390851	42,0		8,0		317,2
434 DN287		Af. Bezerra	Faz Bela Colina	José dos Santos		771501	9394006					442,7
435 DN288	PROPOCO	Af. Bezerra	Canto Branco	Antonio Belarmino da Silva		773148	9394583	64,0	6			1527,5
436 DN289		Af. Bezerra	Canto Branco	José Romulo Pinheiro de Araújo		773342	9394761	42,0	7			1664,0
437 DN290		Af. Bezerra	Barro Vermelho	Assoc Barro Vermelho		773869	9398551	50,0	7			1384,5
438 DN291		Af. Bezerra	São Sebastião	José Patrício Medeiros		773482	9400166	95,0				797,6
439 DN292		Af. Bezerra	São Sebastião	Evaristo Villar Dantas3		773083	9399882	100,0	15			1600,0
440 DN293	PROSENG	Af. Bezerra	Cantos	Prefeitura		773034	9396053	80,0	10			1070,0
441 DN294		Af. Bezerra	Cantos	Assoc Comunidade Atira Fogo		773044	9395493	70,0				1644,5
442 DN295		Af. Bezerra	Cantos	José Candido Filho		773296	9395363	53,0	7,5			
443 DN296		Af. Bezerra	São Francisco de Flores	Inácio Bebem de Oliveira		772391	9386592	20,0	1			2410,0
444 DP730		Af. Bezerra	Fazenda São João	José Aguinelo Bezerra	1991	774078	9387065	59,9	1	26,9		
445 AB001		Af. Bezerra	Sede do município	Público	1984	775113	9391975	15,0	12			626,0
446 AB002		Af. Bezerra	Sede do município	Público	1984	775114	9392024	15,0	8			
447 AB003		Af. Bezerra	Sede do município	Público	1984	775122	9392075	15,0	12			
448 AB004		Af. Bezerra	Sede do município	Público	1984	775114	9392124	15,0	12			
449 AB005		Af. Bezerra	Sede do município	Público	1984	775110	9392179	15,0	12			
450 DN267B		Af. Bezerra	Canto Branco	Leão Felix de Sousa	1998	773259	9394375	72,0	12	19,0		
451 CL568A		Af. Bezerra	Santarém	José Rodrigues da Silva	2002	767933	9388357	63,0	2	30,0		
452 CL568B		Af. Bezerra	São Francisco	Fco Edson Cavalcante	2002	768162	9387973	63,0	2	40,0		1940,0
453 CL568C		Af. Bezerra	Santarém	Fco Ferreira		766964	9388000					
454 PS153A		Af. Bezerra	Faz Canto dos Bois	Hosano da Rocha Bezerra	1998	773034	9396053	85,0	10			
455 DN267A		Af. Bezerra				773150	9394582					1430,0
456 CL580		Af. Bezerra				750124	9394369					
457 130		Af. Bezerra				773650	9391700					
458 749		Af. Bezerra				760000	9392100					
459 774		Af. Bezerra				768000	9390800					
460 2129		Af. Bezerra				769000	9389200					
461 2186		Af. Bezerra				774000	9386000					
462 *PS0120	PROSENG	Af. Bezerra	Alto da Felicidade I		26/08/1998	760280	9397150	89,0	10	28,5	29,9	355,6
463 PS0124A		Af. Bezerra	Faz Nova Descoberta/Rap	o João Venâncio da Cunha		754577	9393690	94,0		40,0		553,0
464 PS0124B		Af. Bezerra	Faz Nova Descoberta/Rapo Marcos Batista			754680	9393746	94,0	18	28,2	32,4	
465 *PS0124	PROSENG	Af. Bezerra	Nova descoberta/Raposo -	-11	30/08/1998	754890	9393410	100,0	14	26,1	28,1	260,4
466 *PS0130	PROSENG	Af. Bezerra	Raposo III		11/09/1998	753450	9392560	78,0	10,4	24,8	24,8	320,0

467 *PS0131	PROSENG	Af. Bezerra	Canto		05/09/1998	773030	9395470	76,0	9,65	18,0	28,8	1434,8
468 *PS0136	PROSENG	Af. Bezerra	Santarém		13/09/1998	767630	9390800	115,0	3,5	60,0	67,4	630,0
469 *PS0152	PROSENG	Af. Bezerra	Santa Rita do Juazeiro		17/09/1998	774110	9395330	61,0	5,5	14,0	17,4	1116,5
470 *PS0153	PROSENG	Af. Bezerra	Canto da Escola		19/09/1998	772980	9395980	80,0	7,8	20,5	35,4	1078,2
471 *PS0154	PROSENG	Af. Bezerra	Canto Branco do Leão		22/09/1998	773170	9394300	78,0	8	20,0	31,3	826,1
472 *PS0155	PROSENG	Af. Bezerra	Dom Bosco		24/09/1998	773210	9390530	70,0	6,2	12,6	24,5	892,2
473 *PS0157	PROSENG	Af. Bezerra	Santa Rita		18/09/1998	772240	9393980	88,0	5	39,0	47,0	431,8
474 *PS0158	PROSENG	Af. Bezerra	Alto Alegre/Tapuio		15/09/1998	773530	9390750	60,0	4,35	20,0	32,8	772,8
475 *PS0163	PROSENG	Af. Bezerra	São Sebastião		25/09/1998	773450	9400130	110,0	18	6,5	11,4	789,3
476 PS0164	PROSENG	Af. Bezerra	Barro Vermelho		25/09/1998	774430	9398550	100,0	16,5	6,5	14,8	797,5
477 *PS0165	PROSENG	Af. Bezerra	Canto Branco do Jonas		23/09/1998	772200	9394360	70,0	8	17,3	26,3	826,0
478 *PS0195	PROSENG	Af. Bezerra	Faz. São Luiz		05/10/1998	774270	9390790	48,0	3,3	11,6	26,1	1702,0
479 PS0197	PROSENG	Af. Bezerra	Tapuio do Gado		29/09/1998	773150	9390540	65,0	3,88	15,3	37,6	1027,0
480 *PS0198	PROSENG	Af. Bezerra	Faz. Canto do Gato		09/10/1998	773200	9395000	58,0	7,47	16,2	24,6	
481 PS0213	PROSENG	Af. Bezerra	Canafístula		23/10/1998	774430	9398560	90,0	6	11,0	28,8	2276,8
482 PS0309	PROSENG	Af. Bezerra	São Sebastião	SUDENE	02/11/1998	773450	9400140	96,0	4,7	20,0	24,7	1062,2
483 PS0310	PROSENG	Af. Bezerra	Cantos	SUDENE	30/10/1998	773050	9395470	52,0	7,47	13,8	24,3	769,6
484 *PS0435	SERHID	Af. Bezerra	Faz. Canto	Berlamino	25/10/1999	773140	9394880	64,0	5	20,0	26,4	
485 *PS0469	SERHID	Af. Bezerra	Canto do Cumbe	Germano Severino	06/04/2000	772940	9400960	80,0				
486 *PS0548	SERHID	Af. Bezerra	Faz. Alto Alegre/Cantinhos	Odete Bezerra	06/03/2000	774610	9392320	31,0	4,8	7,1	13,4	780,0
487 *PS0561	SERHID	Af. Bezerra	Sítio Barro Vermelho	Juarez Cunha	23/01/2001	774158	9398680	46,0	5,838	10,3	11,9	1153,4
488 *PS0581	SERHID	Af. Bezerra	Faz. Nova Esperança	José Expedito	21/03/2001	774880	9390260	31,0	1	14,8	27,0	2811,2
489 S4524	CDM	Af. Bezerra	Mulungu			773000	9396900	100,0				
490 S6922	PROSENG	Af. Bezerra	São Sebastião	Evaristo Vilar Dantas	02/11/1998	773006	9399836	96,0				1600,0
491 S8700	T. JANNER	Af. Bezerra	Juazeiro(Barro Vermelho)		22/08/1965	773800	9398050	100,0				
492 S8995	CONESP	Af. Bezerra	Jacuma		08/03/1971	773800	9392000	50,0				
493 PT1ABZ		Af. Bezerra	Sta Rita			773214	9394155		1			

