

REPÚBLICA FEDERATIVA DO BRASIL

MINISTÉRIO DE MINAS E ENERGIA – MME SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL - SGM

CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GEOLOGIA DO BRASIL (PGB)

PROJETO AEROGEOFÍSICO SUCUNDURI

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

VOLUME I

TEXTO TÉCNICO

2010 PROSPECTORS AEROLEVANTAMENTOS E SISTEMAS LTDA.

REPÚBLICA FEDERATIVA DO BRASIL

CASA CIVIL

Dilma Roussef Ministra-Chefe

GABINETE DE SEGURANÇA INSTITUCIONAL - GSI

Jorge Armando Félix Ministro

MINISTÉRIO DE MINAS E ENERGIA - MME

Edison Lobão Ministro

Cláudio Scliar Secretário de Geologia, Mineração e Transformação Mineral

CENTRO GESTOR E OPERACIONAL DO SISTEMA DE PROTEÇÃO DA AMAZÔNIA - CENSIPAM

Rogério Guedes Soares Diretor-Geral

Bruno Morelli Faria Diretor de Administração e Finanças

> Wougran Soares Galvão Diretor de Produtos

Cristiano da Cunha Duarte Diretor Técnico

CPRM - SERVIÇO GEOLÓGICO DO BRASIL

Agamenon Sérgio Lucas Dantas Diretor-Presidente

Manoel Barretto da Rocha Neto Diretor de Geologia e Recursos Minerais - DGM

Fernando Pereira de Carvalho Diretor de Relações Institucionais e Desenvolvimento - DRI

José Ribeiro Mendes Diretor de Hidrologia e Gestão Territorial - DHT

Eduardo Santa Helena da Silva Diretor de Administração e Finanças - DAF

Inácio de Medeiros Delgado Departamento de Geologia - DEGEO

Maria Laura Vereza de Azevedo Divisão de Geofísica – DIGEOF

> Ludwig Zellner Assistente - DIGEOF

João Batista Freitas de Andrade Coordenador – DIGEOF

SUPERINTENDÊNCIA DE MANAUS

Marco Antônio de Oliveira Superintendente

Marcelo Esteves Almeida Gerência de Geologia e Recursos Minerais

FISCALIZAÇÃO DA AQUISIÇÃO DE DADOS

Ludwig Zellner Bruno Menchio Faria

REVISÃO E COMPATIBILIZAÇÃO GERAL DOS RESULTADOS OBTIDOS

Alexandre Lisboa Lago Paulo Marques Abreu

APRESENTAÇÃO

Com o objetivo de levantar informações no chamado "vazio cartográfico" da Amazônia, o governo do Presidente Luiz Inácio Lula da Silva, através da Casa Civil e do Gabinete de Segurança Institucional, vem desenvolvendo desde 2008 o **PROJETO CARTOGRAFIA DA AMAZÔNIA.** Trata-se de um projeto coordenado pelo Centro Gestor e Operacional do Sistema de Proteção da Amazônia - Censipam, executado pelas Forças Armadas Brasileiras (Exército, Força Aérea e Marinha) e pelo Serviço Geológico do Brasil – CPRM.

O projeto é composto de três grandes subprojetos, que envolvem as cartografias terrestre, náutica e geológica (geologia e aerogeofísica), e que visam à geração de informações que darão suporte no planejamento e execução de projetos de infraestrutura a serem implantados na região. Serão geradas também informações estratégicas para o monitoramento regional, segurança e defesa regional, além de informações geológicas, de recursos minerais e geoambientais desta importante área do nosso território. Estes dados irão, com certeza, contribuir para o desenvolvimento e proteção da região amazônica, auxiliar na proposição de ações alternativas de exploração sustentável de seus recursos e, dessa forma, garantir a preservação de seu patrimônio para as gerações do futuro.

É importante ressaltar que o conhecimento geológico/geofísico do território brasileiro é instrumento indispensável para o planejamento e para a implementação de políticas públicas voltadas para o desenvolvimento sustentável dos recursos minerais, energéticos e hídricos do país. Paralelamente, ressalta-se também a importância do conhecimento geológico, na condição de fonte primordial de conhecimento do meio físico, para a execução de estudos de zoneamento ecológico-econômico e de gestão ambiental do território nacional.

É dentro deste contexto que temos a grata satisfação de disponibilizar à comunidade técnico-científica, aos empresários do setor mineral brasileiro e à sociedade em geral, o **PROJETO AEROGEOFÍSICO SUCUNDURI,** o qual faz parte do **PROGRAMA GEOLOGIA DO BRASIL**, vinculado ao Ministério de Minas e Energia e à Secretaria de Geologia, Mineração e Transformação Mineral, tendo sido executado pelo Serviço Geológico do Brasil – CPRM, através da sua Divisão de Geofísica – DIGEOF.

O desenvolvimento deste produto abrangeu uma área de 55.455 km² nos Estados do Amazonas e Mato Grosso. Os trabalhos nesta área foram desenvolvidos através do recobrimento de 116.894 km de perfis de alta resolução e foram realizados com os métodos magnetométrico e gamaespectrométrico, com linhas de vôo e controle espaçadas de 500 m e 10.000 m, respectivamente, orientadas nas direções N-S e E-W.

MANOEL BARRETTO
Diretor de Geologia e Recursos Minerais

RESUMO

No início do ano de 2004 o Governo Federal definiu, no *Plano Plurianual 2004/2007* (*PPA 2004-2007*), as políticas públicas setoriais dos seus diversos Ministérios por meio dos Programas e respectivas Ações.

No âmbito do Ministério de Minas e Energia e sua Secretaria de Geologia, Mineração e Transformação Mineral (SGM/MME), compete a CPRM — Serviço Geológico do Brasil o planejamento e a execução do *Programa Geologia do Brasil (PGB)*, tendo como uma de suas ações a de levantamentos geofísicos.

De acordo com o *Programa de Atividades Técnicas 2006 (PAT 2006)*, a CPRM, em 23 de Outubro de 2009, celebrou com a Prospectors Aerolevantamentos e Sistemas Ltda. o contrato no 054/PR/09 para executar os serviços de aquisição e processamento de dados aeromagnetométricos e aerogamaespectrométricos do *Projeto Aerogeofísico Sucunduri*, o qual localiza-se nos Estados do Amazonas e do Mato Grosso na região norte e centro oeste do Brasil respectivamente.

Para a etapa de aquisição de dados foram utilizadas duas aeronaves Piper Navajo PA31-350, prefixo PR-PEC e PR-PRS, de propriedade da Prospectors Aerolevantamentos e Sistemas Ltda., e uma aeronave Piper Navajo PA31-310, prefixo PT-DYK, de propriedade da Microsurvey Aerogeofísica e Consultoria Científica Ltda., as quais realizaram o projeto no período de 21 de Novembro de 2009 a 25 de Junho de 2010, totalizando 116.894 km de perfis.

Como base de operações para a etapa de aquisição de dados foi utilizada a cidade de Apuí no estado do Amazonas. Foram usados magnetômetros de bombeamento ótico de vapor de césio da Geometrics, modelo G822-A, e gamaespectrômetro da RADIATION SOLUTIONS, modelo RS-500, de 1024 canais espectrais, sistema de navegação GPS com receptores de 12 canais da marca AGNAV, modelo Guia (PR-PRS e PR-PEC). Para aeronave PT-DYK foi usado gamaespectrômetro Exploranium GR820, sistema de navegação Pico Envirotec AGIS.

Para o recobrimento do projeto foram utilizadas cerca de 673,63 horas de vôo, que resultaram no levantamento efetivo de 116.894 km de perfis aprovados pela fiscalização da CPRM em uma área de cerca de 55.455 km². O processamento de dados e a elaboração do Relatório Final foram realizados entre os meses de Junho a Dezembro de 2010.

Os produtos finais do Projeto Aerogeofísico estão sendo apresentados sob a forma de Relatório Final (4 exemplares), que consiste em texto técnico (Volume I) e Anexos (Volumes II a XIV), os quais incluem os seguintes temas apresentados sob a forma de mapas coloridos nas escalas 1:100.000 e 1:250.000, segundo o corte cartográfico ao milionésimo e na escala 1:500.000 em folha única:

- ☑ Escala 1:100.000: Mapas de Contorno do Campo Magnético Total reduzido do IGRF (Campo Total, Primeira Derivada Vertical e Sinal Analítico), de Contorno Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio e Tório, Razões eU/eTh, eU/K e eTh/K), juntamente com os mapas de Traço de Vôo.
- ☑ Escala 1:250.000: Mapas de Contorno do Campo Magnético Total reduzido do IGRF (Campo Total, Primeira Derivada Vertical e Sinal Analítico), de Contorno Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio e Tório, Razões eU/eTh, eU/K e eTh/K).
- ☑ Escala 1:500.000 (Folha Única): Mapas de Pseudo-Iluminação do Campo Magnético Total Reduzido do IGRF(Campo Total, Primeira Derivada Vertical e Sinal Analítico) e Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio e Tório, Razões eU/eTh, eU/K e eTh/K e Distribuição Ternária de Potássio, Urânio e Tório) e Mapa de Pseudo-Iluminação do Modelo Digital do Terreno.

Completando os produtos finais, estão sendo também entregues os arquivos digitais referentes aos metadados, os arquivos XYZ (perfis) e em malhas (*grids*), estes últimos no tamanho de 125 x 125 m, ambos no formato *GEOSOFT*, como também arquivos digitais de todos os mapas do projeto nas citadas escalas e o arquivo do texto, figuras e tabelas do Volume 1 do Relatório Final do projeto em formato PDF, todos os arquivos gravados em DVD-ROM e CD-ROM.

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

PROJETO AEROGEOFÍSCO SUCUNDURI

ÍNDICE DOS VOLUMES

VOLUME I TEXTO TÉCNICO E ANEXOS

VOLUME II ANEXOS – ESCALA 1:100.000

• MAPA DE CONTORNO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 1 a 18)

VOLUME III ANEXOS – ESCALA 1:100.000

• MAPA DE CONTORNO DA 1ª. DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 1 a 18)

VOLUME IV ANEXOS – ESCALA 1:100.000

• MAPA DE CONTORNO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 1 a 18)

VOLUME V ANEXOS – ESCALA 1:100.000

• MAPA DE CONTORNO RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL.

(Folhas 1 a 18)

VOLUME VI ANEXOS – ESCALA 1:100.00

 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO.

(Folhas 1 a 18)

VOLUME VII ANEXOS – ESCALA 1:100.000

 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO.

(Folhas 1 a 18)

VOLUME VIII ANEXOS – ESCALA 1:100.000

 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO.

(Folhas 1 a 18)

VOLUME IX ANEXOS – ESCALA 1:100.000

• MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO.

(Folhas 1 a 18)

VOLUME X ANEXOS – ESCALA 1:100.000

• MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO.

(Folhas 1 a 18)

VOLUME XI ANEXOS – ESCALA 1:100.000

• MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO.

(Folhas 1 a 18)

VOLUME XII ANEXOS – ESCALA 1:250.000

• MAPA DE CONTORNO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF)

(Folha I a III)

• MAPA DE CONTORNO DA 1ª. DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha I a III)

• MAPA DE CONTORNO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha I a III)

VOLUME XIII.1 ANEXOS – ESCALA 1:250.000

• MAPA DE CONTORNO RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL.

(Folha I a III)

 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO.

(Folha I a III)

 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO.

(Folha I a III)

 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO.

(Folha I a III)

VOLUME XIII.2 ANEXOS – ESCALA 1:250.000

- MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO. (Folha I a III)
- MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO.
 (Folha I a III)
- MAPA RADIOMÉTRICA DA RAZÃO TÓRIO/POTÁSSIO.
 (Folha I a III)

VOLUME XIV ANEXOS – ESCALA 1:500.000

• MAPA DE PSEUDO-ILUMINAÇÃO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha única)

 MAPA DE PSEUDO-ILUMINAÇÃO DA 1ª. DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha única)

• MAPA DE PSEUDO-ILUMINAÇÃO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha única)

 MAPA RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL.

(Folha única)

- MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO.
 (Folha única)
- MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO. (Folha única)
- MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO. (Folha única)
- MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO. (Folha única)
- MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO.
 (Folha única)
- MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO.
 (Folha única)
- MAPA DO MODELO DIGITAL DO TERRENO.
 (Folha única)
- MAPA RADIOMÉTRICO DA DISTRIBUIÇÃO TERNÁRIA DE POTÁSSIO, URÂNIO E TÓRIO.

(Folha única)

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

PROJETO AEROGEOFÍSICO SUCUNDURI

VOLUME I – TEXTO TÉCNICO

SUMÁRIO

1. INTRODUÇÃO	1
2. AQUISIÇÃO DE DADOS	6
2.1. Características do Levantamento	6
2.2. Equipamentos Utilizados	7
2.2.1. Aeronave	7
2.2.2. Aeromagnetômetros	7
2.2.3. Aerogamaespectrômetros	8
2.2.4. Sistema de Aquisição de Dados	8
2.2.5. Sistema de vídeo	9
2.2.6. Altímetros.	10
2.2.7. Sistema de Navegação e Posicionamento	10
2.2.8. Magnetômetro Terrestre	10
2.3. Planejamento e Mobilização	11
2.3.1. Elaboração do Plano do vôo	11
2.3.2. Estatísticas das Operações	13
2.3.3. Mapa do Projeto de Vôo	14
2.3.4. Testes dos Equipamentos	15
2.3.5. Cálculo da Resolução dos Cristais Detectores (downward e upward)	25
2.3.6. Calibração dos Detectores <i>Downward Looking</i>	26
2.3.7. Calibração dos Detectores <i>Upward Looking</i>	28
2.4. Compilação dos dados	28

2.5. Equipe Técnica na Base de Operações	29
3. PROCESSAMENTO DE DADOS	30
3.1. Fluxo de Processamento	30
3.1.1. Preparação do Banco de Dados do Levantamento	30
3.1.2. Processamento dos Dados Magnetométricos	30
3.1.2.1. Correção do Erro de Paralaxe	30
3.1.2.2. Remoção da Variação Magnética Diurna	31
3.1.2.3. Nivelamento dos Perfis	31
3.1.2.4. Micronivelamento dos Perfis	32
3.1.2.5. Remoção do IGRF	32
3.1.3. Processamento dos Dados Gamaespectrométricos	33
3.1.3.1. Correção do Tempo Morto	33
3.1.3.2. Aplicação de Filtragem	33
3.1.3.3. Correlação do Erro de Paralaxe	33
3.1.3.4. Cálculo da Altura Efetiva (hc) de Vôo	33
3.1.3.5. Remoção do <i>background</i> da Aeronave e Cósmico	34
3.1.3.6. Remoção do Background do Radônio	34
3.1.3.7. Estimativa dos Coeficientes Skyshine (a1 e a2)	35
3.1.3.8. Correção do Efeito <i>Compton</i>	36
3.1.3.9. Correção Altimétrica (Coeficiente de Atenuação Atmosférica)	36
3.1.3.10. Conversão para Concentração de Elementos	37
3.1.4. Determinação das Razões eU/eTh, eU/K e eTh/K	38
3.2. Interpolação e Contorno	38
3.3. Arquivo Final de Dados	38
3.4. Equipe Envolvida no Processamento dos Dados	39
4. CRONOGRAMA GERAL DAS OPERAÇÕES	40
5 PRODUTOS FINAIS	40

5.1. Mapas de Contorno do Campo Magnético Total, da 1ª Derivada Vertical e do	
Sinal Analítico do Campo Magnético Total (Reduzido do IGRF) 45	5
5.2. Mapas Radiométricos dos Canais de Potássio, Urânio, Tório e Contagem total 45	5
5.3. Mapa Radiométrico Ternário45	5
5.4. Mapas das Razões Radiométricas eU/eTh, eU/K e eTh/K	6
5.5. Mapa de Pseudo-Iluminação do Modelo Digital do Terreno 46	6
5.6. Mapa de Traço de Linhas de Vôo 46	6
5.7. Relatório Final	6
5.8. Arquivos Digitais Finais	6
5.9. Arquivos Poligonais49	9
5.10. Produtos Originais	9
6. PARTICIPAÇÃO DA CPRM – SERVIÇO GEOLÓGICO DO BRASIL 56	6
7. REFERÊNCIAS BIBLIOGRÁFICAS	6

ÍNDICE DOS ANEXOS

ANEXO I – Resumo do Processo de Calibração dos Gamaespectrômetros

Anexo I-a – Resultado dos Testes da resolução dos Cristais Detectores (*downward e upward*).

Anexo I-b – Resultado do Teste dos Coeficientes de Espalhamento *Compton*.

Anexo I-c – Determinação dos *Background*s da Aeronave e Cósmico.

Anexo I-d – Determinação das Constantes de Calibração do Radônio.

Anexo I-e – Calibração Dinâmica – Resultados dos Testes.

Anexo I-f – Atenuação Atmosférica – Resultados dos Testes.

ANEXO II – Testes Contratuais

Anexo II-a – Teste de Altímetros

Anexo II-b – Compensação Magnética

Anexo II-c – Teste de Paralaxe

ANEXO III – Quadros Sinópticos das Operações de Campo

ANEXO IV - Conteúdo do CD-ROM e dos DVDs-ROM

ANEXO V – Formato de Gravação dos Dados do Projeto

ANEXO VI – Listagem das Linhas Aprovadas e Utilizadas no Processamento

ÍNDICE DAS FIGURAS

Figura 1 – Localização da Área do projeto Aerogeofísico	1
Figura 2 – Vértices do projeto e área de atuação da aeronaves	3
Figura 3 – Aeronave Piper Navajo PA31-350 – PR-PRS.	4
Figura 4 – Aeronave Piper Navajo PA31-310 – PT-DYK.	5
Figura 5 – Aeronave Piper Navajo PA31-350 – PR-PEC.	5
Figura 6 – Exemplo de Registro de Magnetômetro de Base	11
Figura 7 – Mapa das linhas de vôo	12
Figura 8 – Gráfico da Estatística das Operações da aeronave PR-PRS.	13
Figura 9 – Gráfico da Estatística das Operações da aeronave PT-DYK	14
Figura 10 – Gráfico da Estatística das Operações da aeronave PR-PEC	14
Figura 11 – Movimentos de Roll, Pitch e Yaw	16
Figura 12 – Fluxograma do processamento de dados.	39
Figura 13 – Cronograma Geral das Operações.	40
Figura 14 – Articulação das folhas na escala 1:100.000.	43
Figura 15 – Articulação das folhas na escala 1:250.000.	44
Figura 16 – Mapa pseudo-iluminado do campo magnético total (reduzido do IGRF)	50
Figura 17 – Mapa do sinal analítico do campo magnético total (reduzido do IGRF)	51
Figura 18 – Mapa Radiométrico da Taxa de Exposição do canal de Contagem Total	52
Figura 19 – Mapa Radiométrico Ternário (K-U-Th).	53
Figura 20 – Mapa Radiométrico da razão Tório / Potássio	54
Figura 21 – Mana pseudo-iluminado do Modelo Digital do Terreno	55

ÍNDICE DAS TABELAS

Tabela 1 – Coordenadas Geográficas do Projeto.	4
Tabela 2 – Equipamentos Utilizados	7
Tabela 3 – Faixas Energéticas do Gamaespectrômetro e os Canais Correspondentes	8
Tabela 4 – Quilometragem Produzida e Área Levantada	12
Tabela 5 – Estatística das Operações	13
Tabela 6 – Divisão das Linhas por Aeronave.	15
Tabela 7 – Testes de Manobras – Aeronave PR-PRS.	17
Tabela 8 – Testes de Manobras – Aeronave PT-DYK	17
Tabela 9 – Testes de Manobras – Aeronave PR-PEC.	17
Tabela 10 – Testes Diários de Repetibilidade Radioativas – PR-PRS	19
Tabela 11 – Testes Diários de Repetibilidade Radioativas – PT-DYK	22
Tabela 12 – Testes Diários de Repetibilidade Radioativas – PR-PEC	24
Tabela 13 – Concentração dos Tanques de Calibração Transportáveis	26
Tabela 14 – Coeficientes de Espalhamento Compton.	27
Tabela 15 – Background das Aeronaves e Cosmic Stripping Ratios	27
Tabela 16 – Constantes de Calibração do Radônio.	35
Tabela 17 – Coeficientes de <i>Skyshine</i> .	36
Tabela 18 – Coeficiente de Atenuação Atmosférica.	37
Tabela 19 – Coeficientes de Sensibilidade	37
Tabela 20 – Valores Mínimos para Cálculo das Razões Radiométricas	38
Tabela 21 – Características da Apresentação dos Mapas Aerogeofísicos	41
Tabela 22 – Características dos intervalos de contorno dos mapas aerogeofísicos	42
Tabela 23 – Banco de dados <i>Geosoft</i> (GDB) – Magnetometria	47
Tabela 24 – Banco de dados Geosoft (GDB) – Gamaespectrometria	48
Tabela 25 – Banco de dados <i>Geosoft</i> (GDB) – Gamaespectrometria 256 canais	48
Tabela 26 – Arquivo de Cruzamento XYZ – Magnetometria	49

1. INTRODUÇÃO

A área do levantamento aerogeofísico está localizada principalmente no estado do Amazonas localizado na região norte do Brasil, e uma pequena parte do estado do Mato Grosso, conforme mostra a Figura 1.

Figura 1 – Localização da Área do projeto Aerogeofísico.

O levantamento aerogeofísico constou do recobrimento de 116.894,00 km de perfis aeromagnetométricos e aerogamaespectrométricos de alta resolução, com linhas de vôo e de controle espaçadas de 0,5 km e 10 km e orientadas nas direções N-S e E-W respectivamente. A Figura 2 e a Tabela 1 apresentam as coordenadas geográficas que definem o polígono que envolve a área pesquisada. A altura de vôo foi fixada em 100 m sobre o terreno, admitindo-se variações de mais ou menos 15 m.

Foram utilizadas para a execução deste projeto, as aeronaves Piper Navajo de prefixo PR-PRS (Figura 3) e PR-PEC (Figura 5) de propriedade da Prospectors Aerolevantamentos e Sistemas Ltda. e a aeronave Piper Navajo de prefixo PT-DYK (Figura 4), de propriedade da Microsurvey Aerogeofísica e Consultoria Científica Ltda. A aeronave PR-PRS realizou seus trabalhos durante o período de 24/02/2010 a 18/06/2010 adquirindo 61.052,30 km de linhas de vôo. A aeronave PT-DYK realizou seus trabalhos durante o período de 28/11/2009 a 23/03/2010 adquirindo 34.232,00 km de linhas de vôo e a PR-PEC realizou os trabalhos entre 21/11/2009 a 25/11/2009 e entre 11/06/2010 e 25/06/2010 adquirindo 21.609,70. Todas as aeronaves utilizaram como base para operações a cidade Apuí-AM.

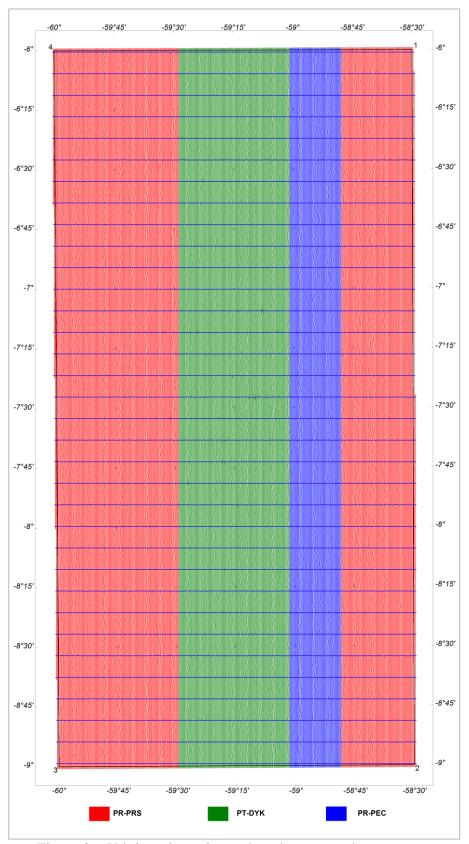


Figura 2 – Vértices do projeto e área de atuação da aeronaves.

 ${\it Tabela} \ {\it 1-Coordenadas} \ {\it Geográficas} \ {\it do} \ {\it Projeto}.$

Vértice	Latitude	Longitude
1	-6°00'	-58°30'
2	-9°00'	-58°30'
3	-9°00'	-60°00'
4	-6°00'	-60°00'

Figura 3 – Aeronave Piper Navajo PA31-350 – PR-PRS.

Figura 4 – Aeronave Piper Navajo PA31-310 – PT-DYK.

Figura 5 – Aeronave Piper Navajo PA31-350 – PR-PEC.

A metodologia para a aquisição dos dados seguiu a sistemática descrita adiante. Ao longo dos perfis foram realizadas dez leituras de aeromagnetômetro e uma leitura do gamaespectrômetro por segundo, posicionadas com sistema de observação de satélites GPS, de precisão melhor do que 10 m. Uma estação fixa para controle da variação diurna do campo magnético terrestre foi instalada na base de operações, utilizada durante o levantamento, no aeroporto municipal de Apuí-AM.

As calibrações dos sistemas detectores aerogamaespectrométricos foram realizadas em duas etapas: a primeira, estática, com emprego de fontes padronizadas (tanques de calibração transportáveis ou *transportable calibration pads* para o *background*, potássio, urânio e tório), foi conduzida no aeroporto de Jacarepaguá na cidade do Rio de Janeiro-RJ. A calibração dinâmica foi executada na região de Maricá-RJ, sobre a pista de calibração dinâmica (*dynamic calibration range* – DCR) que resultou de levantamento terrestre.

O processamento dos dados foi desenvolvido no escritório sede da Prospectors Aerolevantamentos e Sistemas Ltda., no Rio de Janeiro-RJ e envolveu a aplicação de rotinas do sistema *Oasis Montaj* versão 6.4.1 (GEOSOFT, 2005), utilizado para a compilação das informações coletadas e apresentação dos resultados na forma de mapas nas escalas 1:100.000, 1:250.000 e 1:500.000, arquivos de banco de dados e *grids*.

2. AQUISIÇÃO DE DADOS

2.1. Características do Levantamento

Os parâmetros que nortearam a execução do levantamento são descritos, resumidamente, a seguir:

- Direção das linhas de vôo: N-S
- Espaçamento entre as linhas de vôo: 0,5 km
- Direção das linhas de controle: E-W
- Espaçamento entre as linhas de controle: 10 km
- Intervalo entre medições geofísicas consecutivas: 0,1 s (magnetômetro) e 1,0 s (gamaespectrômetro)
- Altura média de vôo: 100 m
- Velocidade aproximada de vôo: 270 km/h

2.2. Equipamentos Utilizados

A Tabela 2 apresenta os equipamentos utilizados pelas aeronaves durante a execução do projeto.

Tabela 2 – Equipamentos Utilizados.

Prefixo da aeronave	PR-PRS	PT-DYK	PR-PEC
Modelo da aeronave	Navajo PA31-350	Navajo PA31-310	Navajo PA31-350
Fabricante da aeronave	Piper	Piper	Piper
Aeromagnetômetro	Geometrics G822A	Geometrics G822A	Geometrics G822A
Gamaespectrômetro	RS-500	GR820	RS-500
Volume dos Cristais Dectores de iodeto de Sódio	2.560 pol ³ <i>down</i> e 512 pol ³ <i>up</i>	2.560 pol ³ <i>down</i> e 512 pol ³ <i>up</i>	2.560 pol ³ <i>down</i> e 512 pol ³ <i>up</i>
Sistema de navegação "Real time"	AG-NAV GUIA "Real time"	PICO ENVIROTEC AGIS	AG-NAV GUIA "Real time"
Sistema de Aquisição GPS "Realtime"	MIDTECH RX 400-P "Real time"	CSI Wireless MiniMax	TEEJET RX 410-P "Real time"
Câmera de Vídeo	PANASONIC CCTV CP484	SONY VHC	PANASONIC CCTV CP484
Radar Altímetro	Free-Flight Systems TRA-3000	Free-Flight Systems TRA-3000	Free-Flight Systems TRA-3000
Altímetro Barométrico	Setra Barometrics sensor 276	Setra Barometrics sensor 276	Honeywell PPT
Magnetômetro Terrestre a Vapor de Césio	GEM GSM-19	PICO ENVIROTEC MMS4	GEM GSM-19
Sistema de Aquisição	RMS DGR33	PICO ENVIROTEC AGIS	RMS DAARC500 e DATA LOGGER IEI

2.2.1. Aeronave

O levantamento foi efetuado utlizando duas aeronaves Piper Navajo PA31-350, prefixo PR-PRS e PR-PEC e uma aeronave Piper Navajo PA31-310, prefixo PT-DYK. As aeronaves PR-PRS e PR-PEC são aeronaves a pistão, bimotor, de asa baixa, trem de pouso retrátil, equipada com motores Lycoming de 350 HP, opera a uma velocidade média de 270 km/h e possui autonomia de 6 horas. A aeronave PT-DYK é uma aeronave a pistão, bimotor, de asa baixa, trem de pouso retrátil, equipada com motores Lycoming de 310 HP, opera a uma velocidade média de 265 km/h e possui autonomia de 4,5 horas.

2.2.2. Aeromagnetômetros

Sistema aeromagnético acoplado a um sensor de vapor de césio montado na cauda (tipo *Stinger*) da aeronave. O sinal é recebido através de um pré-amplificador, localizado na base do cone de cauda da aeronave, e enviado ao sistema de aquisição e compensação aeromagnética contido no sistema RMS DGR33A para a aeronave PR-PRS, Pico Envirotec AGIS para aeronave PT-DYK e no sistema RMS DAARC500 para a aeronave PR-PEC.

Sensor: Geometrics G822A

Resolução: 0,001 nT

Faixa: 20.000 - 95.000 nT

Montagem: Stinger

As leituras do magnetômetro são realizadas a cada 0,1 segundo, o que equivale, para a velocidade de 270 km/h da aeronave, a aproximadamente 7,5 m no terreno (PR-PRS e

PR-PEC) e para a velocidade de 265 km/h, a aproximadamente 7,36 m no terreno (PT-DYK).

2.2.3. Aerogamaespectrômetros

Foram utilizados pelas aeronaves PR-PRS e PR-PEC, gamaespectrômetros *Radiations Solutions*, modelo RS-500 e pela aeronave PT-DYK foi utilizado gamaespectrômetro Exploranium, modelo GR820. Nesses gamaespectrômetros o espectro de cada um dos cristais detectores é analisado individualmente para determinação precisa dos fotopicos de potássio, urânio e tório. Uma correção linear é aplicada individualmente a cada cristal, mantendo o espectro permanentemente alinhado. As radiações gama detectadas são somadas e as leituras reduzidas a uma única saída de 256 canais espectrais.

A correspondência entre as janelas dos gamaespectômetros e as respectivas faixas de energia é mostrada na Tabela 3, a seguir:

Tabela 3 – Faixas Energéticas do Gamaespectrômetro e os Canais Correspondentes.

Canal Radiométrico	Faixa de Energia (MeV)		Canais Cor	respondentes
Contagem Total	0,41	2,81	34	233
Potássio	1,37	1,57	115	131
Urânio	1,66	1,86	139	155
Tório	2,41	2,81	202	233
Cósmico	3,00	∞	256	-

As leituras do gamaespectrômetros são realizadas a cada segundo, representando medições a intervalos de amostragem de aproximadamente 75 m no terreno (PR-PRS e PR-PEC) e 73,6 m no terreno (PT-DYK).

Cada sistema detector voltado para baixo (*downward looking*) é constituído por três conjuntos de cristais de iodeto de sódio (NaI), sendo dois de 1024 polegadas cúbicas e um de 512 polegadas cúbicas, totalizando 2.560 polegadas cúbicas.

O sistema detector voltado para cima (*upward looking*) é constituído por dois cristais de 256 polegadas cúbicas, totalizando 512 polegadas cúbicas.

Os detectores *upward looking* monitoram as radiações decorrentes da influência do radônio na faixa energética do canal do urânio (1,66 a 1,86 MeV).

2.2.4. Sistema de Aquisição de Dados

O computador do sistema de aquisição de dados DGR33 é a principal unidade do sistema aeromagnético instalado a bordo da aeronave PR-PRS, o modelo AGIS é a unidade instalada na aeronave PT-DYK e o DAARC500 é a unidade a bordo da aeronave PR-PEC. Todos os dados adquiridos são armazenados no disco rígido e posteriormente transferidos para o disco magnético, para efeito de *backup* e transferência dos dados para o computador de processamento. Em um segundo momento na aeronave

PR-PEC foi instalado um computador de aquisição de dados digitais e analógicos que possui portas seriais, USB e *Ethernet*, o DATA LOGGER IEI, que permite salvar os dados em *Pen drives* e posteriormente fazer a transferência dos dados para o computador.

O formato de gravação relativo aos dados de campo comporta as seguintes informações:

Taxa de Amostragem (Hz)	Parâmetro	Unidade
1	Fiducial	S
1	Número da Linha	*
10	Magnetômetro compensado	nT
10	Magnetômetro bruto	nT
10	Componente X fluxgate	mV
10	Componente Y fluxgate	mV
10	Componente Z fluxgate	mV
10	Radar altímetro	μV
10	Temperatura	μV
10	Barômetro	μV
10	Temperatura	°C
10	Altura do Vôo	m
10	Altitude Barométrica	m
1	Horário UTC (GPS)	S
1	Latitude (GPS)	Graus decimais
1	Longitude (GPS)	Graus decimais
1	Qualidade da correção GPS	*
1	Número de satélites	*
1	Horizontal Dilution of precision	*
1	Altitude (GPS)	m
1	Código de erro do gamaespectrômetro	*
1	Número de detectores <i>Down</i>	*
1	Número de detectores <i>Up</i>	*
1	Sample Time	ms
1	Live Time	ms
1	Radiação cósmica	cps
1	Resolução do sistema	*
1	Contagem Total	Cps
1	Potássio	Cps
1	Urânio	Cps
1	Tório	Cps
1	Urânio <i>Up</i>	Cps
1	256 canais <i>Down</i>	Cps
1	256 canais <i>Up</i>	Cps

2.2.5. Sistema de vídeo

As aeronaves PR-PRS e PR-PEC utilizam sistema de vídeo digital PANASONIC CCTV CP484. Os modelos são constituídos por câmera acoplada ao gravador digital e monitor

do sistema de 8,5" disponível na cabine para visualização em tempo real. A aeronave PT-DYK utiliza sistema de vídeo digital SONY VHC. O modelo é constituído por câmera acoplada ao gravador digital e monitor do sistema de 9" disponível na cabine para visualização em tempo real. As câmeras são instaladas em janela especialmente projetada no piso da aeronave para permitir completa visibilidade do terreno.

O sistema de sobreposição de vídeo (OSD1246 – *Combined Corporation Eletronics*) possibilita a gravação do número do vôo, número da linha e valores das fiduciais nas imagens de vídeo coletadas.

2.2.6. Altímetros

A altura de vôo da aeronave foi monitorada através dos altímetros de radar e dos barômetros de precisão incluídos no sistema aerogeofísico. O radar altímetro utilizado pelas aeronaves é o *Free-Flight Systems*, modelo TRA-3000 e apresentam precisão de 5 a 7% e alcance de 2.500 pés. Os barômetros são transdutores de pressão que registram a altitude de vôo em relação ao nível do mar. O modelo de barômetro utilizado nas aeronaves PR-PRS e PT-DYK foram o Setra Barometrics Sensor 276 que possui precisão de 0,25% e alcance de 1.100 mBar. O modelo de barômetro utilizado na aeronave PR-PEC foi o *Honeywell* PPT que tem precisão de 0,005% e alcance de 1.500 mBar.

2.2.7. Sistema de Navegação e Posicionamento

A navegação das aeronaves foi efetuada por sistemas GPS de 12 canais, receptor *Midtech* RX-400P na aeronave PR-PRS e *Teejet* RX-410P na aeronave PR-PEC. As informações de posicionamento são enviadas ao computador de navegação AGNAV GUIA P151, para posterior processamento, ficando disponíveis aos pilotos através de indicadores digitais e das telas dos computadores. As coordenadas GPS (latitude/longitude) são armazenadas nos discos rígidos dos sistemas de aquisição de dados e transferidas ao escritório de campo. As aeronaves estão equipadas com sistemas de correção em tempo real (DGPS *real time*), cujas coordenadas são transferidas ao escritório de campo já corrigido.

O sistema de navegação utilizado pela aeronave PT-DYK foi PICO ENVIROTEC, modelo AGIS aliado aos sistemas DGPS CSI Wireless, modelo MINI MAX, de 12 canais, e após correção diferencial pós-processada, garante a precisão do posicionamento das medidas realizadas assim como a trajetória da aeronave. Sinais de posição foram registrados com freqüência de no mínimo 5 vezes por segundo. Os registros dos dados do GPS são sincronizados com o sistema de aquisição de dados geofísicos e o sistema de vídeo.

2.2.8. Magnetômetro Terrestre

Para controle diário das variações do campo magnético terrestre foram utilizados dois magnetômetros portáteis, um Pico Envirotec, modelo MMS4 (PT-DYK), e um GEM, modelo GSM-19 (PR-PRS e PR-PEC), ambos com resolução de 0,1 nT e envoltória de ruídos em nível equivalente. As leituras do campo magnético total foram realizadas a cada 0,1 segundo e 3 segundos pelos equipamentos PICO e GEM respectivamente, e armazenadas na memória do próprio equipamento. Os magnetômetros foram instalados

em local de gradiente magnético suave, livre de objetos móveis e de interferência cultural. O local escolhido foi o aeroporto do município de Apuí-AM.

Ao término de cada jornada de produção, os arquivos contendo os dados da variação diurna eram transferidos aos computadores para uso no pré-processamento. A Figura 6 mostra um exemplo do registro do magnetômetro.

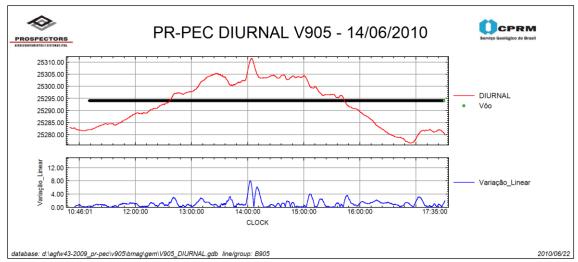


Figura 6 – Exemplo de Registro de Magnetômetro de Base.

2.3. Planejamento e Mobilização

Nesta fase foram estabelecidas as diretrizes básicas para a execução de todas as etapas envolvidas na operação, quais sejam:

- Seleção da base de operações, instalada na cidade de Apuí-AM;
- Obtenção da autorização do aerolevantamento junto ao Ministério da Defesa;
- Preparação do plano de vôo e obtenção dos materiais necessários ao levantamento;
- Ajuste dos equipamentos às especificações contratuais;
- Realização dos testes pré-levantamento previstos contratualmente.

O levantamento recebeu do Ministério da Defesa a autorização nº 1091/09 (PR-PRS), 1124/09 (PT-DYK) e 1090/09 (PR-PEC).

2.3.1. Elaboração do Plano do vôo

Para a cobertura completa da área relativa ao projeto, foram programadas 337 linhas de vôo e 34 linhas de controle, totalizando 116.894,00 km de perfis geofísicos, conforme a Tabela 4 a seguir. A Figura 7 apresenta o arranjo das linhas distribuídas sobre a poligonal envoltória da área.

Tabela 4 – Quilometragem Produzida e Área Levantada.

Prefixo da Aeronave	Área (km²)	Total de linhas de Vôo (km)	Total de linhas de Controle (km)	Total de linhas de Vôo+Controle (km)
PR-PRS	30.172,46	61.052,30	=	61.052,30
PT-DYK	17.260,81	34.232,00	ı	34.232,00
PR-PEC	8.021,73	15.950,40	5.659,30	21.609,70
Totais:	55.455,00	111.234,70	5.659,30	116.894,00

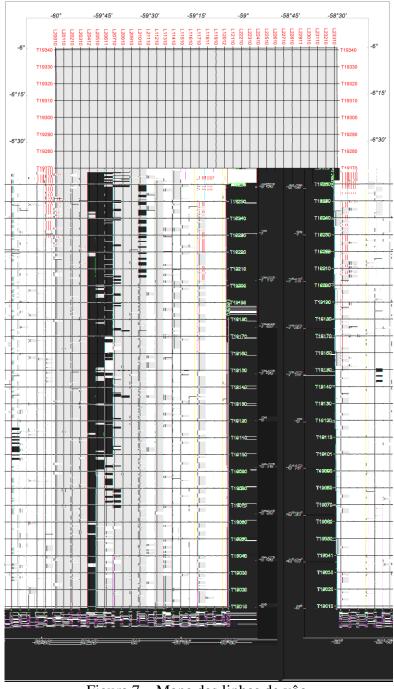


Figura 7 – Mapa das linhas de vôo.

2.3.2. Estatísticas das Operações

O projeto foi executado entre 21/11/2009 e 25/06/2010. A aeronave PR-PRS efetuou seus trabalhos entre 24/02/2010 e 18/06/2010 totalizando 118 dias, a aeronave PT-DYK realizou seus trabalhos entre 28/11/2009 e 23/03/2010 totalizando 116 dias e a aeronave PR-PEC realizou seus trabalhos em duas etapas: entre 21/11/2009 e 25/11/2009 e entre 11/06/2010 e 25/06/2010 totalizando 26 dias. Foram gastas cerca de 673,63 horas de vôo para aquisição de dados e testes. A Tabela 5 e os gráficos das Figuras 8, 9 e 10, a seguir, mostram as estatísticas obtidas durante a fase de aquisição dos dados. Para a execução do levantamento, a aeronave PR-PRS utilizou 343,13 horas de vôo produtivo, a aeronave PT-DYK 210,06 horas de vôo produtivo e a aeronave PR-PEC utilizou 120,43 horas de vôo produtivo.

		Aeronave					
		PR-PRS PT-DYK		PR-PEC			
Item	Indicadores do Levantamento	Nº Dias	%	Nº Dias	%	Nº Dias	%
1	Produção	63	53,39	48	41,38	18	69,23
2	Meteorologia	26	22,03	54	46,55	1	3,85
3	Manutenção de Aeronave	16	13,56	12	10,35	1	3,85
4	Tempestade Magnética	1	0,85	0	0,00	0	0,00
5	Falha de Equipamento	5	4,24	0	0,00	0	0,00
6	Testes Contratuais	3	2,54	2	1,72	2	7,69
7	Outros	4	3,39	0	0,00	4	15,38
	Total:	118*	100	116*	100	26*	100

^{*} número de dias despendido pela aeronave

Figura 8 – Gráfico da Estatística das Operações da aeronave PR-PRS.

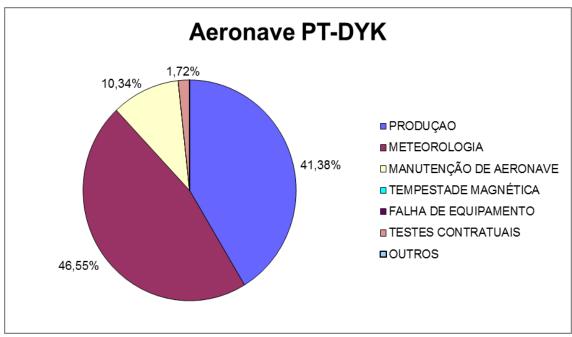


Figura 9 – Gráfico da Estatística das Operações da aeronave PT-DYK.

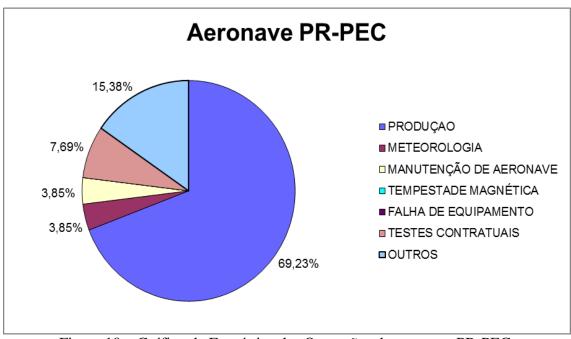


Figura 10 – Gráfico da Estatística das Operações da aeronave PR-PEC.

2.3.3. Mapa do Projeto de Vôo

O mapa do projeto de vôo foi obtido analiticamente, sendo determinadas por cálculo, das coordenadas UTM do início e fim de cada linha de vôo e de controle, considerando-se os espaçamentos de 500 m para as linhas de vôo e 10.000 m para as linhas de controle.

As coordenadas dos limites da área, assim como dos extremos dos perfis, foram projetadas no sistema WGS-84.

A divisão das linhas da Aeronave em determinada área do projeto é mostrada na Tabela 6 a seguir.

Tabela 6 – Divisão das Linhas por Aeronave.

	1	
Prefixo da aeronave Linhas de vôo		Linhas de controle
PR-PRS	21010 – 21170 e 22690 – 23370	=
PT-DYK	11180 – 12200	=
PR-PEC	22210 - 22680	19010 - 19340

2.3.4. Testes dos Equipamentos

a) Teste Altimétrico

Teste conduzido antes do início das operações para calibração do radar altímetro a bordo da aeronave. Neste teste, a aeronave realiza passagens consecutivas sobre uma base de altitude conhecida, voando em alturas entre 200 e 800 pés, tendo como referência as leituras fornecidas pelo barômetro nas passagens sobre a pista. Antes da decolagem o piloto ajusta a indicação da pressão barométrica na cabine da aeronave para aferição do barômetro. Os resultados dos testes encontram-se no Anexo II-a.

b) Compensação Magnética Dinâmica

A base da compensação é a eliminação do ruído induzido pelo movimento da aeronave nas medições do campo magnético terrestre realizado a bordo. Este ruído é proveniente da complexa assinatura magnética tridimensional da plataforma que, com a mudança de altitude em relação ao vetor campo magnético terrestre, altera a intensidade deste. O ruído é proveniente das magnetizações permanentes, induzidas e dos efeitos da corrente de *Eddy* da plataforma, acrescidos dos efeitos de orientação do sensor propriamente.

O procedimento de compensação consiste na determinação de quatro conjuntos de coeficientes, cada qual determinado para uma das direções de vôo no levantamento.

Os efeitos produzidos em cada uma das direções de vôo são medidos pelos magnetômetros Geometrics G822A, instalados no *stinger* da aeronave e usados para medir o acoplamento dos três eixos com o *background* do campo magnético na região. Os sensores Geometrics G822A são muitos sensíveis às mudanças de altitude sendo usados para monitorar acuradamente os efeitos decorrentes de tais mudanças.

A resposta de freqüência e amostragem do módulo utilizado para medir os sinais do Geometrics G822A é equivalente ao do módulo de processamento do sensor de vapor de césio do magnetômetro da aeronave, havendo portanto, perfeita sincronia dos eventos nos dois sistemas.

As séries de movimentos, envolvendo as manobras do tipo *Roll*, *Pitch* e *Yaw* (Figura 11) são conduzidas para cada uma das direções de vôo do levantamento, com o objetivo de variar o acoplamento Geometrics G822A/vetor campo, e acumular medições ao longo das diferentes manobras e direções. Estes dados são então processados com técnicas de regressão para determinar um conjunto de coeficientes de compensação do sistema.

Quando o algoritmo de compensação é inicializado com os novos coeficientes introduzidos, seja em tempo real ou via pós-processamento, resultam nos dados magnéticos compensados.

Figura 11 – Movimentos de *Roll*, *Pitch* e *Yaw*.

O sistema RMS AADCII e DAARC500 possuem em sua programação, um *software* especialmente desenvolvido para efetuar os cálculos da compensação magnética *on line*, ou seja, os sistemas recebem os dados enviados pelo magnetômetro *fluxgate* durante as manobras de *Roll*, *Pitch* e *Yaw*, armazenam a equação com melhor solução de compensação aplicando estes coeficientes obtidos em X, Y e Z ao valor do campo magnético bruto produzindo, então, o campo magnético compensado, livre dos efeitos de "manobras" que venham a interferir na medida do campo magnético.

c) Determinação dos Coeficientes de Compensação Magnética

As manobras de compensação são conduzidas à altitude de 10.000 pés, em uma área de gradiente magnético suave. Os movimentos *Roll, Pitch* e *Yaw* regulam segundo ângulos de 10° a 12° e duração de 30 segundos cada. Cada conjunto de manobras obedece à diferentes direções dos perfis do projeto, assim como ângulos intermediários da ordem de 15° em torno daquela direção, de modo que sejam efetuados pelo menos três conjuntos de manobras para cada rumo.

Para avaliação da qualidade da compensação magnética da aeronave foram realizados testes do tipo Manobras, antes do início das operações e após cada manutenção efetuada na parte elétrica das aeronaves. O desempenho do sistema aeromagnético, determinado pela soma das amplitudes pico a pico dos doze resultados obtidos, estão resumidos nas Tabelas 7, 8 e 9 a seguir e os resultados completos podem ser consultados no Anexo II-b.

Tabela 7 – Testes de Manobras – Aeronave PR-PRS.

Data	Azimute	Roll (nT)	Pitch (nT)	Yaw (nT)	Total (nT)
	90°	0,02	0,02	0,02	0,06
24/02/2010	180°	0,07	0,03	0,05	0,15
24/02/2010	270°	0,02	0,02	0,02	0,06
	360°	0,05	0,02	0,05	0,12
				Somatório	0,39
	90°	0,08	0,05	0,09	0,22
21/03/2010	180°	0,08	0,07	0,13	0,28
21/05/2010	270°	0,10	0,03	0,09	0,22
	360°	0,07	0,08	0,16	0,31
	Somatório				1,03
06/06/2010	90°	0,03	0,03	0,05	0,11
	180°	0,06	0,03	0,04	0,13
	270°	0,05	0,04	0,05	0,14
	360°	0,05	0,06	0,08	0,19
		•		Somatório	0,57

Tabela 8 – Testes de Manobras – Aeronave PT-DYK.

Data	Azimute	Roll (nT)	Pitch (nT)	Yaw (nT)	Total (nT)
19/12/2009	90°	0,06	0,20	0,05	0,31
	180°	0,04	0,01	0,03	0,08
	270°	0,05	0,01	0,02	0,08
	360°	0,07	0,04	0,03	0,14
Somatório				0,61	

Tabela 9 – Testes de Manobras – Aeronave PR-PEC.

Data	Azimute	Roll (nT)	Pitch (nT)	Yaw (nT)	Total (nT)
	90°	0,01	0,01	0,01	0,03
20/11/2009	180°	0,02	0,02	0,02	0,06
20/11/2009	270°	0,01	0,01	0,01	0,03
	360°	0,02	0,02	0,02	0,06
	Somatório				
10/06/2010	90°	0,08	0,06	0,05	0,19
	180°	0,05	0,05	0,11	0,21
	270°	0,05	0,05	0,06	0,16
	360°	0,07	0,10	0,12	0,29
				Somatório	0,85

d) Teste de Paralaxe

O processamento dos dados brutos do magnetômetro de césio pelo sistema de aquisição da aeronave, introduz um retardamento de tempo nos dados magnéticos compensados. Uma linha especial de calibração é executada para gravar as informações necessárias para quantificar este intervalo de tempo para que os dados possam ser re-sincronizados.

O processo de calibração consiste em voar uma mesma linha em sentidos opostos cobrindo, idealmente, uma série de anomalias magnéticas bem características e distintas. Em conseqüência, o fator de defasagem é determinado pela análise da separação espacial. A componente que normalmente influência no comportamento do erro paralaxe, é a posição da antena do receptor GPS.

Quando o erro paralaxe é introduzido pelo sistema de aquisição de dados, uma vez que alguns instrumentos necessitam de um tempo para armazenar os sinais na forma digital, ocorre então atrasos entre o tempo da amostragem e o tempo da gravação propriamente dito, resultando num valor do paralaxe com sinal oposto ao produzido pela diferença de posição entre a antena GPS e o sensor magnetométrico.

Os dados magnetométricos desta linha voada em sentidos inversos, são representados em formas de perfis empilhados. O eixo horizontal dos perfis plotados refere-se às coordenadas geográficas mostrando, assim, a correlação das anomalias corrigidas independentemente do sentido voado. A calibração resultou em um fator de defasagem de 0,2s para a aeronave PR-PRS, 0,9s para a PT-DYK e 0,4s para a PR-PEC. Os resultados dos testes são apresentados no Anexo II-c.

e) Controle de desempenho do sistema

Com vistas a controlar o comportamento do desempenho do sistema gamaespectrométrico dos cristais voltados para baixo, testes com amostras de mão de urânio e tório eram realizados antes do início e após os vôos operacionais. O equipamento aeroembarcado Radiation Solutions RS-500 com resolução de 1024 canais, possui estabilização com isótopos naturais e ganho automático dos picos. Não são necessários testes de amostras para configuração do sistema ou para validação de performace do mesmo.

f) Teste de Repetibilidade Radioativa

Estes testes foram realizados diariamente com a finalidade de verificar a repetibilidade e a consistência das medições dos equipamentos geofísicos, tendo sido registrado na forma digital e analógica. Consistem na perfilagem sobre um mesmo segmento de linha, no início e no fim de cada vôo, com a extensão mínima de 5 km, ao longo das pistas de pouso dos aeroportos utilizados para as operações, na altura do levantamento (100 m). Para efeito de avaliação, foram comparados os perfis magnetométricos e radiométricos entre os testes iniciais e finais de cada vôo.

Os valores médios em cps, obtidos em cada canal radiométrico, estão relacionados nas Tabelas 10, 11 e 12 para a aeronave PR-PRS, PT-DYK e PR-PEC respectivamente.

<u>Tabela 10 – Testes Diários de Repetibilidade Radioativas – PR-PRS.</u>

TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL = 100m) Base: Apuí - AM					
DATA	HORÁRIO	vôo	TÓRIO	URÂNIO	
24/for//10	INÍCIO	606	40,00	25,01	
24/fev/10	FIM	606	-	=	
27/fev/10	INÍCIO	600	41,43	32,51	
	FIM	608	40,94	32,24	
01/ /10	INÍCIO	600	40,09	30,60	
01/mar/10	FIM	609	40,48	29,59	
02/201/10	INÍCIO	610	40,34	30,77	
02/mar/10	FIM	610	40,41	30,33	
02/2001/10	INÍCIO	611	40,52	31,29	
03/mar/10	FIM	611	40,86	31,15	
04/2204/10	INÍCIO	612	40,86	30,98	
04/mar/10	FIM	612	41,00	30,04	
05//10	INÍCIO	612	41,02	30,58	
05/mar/10	FIM	613	41,04	30,31	
00//10	INÍCIO	C1.4	41,06	30,38	
08/mar/10	FIM	614	41,12	30,74	
10//10	INÍCIO	615	40,92	30,71	
10/mar/10	FIM	615	-	-	
10//10	INÍCIO	616	41,02	31,20	
12/mar/10	FIM	616	41,18	31,14	
12/ /10	INÍCIO	-17	41,27	31,25	
13/mar/10	FIM	617	41,38	31,18	
1.4//10	INÍCIO	610	41,51	31,70	
14/mar/10	FIM	618	41,77	31,67	
17/ /10	INÍCIO	610	41,83	31,73	
17/mar/10	FIM	619	-	-	
10//10	INÍCIO	620	41,88	31,77	
18/mar/10	FIM		41,97	31,71	
22//10	INÍCIO	622	41,85	31,60	
23/mar/10	FIM	623	41,92	31,55	
24//10	INÍCIO	624	41,96	31,69	
24/mar/10	FIM	624	42,01	31,86	
20/mar/10	INÍCIO	625	42,01	32,03	
28/mar/10	FIM	625	42,03	31,99	
20/202/10	INÍCIO	606	41,98	31,94	
29/mar/10	FIM	626	42,09	31,90	
20/mar/10	INÍCIO	627	42,06	31,95	
30/mar/10	FIM	627	-	-	
01/ob=/10	INICIO	628	42,12	31,92	
01/abr/10	FIM		42,12	31,91	
03/abr/10	INÍCIO	620	42,14	31,80	
U3/a0I/1U	FIM	629	42,18	31,73	
07/shr/10	INÍCIO	630	42,17	31,64	
07/abr/10	FIM		42,19	31,56	
08/obs/10	INÍCIO	631	42,17	31,46	
08/abr/10	FIM		42,20	31,42	

DATA	HORÁRIO	vôo	TÓRIO	URÂNIO
12/abr/10	INÍCIO	634	42,14	31,30
12/401/10	FIM	034	42,15	31,29
13/abr/10	INÍCIO	635	42,20	31,37
13/401/10	FIM	033	42,13	31,28
14/obm/10	INÍCIO	626	42,10	31,13
14/abr/10	FIM	636	42,12	31,00
15/ob=/10	INÍCIO	627	42,13	31,11
15/abr/10	FIM	637	42,14	31,02
17/ob#/10	INÍCIO	620	42,13	30,97
17/abr/10	FIM	638	42,08	30,86
10/21-2/10	INÍCIO	(20	42,01	30,87
18/abr/10	FIM	639	42,03	30,83
10/-1/10	INÍCIO	640	42,02	30,89
19/abr/10	FIM	640	42,05	30,89
20/1/10	INÍCIO	641	42,06	30,94
20/abr/10	FIM	641	-	-
24/1 /40	INÍCIO	- 11	42,11	30,89
24/abr/10	FIM	644	42,12	30,87
	INÍCIO		42,07	30,93
26/abr/10	FIM	645	42,10	30,92
	INÍCIO		42,11	31,09
27/abr/10	FIM	646	42,16	31,09
	INÍCIO		42,14	31,24
28/abr/10	FIM	647	42,16	31,18
	INÍCIO		42,17	31,11
29/abr/10	FIM	648	42,16	31,05
	INÍCIO	650	42,16	31,06
04/mai/10	FIM		42,13	31,01
	INÍCIO		-	-
05/mai/10	FIM	651	42,15	30,99
06/mai/10	INÍCIO		42,15	31,06
	FIM	652	42,14	31,00
	INÍCIO		42,13	30,94
07/mai/10	FIM	655	42,12	30,91
	INÍCIO		-	-
08/mai/10	FIM	656	42,13	30,91
	INÍCIO		42,10	30,84
10/mai/10	FIM	657	42,06	30,79
	INÍCIO		42,04	30,81
11/mai/10	FIM	658	42,05	30,79
	INÍCIO	- 659	42,03	30,83
12/mai/10	FIM		42,08	30,82
	INÍCIO	660	42,09	30,87
13/mai/10	FIM		42,17	30,88
	INÍCIO		42,17	31,01
14/mai/10	FIM	661	42,22	30,99
18/mai/10	INÍCIO	664	42,26	31,13
10,11141/10	FIM	001		-
	LIM			-

DATA	HORÁRIO	vôo	TÓRIO	URÂNIO
19/mai/10	INÍCIO	666 667	42,40	31,29
19/11181/10	FIM	666 - 667	42,48	31,37
20/	INÍCIO	669	42,53	31,46
20/mai/10	FIM	668	42,66	31,54
22/mai/10	INÍCIO	669	42,76	31,52
22/IIIai/10	FIM	009	42,86	31,63
23/mai/10	INÍCIO	670	42,94	31,74
23/111a1/10	FIM	070	43,07	31,77
23/mai/10	INÍCIO	671	43,14	31,80
23/111a1/10	FIM	0/1	43,22	31,77
24/mai/10	INÍCIO	672	43,29	31,86
24/IIIai/10	FIM	072	43,38	31,89
24/mai/10	INÍCIO	673	43,44	31,91
24/111a1/10	FIM	073	43,50	31,92
25/mai/10	INÍCIO	674	43,54	31,98
23/11181/10	FIM	674	43,66	32,00
06/jup/10	INÍCIO	676	43,68	32,00
06/jun/10	FIM	070	43,73	31,97
07/jun/10	INÍCIO	677	43,77	32,03
07/juii/10	FIM		43,81	32,00
08/jun/10	INÍCIO	678	43,84	32,05
08/Juli/10	FIM	078	43,87	32,03
09/jun/10	INÍCIO	679	43,90	32,16
09/Juli/10	FIM	079	43,96	32,12
10/jun/10	INÍCIO	680	43,98	32,18
10/juii/10	FIM	080	44,04	32,28
11/jun/10	INÍCIO	681	44,05	32,45
11/juii/10	FIM	081	44,08	32,43
12/jun/10	INÍCIO	682	44,06	32,46
12/Juli/10	FIM	082	44,10	32,43
13/jun/10	INÍCIO	683	44,12	32,50
13/Juli/10	FIM	063	44,18	32,47
14/jun/10	INÍCIO	684	44,20	32,52
14/Juii/10	FIM	004	44,25	32,50
16/jun/10	INÍCIO	685	44,25	32,52
10/juii/10	FIM	003	44,29	32,51
17/jun/10	INÍCIO	686	44,34	32,58
17/juii/10	FIM	000	44,41	32,59
18/jun/10	INÍCIO	687	44,43	32,59
16/Juli/10	FIM	007	44,47	32,55

Tabela 11 – Testes Diários de Repetibilidade Radioativas – PT-DYK.

	TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL = 100m) Base: Apuí - AM					
DATA	HORÁRIO	vôo	TÓRIO	URÂNIO		
28/11/09	INÍCIO	301	103,96	39,50		
26/11/09	FIM	301	103,86	39,69		
29/11/09	INÍCIO	302	103,63	39,29		
25/11/05	FIM	302	103,33	39,46		
30/11/09	INÍCIO	303	103,22	40,15		
30,11,00	FIM		104,24	40,83		
02/12/09	INÍCIO	304	104,71	40,63		
	FIM		104,96	41,15		
03/12/09	INÍCIO	305	103,88	40,94		
	FIM		104,70	39,54		
04/12/09	INÍCIO	306	104,55	39,09		
	FIM		104,03	39,08		
22/12/09	INÍCIO	308	102,16	37,74		
	FIM		100,96	38,21		
23/12/09	INÍCIO	309	99,64	38,28		
	FIM		97,05	38,04		
27/12/09	INÍCIO	310	93,21	36,92		
	FIM		90,23	36,02		
28/12/09	INÍCIO	311	88,10	35,47		
	FIM		86,38	34,57		
30/12/09	INÍCIO	312	84,71	33,99		
	FIM		83,42	33,39		
31/12/09	INÍCIO	313	81,75	32,67		
	FIM		80,73	32,53		
06/01/10	INÍCIO	314	79,80	32,09		
	FIM		78,21	31,45		
08/01/10	INÍCIO	315	77,42	31,19		
	FIM		76,59	31,14		
10/01/10	INÍCIO	316	76,18	31,01		
	FIM		75,64	30,96		
12/01/10	INÍCIO	317	75,11	30,66		
	FIM		74,68	30,46		
13/01/10	INÍCIO	318	74,28	30,31		
	FIM		74,00	30,17		
14/01/10	INÍCIO	319	73,70	30,04		
	FIM		73,34	29,78		
15/01/10	INÍCIO	320	73,01	29,72		
	FIM		72,69	29,48		
17/jan/10	INÍCIO	321	72,44	29,39		
-	FIM		72,17	29,34		
18/jan/10	INÍCIO	322	71,92	29,27		
	FIM		71,69	29,19		
19/jan/10	INÍCIO	323	71,49	29,10		
<u> </u>	FIM	525	71,29	29,00		

DATA	HORÁRIO	vôo	TÓRIO	URÂNIO
20/:/10	INÍCIO	224	71,09	28,88
20/jan/10	FIM	324	70,89	28,81
20/:/10	INÍCIO	225	70,68	28,73
28/jan/10	FIM	325	70,55	28,66
20/:/10	INÍCIO	226/227	75,94	28,51
29/jan/10	FIM	326/327	75,73	28,47
02/5 /10	INÍCIO	328/320	75,49	28,48
03/fev/10	FIM	328/329	_	-
0.7/5 /10	INÍCIO	220	75,29	28,47
05/fev/10	FIM	330	75,01	28,44
00/6 /40	INÍCIO	224 /222	74,82	28,39
08/fev/10	FIM	331/332	74,62	28,40
00/5 /10	INÍCIO	222	74,45	28,31
09/fev/10	FIM	333	74,26	28,27
1112 110	INÍCIO		74,07	28,19
11/fev/10	FIM	334	73,90	28,17
	INÍCIO		73,75	28,14
12/fev/10	FIM	335	73,61	28,12
_	INÍCIO		73,44	28,09
13/fev/10	FIM	336-337	73,31	28,04
	INÍCIO		73,17	28,03
14/fev/10	FIM	338	73,02	27,99
	INÍCIO	339-340	72,91	28,03
16/fev/10	FIM		72,79	27,95
	INÍCIO		72,63	27,76
17/fev/10	FIM	341	72,50	27,78
	INÍCIO		72,36	27,56
18/fev/10	FIM	342	72,25	27,53
	INÍCIO		72,25	27,52
19/fev/10	FIM	343	72,13	27,49
	INÍCIO		71,96	27,46
22/fev/10	FIM	344	71,79	27,44
	INÍCIO		71,75	27,25
23/fev/10	FIM	345	71,24	27,27
	INÍCIO		71,24	27,21
24/fev/10	FIM	346	71,17	27,24
	INÍCIO		71,03	27,24
01/mar/10	FIM	347-348	70,96	27,38
	INÍCIO		70,86	27,35
02/mar/10	FIM	349-350	70,80	27,30
	INÍCIO		70,66	27,26
03/mar/10	FIM	351	70,60	27,25
	INÍCIO		70,53	27,25
04/mar/10	FIM	352	70,33	27,23
	INÍCIO			
05/mar/10		353	70,37	27,09
	FIM		70,27	27,08
07/mar/10	INÍCIO	354	70,20	27,10
	FIM		70,12	27,04

DATA	HORÁRIO	vôo	TÓRIO	URÂNIO
08/mar/10	INÍCIO	355-356	70,05	27,08
06/111a1/10	FIM	333-330	69,97	27,10
09/mar/10	INÍCIO	357-358	69,89	27,11
09/111a1/10	FIM	337-338	69,85	27,10
10/mar/10	INÍCIO	359	63,54	27,09
10/111a1/10	FIM	339	64,11	27,11
12/mar/10	INÍCIO	360	63,57	27,15
12/111a1/10	FIM	300	64,66	27,16
13/mar/10	INÍCIO	361-362	65,49	27,13
13/111a1/10	FIM	301-302	65,23	27,08
14/mar/10	INÍCIO	363	64,72	27,01
14/111a1/10	FIM	303	64,72	26,97
15/mar/10	INÍCIO	364	64,76	26,92
13/111a1/10	FIM	304	64,42	26,90
17/mar/10	INÍCIO	365	64,32	26,89
1 //111a1/10	FIM	303	64,53	26,86
21/mar/10	INÍCIO	366	63,01	26,84
21/11101/10	FIM	300	62,99	26,81
23/mar/10	INÍCIO	367 - 368	62,93	26,81
25/111aT/10	FIM	307 - 308	63,08	26,77

Tabela 12 – Testes Diários de Repetibilidade Radioativas – PR-PEC.

TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL = 100m) Base: Apuí - AM						
DATA	HORÁRIO	vôo	TÓRIO	URÂNIO		
21/nov/09	INÍCIO	004	46,66	35,24		
21/1101/09	FIM	004	47,59	34,00		
22/nov/09	INÍCIO	005	48,18	35,20		
22/1100/09	FIM	003	46,39	32,80		
23/nov/09	INÍCIO	006	46,32	34,51		
23/1107/09	FIM	000	-	-		
24/jan/00	INÍCIO	007	46,71	37,76		
24/Jan/00	FIM		46,86	36,27		
25/nov/09	INÍCIO	008	46,83	36,89		
23/1107/09	FIM		47,81	37,63		
11/iun/10	INÍCIO	902	51,93	54,76		
11/jun/10	FIM	902	48,83	43,88		
12/jun/10	INÍCIO	903	47,98	42,17		
12/jun/10	FIM	903	46,03	38,18		
13/jun/10	INÍCIO	904	45,25	37,48		
13/Juii/10	FIM	904	44,52	35,20		
14/jun/10	INÍCIO	905	44,45	35,15		
14/Juii/10	FIM	903	44,06	34,13		
15/jun/10	INÍCIO	906	43,76	33,93		
15/jun/10	FIM	900	43,73	33,17		

DATA	HORÁRIO	vôo	TÓRIO	URÂNIO
16/jun/10	INÍCIO	907	43,36	32,76
10/Juli/10	FIM	907	43,66	32,59
17/jun/10	INÍCIO	908	43,80	33,33
1 // juii/ 10	FIM	908	43,93	32,94
18/jun/10	INÍCIO	909	43,92	33,07
16/Juli/10	FIM	909	43,90	32,73
19/jun/10	INÍCIO	910	43,76	32,60
19/Juii/10	FIM	910	44,22	32,54
21/jun/10	INÍCIO	911	44,85	34,36
21/Juii/10	FIM	911	45,30	34,30
22/jun/10	INÍCIO	912	45,19	34,11
22/Juii/10	FIM	912	45,50	34,21
24/jun/10	INÍCIO	915	45,64	34,53
24/Jull/10	FIM	913	45,48	34,07
25/jun/10	INÍCIO	916	45,58	34,25
25/jun/10	FIM	910	45,82	33,93

2.3.5. Cálculo da Resolução dos Cristais Detectores (downward e upward)

A resolução é a medida da precisão da energia dos raios gama registrados pelo gamaespectrômetro, a qual é representada pelo cálculo matemático em relação a um elemento radioativo de referência.

Para os atuais gamaespectrômetros auto-estabilizados, costuma-se usar o espectro do tório (²⁰⁸Tl) para calcular a resolução dos "cristais detectores voltados para baixo" (*downward looking*), tanto para os cristais individuais (256 pol³) quanto para os "pacotes" ou "caixas" de 1024 pol³ cada, bem como espectro do césio (¹³⁷Cs) para calcular a resolução dos "cristais detectores voltados para cima" (*upward looking*), tanto para cristais individuais (256 pol³) quanto para o "pacote" ou "caixa" de 512 pol³ no caso deste projeto.

O procedimento para medir a resolução consiste em determinar as amplitudes a partir do fotopico do tório ou do césio, respectivamente. A largura do pico (medida como número de canais) na metade da amplitude máxima pode ser determinada. Esta largura é definida como *full width at half maximum* ou FWHM. A resolução é calculada (GRASTY & MINTY, 1995) como a seguir:

R(%) = 100 x FWHM (canais) / canal do fotopico

A resolução também pode ser obtida a partir dos referidos elementos, porém utilizando o cálculo a partir das faixas de energia do espectro em vez do número de canais, conforme a equação a seguir (IAEA, 2003):

R(%) = 100 x FWHM (energia) / energia do fotopico

O monitoramento da resolução do cristal e do tubo fotomultiplicador é o melhor procedimento para se manter o controle de qualidade e detectar qualquer tipo de deteriorização do sistema gamaespectométrico. Os valores de resolução obtidos para os 3 pacotes de cristais detectores *downward looking* (2.560 pol³) ficaram abaixo de 7% e

para os cristais detectores *upward looking* (512 pol³) ficaram abaixo de 12%, sendo, portanto estes testes aprovados. Os resultados dos testes de resolução encontram-se no Anexo I-a.

2.3.6. Calibração dos Detectores Downward Looking

Foram realizados testes gamaespectrométricos específicos objetivando a calibração dos sistemas detectores da aeronave. A aeronave PR-PRS foi calibrada em maio de 2009, a aeronave PT-DYK foi calibrada em setembro de 2009 e a aeronave PR-PEC foi calibrada em fevereiro de 2009 e março de 2010. Essas calibrações obedeceram a duas etapas distintas.

• <u>Calibração estática</u> – Realizada no Aeroporto de Jacarepaguá. Após a determinação e aprovação dos cálculos da resolução dos cristais detectores *down* e *up* são realizados os testes que visam à determinação dos coeficientes de espalhamento *Compton* do sistema detector. Para tal, quatro tanques de calibração transportáveis, constituídos por blocos de concreto com resposta radiométrica para os elementos potássio (⁴⁰K), urânio (²³⁸U), tório (²³²Th) e *background* são empregados. As concentrações dos tanques de calibração transportáveis utilizados, de propriedade da Lasa Prospecções S.A., estão indicadas na Tabela 13:

Tabela 13 – Concentração dos Tanques de Calibração Transportáveis.

Fonte Padrão	K (%)	eU (ppm)	eTh (ppm)
Background	$1,41 \pm 0,01$	0.97 ± 0.03	$2,26 \pm 0,10$
Potássio	$8,71 \pm 0,09$	0.32 ± 0.02	$0,74 \pm 0,10$
Urânio	$1,34 \pm 0,02$	$59,9 \pm 1,00$	$3,40 \pm 0,14$
Tório	$1,34 \pm 0,02$	$2,96 \pm 0,06$	$136,0 \pm 2,10$

Para a determinação dos coeficientes de espalhamento *Compton*, a aeronave foi estacionada sobre os tanques de calibração transportáveis que foram seqüencialmente posicionados sob cada pacote detector, aí permanecendo por 10 minutos para acumulação de dados na seguinte ordem: *background*, Th, U, K e *background*. Os dados acumulados foram processados pelo programa PADWIN, fornecidos pelo fabricante dos tanques calibradores (Exploratium), resultando nos valores dos coeficientes *Compton* para cada pacote de detectores de 1.024 polegadas cúbicas e para o total de 2.560 polegadas cúbicas. Os valores encontrados para os coeficientes de espalhamento *Compton* estão resumidos na Tabela 14. O Anexo I-b, no final deste relatório, apresenta os resultados dessas calibrações.

Tabela 14 – Coeficientes de Espalhamento *Compton*.

Aeronave	Data	α	В	γ	a	b	g
PR-PRS	22/05/2009	0,3053 ± 0,0029	0,4353 ± 0,0063	0,8022 ± 0,0095	0,0467 ± 0,0043	0,0083 ± 0,0026	0,0098 ± 0,0020
PT-DYK	02/09/2009	0,2504 ± 0,0029	0,3926 ± 0,0067	0,7188 ± 0,0094	0,0200 ± 0,0045	0,0052 ± 0,0024	0,0029 ± 0,0017
PR-PEC	17/02/2009	0,2855 ± 0,0024	0,4203 ± 0,0055	0,7802 ± 0,0079	0,0416 ± 0,0037	0,0024 ± 0,0023	0,0023 ± 0,0017
PR-PEC	08/03/2010	0,2872 ± 0,0026	0,4170 ± 0,0058	0,7819 ± 0,0084	0,0448 ± 0,0039	0,0069 ± 0,0024	0,0029 ± 0,0017

• <u>Calibração Dinâmica</u> – Realizada com vistas à determinação dos *backgrounds* da aeronave e cósmico (*cosmic flight*), e identificação dos coeficientes de sensibilidade do detector, com o levantamento de um perfil situado em zona radiometricamente conhecida (*dynamic calibration range - DCR*) na altura nominal do levantamento (100 m), bem como as várias alturas com vistas à correção altimétrica. Os referidos testes são comentados a seguir.

a) Vôo Cósmico (Cosmic Flight)

A partir da fórmula da IAEA, 1991, tem-se:

N = a + bC, onde:

N é a contagem (em cps) em determinada janela;

a é o background (em cps) da aeronave em determinada janela;

b é a razão entre a contagem em determinada janela e a contagem no canal do cósmico;

C é a contagem na janela cósmica.

O vôo cósmico envolveu o recobrimento de perfis sobre o mar, em área distante da costa cerca de pelo menos 20 km, voando nas altitudes de 4500, 5500, 6500, 7500, 8500, 9500, 10500, 11500 e 12500 pés, com duração de 15 minutos cada.

A Tabela 15, a seguir, resume os resultados obtidos pelas aeronaves nos vôos cósmicos. A apresentação dos resultados na forma de tabelas e gráficos encontra-se no Anexo I-c, no final deste relatório.

Tabela 15 – *Background* das Aeronaves e *Cosmic Stripping Ratios*.

Canal	Coeficiente	PR-PRS (24/05/2009)	PT-DYK (03/09/2009)	PR-PEC (22/02/2009)	PR-PEC (20/03/2010)
Contagem	a (cps)	82,86	197,87	129,90	82,12
total	b	1,0537	0,6039	1,0195	1,1441
Potássio	a (cps)	14,45	33,26	28,90	23,36
Potassio	b	0,0696	0,0269	0,0557	0,0644
Urânio	a (cps)	2,2287	7,2	3,84	0,4716
Uramo	b	0,0455	0,0239	0,0446	0,0512
Tório	a (cps)	0,00	1,4	0,00	0,00
10110	b	0,0566	0,0333	0,0559	0,0588
TT	a (cps)	0,06	1,1	0,65	0,09
U up	b	0,0087	0,0051	0,0094	0,0108

b) Pista de Calibração Dinâmica (*Dynamic Calibration Range – DCR*):

Este teste envolve uma série de passagens consecutivas sobre a pista de calibração dinâmica definida pela CPRM em Maricá-RJ (CPRM, 1999), com passagens sucessivas nas alturas de 200, 330, 400, 500, 600, 700, e 800 pés e duas passagens adicionais a 330 pés, correspondentes à altura padrão do levantamento (100 m). Na seqüência dos perfis também são realizadas passagens sobre o Oceano Atlântico na mesma altura de vôo observada sobre a pista de calibração dinâmica, com vistas à determinação do *background*.

A calibração dinâmica tem por finalidade a correlação entre as medições feitas em terra (com intervalos de 50 m entre as estações, com emprego de gamaespectrômetro portátil Exploranium Modelo GR-320 e Radiation Solutions, modelo RS-230), com as leituras registradas pelo sistema detector da aeronave na altura de 100 m (cerca de 330 pés), permitindo a conversão das contagens obtidas a bordo (em cps) para concentrações de potássio, urânio, tório e contagem total no solo. A sensibilidade do sistema gamaespectrométrico é definida como a razão entre a média dos valores aéreos, medidos na altura nominal do levantamento (100 m), em cps, para os canais de contagem total, K, U, e Th, e a média dos valores das estações terrestres (em concentração) para os canais de contagem total, K, eU e eTh (Anexo I-e).

As passagens em várias alturas permitem ainda a determinação dos coeficientes de atenuação atmosférica (µ) do sistema detector da aeronave, os quais são utilizados para a correção altimétrica (Anexo I-f).

2.3.7. Calibração dos Detectores Upward Looking

A calibração dos detectores aerogamaespectrométricos voltados para cima, tem por finalidade estabelecer a relação entre as contagens observadas nos canais de contagem total, potássio, urânio e tório, medidas nos detectores normais da aeronave, com aquelas registradas pelo detector *upward*, resultantes da presença de radônio disperso no ar. Tal relação é expressa por um conjunto de coeficientes obtidos a partir de dados de vôos realizados sobre a água, ou uma altura elevada, onde não exista qualquer influência de radiações provenientes do solo. Para tanto, foram utilizados os dados dos testes *high level*, ou *background*, onde são registrados perfis diários na altura de 2.500 pés (Anexo I-d).

Outro procedimento associado ao processo de calibração do detector *upward looking* envolve a determinação dos coeficientes *skyshine*. Como tal determinação não prevê a realização de testes específicos, o método está descrito apenas no Capítulo 3.

2.4. Compilação dos dados

Ao término de cada jornada de produção, as informações coletadas eram submetidas ao processamento preliminar consistindo no seguinte:

a) Transferência das leituras do magnetômetro terrestre para o computador de campo para o processamento da variação diurna de acordo com o gradiente fixado no contrato, qual seja: 15 nT/5 min;

- b) Leituras dos arquivos dos vôos das aeronaves e transferências dos dados coletados para o computador de campo, para fins de verificação da qualidade da gravação e análise dos perfis coletados, no que se refere a desvios na altura de vôo, envoltória de ruídos e desvios de navegação, estabelecidos respectivamente, em: 15 m para mais ou para menos, 0,2 nT e 100 m em relação á linha teórica;
- c) Geração das plotagens dos traços das linhas de vôo e controle, corrigidos diferencialmente, em superposição ao plano de vôo para identificação dos possíveis trechos desviados em mais de 20% do espaçamento teórico (100 m) por mais de 1000 m;
- d) Verificação da qualidade da gravação, em vídeo, do trajeto percorrido pela aeronave.

Para o controle da produção, acompanhamento dos trabalhos, plotagem, listagem de dados, compilação dos registros e demais controles foi montado, no escritório de campo, um conjunto de equipamentos de processamento de dados, consistindo em:

- Microcomputadores Notebook Intel Core 2 DUO;
- Impressora Multifuncional;
- Sistema de PC/Vídeo digital.

2.5. Equipe Técnica na Base de Operações

Participaram da equipe na fase de aquisição de dados os seguintes profissionais:

Equipe Prospectors

Edmilson Linguanotto	Chefe de equipe
Victor Ferreira	G : 1 1
Antonio Cezar da Fonseca	Supervisor de operador
Wesley Andrade	
Willian Celestino	
Marcelo de Santi	Operador de Equipamento
Rodrigo Batista	
Rubens Leal	
Ranilson Costa	
Julio Lima	
José Hermes de Melo	Piloto
Serafim Barreiras	
Paulo Barbosa	
Edmilson Ribeiro	
Domingos Andrade	
Wilson Poleti	Mecânico
Walter Garroni	
Romildo Silva	

Equipe MicroSurvey

Georgete Bueno de paula	Coordenador de equipe
Jhuan Pompei	Operador de Equipamento
Vagner Aleixo	Operador de Equipamento
Matusalém Fonseca Correa	
Orlando Esteves	Piloto
Luis Carlos Jacome Moura	Filoto
Tadeu Costa Pessoa	
Dirceu de Melo	
Jucelino de Jesus	Mecânico
André Cavalcante Diogo	

3. PROCESSAMENTO DE DADOS

3.1. Fluxo de Processamento

No processamento de dados do projeto foi empregado o *software OASIS MONTAJ* versão 6.4.1, do sistema *GEOSOFT*, além das rotinas de pré-processamento proprietárias, que permitem a explotação do dado binário coletado em vôo para formato ASCII XYZ *GEOSOFT*. A Figura 12 no final do capítulo, mostra o fluxograma de processamento utilizado para o levantamento.

3.1.1. Preparação do Banco de Dados do Levantamento

Os dados brutos gravados em formato binário da aeronave, são convertidos diretamente para bancos de dados no formato de GDB's compatíveis com o *OASIS MONTAJ*, onde estão agrupadas informações de posicionamento corrigidas e todos os demais canais de informação registrados a bordo da aeronave, quais sejam: intensidade total do campo magnético, valores dos canais radiométricos, altura e altitude de vôo, temperatura, etc.

Preparado o banco de dados do tipo .XYZ, onde Z corresponde a cada uma das variáveis medidas a bordo da aeronave e XY as coordenadas UTM do ponto em que a medida foi tomada, o processamento é então iniciado com as correções dos dados magnetométricos e radiométricos propriamente.

3.1.2. Processamento dos Dados Magnetométricos

3.1.2.1. Correção do Erro de Paralaxe

O processamento dos dados brutos do magnetômetro de bombeamento ótico pelo sistema de aquisição da aeronave, introduz um retardamento de tempo nos dados magnetométricos compensados, bem como a posição da antena receptora do GPS em relação à posição do sensor magnetométrico, causam uma defasagem entre o valor de posicionamento (X e Y) e o valor do campo que está sendo mostrado num mesmo intervalo de tempo. Sendo assim, uma correlação denominada de Paralaxe ou Correlação de *Lag* deve ser aplicada. Uma linha especial de calibração foi voada para gravar as informações necessárias para qualificar este intervalo de tempo, para que os dados pudessem ser re-sincronizados.

O erro de paralaxe corresponde à defasagem nos tempo de medições do magnetômetro e altímetros com o sistema de posicionamento. Assim, o erro de paralaxe é determinado a partir de uma linha voada em sentidos opostos sobre uma mesma feição magnética anômala reconhecida no terreno. A correção a ser aplicada corresponde ao valor deslocado do tempo de amostragem, de modo a que as duas feições se tornem coincidentes.

A equação utilizada é a seguinte:

 $\mathbf{Fc}_{(\mathbf{t0})} = \mathbf{Fc}_{(\mathbf{t0} \pm \mathbf{Ip})}$, onde:

Fc = Valor do Campo Magnético Total corrigido do erro de paralaxe,

 $\mathbf{t} \mathbf{0} = \text{Tempo de Amostragem},$

Ip = Valor do Intervalo de Tempo a ser deslocado no banco de dados.

Deve-se observar que não se adiciona nenhum valor ao Campo Magnético e sim desloca-se os valores em relação ao tempo em que foram mostrados os pontos, ou seja, o valor do Campo Magnético após a correção do Paralaxe, sofre apenas um reposicionamento temporal dentro do banco de dados.

A correção aplicada foi de 0,2s para a aeronave PR-PRS, 0,9s para a PT-DYK e 0,4s para a PR-PEC. Estas diferenças significativas são devidas às diferenças encontradas nos sistemas de aquisição. Os resultados dos testes para determinação encontram-se no Anexo II-c, no final deste relatório.

3.1.2.2. Remoção da Variação Magnética Diurna

Os valores obtidos pelo magnetômetro monitor foram inicialmente subtraídos das leituras do campo magnético realizadas a bordo da aeronave, tendo como variável comum a hora de amostragem, fixada com precisão de décimos de segundo. As diferenças encontradas, positivas ou negativas, foram, então, somadas algebricamente ao nível base, definido em 25.351 nT. Os valores resultantes correspondem à intensidade total do campo magnético corrigido da variação diurna.

3.1.2.3. Nivelamento dos Perfis

A aplicação do nivelamento através do *software OASIS MONTAJ* versão 6.4.1, do sistema *GEOSOFT* consiste, basicamente, no ajuste das linhas de controle com base na média das diferenças (ou diferença de 1ª ordem) com as linhas de vôo. Este procedimento assume que tais diferenças estão distribuídas de forma aleatória, de forma que um *trend* de no máximo 1ª ordem define o desnível entre as linhas de vôo e controle.

O procedimento compreende duas etapas distintas, conforme a seguir:

1° - As linhas de controle são niveladas por aplicação de valores que reduzam as diferenças com as linhas de vôo a valores mínimos. Este procedimento assume que existem cruzamentos suficientes para modelar adequadamente as diferenças de nível entre as linhas de controle.

2° - Após o nivelamento das linhas de controle, todas as linhas de vôo são ajustadas às linhas de controle, de forma que os valores do campo magnético encontrados nos seus cruzamentos sejam equivalentes.

Nesta fase é criada uma Tabela de Interseções que contém as diferenças entre as linhas de controle niveladas e a linhas de vôo nos pontos de cruzamento.

Tal procedimento é conduzido pelo comando *XLEVEL.GX*. Estes valores são armazenados no banco de dados e utilizados no cálculo das correções a serem aplicadas às linhas de vôo. Os cruzamentos onde o gradiente magnético excedeu a 2 nT/fiducial (0,025 nT/m) foram descartados pelo programa. Com base neste gradiente, o programa ainda analisou as interseções quanto à sua aplicabilidade, atribuindo peso mais baixo quanto mais alto fosse o gradiente. Deste modo, uma interseção situada em zona de forte gradiente magnético teve pouca ou nenhuma influência no nivelamento.

O *OASIS MONTAJ* permitiu ainda o exame visual da Tabela de Interseções, possibilitando sua edição manual quando necessário. Por exemplo, a linha nivelada pode ser comparada à sua versão obtida em diferentes estágios do processo.

3.1.2.4. Micronivelamento dos Perfis

Os dados do levantamento foram ainda micronivelados para eliminação de qualquer resíduo de "desnivelamento" que tenha permanecido nos dados. O processo envolveu a geração de dois *grids* auxiliares, resultantes da aplicação de filtros passa-alta tipo *Butterworth* (comprimento de onda da ordem de 4 vezes o espaçamento das linhas de vôo) e cosseno direcional atuando na direção das linhas de vôo e perpendicularmente a elas, seguindo-se, então, a criação de um *grid* final decorrugado, que resultará do somatório dos *grid* produzidos em etapas distintas. Este último, subtraído de um *grid* normal irá, por sua vez expressar o erro de nivelamento a ser subtraído aos dados prénivelados conforme o procedimento inicial acima.

3.1.2.5. Remoção do IGRF

A remoção do Campo Geomagnético Internacional de Referência (IGRF) obedeceu à rotina incluída no Sistema *OASIS MONTAJ* que consiste, basicamente, na definição da superfície de tendência que expressa o comportamento de campo geomagnético internacional na área do projeto.

Esta superfície foi definida com base no valor do IGRF, tendo sido considerada a altitude de 250 m, referidos ao ano de 2005 e atualizados para a data de 08/03/2010 (2010,184).

O campo magnético total corrigido para cada um dos pontos amostrados foi obtido pela subtração ao campo total micronivelado, do valor do IGRF calculado para o ponto. Os valores resultantes são os valores anômalos do campo (campo magnético total reduzido do IGRF).

3.1.3. Processamento dos Dados Gamaespectrométricos

O processamento dos dados gamaespectrométricos obedeceu aos procedimentos recomendados na Seção 4 do Relatório Técnico, Número de Série 323, da Agência Internacional de Energia Atômica, intitulado *Airborne Gamma Ray Spectrometrer Surveying*. Foi empregada a rotina contida no sistema de processamento radiométrico *OASIS-RPS* da *GEOSOFT*.

3.1.3.1. Correção do Tempo Morto

A correção do "tempo morto" consiste na divisão das contagens dos canais radiométricos pelo valor do *live time* registrado pelo aparelho, normalizando, assim, os valores brutos, dos canais da contagem total, potássio, urânio, tório e urânio *upward* para contagem por segundo.

3.1.3.2. Aplicação de Filtragem

Este processo se aplica somente aos dados afetados por variações de alta freqüência quais sejam: dados do radar altímetro, do canal de radiação cósmica e do canal de urânio *up*, utilizando no cálculo da influência do radônio nas medições realizadas.

Dependendo do comportamento dos dados, são aplicados dois tipos de filtragem:

- Filtragem não linear, que permite a remoção de *spikes* nos dados e a compensação de variações abruptas do radar altímetro;
- Filtragem do tipo passa-baixa, que reduz o erro estatístico nos dados da radiação cósmica, suaviza o comportamento do radônio. Opcionalmente, é aplicado aos demais canais radiométricos com objetivos específicos, como o cálculo das razões radiométricas.

3.1.3.3. Correlação do Erro de Paralaxe

O erro de paralaxe não foi observado nos dados radiométricos, não sendo, assim, necessário sua aplicação.

3.1.3.4. Cálculo da Altura Efetiva (h_c) de Vôo

A altura de vôo foi ajustada com base na temperatura e pressão ambientais, utilizando-se da fórmula (IAEA, 2003):

 $h_c = h (273,15/T+273,15) \times (P/1013,25)$, sendo:

h – altura de vôo medida pelo radar altímetro em metros,

T – temperatura do ar medida em °C,

P – pressão atmosférica em milibar.

A pressão atmosférica é obtida a partir da altitude medida pelo altímetro barométrico.

3.1.3.5. Remoção do background da Aeronave e Cósmico

O *background* é obtido através do somatório das contribuições do *background* da aeronave e da radiação cósmica em cada uma das janelas do gamaespectrômetro.

O cálculo das contribuições da aeronave e da radiação cósmica é conduzido através da fórmula (IAEA, 1991):

$$N = a + bC$$
, onde:

N – somatório das duas contribuições (em cps),

a – background da aeronave em cada janela do gamaespectrômetro,

C – canal de radiação cósmica,

b – razão entre a contagem em determinada janela e a contagem no canal do cósmico.

Os coeficientes aplicados aos dados (Tabela 15 – *Background* da Aeronave e *Cosmic Stripping Ratios*, item 2.3.6) foram aqueles definidos pelo vôo cósmico pelo mar, em área distante da costa, cujos gráficos estão indicados no Anexo I-c.

3.1.3.6. Remoção do Background do Radônio

O efeito do *background* do radônio, por sua vez, é determinado a partir das medições realizadas na janela do urânio pelo detector *upward looking*. A expressão que define a parcela de radônio influindo no canal do urânio é a seguinte (IAEA, 1991):

$$U_r = (u - a_1U - a_2Th) + (a_2b_t - b_u) / (a_u - a_1 - a_2a_t)$$
, onde:

U_r – background do radônio medido no canal downward do urânio,

u – contagem medida no canal *upward* do urânio,

U – contagem medida no canal downward do urânio,

Th – contagem medida no canal downward do tório,

 a_1 , a_2 , a_u , a_t , b_u , b_t – coeficientes de proporcionalidade, sendo que b_u e b_t são zerados e a_1 e a_2 os coeficientes *skyshine*.

As contagens relativas ao urânio, tório e urânio *up* devem ser corrigidas previamente dos efeitos de *background*s da aeronave e cósmico.

A relação entre as contagens atribuídas ao radônio observadas na janela do urânio, com as demais janelas de canais *downward*, detectadas nos cristais voltados para baixo, pode ser determinada através de regressão linear aplicada sobre um conjunto de dados que reflita as variações decorrentes da presença de radônio nos dados.

O procedimento de cálculo dos coeficientes que expressam a relação entre os detectores (*upward* e *downward*) utiliza as seguintes fórmulas (IAEA, 1991):

$$\begin{split} &U_r = a_u U_u + b_u \,, \\ &K_r = a_k U_r + b_k \,, \\ &T_r = a_t U_r + b_t \,, \\ &TC_r = a_{tc} U_r + b_{tc} , \text{ onde:} \end{split}$$

 $\mathbf{u_r}$ é a componente do radônio no urânio up, $\mathbf{U_r}$, $\mathbf{K_r}$, $\mathbf{T_c}$ e $\mathbf{TC_r}$ são as contribuições do radônio nas demais janelas associadas ao detector *downward*. Se os componentes dos *backgrounds* da aeronave e cósmico são perfeitamente removidos, as constantes "b's" $(\mathbf{b_u}, \mathbf{b_k}, \mathbf{b_t} \ \mathbf{e} \ \mathbf{b_{tc}})$ devem ser zeradas (IAEA, 1991, p. 27).

No cálculo dos coeficientes \mathbf{a}_{tc} , \mathbf{a}_{k} , \mathbf{a}_{u} e \mathbf{a}_{t} (Tabela 16) foram utilizados os valores calculados a partir dos testes de *high level*. Os gráficos que correspondem a estes cálculos, encontram-se no Anexo I-d.

Canal	Coeficiente	PR-PRS	PT-DYK	PR-PEC	
Contagem Total	$\mathbf{a_{tc}}$	15,39	12,40	13,54	
Potássio	$\mathbf{a}_{\mathbf{k}}$	0,90	0,73	0,80	
Urânio <i>up</i>	$\mathbf{a}_{\mathbf{u}}$	0,16	0,09	0,20	
Tório	a _t	0,07	0,05	0,01	

Tabela 16 – Constantes de Calibração do Radônio.

3.1.3.7. Estimativa dos Coeficientes Skyshine (a1 e a2)

Estes coeficientes relacionam a contribuição das radiações de urânio e tório provenientes do terreno, que influenciam as contagens do urânio no detector *upward*. Admitindo-se que tais contribuições variem linearmente com as contagens destas mesmas radiações nas janelas de urânio e tório, nos detectores voltados para baixo, a estimativa destes coeficientes emprega a expressão geral (GRASTY & MINTY, 1995):

$$\mathbf{u}_{\mathbf{g}} = \mathbf{a}_{1}\mathbf{U}_{\mathbf{g}} + \mathbf{a}_{2}\mathbf{T}_{\mathbf{g}}$$
, onde:

u_g – contribuição do solo na janela do urânio *up*;

 U_g – contribuição do solo na janela do urânio *down*;

 T_g – contribuição do solo na janela do tório down;

a₁ e a₂ – constantes de calibração requeridas.

A partir de uma série de valores de ug, Ug e Tg os fatores de calibração a₁ e a₂ podem ser determinados pelo método dos mínimos quadrados. Isso pode ser feito resolvendo as duas equações simultâneas abaixo:

$$a_1 \sum (U_g)^2 + a_2 \sum U_g T_g = \sum u_g U_g$$

$$a_1 \sum U_g T_g + a_2 \sum (U_g)^2 = \sum u_g T_g$$

Este processo foi efetuado automaticamente utilizando todos os dados do levantamento.

Os valores obtidos no levantamento em pauta estão demonstrados na Tabela 17 abaixo.

Tabela 17 – Coeficientes de *Skyshine*.

Coeficiente	PR-PRS	PT-DYK	PR-PEC
$\mathbf{a_1}$	0,056	0,0431	0,0767
$\mathbf{a_2}$	0,021	0,0159	0,0159

3.1.3.8. Correção do Efeito Compton

É aplicada com objetivo principal de eliminar a influência das radiações atribuídas aos canais de mais alta energia que penetram nos canais de baixa energia, quais sejam: contribuições do tório no urânio e no potássio, assim como a contribuição do urânio no potássio. Nos sistemas de alta resolução, em uso atualmente, são também consideradas as influências de radiações de baixa energia nas janelas de energia mais alta, resultando, desta forma, nos seis coeficientes abaixo:

α – radiações de tório no urânio,

β – radiações de tório no potássio,

γ – radiações de urânio no potássio,

a – radiações de urânio no tório,

b – radiações de potássio no tório,

g - radiações de potássio no urânio.

Os valores adotados para correção do efeito *Compton* são os descritos na Tabela 14 — Coeficientes de Espalhamento *Compton*, apresentada no item 2.3.6. Maior detalhamento deste teste está presente no Anexo I-b.

3.1.3.9. Correção Altimétrica (Coeficiente de Atenuação Atmosférica)

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100 m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte, pode ser expressa matematicamente, de forma aproximada, pela fórmula (IAEA, 1991):

$$N_H = N_0$$
 . $e^{\text{-}\mu H}$ (1), onde:

N_H é a radiação a distância H da fonte,

N_o é a radiação na superfície do terreno (H=0),

μ é o coeficiente de atenuação atmosférica.

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$Ln(N_H) = -\mu H + Ln(N_0)$$

que é a equação de uma reta de coeficiente angular $-\mu$ e o coeficiente linear Ln (N_0). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos foram utilizados os valores apresentados na Tabela 18, obtidos durante os

testes realizados em Maricá-RJ. Os gráficos apresentando a correlação logarítmica entre as contagens e a altura de vôo encontram-se no Anexo I-f.

Tabela 18 – Coeficiente de Atenuação Atmosférica.

	μ em m ⁻¹			
Canal Radiométrico	PR-PRS (23/05/2009)	PT-DYK (13/11/2009)	PR-PEC (20/02/2009)	PR-PEC (09/03/2010)
Contagem Total	-0,0069	-0,0069	-0,0067	-0,0069
Potássio	-0,0090	-0,0076	-0,0085	-0,0096
Urânio	-0,0084	-0,0061	-0,0069	-0,0069
Tório	-0,0067	-0,0068	-0,0067	-0,0068

3.1.3.10. Conversão para Concentração de Elementos

As sensibilidades dos detectores das aeronaves para as janelas do potássio, urânio e tório foram determinadas com base nas razões entre as medições efetuadas a bordo (N) e em terra (C), com aplicação da expressão:

S = N/C, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100 m) e situada no trecho de interesse das estações terrestres utilizadas,

C é a média das concentrações para cada canal das estações terrestres de interesse.

A Tabela 19 a seguir, corresponde à sensibilidade dos detectores analisados (volume total de 42 litros e dimensões de 10 cm x 10 cm x 40 cm cada), tomando por base a altura de vôo de 100 m sobre o terreno.

Tabela 19 – Coeficientes de Sensibilidade.

	Sensibilidade			
Canal Radiométrico	PR-PRS (23/05/2009)	PT-DYK (13/11/2009)	PR-PEC (20/02/2009)	PR-PEC (09/03/2010)
Contagem Total	240,55 cps/μR/h CT	191,43 cps/μR/h CT	191,09 cps/μR/h CT	145,62 cps/μR/h CT
Potássio	80,23 cps / %K	71,89 cps / %K	62,46 cps / %K	56,05 cps / %K
Urânio	11,90 cps / ppm eU	10,81 cps / ppm eU	10,17 cps / ppm eU	7,03 cps / ppm eU
Tório	4,51 cps /ppm eTh	4,16 cps /ppm eTh	3,69 cps /ppm eTh	2,68 cps /ppm eTh

Para calcular a taxa de exposição (*Exposure Rate*) do canal de contagem total (em μR/h) utiliza-se a fórmula abaixo (IAEA, 1991):

E = 1,505K + 0,653eU + 0,287eTh, onde:

K, eU e **eTh** correspondem às concentrações aparentes destes elementos definidas em terra, quando do levantamento da pista de calibração dinâmica. Os valores da concentração determinados para o canal de contagem total foram 13,97 μ R/h (PR-PRS), 13,85 μ R/h (PT-DYK), 15,22 μ R/h (PR-PEC) e 18,67 μ R/h (PR-PEC).

Os gráficos comparativos dos perfis coletados durante a calibração dinâmica, após a conversão da amostragem para concentração aparente, acompanham o texto descritivo do procedimento de calibração apresentado no Anexo I-e.

3.1.4. Determinação das Razões eU/eTh, eU/K e eTh/K

As razões foram calculadas a partir dos valores radiométricos corrigidos, conforme descritos no item 3.1.3. deste capítulo. Para a eliminação de indeterminações, ou incorreções devidas a valores anormalmente abaixo, foi convencionada a fixação dos valores mínimos de K, U e Th em 10% da média destes canais na área de levantamento e aplicado também um filtro passa-baixa de 10 amostras. A Tabela 20 a seguir, resume os valores utilizados.

Tabela 20 – Valores Mínimos para Cálculo das Razões Radiométricas.

Canal Radiométrico	Valor Mínimo
K (%)	0,07
eU (ppm)	0,18
eTh (ppm)	1,14

3.2. Interpolação e Contorno

Para a geração dos *grids*, foram utilizadas as rotinas do *Oasis Montaj* de *minimum curvature* (*RANGRID*) e bi-directional *line gridding* (*BIGRID*). Nos dados radiométricos utilizou-se a mínima curvatura e nos magnetométricos a gridagem bidirecional. Os programas *BIGRID* e *RANGRID* interpolam dados em perfis paralelos com linhas orientadas, usando mínima curvatura (*RANGRID*) e *spline* bicúbico (*BIGRID*) para interpolação de amostras nos pontos do *grid*.

Os mapas de contorno foram elaborados a partir de *grid* regulares, interpolados em malha quadrada, com dimensões de 125 m x 125 m, o que equivale a um quarto do espaçamento entre as linhas de vôo.

3.3. Arquivo Final de Dados

Os arquivos finais dos perfis do levantamento foram gravados em DVD-ROM, em arquivos ASCII, no formato XYZ e em banco de dados no formato GDB (*GEOSOFT*), contendo as seguintes informações:

- Dados magnetométricos brutos e reduzidos da variação diurna,
- Dados magnetométricos nivelados, reduzidos do IGRF e micronivelados,
- Dados radiométricos brutos e corrigidos e respectivas razões,
- Altura e Altitude do vôo,
- Posicionamento GPS: Coordenadas UTM, Latitude, Longitude e elevação GPS.

Todos os dados dos cruzamentos entre linhas de vôo e linhas de controle, arquivos digitais em malha quadrada e de plotagem dos mapas apresentados, bem como o presente relatório em formato PDF (*Adobe Acrobat*) foram gravados em DVD-ROM, descrito no item 5 deste relatório.

3.4. Equipe Envolvida no Processamento dos Dados

Participou dos trabalhos de processamento o seguinte técnico:

Rodrigo Heidy Sternert – Gerente de Processamento de Dados

A direção geral das operações no Projeto Aerogeofísico Sucunduri esteve a cargo do economista Rodolfo Rocha Miranda.

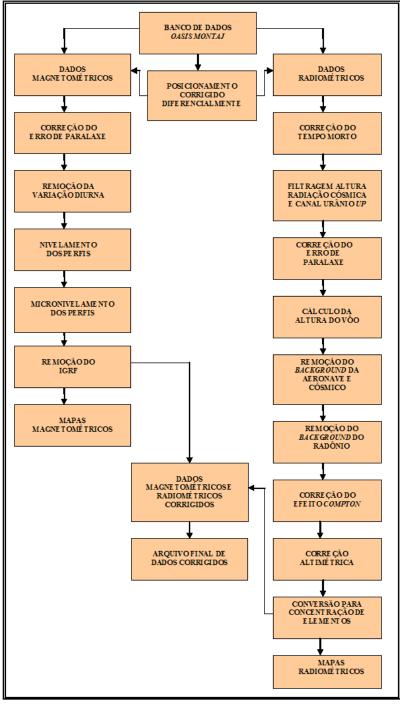


Figura 12 – Fluxograma do processamento de dados.

4. CRONOGRAMA GERAL DAS OPERAÇÕES

O levantamento do projeto executado no período de 21 de novembro de 2009 a 25 de junho de 2010. O processamento dos dados e elaboração do Relatório Final teve início após o término da fase de aquisição e foram concluídos em 16 de dezembro de 2010.

A Figura 13 fornece o quadro comparativo entre o cronograma previsto e a duração efetiva do projeto.

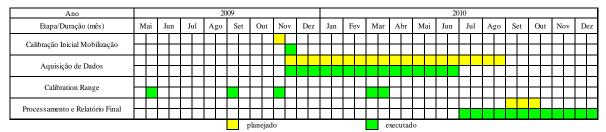


Figura 13 – Cronograma Geral das Operações.

5. PRODUTOS FINAIS

Os produtos finais relativos são apresentados, na forma de mapas, nas escalas 1:100.000, 1:250.000 e 1:500.000 que seguem em anexo ao presente relatório. Os resultados na forma de mapas são acompanhados dos arquivos digitais finais do levantamento, gravados em DVD-ROM, no formato *GEOSOFT*.

Os mapas foram elaborados de acordo com as especificações do Manual Técnico do IBGE (IBGE, 1989). As informações geofísicas estão superpostas à rede de projeção UTM, traçada com retículas de 8 cm (40km em 1:500.000, 20km em 1:250.000 e 8km em 1:100.000), à rede geográfica, indicada por cruzetas dispostas a cada 30, 15 e 10 minutos, respectivamente, para as escalas 1:500.000, 1:250.000 e 1:100.000, e às informações planimétricas, obtidas dos arquivos digitais das folhas ao milionésimo SB.21 e SC.21 disponíveis no site do IBGE (www.ibge.gov.br). Na escala de 1:500.000 os mapas integrados foram elaborados de forma a englobar toda a área do Projeto em uma folha única.

As Figuras 14 e 15 ilustram a articulação das folhas relativas aos mapas apresentados nas escalas 1:100.000 e 1:250.000, respectivamente.

A Tabela 21 apresenta os diversos tipos de mapas apresentados e suas características:

Tabela 21 – Características da Apresentação dos Mapas Aerogeofísicos.

Temp	Tema Padrão (1:100.000) Padrão (1:250.000)		
Tema	1 au1 au (1.100.000)	1 au1 au (1.250.000)	(1:500.000)
Campo Magnético Total (reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
1ª.Derivada Vertical do Campo Magnético Total (Reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
Radiométrico de Contagem Total	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Potássio	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Urânio	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Tório	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Razão Radiométrica eU/eTh	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Razão Radiométrica eU/K	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Razão Radiométrico eTh/K	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Radiométrico Ternário	-	-	Imagem e planimetria
Modelo Digital do Terreno	-	-	Imagem sombreada (pseudo-iluminação) e planimetria
Traço de Linhas de Vôo (digital)	Traço de linhas de vôo e Planimetria	-	-

As especificações dos intervalos de contorno utilizados constam da Tabela 22 a seguir:

Tabela <u>22</u> – Características dos intervalos de contorno dos mapas aerogeofísicos.

Tema	Padrão (1:100.000)	Padrão (1:250.000)
Campo Magnético Total (Reduzido do IGRF)	20 e 100 nT	20 e 100 nT
1ª.Derivada Vertical do Campo Magnético Total (Reduzido do IGRF	0,02 e 0,10 nT/m	0,02 e 0,10 nT/m
Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)	0,04 e 0,20 nT/m	0,01 e 0,05 nT/m
Radiométrico de Contagem Total	1 e 5 μR/h	1 e 5 μR/h
Radiométrico de Potássio	0,2 e 1,0 %	0,2 e 1,0 %
Radiométrico de Urânio	1 e 5 ppm	1 e 5 ppm
Radiométrico de Tório	2 e 10 ppm	2 e 10 ppm
Razão Radiométrica eU/eTh	-	-
Razão Radiométrica eU/K	-	-
Razão Radiométrico eTh/K	-	-

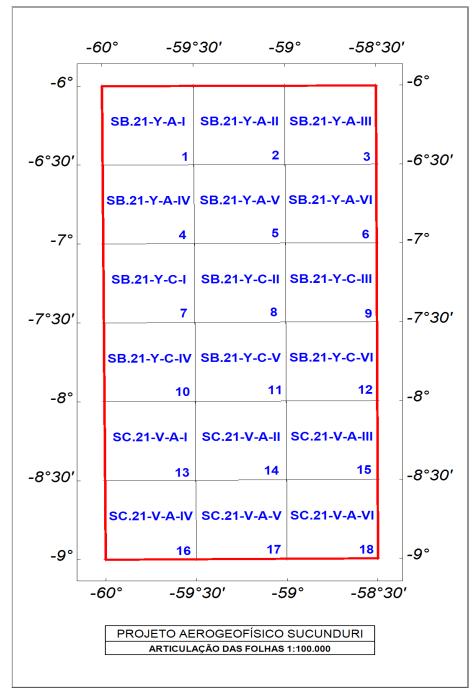


Figura 14 – Articulação das folhas na escala 1:100.000.

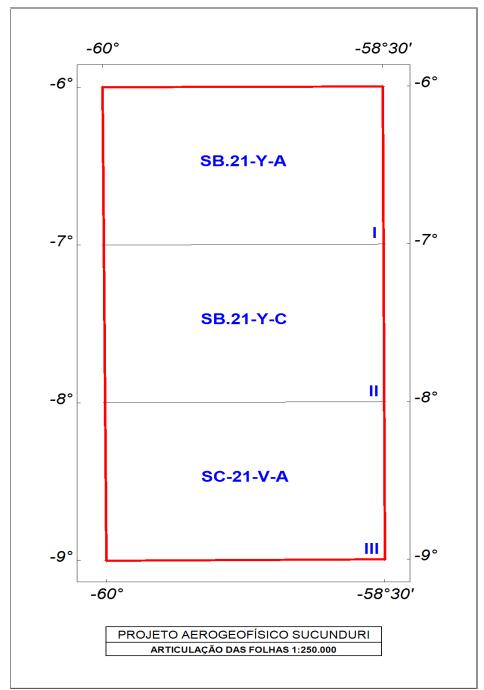


Figura 15 – Articulação das folhas na escala 1:250.000.

5.1. Mapas de Contorno do Campo Magnético Total, da 1ª Derivada Vertical e do Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)

Os mapas magnetométricos, na escala 1:500.000, foram elaborados na forma de pseudoiluminação projetada perpendicularmente às estruturas principais definidas pela Magnetometria. Nos mapas de pseudo-iluminação foram adotados o ângulo de 45° para azimute e de 45° para inclinação da fonte de iluminação aplicada.

Os mapas magnetométricos nas escalas 1:250.000 e 1:100.000, foram elaborados na forma de imagem colorida, com traços de contorno superpostos.

A título de ilustração, os mapas magnetométricos do Campo Total e do Sinal Analítico estão sendo apresentados nas Figuras 16 e 17 respectivamente, com escalas reduzidas para tamanho A4.

5.2. Mapas Radiométricos dos Canais de Potássio, Urânio, Tório e Contagem total

Os mapas radiométricos foram elaborados a partir das concentrações aparentes dos canais radiométricos de potássio, urânio, tório e contagem total. Nos mapas de escalas 1:100.000 e 1:250.000 a imagem se superpõe à planimetria básica e as curvas de contorno.

Para a escala de 1:500.000, as curvas de contorno não são apresentadas.

Os valores radiométricos foram convertidos de contagens por segundo (cps) para concentração de elementos (% para K, ppm para eU e eTh e μ R/h para o canal de Contagem Total), com base nos procedimentos especificados no Item 3.1. do Capítulo 3 deste Relatório.

O mapa do canal radiométrico de Contagem Total, elaborado em escala reduzida para tamanho A4, está sendo apresentado na Figura 18.

5.3. Mapa Radiométrico Ternário

Mapa elaborado apenas na escala 1:500.000 (folha única), expressa a razão entre os três canais radiométricos (K, U, Th), cujas variações são indicadas por diferentes matizes de cores. As tonalidades variam entre o vermelho (100% K), verde (100% eTh) e azul (100% eU). A cor branca representa a presença dos três elementos (K, U, Th) e a cor preta, a ausência dos três citados elementos.

O mapa radiométrico ternário, elaborado em escala reduzida para tamanho A4, está sendo apresentado na Figura 19.

5.4. Mapas das Razões Radiométricas eU/eTh, eU/K e eTh/K

Os mapas das razões radiométricas foram elaborados a partir das razões das concentrações dos canais radiométricos de potássio, urânio e tório. Nos mapas de escala 1:500.000, 1:250.000 e 1:100.000 a imagem se superpõe à planimetria básica. O mapa radiométrico da razão Tório/Potássio está sendo elaborado em escala reduzida para tamanho A4, sendo apresentado na Figura 20.

5.5. Mapa de Pseudo-Iluminação do Modelo Digital do Terreno

Este mapa, obtido através da subtração dos canais de Altura GPS e Radar Altímetro, está sendo apresentado na escala de 1:500.000 em cores e pseudo-iluminado, com inclinação da fonte de luz de 45° e direção da mesma em 45°, com a planimetria superposta.

O mapa pseudo-iluminado do modelo digital do terreno, também elaborado em escala reduzida para tamanho A4, está apresentado na Figura 21, a qual apresenta os principais acidentes geográficos da área levantada, obtido a partir dos dados de GPS e radar altímetro registrado pela aeronave.

5.6. Mapa de Traço de Linhas de Vôo

Estes mapas apresentam o caminho percorrido ao longo das linhas levantadas. A numeração das linhas é apresentada nas extremidades de cada linha e *ticks* a cada 10 fiduciais, sendo numeradas a cada 100 fiduciais. Os mapas de traço de linhas de vôo são apresentados somente em escala 1:100.000 na forma digital, não sendo portanto apresentados impressos, não obstante os arquivos de plotagem acompanharão os produtos finais.

5.7. Relatório Final

O relatório final está sendo apresentado em 14 volumes (Volume I – Texto Técnico e demais como Anexos), em 4 (quatro) vias, contendo a descrição das operações conduzidas no projeto e dos procedimentos utilizados no levantamento e no processamento dos dados correspondentes, até a elaboração dos mapas finais, conforme descrito anteriormente.

O texto deste relatório foi elaborado pelo geólogo Rodrigo Heidy Sternert. A revisão e edição final estiveram a cargo do engenheiro cartógrafo e mestre em geofísica Álvaro Augusto Pereira e do geólogo Alexandre Lisboa Lago da CPRM - Serviço Geológico do Brasil.

5.8. Arquivos Digitais Finais

Os dados obtidos no processamento de dados estão sendo apresentados em 1 (um) CD-ROM e 3 (três) DVD-ROMs em 4 (quatro) cópias. A descrição do conteúdo das informações gravadas nos DVD-ROMs está sendo apresentada no Anexo IV. A descrição detalhada do formato dos arquivos XYZ e do padrão da CPRM (cruzamentos) é apresentada no Anexo V e também nas Tabelas 23, 24, 25 e 26.

Os dados digitais dos bancos de dados magnetométricos e gamaespectrométrico da *GEOSOFT* (GDB) são apresentados, respectivamente, nas Tabelas 23 e 24.

Os Arquivos de malha (*Grids*), os bancos de dados, bem como os arquivos XYZ e cruzamentos estão apresentados com as coordenadas métricas referenciada a zona UTM 21S (Meridiano Central 57°WGr). Maiores informações estão expostas no arquivo *Leiame.pdf* presente em cada mídia DVD, bem como no Anexo IV.

Os mapas foram gravados em arquivos de plotagem do tipo HPGL (*Hewlett Packard Graphics Language*) e *GEOSOFT MAP*. As informações planimétricas foram confeccionadas com auxílio do *software ArcGis Engine* versão 9.3.1770 (*ESRI*, 2007).

Os *grids* também são apresentados no formato *GEOSOFT*, interpolados em malha quadrada de 125 x 125 m. O método de interpolação utilizado para elaboração dos *grids* da magnetometria foi o *spline* bidirecional (*Bigrid*) e para os dados de gamaespectrometria, a mínima curvatura (*Rangrid*).

A listagem fornecida no Anexo VI apresenta as linhas de vôo numeradas de 21010 a 21170 e de 22690 a 23370 para a aeronave PR-PRS, as linhas de vôo de 11180 a 12200 para aeronave PT-DYK e as linhas de vôo 22210 a 22680 e linhas de controle de 19010 a 19340 para a aeronave PR-PEC. Todas estas linhas listadas foram aprovadas e utilizadas no processamento e estão organizadas por ordem crescente de numeração.

O arquivo Metadados, bem como todos os arquivos especificados no contrato, estão sendo apresentados em meio digital (a relação dos DVD-ROMs e do CD-ROM está no Anexo IV).

O texto do presente Relatório Final foi gravado no formato PDF *Adobe Acrobat*, em CD-ROM separado.

Tabela 23 – Banco de dados *Geosoft* (GDB) – Magnetometria.

Campo	Descrição	Unidade
X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
BARO	Altitude Barométrica	m
ALTURA	Altura de Vôo (Radar Altímetro)	m
MDT	Modelo Digital do Terreno	m
MAGBASE	Campo Magnético da Base Fixa	nT
MAGBRU	Campo Magnético não Compensado	nT
MAGCOM	Campo Magnético Compensado	nT
MAGCOR	Campo Magnético Corrigido da Variação Diurna	nT
MAGNIV	Campo Magnético Total Nivelado	nT
MAGMIC	Campo Magnético Micronivelado	nT
MAGIGRF	Campo Magnético Reduzido do IGRF	nT
IGRF	Campo Magnético de Referência (fonte NOAA)	nT
LONGITUDE	Longitude	graus decimais
LATITUDE	Latitude	graus decimais
DATA	Data	ano/mês/dia
HORA	Hora	hh:mm:ss

Tabela 24 – Banco de dados Geosoft (GDB) – Gamaespectrometria.

Campo	Descrição	Unidade
X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
BARO	Altitude Barométrica	m
ALTURA	Altura de Vôo (Radar Altímetro)	m
MDT	Modelo Digital do Terreno	m
CTB	Contagem Total Bruto	cps
KB	Potássio Bruto	cps
UB	Urânio Bruto	cps
THB	Tório Bruto	cps
UUP	Urânio <i>UP</i>	cps
LIVE_TIME	Tempo de Amostragem	ms
COSMICO	Radiação Cósmica	cps
TEMP	Temperatura	graus Celsius
CTCOR	Contagem Total Corrigido	cps
KCOR	Potássio Corrigido	cps
UCOR	Urânio Corrigido	cps
THCOR	Tório Corrigido	cps
CTEXP	Taxa de Exposição da Contagem Total	μR/h
KPERC	Potássio em Porcentagem	%
eU	Urânio em ppm	ppm
eTh	Tório em ppm	ppm
THKRAZÃO	Razão entre Tório e Potássio	-
UKRAZÃO	Razão entre Urânio e Potássio	-
UTHRAZÃO	Razão entre Urânio e Tório	-
LONGITUDE	Longitude	graus decimais
LATIDUDE	Latitude	graus decimais
DATA	Data	ano/mês/dia
HORA	Hora	hh:mm:ss

Tabela 25 – Banco de dados *Geosoft* (GDB) – Gamaespectrometria 256 canais.

	3 \ ' ' ' 1	
X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
SpectraD	Vetor Espectro 256 Canais Detector <i>Downward</i>	cps
SpectraU	Vetor Espectro 256 Canais Detector <i>Upward</i>	cps

Tabela 26 – Arquivo de Cruzamento XYZ – Magnetometria.

X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
ALTURA	Altura de Vôo (Radar Altímetro)	m
MAGCOR	Campo Magnético Corrigido da Variação Diurna	nT
MAGNIV	Campo Magnético Total Nivelado	nT
RESIDUO	Diferença Aplicada no Cruzamento para Nivelamento	nT
VÔO	Número do Vôo	-

5.9. Arquivos Poligonais

Estão sendo entregues também, no formato *Geosoft* PLY, os arquivos correspondentes ao corte das folhas 1:100.000, 1:250.000 e 1:500.000. Esses arquivos contemplam os pares cartesianos (X e Y) que definem o polígono relativo ao corte padrão das folhas IBGE. A sintaxe dos arquivos compreende a sua codificação, seguida da extensão "ply".

5.10. Produtos Originais

Os originais obtidos no levantamento, tais como fitas de vídeo e fitas originais, contendo dados brutos e registros analógicos permanecerão sob guarda e conservação da Prospectors Aerolevantamentos e Sistemas Ltda., conforme determina a Portaria Nº 637-SC-6/FA-61, do EMFA, de 05.03.1998.

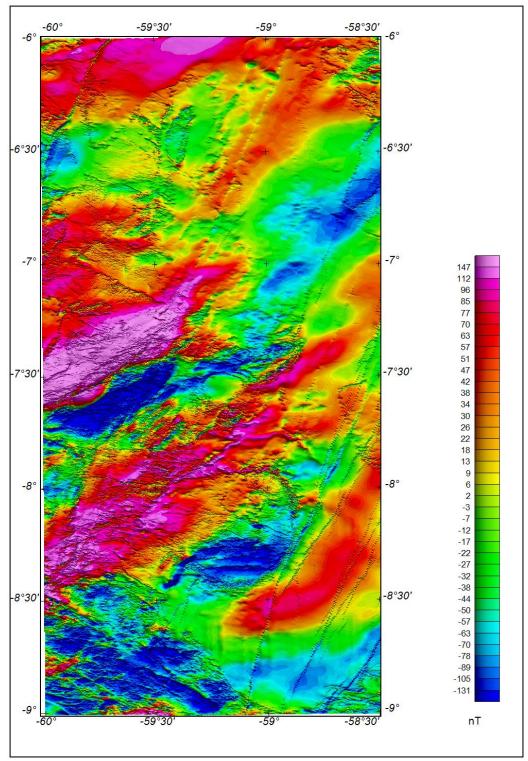


Figura 16 – Mapa pseudo-iluminado do campo magnético total (reduzido do IGRF). (Azimute da Fonte Luminosa: 45°; Inclinação: 45°)

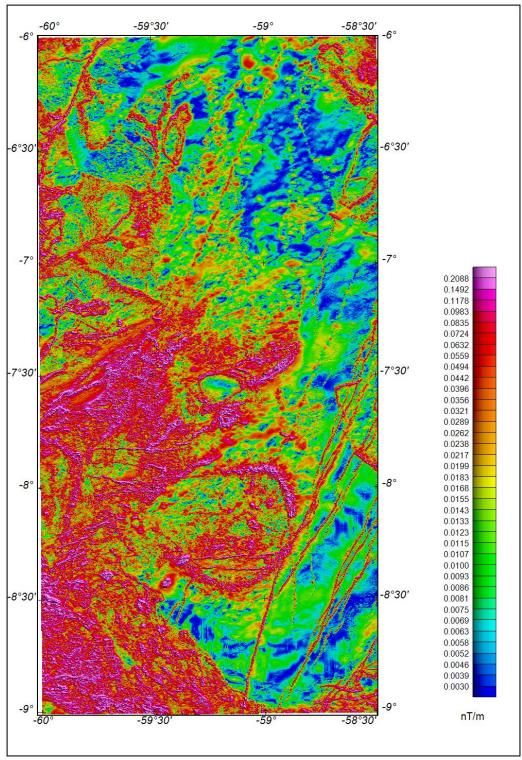


Figura 17 – Mapa do sinal analítico do campo magnético total (reduzido do IGRF). (Azimute da Fonte Luminosa: 45°; Inclinação: 45°)

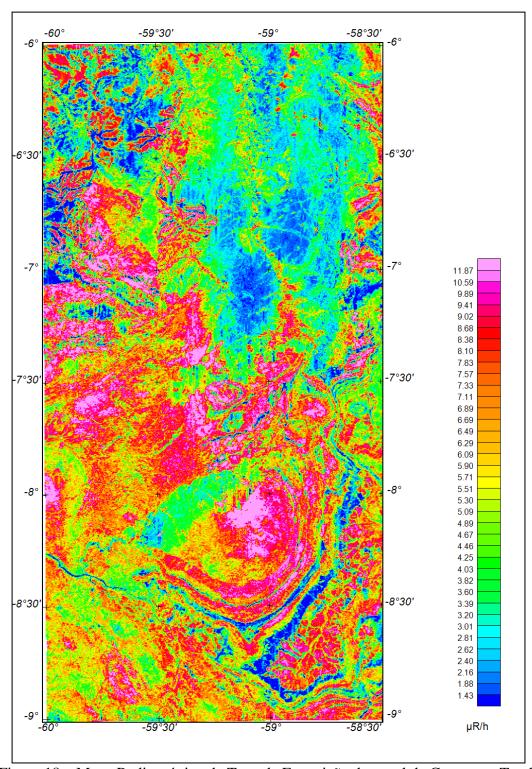


Figura 18 – Mapa Radiométrico da Taxa de Exposição do canal de Contagem Total.

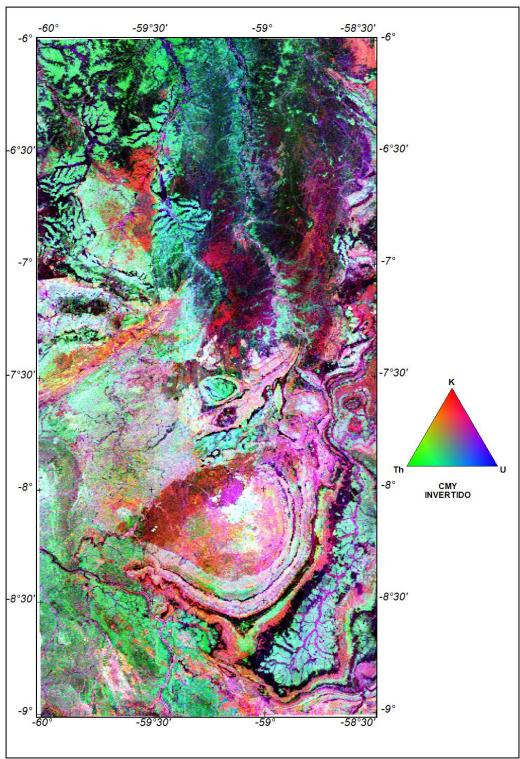


Figura 19 – Mapa Radiométrico Ternário (K-U-Th).

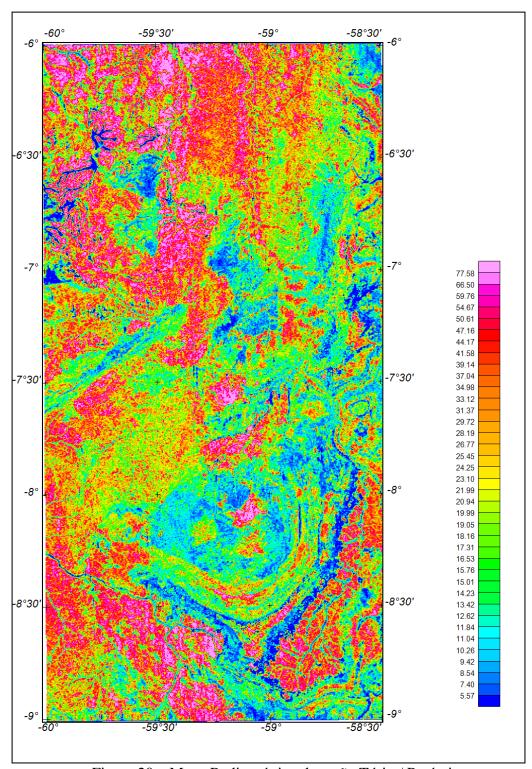


Figura 20 – Mapa Radiométrico da razão Tório / Potássio.

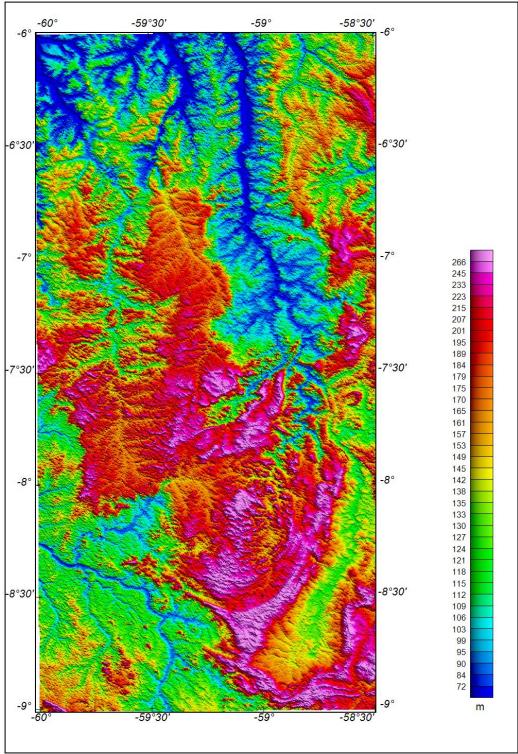


Figura 21 – Mapa pseudo-iluminado do Modelo Digital do Terreno. (Azimute da Fonte Luminosa: 45°; Inclinação: 45°)

6. PARTICIPAÇÃO DA CPRM - SERVIÇO GEOLÓGICO DO BRASIL

Os serviços de aquisição de dados do projeto foram supervisionados pela Equipe de Fiscalização da CPRM constituída pelos seguintes técnicos:

Bruno Menchio Faria Geólogo DIGEOF-ERJ

Ludwig Zellner Assistente Executivo DIGEOF-ERJ

A revisão e compatibilização geral dos resultados obtidos apresentados no Relatório Final foi executada pelos geólogos Alexandre Lisboa Lago e Paulo Abreu, com supervisão da gerente do contrato, geóloga Maria Laura Vereza de Azevedo.

7. REFERÊNCIAS BIBLIOGRÁFICAS

- **CPRM 1999 -** Relatório sobre os serviços de geodésia e topografia para locação da linha de calibração dinâmica. Divisão de Cartografia DICART. Rio de Janeiro, Brasil.
- **ESRI 2007 -** Arc Gis Engine Runtime versão 9.3.1770 para Target for Arc Gis versão 7.0.1, desenvolvido pela Geosoft Inc. 1 CD-ROM.
- **GEOSOFT 2005** Montaj Geophysics Levelling System: Tutorial and User Guide. www.geosoft.com. Toronto, Canada.
- **GRASTY, R. L. & MINTY, B. R. S. 1995** A guide to the technical specifications for airbone gamma-ray surveys. AGSO, Austrália. p. 19-24.
- **IAEA. 1991 -** Airbone gamma ray spectrometer surveying. International Atomic Energy Agency. Technical Reports Series No. 323. Vienna, Austria. p. 21-52.
- **IAEA. 2003** Guidelines for radioelement mapping using gamma ray spectrometry data. International Atomic Energy Agency. TECDOC-1363. Vienna, Austria. p. 25-26, 56.
- **IBGE. 1989** Manual Técnico de Noções Básicas de Cartografia Fundação IBGE. Rio de Janeiro, Brasil.

ANEXO I – RESUMO DO PROCESSO DE CALIBRAÇÃO DO GAMAESPECTRÔMETRO.

ANEXO I – a - RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI


PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

AERONAVE PIPER NAVAJO PA31-350 PR-PRS

> RIO DE JANEIRO - RJ 22 DE MAIO DE 2009

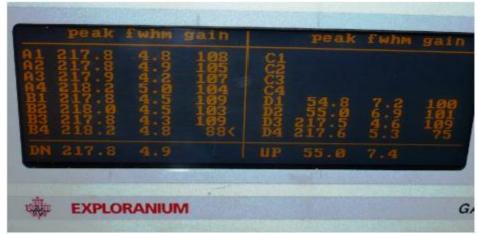
Arquivo (formato *.jpg) gravado no dia 22/05/09 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PRS (Caixa A).

Arquivo (formato *.jpg) gravado no dia 22/05/09 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PRS (Caixa B).

Arquivo (formato *.jpg) gravado no dia 22/05/09 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PRS (Caixa C).

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI


CPRM CONTRATO N.º 054/PR/09

RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

AERONAVE PIPER NAVAJO PA31-310 PT-DYK

> RIO DE JANEIRO - RJ 02 DE SETEMBRO DE 2009

Arquivo (formato *.jpg) gravado no dia 02/09/2009 do console *Exploranium* GR820 mostrando a resolução dos cristais do sistema da aeronave PT-DYK.

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI

CPRM CONTRATO N.º 054/PR/09

RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

AERONAVE PIPER NAVAJO CHIEFTAIN PA31-350 PR-PEC

> RIO DE JANEIRO - RJ 17 DE FEVEREIRO DE 2009

Detector	Det 1	Det 2	Det 3	Det 4	Det 5	Det 1+2+3+4
Status	Done	Done	Done	Done	Done	Done
Counts	5015	5024	5010	5006	5005	20055
Gain	0.917201	0.908886	0.993999	0.958951	0.926521	-
Peak	871.59 (+/- 0.290)	870.84 (+/- 0.343)	870.47 (+/- 0.353)	872.01 (+/- 0.374)	871.91 (+/- 0.381)	871.20 (+/- 0.153)
FWHM	4.18 (+/- 0.691)	4.49 (+/- 0.863)	5.03 (+/- 0.884)	4.47 (+/- 0.969)	4.90 (+/- 1.007)	4.45 (+/- 0.383)

Arquivo (formato Excel) gravado no dia 17/02/09 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PEC (Caixa A).

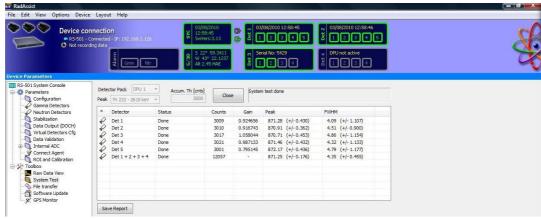
Detector	Det 1	Det 2	Det 3	Det 4	Det 5	Det 1+2+3+4
Status	Done	Done	Done	Done	Done	Done
Counts	5014	5002	5004	5023	5015	20043
Gain	0.900364	0.917077	0.915204	0.900332	0.943594	-
Peak	872.39 (+/- 0.281)	872.24 (+/- 0.325)	871.99 (+/- 0.307)	871.72 (+/- 0.308)	873.16 (+/- 0.341)	872.11 (+/- 0.150)
FWHM	4.13 (+/- 0.706)	4.28 (+/- 0.807)	4.17 (+/- 0.776)	4.25 (+/- 0.769)	4.62 (+/- 0.882)	4.17 (+/- 0.367)

Arquivo (formato Excel) gravado no dia 17/02/09 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PEC (Caixa B).

Detector	Det 1	Det 2	Det 3	Det 4	Det 5	Det 1 + 4
Status	Done	Not active	Not active	Done	Not active	Done
Counts	5024	0	0	5007	0	10031
Gain	0.923722	0	0	0.938151	0	-
Peak	873.31 (+/- 0.349)			872.11 (+/- 0.315)		872.87 (+/- 0.245)
FWHM	4.44 (+/- 0.870)			4.98 (+/- 0.815)		4.60 (+/- 0.634)

Arquivo (formato Excel) gravado no dia 17/02/09 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PEC (Caixa C).

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI


PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

AERONAVE PIPER NAVAJO CHIEFTAIN PA31-350 PR-PEC

RIO DE JANEIRO - RJ 08 DE MARÇO DE 2010

Arquivo (formato *.jpg) gravado no dia 08/03/10 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PEC (Caixa A).

Arquivo (formato *.jpg) gravado no dia 08/03/10 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PEC (Caixa B).

Arquivo (formato *.jpg) gravado no dia 08/03/10 no hangar em Jacarepaguá-RJ mostrando a resolução dos cristais do sistema Radiation Solutions RS-500 da aeronave PR-PEC (Caixa C).

ANEXO I – b - RESULTADOS DOS TESTES DOS COEFICIENTES DE ESPALHAMENTO COMPTON

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

RESULTADO DO TESTE DOS COEFICIENTES DE ESPALHAMENTO COMPTON

AERONAVE PIPER NAVAJO PA31-350 PR-PRS

> RIO DE JANEIRO - RJ 22 DE MAIO DE 2009

Resumo das Contagens de Cada Elemento Sobre os

Tanques de Calibração Transportáveis

Aeronave PR-PRS

	Planilha contendo o Resumo das Contagens de Cada Elemento <u>Aeronave Piper Navajo PA 31-350 - PR-PRS</u> Obs.: Os valores abaixo foram corrigidos do <i>live time</i>						
Pacote	Pacote de cristais A (1.024 pol ³) Elementos (cps)						
Num. Linha	Num. Linha Tanque Tempo (s)			U (média)	Th (média)		
BG1	Background	600	316,70	59,77	90,02		
TH1	Tório	600	401,83	120,36	274,25		
U1	Urânio	600	420,51	188,83	98,83		
K1	Potássio	600	520,24	59,36	90,06		
Pacote	de cristais B (1.0	24 pol ³)	Elementos (cps)				
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)		
BG2	Background	600	307,84	58,65	94,49		
TH2	Tório	600	361,16	100,19	218,28		
U2	Urânio	600	374,45	144,15	98,08		
K2	Potássio	600	441,69	58,33	93,40		
Pacote	de cristais C (51	2 pol ³)		Elementos (cps))		
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)		
BG3	Background	600	210,12	35,14	63,13		
TH3	Tório	600	222,69	45,36	93,97		
U3	Urânio	600	226,66	57,41	64,61		
	Potássio	600	242,76	35,43	63,28		

<u>Ae</u>	ntendo o Resumo das eronave Piper Navajo : Os valores abaixo for	o PA 31-350 - Pl	R-PRS	
Pacote de cristais A	(1.024 pol ³)	Eler	mentos (Acumula	ado)
Tanque	Tempo (s)	K	U	Th
Background	600	190018	35865	54013
Tório	600	241101	72214	164551
Urânio	600	252306	113299	59295
Potássio	600	312144	35618	54035
Pacote de cristais B	(1.024 pol ³)	Eleı	mentos (Acumula	ado)
Tanque	Tempo (s)	K	U	Th
Background	600	184706	35190	56693
Tório	600	216694	60111	130968
Urânio	600	224672	86491	58845
Potássio	600	265011	34995	56042
Pacote de cristais (C (512 pol ³)	Eler	mentos (Acumula	ado)
Tanque	Tempo (s)	K	U	Th
Background	600	126072	21082	37876
Tório	600	133611	27213	56379
Urânio	600	135994	34443	38763
Potássio	600	145656	21257	37968
acotes de cristais A, B	e C (2.560 pol ³)	Eler	mentos (Acumula	 ado)
•			· ·	<u> </u>
Tanque	Tempo (s)	K	U	Th
Background	600	500795	92137	148581
Tório	600	591406	91870	148045
Urânio	600	612972	234233	156903
Potássio	600	722811	159538	351898

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o Tanque de Calibração N/S 94 e referente ao pacote de cristais A:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

PCT K

	10111	1111120	11111111
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
	,	.32 (.02)	` /
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

PPM EU PPM TH

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.17 1.19

Rio de Janeiro, 22/05/2009 - Caixa A - PR-PRS

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad 600.0 190018. 35865. 54013. 
K Pad 600.0 312144. 35618. 54035. 
U Pad 600.0 252306. 113299. 59295. 
T Pad 600.0 241101. 72214. 164551. 
1
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
2.819E+01 (3.865E-01) 2.023E+00 (4.615E-02) 6.212E-01 (1.357E-02) 2.508E-01 (6.377E-02) 2.476E+00 (4.934E-02) 4.163E-01 (7.835E-03) 3.039E-01 (8.082E-02) 1.397E-01 (1.205E-02) 1.376E+00 (2.239E-02)
```

INVERSE A-MATRIX:

```
3.581E-02 (4.948E-04) -2.884E-02 (5.000E-04) -7.445E-03 (2.605E-04) -2.336E-03 (9.794E-04) 4.127E-01 (8.167E-03) -1.238E-01 (2.945E-03) -7.673E-03 (2.114E-03) -3.555E-02 (3.196E-03) 7.412E-01 (1.204E-02)
```


WINDOW SENSITIVITIES FOR SMALL SOURCES:

K SENSITIVITY (A11) = 2.819E+01 (3.865E-01) COUNTS/ M PER PCT K
U SENSITIVITY (A22) = 2.476E+00 (4.934E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 1.376E+00 (2.239E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 3.298E+01 (4.522E-01) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 2.897E+00 (5.772E-02) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 1.637E+00 (2.665E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .3026 (.0034)

TH INTO K (BETA = A13/A33): .4516 (.0071)

U INTO K (GAMMA = A12/A22): .8171 (.0107)

U INTO TH (A = A32/A22): .0564 (.0047)

K INTO TH (B = A31/A11): .0108 (.0029)

K INTO U (G = A21/A11): .0089 (.0023)

BACKGROUND COUNT RATES:

K WINDOW: 2.736E+02 (1.101E+00) COUNTS/M

U WINDOW: 5.608E+01 (4.115E-01) COUNTS/M

TH WINDOW: 8.635E+01 (5.162E-01) COUNTS/M

NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente ao pacote de cristais B:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """ PROGRAM PADWIN Concentrations of Transportable Pads NUMBER OF PADS = 4PAD CONCENTRATIONS: PCT K PPM EU PPM TH B Pad 1.410 (.010) .97 (.03) 2.26 (.10) K Pad 8.710 (.090) .32 (.02) .74 (.10) U Pad 1.340 (.020) 52.90 (1.00) 3.40 (.14) T Pad 1.340 (.020) 2.96 (.06) 136.00 (2.10) GEOMETRIC CORRECTION FACTORS: POTASSIUM URANIUM THORIUM 1.17 1.19 Rio de Janeiro, 22/05/2009 - Caixa B - PR-PRS WINDOW COUNTS: TIME (M) K COUNTS U COUNTS TH COUNTS B Pad 600.0 184706. 35190. 56693. K Pad 600.0 265011. 34995. 56042. U Pad 600.0 224672. 86491. 58845. T Pad 600.0 216694. 60111. 130968. A-MATRIX FROM NONLINEAR REGRESSION: 1.853E+01 (2.773E-01) 1.299E+00 (3.339E-02) 3.890E-01 (1.041E-02) 1.611E-01 (6.212E-02) 1.640E+00 (3.356E-02) 2.862E-01 (5.973E-03) 4.830E-02 (7.974E-02) 4.883E-02 (1.139E-02) 9.249E-01 (1.550E-02)

5.436E-02 (8.262E-04) -4.276E-02 (8.863E-04) -9.628E-03 (4.938E-04) -4.890E-03 (2.210E-03) 6.191E-01 (1.255E-02) -1.895E-01 (4.821E-03) -2.581E-03 (4.693E-03) -3.045E-02 (6.627E-03) 1.092E+00 (1.816E-02)

INVERSE A-MATRIX:

WINDOW SENSITIVITIES FOR SMALL SOURCES:

K SENSITIVITY (A11) = 1.853E+01 (2.773E-01) COUNTS/ M PER PCT K
U SENSITIVITY (A22) = 1.640E+00 (3.356E-02) COUNTS/ M PER PPM EU
TH SENSITIVITY (A33) = 9.249E-01 (1.550E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 2.168E+01 (3.245E-01) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 1.919E+00 (3.926E-02) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 1.101E+00 (1.844E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .3095 (.0046)

TH INTO K (BETA = A13/A33): .4206 (.0094)

U INTO K (GAMMA = A12/A22): .7920 (.0145)

U INTO TH (A = A32/A22): .0298 (.0069)

K INTO TH (B = A31/A11): .0026 (.0043)

K INTO U (G = A21/A11): .0087 (.0034)

BACKGROUND COUNT RATES:

K WINDOW: 2.796E+02 (9.849E-01) COUNTS/M

U WINDOW: 5.618E+01 (3.983E-01) COUNTS/M

TH WINDOW: 9.228E+01 (5.100E-01) COUNTS/M

NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente ao pacote de cristais C:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

	PCT K	PPM EU	PPM TH
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.19

Rio de Janeiro, 22/05/2009 - Caixa C - PR-PRS

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad 600.0 126072. 21082. 37876.
K Pad 600.0 145656. 21257. 37968.
U Pad 600.0 135994. 34443. 38763.
T Pad 600.0 133611. 27213. 56379.
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
4.519E+00 (1.328E-01) 3.225E-01 (1.769E-02) 9.152E-02 (6.477E-03)
9.261E-02 (4.763E-02) 4.274E-01 (1.119E-02) 7.009E-02 (2.933E-03)
7.104E-02 (6.380E-02) 2.351E-02 (8.939E-03) 2.303E-01 (5.238E-03)
```

INVERSE A-MATRIX:

```
-6.564E-02 (6.245E-02) -1.940E-01 (8.127E-02) 4.428E+00 (9.556E-02)
```


WINDOW SENSITIVITIES FOR SMALL SOURCES:

K SENSITIVITY (A11) = 4.519E+00 (1.328E-01) COUNTS/ M PER PCT K
U SENSITIVITY (A22) = 4.274E-01 (1.119E-02) COUNTS/ M PER PPM EU
TH SENSITIVITY (A33) = 2.303E-01 (5.238E-03) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 5.287E+00 (1.554E-01) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 5.001E-01 (1.309E-02) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 2.740E-01 (6.233E-03) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .3044 (.0128)

TH INTO K (BETA = A13/A33): .3974 (.0282)

U INTO K (GAMMA = A12/A22): .7546 (.0410)

U INTO TH (A = A32/A22): .0550 (.0209)

K INTO TH (B = A31/A11): .0157 (.0141)

K INTO U (G = A21/A11): .0205 (.0106)

BACKGROUND COUNT RATES:

K WINDOW: 2.032E+02 (7.465E-01) COUNTS/M

U WINDOW: 3.443E+01 (3.028E-01) COUNTS/M

TH WINDOW: 6.248E+01 (4.060E-01) COUNTS/M

NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente aos pacotes de cristais A, B e C:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PPM TH

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

PCT K

	10111	1111126	111/1111
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

PPM EU

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.19

Rio de Janeiro, 22/05/2009 - Caixa A+B+C - PR-PRS

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad 600.0 500795. 92137. 148581. 
K Pad 600.0 722811. 91870. 148045. 
U Pad 600.0 612972. 234233. 156903. 
T Pad 600.0 591406. 159538. 351898. 
1
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
5.124E+01 (6.858E-01) 3.645E+00 (8.116E-02) 1.102E+00 (2.330E-02) 5.045E-01 (1.033E-01) 4.544E+00 (8.952E-02) 7.726E-01 (1.389E-02) 4.235E-01 (1.356E-01) 2.121E-01 (2.008E-02) 2.531E+00 (4.075E-02)
```

INVERSE A-MATRIX:

```
1.970E-02 (2.653E-04) -1.562E-02 (2.552E-04) -3.807E-03 (1.269E-04) -1.650E-03 (4.750E-04) 2.245E-01 (4.394E-03) -6.783E-02 (1.552E-03) -3.158E-03 (1.057E-03) -1.620E-02 (1.571E-03) 4.015E-01 (6.452E-03) WINDOW SENSITIVITIES FOR SMALL SOURCES:
```


K SENSITIVITY (A11) = 5.124E+01 (6.858E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 4.544E+00 (8.952E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 2.531E+00 (4.075E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 5.995E+01 (8.024E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 5.317E+00 (1.047E-01) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 3.012E+00 (4.849E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .3053 (.0029)

TH INTO K (BETA = A13/A33): .4353 (.0063)

U INTO K (GAMMA = A12/A22): .8022 (.0095)

U INTO TH (A = A32/A22): .0467 (.0043)

K INTO TH (B = A31/A11): .0083 (.0026)

K INTO U (G = A21/A11): .0098 (.0020)

BACKGROUND COUNT RATES:

K WINDOW: 7.564E+02 (1.853E+00) COUNTS/M

U WINDOW: 1.467E+02 (6.682E-01) COUNTS/M

TH WINDOW: 2.411E+02 (8.679E-01) COUNTS/M

NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

RESULTADO DO TESTE DOS COEFICIENTES DE ESPALHAMENTO COMPTON

AERONAVE PIPER NAVAJO PA31-310 PT-DYK

> RIO DE JANEIRO - RJ 02 DE SETEMBRO DE 2009

Data: 02 DE SETEMBRO DE 2009

Resumo das Contagens de Cada Elemento Sobre os Tanques de Calibração Portáteis

Obs.: Valores corrigidos do live time

Pacote	de Cristais A (102	4 pol ³)	ELEMENTOS (cps)			
Num, Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
BG1	Background	1	269,020	45,770	90,200	
TH1	Potássio	1	468,250	44,500	89,720	
U1	Urânio	1	343,180	151,360	91,910	
K1	Tório	1	322,530	82,500	226,710	

Pacote de Cristais B (1024 pol³)			ELEMENTOS (cps)			
Num, Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
BG2	Background	1	263,960	56,290	107,020	
TH2	Tório	1	431,120	55,630	106,650	
U2	Urânio	1	329,400	148,570	110,720	
K2	Potássio	1	314,355	91,580	231,390	

Pacote de Cristais D (512 pol³)			ELEMENTOS (cps)			
Num, Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
BG3	Background	1	200,240	50,730	91,480	
ТН3	Potássio	1	263,210	50,070	90,900	
U3	Urânio	1	227,250	89,600	93,500	
K3	Tório	1	223,970	67,660	149,910	

Pacote de Cristais	A (1024 pol ³)	ELEMENTOS (Acumulado)			
Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
Background 1	600	161412	27462	54120	
Potássio	600	280950	26700	53832	
Urânio	600	205908	90816	55146	
Tório	600	193518	49500	136026	

Pacote de Crista (1024 pol³)	Elementos (Acumulado)			
Bloco	Tempo (s)	K	U	Th
Background 1	600	158376	33774	64212
Potássio	600	258672	33378	63990
Urânio	600	197640	89142	66432
Tório	600	188613	54948	138834

Pacote de Cristai (512 pol³)	Elementos (Acumulado)			
Tanque	Tempo (s)	K	U	Th
Background 1	600	120144	30438	54888
Potássio	600	157926	30042	54540
Urânio	600	136350	53760	56100
Tório	600	134382	40596	89946

Caixa A+B+D (2560 pol ³)	Elementos (Acumulado)			
Tanque	Tempo (s)	K	U	Th
Background 1	600	439932	91674	173220
Potássio	600	697548	90120	172362
Urânio	600	539898	233718	177678
Tório	600	516513	145044	364806

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre os Tanques de Calibração N/S 94 e referente ao pacote de cristais A:

l	PROGRAMA CALIPAD Obtenção dos coeficientes de stripping para Pads de calibração					
Revisao (v.484 - 2006	//09/12 17:27	:17)				
Número de PADS: 4	l Data	de geração	do relatório:	03/09/2009		
DESCRIÇAO DOS P.	ADS USADO	OS				
1 - Concentracoes Descr PAD K (%) U Fundo K U TH	J eq (ppm) 1.410 (8.710 (1.340 (1.340 (Th (ppm 0.010) 0.090) 0.020) 0.020)	0.970 (0.320 (52.900 (2.960 (0.020) 1.000)	2.260 (0.100) 0.740 (0.100) 3.400 (0.140) 136.000 (2.100)	
2 - Contagens Descr PAD K (cps) U	Lea (cns)	Th (cps)	T(s)			
Fundo 269.020		45.770		90.200	(0.388) 600.0	
	` ,	44.500	(0.276) (0.272)		` '	
	` ,		` ′	89.720	(0.387) 600.0	
U 343.180	` ,	151.360	(0.502)	91.910	(0.391) 600.0	
TH 322.530	(0.733)	82.500	(0.371)	226.710	(0.615) 600.0	
3 - Matriz de Sensibili	dades					
27.503 (0.374)	1.457	(0.036)	0.393	(0.011)	227.940 (1.031)	
0.058 (0.055)	2.028	(0.041)	0.244	(0.005)	43.169 (0.357)	
0.148 (0.079)	0.011	(0.011)	1.021	(0.017)	87.675 (0.502)	
4 - Matriz inversa de \$3.65e-002 (4.99e-004) -2.61e-002 3) 4.94e-001	(5.08e-004) (9.82e-003)	-1.18e-001	(3.11e-003)		
5 - Coeficientes de str	ipping					
l .		.0038)				
	,	.0087) .0119)				
	,	.0055)				
	,	.0029)				
	,	.0020)				
6 - Sensibilidade das j	anelas para p	equenas fon	tes			
Potassio (K):		27	7.503		(0.374)	
Urânio equivalente (Tório (Th):	Ueq.)	2	2.028 1.021		(0.041) (0.017)	
7 - Sensibilidade das j	anelas com f				,	
Potassio (K):		32.179		fator =	1.170	
Urânio equivalente (U	Lea)	2.373	(0.438) (0.048)	fator =	4.450	
Tório (Th):	· -4.)	1.215	(0.048) (0.020)	fator =	4.400	
10110 (111).		1.217	(0.020)	14101 –	1.170	

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre os Tanques de Calibração N/S 94 e referente ao pacote de cristais B:

PROGRAMA CALIPAD Obtenção dos coeficientes de stripping para Pads de calibração							
Revisao (v.4	184 - 2006/09/	12 17:27:1	7)				
Número de l	PADS: 4	Data de	e geração d	o relatório	: 02/09/2009		
DESCRIÇA	O DOS PADS	S USADOS	}				
1 - Concentr		(nnm)	Th (mmm)				
Descr PAD Fundo		(ppm) 0 (0.01	Th (ppm)	970 (0.030)	2.260 (0.100)
K		0.01		320 (0.030)	0.740 (0.100)
U		0.02		,	1.000)	3.400 (0.140)
TH	1.34	`	*	960 (*	36.000 (2.100)
111	1.34) (0.02	20) 2.3	900 (0.000) 1.	30.000 (2.100)
2 - Contager	18						
	K (cps) U eq	(cps)	Th (cps)	T(s)			
Fundo	263.960	(0.663)	56.290	(0.306)	107.020	(0.422)	600.0
K	431.120	(0.848)	55.630	(0.304)		(0.422)	600.0
U	329.400	(0.741)	148.570	(0.498)	110.720	(0.430)	600.0
TH	314.355	(0.724)	91.580	(0.391)		(0.621)	600.0
	01000	(01,21)	71.000	(0.051)	201.000	(0.021)	00010
3 - Matriz de	e Sensibilidad	es					
23.090	(0.323)	1.283	(0.033)	0.370	0.010) 229.32	23 (0.972)
0.117	(0.061)	1.772	(0.036)	0.23	8 (0.005)	53.8	70 (0.391)
0.147	(0.085)	0.051	(0.012)	0.929	9 (0.016)	104.66	63 (0.541)
4.35e-002 (-1.96e-003 (nversa de Sens 6.15e-004) -3 (1.58e-003) 5 (3.97e-003) -2	.13e-002 (0 .70e-001 (1	1.15e-002)	-1.45e-001	(3.89e-003))	
5 - Coeficie	ntes de strippi	ng					
alfa	0.25		044)				
beta	0.39		,				
gama	0.72						
a b	0.02 0.00	`					
g	0.00	,					
6 - Sensibili	dade das janel	las para pec	uenas fonte	es			
Potassio (K	•		23.0			(0.323)	
	ivalente (U ed	դ.)։		772		(0.036)	
Tório (Th):		=	0.9	929		(0.016)	
7 - Sensibili	dade das janel	las com fato	ores geomé	tricos			
Potassio (K	•		'.015 (0.378)	fator	=	1.170
	ivalente (U eq		2.073 (0.042)	fator	=	1.170
Tório (Th):			.106 (0.019)	fator	=	1.190
		•	(-2		· · · ·

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre os Tanques de Calibração N/S 94 e referente ao pacote de cristais D:

PROGRAMA CALIPAD Obtenção dos coeficientes de stripping para Pads de calibração								
Revisao (v.	484 - 2006/09/12	2 17:27:17	")					
Número de	PADS: 4	Data de	geração do	relatório	o: 02/09/2	009		
DESCRIÇ <i>A</i>	AO DOS PADS	USADOS						
1 - Concent Descr PAD		nm)	Th (ppm)					
Fundo		(0.010)		0 (0.030)	2.260	(0.100)
K		(0.090		`	0.020)	0.740	(0.100)
U		(0.020		,	1.000)	3.400	(0.140)
TH		(0.020		,	0.060)	136.000	(2.100)
2 - Contage								
	K (cps) U eq (_	Th (cps) To				•••	1000
Fundo		(0.578)	50.730	(0.291)			390)	600.0
K		(0.662)	50.070	(0.289)			389)	600.0
U		(0.615)	89.600	(0.386)	,	`	395)	600.0
TH	223.970	(0.611)	67.660	(0.336)) 149.	910 (0.	.500)	600.0
3 - Matriz d	le Sensibilidades	3						
8.709	(0.163)	0.528	(0.020)	0.174	(0.00	07) 187	.054	(0.748)
0.000	(0.057)	0.746	(0.017)	0.115	(0.00)	04) 49	.745	(0.365)
0.014	(0.077)	0.029	(0.011)	0.436	(0.00	08) 90	.445	(0.491)
1.15e-001 (5.69e-004 (nversa de Sensib 2.22e-003) -8.0 9.40e-003) 1.35 (2.05e-002) -8.8	3e-002 (2 5e+000 (3	.05e-002) -3	3.59e-00	1 (1.25e-	002)		
5 - Coeficie	ntes de stripping	g						
alfa			0.0081)					
beta			0.0152)					
gama a			0.0241) 0.0145)					
b		`	0.0088)					
g		,	0.0065)					
6 - Sensibili	idade das janelas	s para peqi	uenas fontes	;				
Potassio (l	K):		8.709)	(0.163)		
_	uivalente (U eq.)):	0.746		(
Tório (Th)):		0.436)	(0.008)		
	idade das janelas	s com fato	res geométri	icos				
Potassio (K): valente (U eq.):	10.190 0.873	,	.190) .020)	fator fator	= 1.17 = 1.17		
Tório (Th):	valence (o eq.).	0.873		.020)	fator	= 1.17		
		J.J.J	, 0.		14101	1.17		

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre os Tanques de Calibração N/S 94 e referente aos pacotes de cristais A+B+D:

PROGRAMA CALIPAD

Obtenção dos coeficientes de stripping para Pads de calibração

Revisao (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 03/09/2009

DESCRIÇAO DOS PADS USADOS

1 - Concentracoes

Descr PAD K (%)	U eq (ppm)	Th (ppm)			
Fundo	1.410 (0.010)	0.970	(0.030)	2.260	(0.100)
K	8.710 (0.090)	0.320	(0.020)	0.740	(0.100)
U	1.340 (0.020)	52.900	(1.000)	3.400	(0.140)
TH	1.340 (0.020)	2.960	(0.060)	136.000	(2.100)

2 - Contagens

Descr PAD	K (cps) U eq (cps)	Th (cps)	T(s)	
Fundo	733.220 (1.105)	152.790 (0.505)	288.700 (0.694)	600.0
K	1162.580 (1.392)	150.200 (0.500)	287.270 (0.692)	600.0
U	899.830 (1.225)	389.530 (0.806)	296.130 (0.703)	600.0
TH	860.855 (1.198)	241.740 (0.635)	608.010 (1.007)	600.0

3 - Matriz de Sensibilidades

59.302	(0.776)	3.268	(0.075)	0.937	(0.022)	644.317	(1.889)
0.174	(0.102)	4.546	(0.090)	0.598	(0.011)	146.784	(0.663)
0.309	(0.144)	0.091	(0.021)	2.386	(0.039)	282.783	(0.921)

4 - Matriz inversa de Sensibilidades

1.69e-002 (2.22e-004) -1.21e-002 (2.07e-004) -3.61e-003 (1.15e-004)

- -3.63e-004 (3.98e-004) 2.21e-001 (4.33e-003) -5.53e-002 (1.33e-003)
- -2.18e-003 (1.02e-003) -6.88e-003 (1.69e-003) 4.22e-001 (6.79e-003)

5 - Coeficientes de stripping

alfa	0.2504	(0.0029)
beta	0.3926	(0.0067)
gama	0.7188	(0.0094)
a	0.0200	(0.0045)
b	0.0052	(0.0024)
g	0.0029	(0.0017)

6 - Sensibilidade das janelas p	ara pequena	s font	es			
Potassio (K):	59.302		((0.776)		
Urânio equivalente (U eq.):	4.546		((0.090)		
Tório (Th):	2.386		(0.039)		
7 - Sensibilidade das janelas o	com fatores g	eomé	tricos			
Potassio (K):	69.384	(0.908)) fator	=	1.170
Urânio equivalente (U eq.):	5.319	(0.105)) fator	=	1.170
Tório (Th):	2.840	(0.046)) fator	=	1.190

	RESULTADOS					
Coeficiente Valor Obtido em 02/08/2009						
α	$0,2504 \pm 0,0029$					
β	$0,3926 \pm 0,0067$					
γ	$0,7188 \pm 0,0094$					
a	$0,0200 \pm 0,0045$					
b	$0,0052 \pm 0,0024$					
g	$0,0029 \pm 0,0017$					

Coeficientes de Espalhamento Compton

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

RESULTADO DO TESTE DOS COEFICIENTES DE ESPALHAMENTO COMPTON

AERONAVE PIPER NAVAJO PA31-350 PR-PEC

> RIO DE JANEIRO - RJ 17 DE FEVEREIRO DE 2009

Resumo das Contagens de Cada Elemento Sobre os

Tanques de Calibração Transportáveis

Aeronave PR-PEC

Planilha contendo o Resumo das Contagens de Cada Elemento <u>Aeronave Piper Navajo PA 31-350 - PR-PEC</u> Obs.: Os valores abaixo foram corrigidos do <i>live time</i>						
Pacote de cristais A (1.024 pol³)			Elementos (cps)			
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
BG1	Background	600	322,22	57,27	98,16	
TH1	Tório	600	393,46	108,65	266,69	
U1	Urânio	600	417,82	184,27	104,43	
K1	Potássio	600	504,74	55,26	96,12	
Pacote de cristais B (1.024 pol³)		Elementos (cps)				
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
BG2	Background	600	263,61	57,65	101,33	
TH2	Tório	600	314,92	94,40	217,20	
U2	Urânio	600	326,63	137,76	105,75	
K2	Potássio	600	394,00	56,74	100,64	
Pacote de cristais C (512 pol³)			Elementos (cps)			
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
BG3	Background	600	216,85	46,25	86,94	
TH3	Tório	600	240,27	64,20	141,45	
U3	Urânio	600	248,31	86,75	89,39	
К3	Potássio	600	281,28	45,87	86,62	

Planilha contendo o Resumo das Contagens de Cada Elemento <u>Aeronave Piper Navajo PA 31-350 - PR-PEC</u> Obs.: Os valores abaixo foram corrigidos do <i>live time</i>					
Pacote de cristais A (1.024 pol³)		Elementos (Acumulado)			
Tanque	Tempo (s)	K	U	Th	
Background	600	289995	51537	88345	
Tório	600	354118	97785	240017	
Urânio	600	376041	165839	93983	
Potássio	600	454265	49731	86506	
Pacote de cristais B (1.024 pol³)		Elementos (Acumulado)			
Tanque	Tempo (s)	K	U	Th	
Background	600	237245	51885	91199	
Tório	600	283431	84957	195481	
Urânio	600	293971	123986	95179	
Potássio	600	354604	51068	90573	
Pacote de cristais (C (512 pol ³)	Ele	mentos (Acumul	ado)	
Tanque	Tempo (s)	K	U	Th	
Background	600	195163	41627	78243	
Tório	600	216241	57778	127302	
Urânio	600	223482	78072	80454	
Potássio	600	253154	41279	77961	
Pacotes de cristais A, B	e C (2.560 pol³)	Ele	mentos (Acumul	ado)	
Tanque Tempo (s)		K	U	Th	
Background	600	722403	145048	257786	
	600	853790	240520	562800	
Tório	1 000				
Tório Urânio	600	893494	367897	269616	

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o Tanque de Calibração N/S 94 e referente ao pacote de cristais A:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

	PCT K	PPM EU	PPM TH
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.17 1.19

Rio de Janeiro, 17/02/2009 - Caixa A - PR-PEC

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
600.0 289995. 51537.
B Pad
                             88345.
K Pad
       600.0 454265. 49731.
                             86506.
U Pad
      600.0 376041. 165839. 93983.
T Pad
      600.0 354118. 97785. 240017.
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
3.792E+01 (5.113E-01) 2.796E+00 (6.217E-02) 7.773E-01 (1.702E-02)
2.198E-02 (7.676E-02) 3.657E+00 (7.208E-02) 5.219E-01 (9.725E-03)
-1.431E-02 (1.037E-01) 1.395E-01 (1.533E-02) 1.888E+00 (3.053E-02)
```

INVERSE A-MATRIX:

```
2.638E-02\ (3.579E-04) \quad -1.997E-02\ (3.263E-04) \quad -5.343E-03\ (1.719E-04)
-1.891E-04 (5.872E-04) 2.765E-01 (5.412E-03) -7.636E-02 (1.806E-03)
2.140E-04 (1.462E-03) -2.058E-02 (1.981E-03) 5.352E-01 (8.627E-03)
```


WINDOW SENSITIVITIES FOR SMALL SOURCES:

K SENSITIVITY (A11) = 3.792E+01 (5.113E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 3.657E+00 (7.208E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 1.888E+00 (3.053E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 4.436E+01 (5.982E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 4.279E+00 (8.433E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 2.247E+00 (3.633E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .2764 (.0029)

TH INTO K (BETA = A13/A33): .4117 (.0065)

U INTO K (GAMMA = A12/A22): .7645 (.0090)

U INTO TH (A = A32/A22): .0381 (.0041)

K INTO TH (B = A31/A11): -.0004 (.0027)

K INTO U (G = A21/A11): .0006 (.0020)

BACKGROUND COUNT RATES:

K WINDOW: 4.254E+02 (1.397E+00) COUNTS/M

U WINDOW: 8.114E+01 (5.018E-01) COUNTS/M

TH WINDOW: 1.429E+02 (6.660E-01) COUNTS/M

NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente ao pacote de cristais B:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PPM TH

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

PCT K

		111120	
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

PPM EU

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.17 1.19

Rio de Janeiro, 17/02/2009 - Caixa B - PR-PEC

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad 600.0 237245. 51885. 91199.
K Pad 600.0 354604. 51068. 90573.
U Pad 600.0 293971. 123986. 95179.
T Pad 600.0 283431. 84957. 195481.
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
2.708E+01 (3.803E-01) 1.845E+00 (4.418E-02) 5.623E-01 (1.336E-02) 9.747E-02 (7.553E-02) 2.306E+00 (4.646E-02) 3.779E-01 (7.610E-03) 1.362E-01 (1.019E-01) 9.942E-02 (1.466E-02) 1.298E+00 (2.146E-02)
```

INVERSE A-MATRIX:

```
3.708E-02 (5.271E-04) -2.934E-02 (5.472E-04) -7.520E-03 (2.949E-04) -9.415E-04 (1.304E-03) 4.399E-01 (8.791E-03) -1.277E-01 (3.155E-03) -3.819E-03 (2.932E-03) -3.061E-02 (4.339E-03) 7.809E-01 (1.283E-02)
```


K SENSITIVITY (A11) = 2.708E+01 (3.803E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 2.306E+00 (4.646E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 1.298E+00 (2.146E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 3.168E+01 (4.449E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 2.698E+00 (5.435E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 1.545E+00 (2.554E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .2911 (.0039)

TH INTO K (BETA = A13/A33): .4331 (.0080)

U INTO K (GAMMA = A12/A22): .8000 (.0123)

U INTO TH (A = A32/A22): .0431 (.0063)

K INTO TH (B = A31/A11): .0050 (.0038)

K INTO U (G = A21/A11): .0036 (.0028)

BACKGROUND COUNT RATES:

K WINDOW: 3.542E+02 (1.177E+00) COUNTS/M

U WINDOW: 8.325E+01 (4.864E-01) COUNTS/M

TH WINDOW: 1.488E+02 (6.509E-01) COUNTS/M

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente ao pacote de cristais C:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

	PCT K	PPM EU	PPM TH
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.17 1.19

Rio de Janeiro, 17/02/2009 - Caixa C - PR-PEC

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad
      600.0 195163. 41627.
                             78243.
                             77961.
K Pad
      600.0 253154. 41279.
U Pad 600.0 223482. 78072.
                             80454.
T Pad 600.0 216241. 57778. 127302.
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
1.338E+01 (2.269E-01) 9.213E-01 (2.795E-02) 2.560E-01 (9.149E-03)
6.265E-02 (6.692E-02) 1.166E+00 (2.507E-02) 1.840E-01 (4.891E-03)
6.788E-02 (9.213E-02) 5.765E-02 (1.301E-02) 6.106E-01 (1.111E-02)
```

INVERSE A-MATRIX:

```
7.511E-02 (1.309E-03) -5.868E-02 (1.526E-03) -1.381E-02 (9.823E-04)
-2.760E-03 (4.707E-03) 8.730E-01 (1.855E-02) -2.619E-01 (7.917E-03)
-8.089E-03 (1.145E-02) -7.590E-02 (1.614E-02) 1.664E+00 (2.959E-02)
```


K SENSITIVITY (A11) = 1.338E+01 (2.269E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 1.166E+00 (2.507E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 6.106E-01 (1.111E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 1.565E+01 (2.654E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 1.364E+00 (2.934E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 7.266E-01 (1.322E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .3013 (.0070)

TH INTO K (BETA = A13/A33): .4192 (.0140)

U INTO K (GAMMA = A12/A22): .7903 (.0200)

U INTO TH (A = A32/A22): .0495 (.0111)

K INTO TH (B = A31/A11): .0051 (.0069)

K INTO U (G = A21/A11): .0047 (.0050)

BACKGROUND COUNT RATES:

K WINDOW: 3.049E+02 (9.669E-01) COUNTS/M

U WINDOW: 6.774E+01 (4.280E-01) COUNTS/M

TH WINDOW: 1.289E+02 (5.874E-01) COUNTS/M

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente aos pacotes de cristais A, B e C:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """ PROGRAM PADWIN Concentrations of Transportable Pads NUMBER OF PADS = 4PAD CONCENTRATIONS: PCT K PPM EU PPM TH B Pad 1.410 (.010) .97 (.03) 2.26 (.10) K Pad 8.710 (.090) .32 (.02) .74 (.10) U Pad 1.340 (.020) 52.90 (1.00) 3.40 (.14) T Pad 1.340 (.020) 2.96 (.06) 136.00 (2.10) GEOMETRIC CORRECTION FACTORS: POTASSIUM URANIUM THORIUM 1.17 1.17 1.19 Rio de Janeiro, 17/02/2009 - Caixa A+B+C - PR-PEC WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

B Pad 600.0 722403. 145048. 257786. K Pad 600.0 1062023. 142078. 255040. U Pad 600.0 893494. 367897. 269616. T Pad 600.0 853790. 240520. 562800. 1

A-MATRIX FROM NONLINEAR REGRESSION:

7.837E+01 (1.021E+00) 5.562E+00 (1.197E-01) 1.596E+00 (3.239E-02) 1.823E-01 (1.312E-01) 7.129E+00 (1.394E-01) 1.084E+00 (1.913E-02) 1.900E-01 (1.819E-01) 2.966E-01 (2.715E-02) 3.797E+00 (6.075E-02)

INVERSE A-MATRIX:

```
1.279E-02 (1.673E-04) -9.872E-03 (1.508E-04) -2.557E-03 (7.357E-05) -2.326E-04 (2.492E-04) 1.421E-01 (2.761E-03) -4.048E-02 (9.178E-04) -6.220E-04 (6.170E-04) -1.061E-02 (9.005E-04) 2.667E-01 (4.259E-03)
```


K SENSITIVITY (A11) = 7.837E+01 (1.021E+00) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 7.129E+00 (1.394E-01) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 3.797E+00 (6.075E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 9.169E+01 (1.195E+00) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 8.341E+00 (1.630E-01) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 4.518E+00 (7.229E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .2855 (.0024)

TH INTO K (BETA = A13/A33): .4203 (.0055)

U INTO K (GAMMA = A12/A22): .7802 (.0079)

U INTO TH (A = A32/A22): .0416 (.0037)

K INTO TH (B = A31/A11): .0024 (.0023)

K INTO U (G = A21/A11): .0023 (.0017)

BACKGROUND COUNT RATES:

K WINDOW: 1.085E+03 (2.462E+00) COUNTS/M

U WINDOW: 2.321E+02 (8.599E-01) COUNTS/M

TH WINDOW: 4.205E+02 (1.168E+00) COUNTS/M

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

RESULTADO DO TESTE SOBRE OS TANQUES DE CALIBRAÇÃO PORTÁTEIS PARA DETERMINAÇÃO DOS COEFICIENTES *COMPTON*

AERONAVE PIPER NAVAJO CHIEFTAIN PA31-350
PR-PEC

RIO DE JANEIRO - RJ 08 DE MARÇO DE 2010

Resumo das Contagens de Cada Elemento Sobre os Tanques de Calibração Transportáveis **Aeronave PR-PEC**

Planilha contendo o Resumo das Contagens de Cada Elemento Aeronave Piper Navajo PA 31-350 - PR-PEC Obs.: Os valores abaixo foram corrigidos do live time Pacote de cristais A (1.024 pol³) Elementos (cps) Num. Linha **Tanque** Tempo (s) K (média) U (média) Th (média) BG1 600 300,80 90,71 Background 56,26 TH1 Tório 600 392,52 122,82 308,62 99,82 U1 Urânio 600 422,81 215,00 **K**1 Potássio 600 554,93 54,15 90,36 Pacote de cristais B (1.024 pol³) Elementos (cps) Num. Linha **Tanque** Tempo (s) K (média) U (média) Th (média) 257,98 57,13 97,32 BG2 Background 600 305,17 91,66 201,70 TH2 Tório 600 101,31 316,81 132,94 U2 Urânio 600 96,37 K2 Potássio 600 375,68 56,47 Pacote de cristais C (512 pol³) Elementos (cps) Num. Linha Tanque Tempo (s) K (média) U (média) Th (média) BG3 Background 600 197,54 45,40 80,51 TH3 Tório 600 221,80 64,49 140,29 U3 Urânio 600 229,68 87,86 83,00 **K**3 Potássio 44,75 80,34

600

264,38

Planilha contendo o Resumo das Contagens de Cada Elemento Aeronave Piper Navajo PA 31-350 - PR-PEC

O	Aeronave Piper Nava bs.: Os valores abaixo			
Pacote de cristais A	A (1.024 pol³)	Ele	mentos (Acumula	do)
Tanque	Tempo (s)	mpo (s) K		Th
Background	600	180480	33754	54424
Tório	600	235512	73693	185169
Urânio	600	253684	128997	59890
Potássio	600	332958	32489	54215
Pacote de cristais l	3 (1.024 pol³)	Ele	mentos (Acumula	do)
Tanque	Tempo (s)	K	U	Th
Background	600	154790	34277	58389
Tório	600	183100	54994	121021
Urânio	600	190084	79767	60787
Potássio	600	225407	33880	57824
Pacote de cristais	C (512 pol ³)	Ele	mentos (Acumula	do)
Tanque	Tempo (s)	K	U	Th
Background	600	118522	27239	48304
Tório	600	133081	38695	84174
Urânio	600	137810	52719	49800
Potássio	600	158629	26850	48205
Pacotes de cristais A, l	B e C (2.560 pol ³)	Ele	mentos (Acumula	do)
Tanque	Tempo (s)	K	U	Th
Background	600	453791	95270	161117
Tório	600	551693	167382	390364
Urânio	600	581578	261483	170477
Potássio	600	716994	93219	160244

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o Tanque de Calibração N/S 94 e referente ao pacote de cristais A:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

	PCT K	PPM EU	PPM TH
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.17 1.19

Rio de Janeiro, 08/03/2010 - Caixa A - PR-PEC

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad 600.0 180480. 33754. 54424. 
K Pad 600.0 332958. 32489. 54215. 
U Pad 600.0 253684. 128997. 59890. 
T Pad 600.0 235512. 73693. 185169.
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
3.516E+01 (4.669E-01) 2.382E+00 (5.283E-02) 6.688E-01 (1.449E-02) 7.669E-02 (6.229E-02) 3.047E+00 (6.016E-02) 4.524E-01 (8.374E-03) 3.036E-01 (8.284E-02) 1.401E-01 (1.244E-02) 1.627E+00 (2.630E-02)
```

INVERSE A-MATRIX:

```
2.853E-02 (3.806E-04) -2.205E-02 (3.613E-04) -5.596E-03 (1.854E-04) 7.316E-05 (6.148E-04) 3.324E-01 (6.521E-03) -9.243E-02 (2.181E-03) -5.330E-03 (1.460E-03) -2.450E-02 (2.248E-03) 6.235E-01 (1.006E-02)
```

WINDOW SENSITIVITIES FOR SMALL SOURCES:

K SENSITIVITY (A11) = 3.516E+01 (4.669E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 3.047E+00 (6.016E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 1.627E+00 (2.630E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 4.114E+01 (5.463E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 3.565E+00 (7.038E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 1.937E+00 (3.130E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .2780 (.0029)

TH INTO K (BETA = A13/A33): .4109 (.0063)

U INTO K (GAMMA = A12/A22): .7818 (.0092)

U INTO TH (A = A32/A22): .0460 (.0040)

K INTO TH (B = A31/A11): .0086 (.0024)

K INTO U (G = A21/A11): .0022 (.0018)

BACKGROUND COUNT RATES:

K WINDOW: 2.474E+02 (1.174E+00) COUNTS/M

U WINDOW: 5.217E+01 (4.078E-01) COUNTS/M

TH WINDOW: 8.646E+01 (5.303E-01) COUNTS/M

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente ao pacote de cristais B:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PROGRAM PADWIN -----

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

	PCT K	PPM EU	PPM TH
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.17 1.19

Rio de Janeiro, 08/03/2010 - Caixa B - PR-PEC

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad
        600.0 154790. 34277.
                                    58389.
       600.0 225407. 33880. 57824.
600.0 190084. 79767. 60787.
K Pad
                          79767. 60787.
U Pad
T Pad 600.0 183100. 54994. 121021.
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
1.630E+01 (2.474E-01) 1.147E+00 (2.992E-02) 3.443E-01 (9.397E-03)
8.817E-02 (6.101E-02) 1.455E+00 (3.008E-02) 2.366E-01 (5.304E-03)
3.868E-02 (8.029E-02) 5.990E-02 (1.145E-02) 7.796E-01 (1.333E-02)
```

INVERSE A-MATRIX:

```
6.165E-02 (9.541E-04) -4.809E-02 (1.028E-03) -1.263E-02 (6.116E-04)
-3.280E-03 (2.796E-03) 6.986E-01 (1.430E-02) -2.105E-01 (5.635E-03)
-2.806E-03 (6.398E-03) -5.129E-02 (8.924E-03) 1.299E+00 (2.196E-02)
```

WINDOW SENSITIVITIES FOR SMALL SOURCES:

K SENSITIVITY (A11) = 1.630E+01 (2.474E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 1.455E+00 (3.008E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 7.796E-01 (1.333E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 1.907E+01 (2.894E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 1.702E+00 (3.519E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 9.278E-01 (1.586E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .3034 (.0053)

TH INTO K (BETA = A13/A33): .4416 (.0103)

U INTO K (GAMMA = A12/A22): .7885 (.0150)

U INTO TH (A = A32/A22): .0412 (.0078)

K INTO TH (B = A31/A11): .0024 (.0049)

K INTO U (G = A21/A11): .0054 (.0037)

BACKGROUND COUNT RATES:

K WINDOW: 2.331E+02 (8.960E-01) COUNTS/M

U WINDOW: 5.506E+01 (3.914E-01) COUNTS/M

TH WINDOW: 9.544E+01 (5.130E-01) COUNTS/M

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente ao pacote de cristais C:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """

PPM TH

PROGRAM PADWIN

Concentrations of Transportable Pads

NUMBER OF PADS = 4

PAD CONCENTRATIONS:

PCT K

	10111	111120	
B Pad	1.410 (.010)	.97 (.03)	2.26 (.10)
K Pad	8.710 (.090)	.32 (.02)	.74 (.10)
U Pad	1.340 (.020)	52.90 (1.00)	3.40 (.14)
T Pad	1.340 (.020)	2.96 (.06)	136.00 (2.10)

PPM EU

GEOMETRIC CORRECTION FACTORS:

POTASSIUM URANIUM THORIUM

1.17 1.17 1.19

Rio de Janeiro, 08/03/2010 - Caixa C - PR-PEC

WINDOW COUNTS:

TIME (M) K COUNTS U COUNTS TH COUNTS

```
B Pad 600.0 118522. 27239. 48304.
K Pad 600.0 158629. 26850. 48205.
U Pad 600.0 137810. 52719. 49800.
T Pad 600.0 133081. 38695. 84174.
```

A-MATRIX FROM NONLINEAR REGRESSION:

```
9.250E+00 (1.672E-01) 6.276E-01 (2.067E-02) 1.769E-01 (6.952E-03) 1.095E-02 (5.398E-02) 8.149E-01 (1.815E-02) 1.306E-01 (3.803E-03) 7.377E-02 (7.234E-02) 3.831E-02 (1.020E-02) 4.465E-01 (8.335E-03)
```

INVERSE A-MATRIX:

```
1.084E-01 (2.020E-03) -8.257E-02 (2.389E-03) -1.878E-02 (1.505E-03) 
1.434E-03 (7.769E-03) 1.243E+00 (2.725E-02) -3.643E-01 (1.180E-02) 
-1.803E-02 (1.776E-02) -9.303E-02 (2.465E-02) 2.274E+00 (4.139E-02)
```


K SENSITIVITY (A11) = 9.250E+00 (1.672E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 8.149E-01 (1.815E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 4.465E-01 (8.335E-03) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 1.082E+01 (1.956E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 9.534E-01 (2.123E-02) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 5.313E-01 (9.919E-03) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .2926 (.0077)

TH INTO K (BETA = A13/A33): .3963 (.0148)

U INTO K (GAMMA = A12/A22): .7702 (.0223)

U INTO TH (A = A32/A22): .0470 (.0125)

K INTO TH (B = A31/A11): .0080 (.0078)

K INTO U (G = A21/A11): .0012 (.0058)

BACKGROUND COUNT RATES:

K WINDOW: 1.835E+02 (7.466E-01) COUNTS/M

U WINDOW: 4.430E+01 (3.455E-01) COUNTS/M

TH WINDOW: 7.936E+01 (4.610E-01) COUNTS/M

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o tanque de Calibração N/S 94 e referente aos pacotes de cristais A, B e C:

""" CALIBRATION OF K-U-TH WINDOW COUNTS FROM PAD MEASUREMENTS """ PROGRAM PADWIN -----Concentrations of Transportable Pads NUMBER OF PADS = 4PAD CONCENTRATIONS: PCT K PPM EU PPM TH B Pad 1.410 (.010) .97 (.03) 2.26 (.10) K Pad 8.710 (.090) .32 (.02) .74 (.10) U Pad 1.340 (.020) 52.90 (1.00) 3.40 (.14) T Pad 1.340 (.020) 2.96 (.06) 136.00 (2.10) GEOMETRIC CORRECTION FACTORS: POTASSIUM URANIUM THORIUM 1.17 1.17 1.19 Rio de Janeiro, 08/03/2010 - Caixa A+B+C - PR-PEC WINDOW COUNTS: TIME (M) K COUNTS U COUNTS TH COUNTS B Pad 600.0 453791. 95270. 161117. K Pad $600.0 \quad 716994. \quad 93219. \quad 160244.$ U Pad 600.0 581578. 261483. 170477. T Pad 600.0 551693. 167382. 390364. A-MATRIX FROM NONLINEAR REGRESSION: 6.071E+01 (7.943E-01) 4.157E+00 (9.049E-02) 1.190E+00 (2.471E-02) 1.758E-01 (1.055E-01) 5.317E+00 (1.043E-01) 8.196E-01 (1.468E-02) 4.161E-01 (1.428E-01) 2.383E-01 (2.130E-02) 2.854E+00 (4.580E-02) INVERSE A-MATRIX: 1.653E-02 (2.172E-04) -1.278E-02 (2.003E-04) -3.223E-03 (9.939E-05)

-1.773E-04 (3.470E-04) 1.907E-01 (3.716E-03) -5.469E-02 (1.252E-03) -2.396E-03 (8.318E-04) -1.406E-02 (1.258E-03) 3.555E-01 (5.696E-03)

K SENSITIVITY (A11) = 6.071E+01 (7.943E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 5.317E+00 (1.043E-01) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 2.854E+00 (4.580E-02) COUNTS/ M PER PPM TH

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 7.103E+01 (9.294E-01) COUNTS/ M PER PCT K

U SENSITIVITY (A22) = 6.221E+00 (1.220E-01) COUNTS/ M PER PPM EU

TH SENSITIVITY (A33) = 3.396E+00 (5.451E-02) COUNTS/ M PER PPM TH

STRIPPING RATIOS:

TH INTO U (ALPHA = A23/A33): .2872 (.0026)

TH INTO K (BETA = A13/A33): .4170 (.0058)

U INTO K (GAMMA = A12/A22): .7819 (.0084)

U INTO TH (A = A32/A22): .0448 (.0039)

K INTO TH (B = A31/A11): .0069 (.0024)

K INTO U (G = A21/A11): .0029 (.0017)

BACKGROUND COUNT RATES:

K WINDOW: 6.640E+02 (1.930E+00) COUNTS/M

U WINDOW: 1.515E+02 (6.890E-01) COUNTS/M

TH WINDOW: 2.613E+02 (9.151E-01) COUNTS/M

ANEXO I – c - DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 045/PR/09

DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

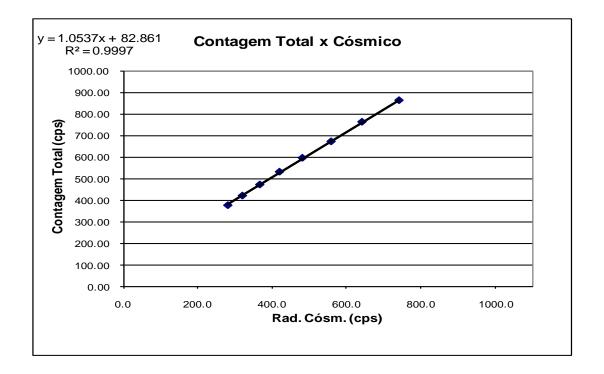
AERONAVE PIPER NAVAJO PA31-350 PR-PRS

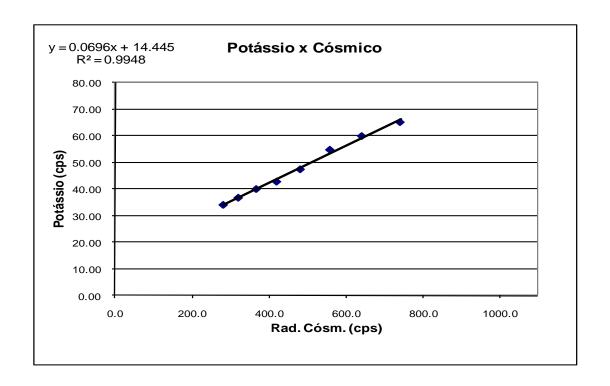
> ILHEUS - BA 24 DE MAIO DE 2009

RESULTADO DO VÔO CÓSMICO DA AERONAVE PIPER NAVAJO

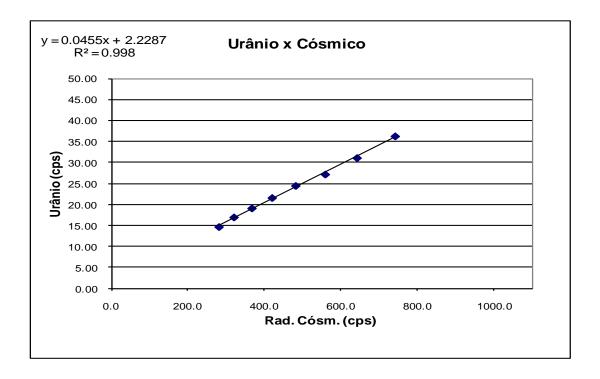
PA31-350 - PR-PRS

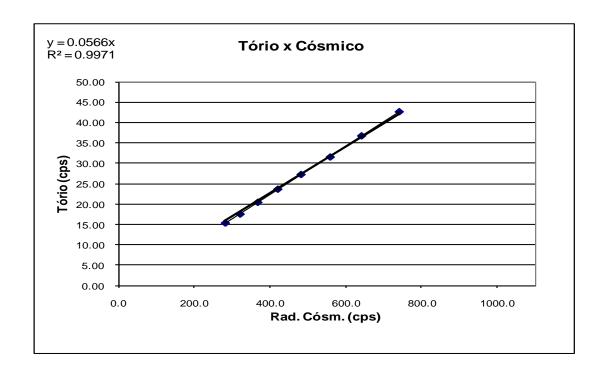
(Vol. Pacote de Cristais: 2.560 pol³)

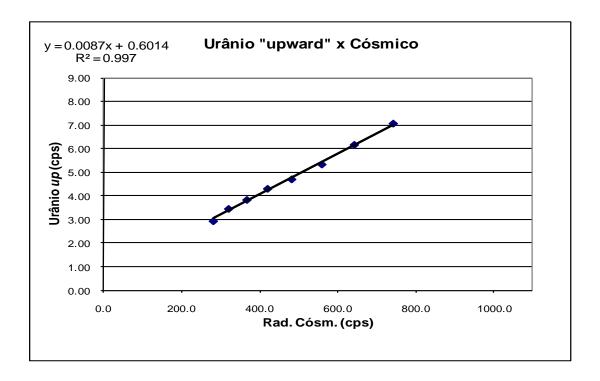

Realizado no litoral do município de Ilheus-BA em 24 de Maio de 2009


Altitude (m)	Cósmico (cps)	U (cps)	K (cps)	Th (cps)	Uup (cps)	CT (cps)
1619,87*	281,19	14,66	34,13	15,23	2,94	374,72
1943,08*	320,35	16,95	36,80	17,43	3,46	419,25
2261,48*	367,10	19,10	40,06	20,34	3,84	470,45
2579,24*	420,06	21,58	42,83	23,58	4,31	529,77
2904,23*	481,63	24,45	47,45	27,21	4,71	594,11
3233,96*	558,89	27,17	54,78	31,53	5,34	670,19
3557,00*	641,87	31,09	59,91	36,75	6,17	760,90
3882,14*	741,55	36,26	65,12	42,70	7,07	860,87

^{*} Altitudes utilizadas


RESULTADO					
CANAL	Background Aeronave	Espalhamento da Radiação Cósmica			
CT	82,86	1,0537			
K	14,45	0,0696			
U	2,2287	0,0455			
Th	0	0,0566			
Uup	0,06	0,0087			





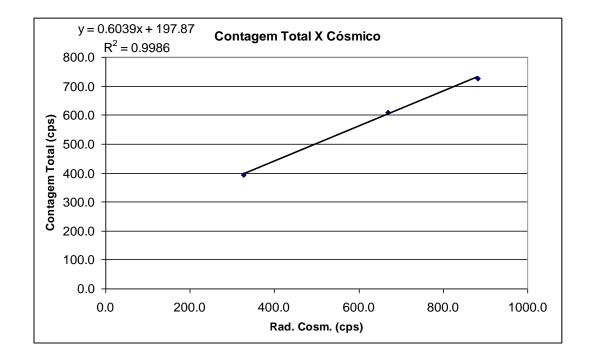
PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

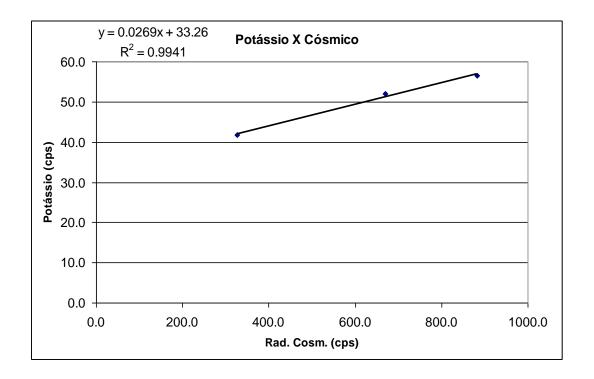
DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

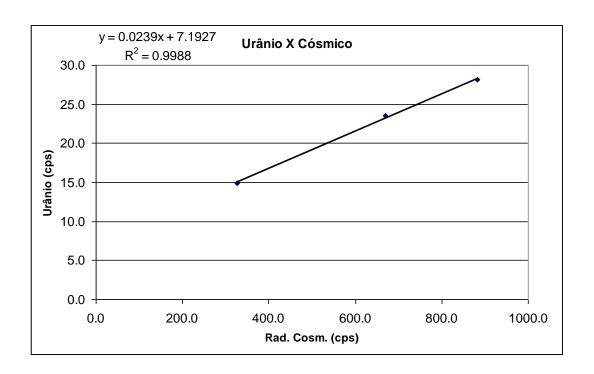
AERONAVE PIPER NAVAJO PA31-310 PT-DYK

> RIO DE JANEIRO - RJ 03 DE SETEMBRO DE 2009

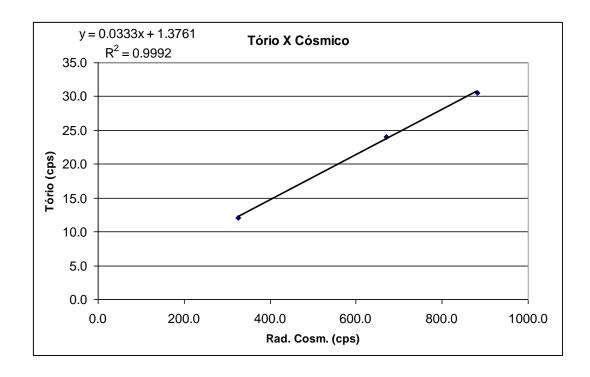

RESULTADO DO VÔO CÓSMICO DA AERONAVE PIPER NAVAJO – PT-DYK

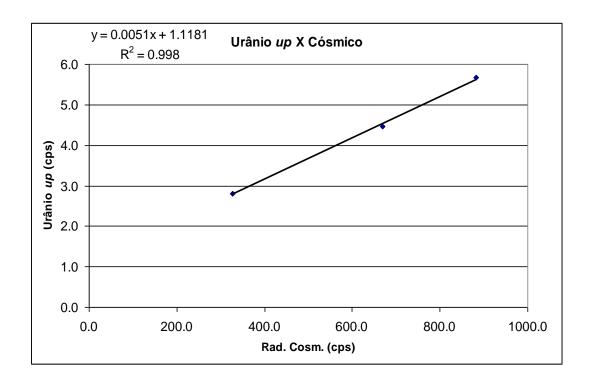
(Vol. Pacote de Cristais 2560 pol³)


Realizado no litoral do município do Rio de Janeiro em 03 de Setembro de 2009


Altitude* (m)	Cósmico (cps)	CT (cps)	K (cps)	U (cps)	Th (cps)	Uup (cps)
4202,91	882,05	726,06	56,54	28,13	30,54	5,67
3599,68	670,02	609,72	51,93	23,49	23,97	4,46
1979,24	326,53	392,30	41,78	14,90	12,13	2,81

* O teste em questão possui apenas três altitudes devido a condições meteorológicas adversas que contaminaram os demais registros. Essa informação foi fornecida por Sr. Divino Barbosa da empresa Microsurvey Aerogeofísica e Consultoria Cientifica Ltda.





	RESULTADO					
CANAL	Background Aeronave	<i>Stripping</i> Cósmico				
CT	197,9	0,6039				
K	33,26	0,0269				
U	7,2	0,0239				
Th	1,4	0,0333				
Uup	1,1	0,0051				

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 045/PR/09

DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

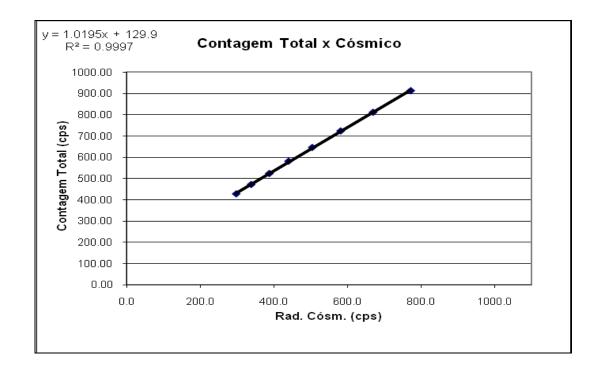
AERONAVE PIPER NAVAJO PA31-350 PR-PEC

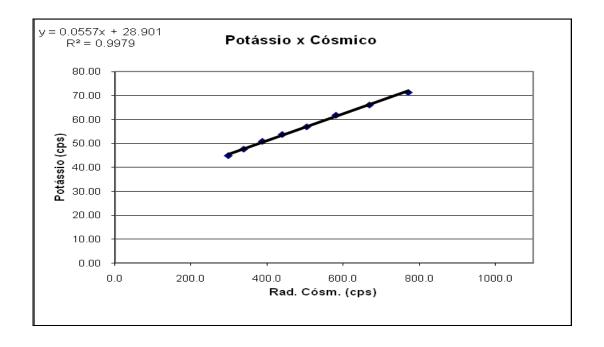
> FORTALEZA - CE 22 DE FEVEREIRO DE 2009

RESULTADO DO VÔO CÓSMICO DA AERONAVE PIPER NAVAJO

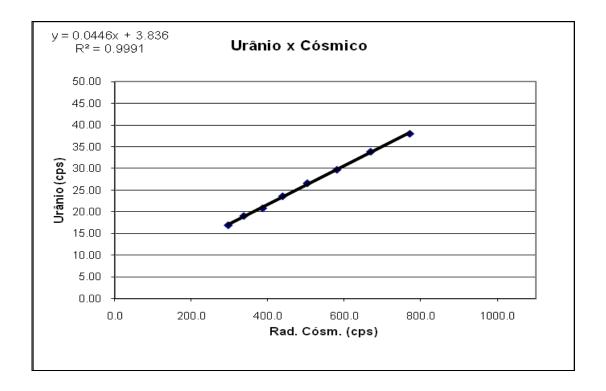
PA31-350 - PR-PEC

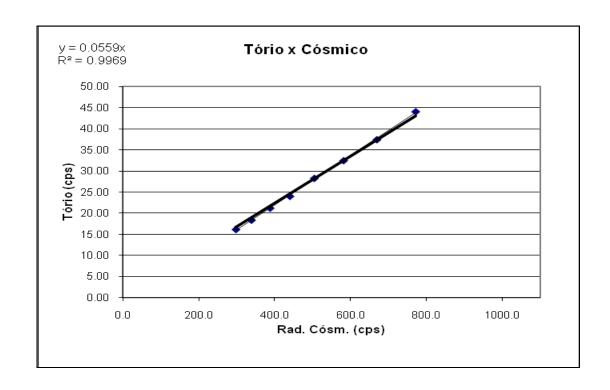
(Vol. Pacote de Cristais: 2.560 pol³)

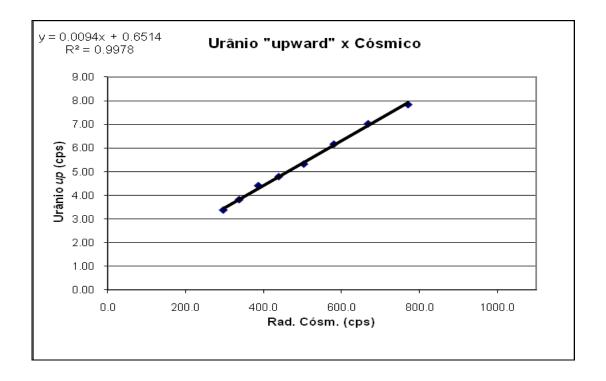

Realizado no litoral do município de Fortaleza-CE em 22 de Fevereiro de 2009


Altitude (m)	Cósmico (cps)	U (cps)	K (cps)	Th (cps)	Uup (cps)	CT (cps)
1740,86*	297,77	16,93	44,87	16,13	3,38	429,53
2070,35*	338,39	19,07	47,60	18,35	3,82	473,34
2394,07*	387,44	20,83	50,88	21,18	4,41	524,91
2714,29*	439,70	23,60	53,76	23,99	4,79	582,38
3031,99*	503,97	26,60	56,98	28,26	5,32	646,94
3363,27*	581,03	29,70	61,86	32,45	6,16	724,05
3684,85*	668,91	33,85	66,14	37,42	7,02	811,51
4021,29*	770,97	37,98	71,40	44,05	7,83	912,63

^{*} Altitudes utilizadas


RESULTADO				
CANAL	Background Aeronave	Espalhamento da Radiação Cósmica		
CT	129,90	1,0195		
K	28,90	0,0557		
U	3,84	0,0446		
Th	0	0,0559		
Uup	0,65	0,0094		





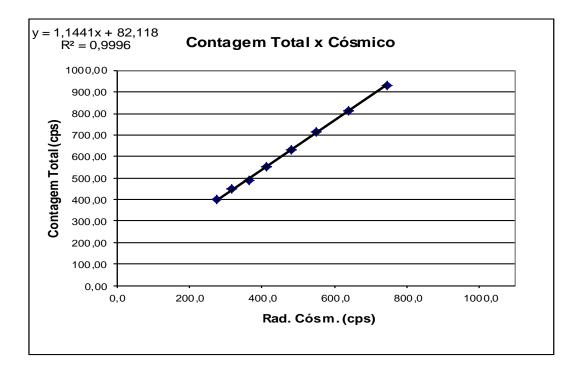
PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

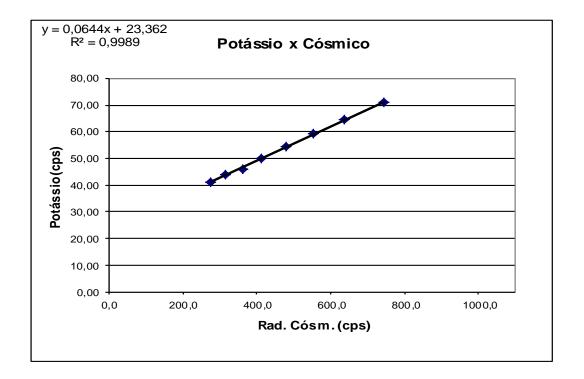
DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

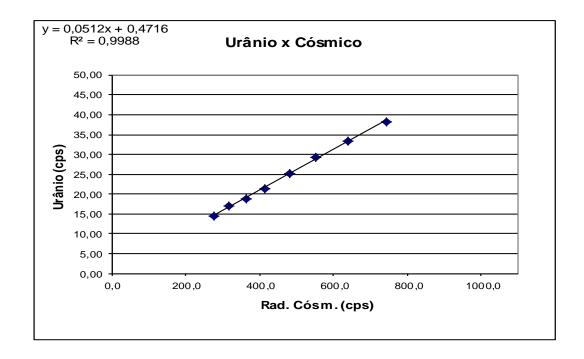
AERONAVE PIPER NAVAJO PA31-350 PR-PEC

> GUARAPARI - ES 20 DE MARÇO DE 2010

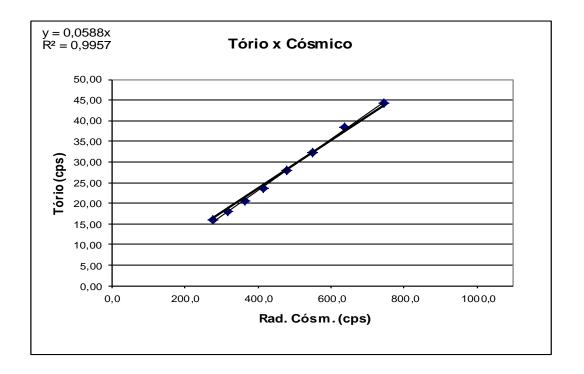

RESULTADO DO VÔO CÓSMICO DA AERONAVE PIPER NAVAJO CHIEFTAIN PA31-350 - PR-PEC

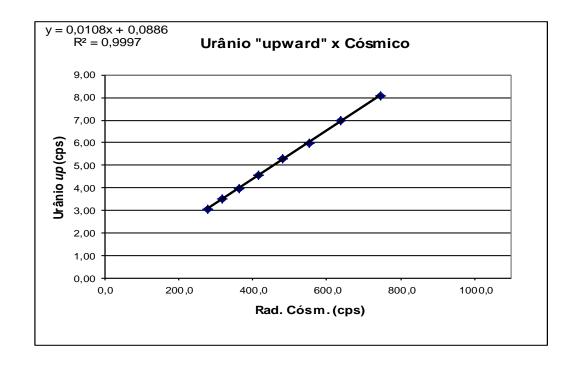
(Vol. Pacote de Cristais: 2.560 pol³)


Realizado no litoral do município de Guarapari-ES em 20 de Março de 2010


Altitude (m)	Cósmico (cps)	U (cps)	K (cps)	Th (cps)	Uup (cps)	CT (cps)
1601,10	276,43	14,53	41,22	15,92	3,05	399,48
1937,00	316,37	16,92	44,07	18,10	3,52	449,98
2260,90	363,10	18,85	46,13	20,62	3,96	491,30
2583,50	413,91	21,40	49,87	23,57	4,55	551,85
2933,60	480,44	25,11	54,38	27,86	5,30	630,97
3239,30	551,38	29,26	59,36	32,20	5,99	716,55
3556,00	637,59	33,22	64,54	38,50	6,99	813,00
3891,40	744,56	38,32	71,06	44,40	8,08	932,96

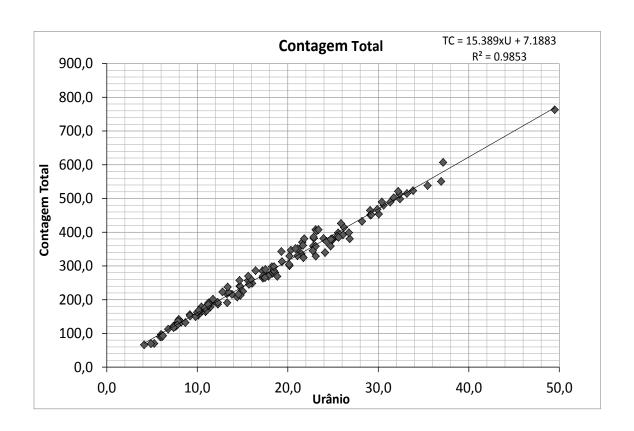
RESULTADO		
CANAL	Background	Es pal hamento da
	Aeronave	Radiação Cósmica
CT	82,12	1,1441
K	23,36	0,0644
U	0,4716	0,0512
Th	0	0,0588
Uup	0,09	0,0108

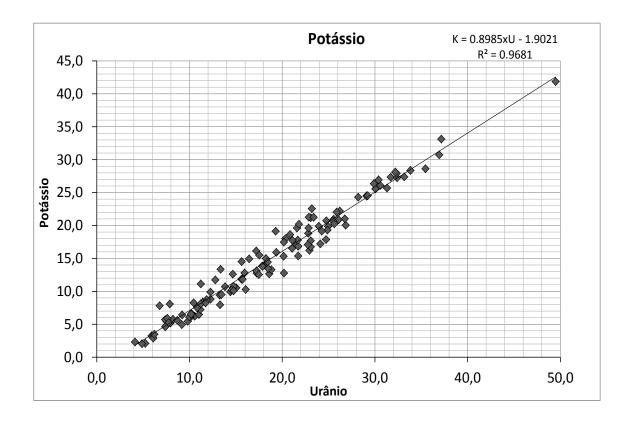


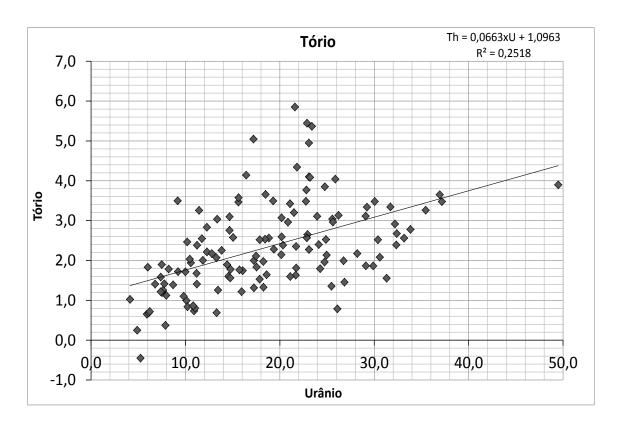


ANEXO I-d - DETERMINAÇÃO DAS CONSTANTES DE CALIBRAÇÃO DO RADÔNIO

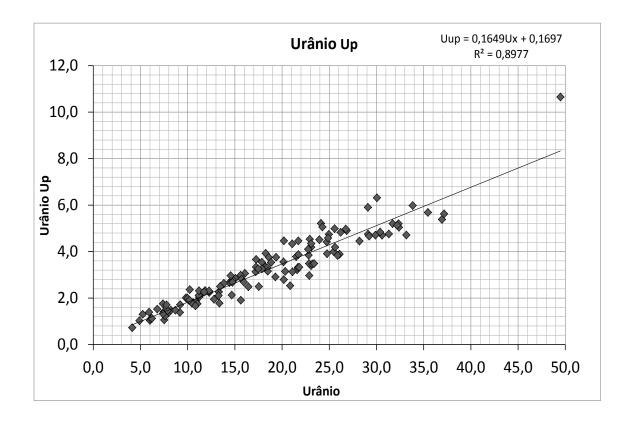
	Aeronav	e PR-PRS	- Médias	por vôo	(cps)	
Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
606	497,63	44,15	24,40	12,39	4,77	203,49
000	-	-	-	-	-	-
600	374,22	38,15	16,22	11,11	3,78	201,10
608	478,34	44,23	22,25	14,62	4,63	197,61
600	459,58	40,99	20,14	15,04	3,86	200,75
609	524,88	46,37	25,85	13,93	5,29	197,45
610	400,86	39,14	16,98	13,39	3,52	201,06
010	506,69	45,69	25,16	13,18	5,10	196,29
611	393,50	39,28	16,87	12,19	3,87	200,65
011	541,53	46,42	25,52	14,51	5,16	198,48
612	455,48	42,46	20,18	13,27	4,19	200,90
012	638,88	53,13	32,42	14,70	6,25	199,98
613	469,87	42,19	21,48	13,42	4,27	199,66
013	655,79	52,09	33,75	14,02	6,98	197,71
614	371,95	38,45	15,18	12,67	3,22	202,58
014	488,34	44,76	23,16	13,66	4,70	199,07
615	494,14	44,54	22,60	13,31	4,76	196,64
013	633,11	52,81	34,07	13,84	6,67	201,13
616	388,54	38,62	16,81	11,93	3,54	195,61
010	572,40	49,78	28,82	12,39	6,32	192,41
617	434,74	40,65	18,43	12,09	3,74	190,72
017	579,06	48,40	29,32	12,90	6,18	195,78
618	420,88	40,56	18,24	13,19	3,85	196,41
010	515,93	46,54	24,63	13,60	5,08	197,36
619	422,76	41,39	18,40	12,64	3,52	199,08
019	-	-	-	-	-	-
620	452,15	41,80	20,82	12,23	4,33	195,47
020	563,49	48,57	28,02	13,31	6,10	196,72
623	417,89	41,32	17,99	12,71	4,16	193,53
023	562,70	48,79	29,34	13,57	5,92	191,46
624	448,79	41,21	20,55	12,38	4,44	196,15
024	633,27	52,70	34,62	13,40	7,60	191,33
625	398,92	42,89	16,94	12,01	3,84	184,39
023	647,86	54,04	33,10	14,52	6,19	187,01
626	482,20	46,51	21,64	13,28	4,41	189,53
020	578,51	51,59	27,67	16,01	5,51	190,68
627	431,68	41,52	18,95	13,05	3,91	195,95
021	625,84	52,14	31,68	14,55	6,74	193,48
628	453,94	42,77	21,22	11,52	4,17	187,60
020	569,82	49,61	28,58	12,79	5,97	195,83


Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
629	415,93	41,50	18,20	12,35	3,63	192,99
029	506,73	46,25	25,26	12,76	5,16	191,00
630	543,54	45,85	26,64	12,83	5,46	192,82
030	751,81	61,29	40,76	14,72	8,74	195,49
631	509,42	44,81	23,70	12,98	4,48	189,76
031	620,53	50,95	32,30	13,44	6,86	192,86
634	548,16	47,23	26,02	14,36	5,35	189,47
034	572,43	47,06	29,69	12,42	6,65	170,91
635	464,45	42,12	21,66	11,96	4,16	194,07
033	651,60	53,14	33,56	15,07	6,72	190,81
636	594,13	50,62	28,87	13,12	5,75	193,85
030	706,66	57,62	36,66	14,07	7,20	190,22
637	472,07	43,74	20,95	13,03	4,16	191,24
037	598,63	50,82	30,66	13,15	5,94	191,41
638	474,83	42,72	21,68	12,68	4,50	191,37
036	637,01	52,47	33,18	14,39	6,47	189,67
639	435,35	43,86	18,62	11,66	3,89	196,34
039	584,81	50,16	29,13	13,76	5,73	195,26
640	367,80	37,78	15,59	11,49	3,45	195,49
040	514,99	45,98	25,30	12,89	5,40	196,31
641	430,93	41,36	19,42	12,66	3,91	196,04
041	-	-	-	-	-	-
644	522,13	45,34	24,23	12,59	4,94	197,14
044	567,35	48,84	27,94	12,54	5,76	195,26
645	465,50	42,42	20,99	12,15	4,80	196,76
043	683,21	56,03	37,76	12,94	7,37	199,74
646	392,30	39,27	16,97	12,02	3,56	196,57
040	566,43	49,44	28,51	13,69	5,67	194,29
647	464,44	42,01	20,85	13,14	4,45	198,70
047	696,00	56,71	37,42	13,19	7,39	194,72
648	541,39	46,02	25,63	13,01	5,14	199,11
046	624,17	52,66	32,51	13,14	6,31	197,04
650	420,19	40,86	18,37	12,54	4,11	193,50
030	560,39	48,11	28,05	13,19	5,66	192,69
65 1	-	-	-	-	-	-
651	655,55	53,54	35,39	13,14	6,83	194,45
652	476,43	43,39	21,65	12,25	4,12	198,03
032	675,20	55,38	34,46	14,12	6,90	191,54
655	411,77	40,16	17,93	12,27	3,72	192,25
033	488,88	45,55	22,91	14,00	4,72	194,19
656	541,37	47,45	26,34	12,9	5,22	193,68
656	612,01	51,71	30,12	13,58	6,19	196,5

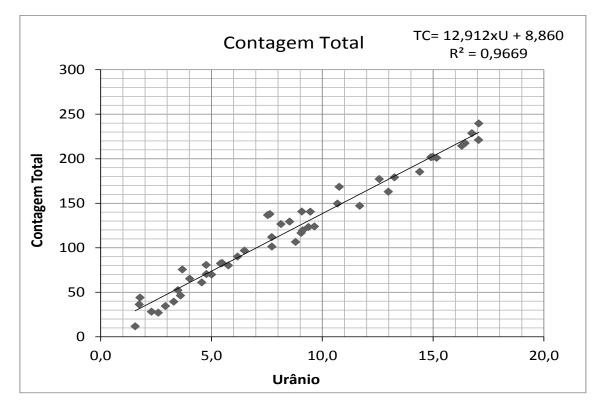

Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
657	557,88	48,51	26,64	12,44	5,11	195,18
037	677,26	55,67	35,73	13,46	7,18	196,95
658	481,77	43,74	21,84	12,56	4,72	193,97
036	694,92	56,62	36,21	14,21	7,40	194,28
659	460,11	41,91	20,60	13,37	4,28	189,66
039	670,52	54,61	35,23	13,35	6,94	188,23
660	494,46	43,70	22,21	13,52	4,64	190,82
000	666,44	54,62	34,77	12,79	7,44	191,23
661	589,20	48,82	28,89	14,55	5,52	189,42
001	757,49	59,94	39,56	14,07	8,28	190,57
664	541,56	48,58	24,43	14,51	4,56	214,54
004	-	-	-	-	-	-
666 - 667	607,25	52,28	29,14	14,13	5,10	213,82
000 - 007	689,89	57,15	36,06	15,78	6,45	207,50
668	656,89	55,73	30,73	15,59	5,48	210,36
008	817,01	63,98	43,18	15,48	7,78	211,10
669	718,36	57,60	34,36	16,87	5,94	207,34
009	860,77	67,13	48,21	15,55	7,92	206,94
670	573,52	49,33	26,21	14,97	4,72	212,46
070	749,13	61,06	39,77	14,42	7,05	213,01
671	695,76	57,86	34,31	17,54	5,54	210,35
0/1	708,39	57,59	37,63	13,00	6,48	212,44
672	550,80	49,90	24,75	15,08	4,34	209,49
072	708,14	57,67	37,20	13,80	6,63	216,44
673	684,79	56,25	33,05	17,97	5,79	210,79
073	704,22	57,15	37,30	15,35	6,81	215,44
674	602,17	51,64	27,97	16,35	5,08	212,35
0/4	766,26	61,12	40,61	14,03	7,33	211,57
676	690,25	55,22	33,81	14,54	6,03	224,50
070	813,34	62,84	43,22	14,20	7,42	219,95
677	675,23	54,89	32,99	14,22	5,79	219,54
077	818,45	64,17	44,09	15,08	7,67	215,75
678	705,92	56,55	34,57	14,99	6,11	216,06
076	797,77	62,89	42,20	14,38	7,31	213,89
679	585,41	51,19	27,13	15,75	4,49	211,71
079	840,61	65,14	45,42	15,05	8,58	213,42
680	745,96	58,96	37,59	16,46	6,46	215,99
000	831,09	64,74	43,97	14,71	7,81	214,29
681	1080,46	78,63	61,08	16,17	13,25	213,45
001	788,67	63,31	41,63	14,31	7,34	216,48
682	720,70	59,32	34,77	16,34	6,06	213,13
002	804,37	63,58	41,87	14,66	7,42	211,15

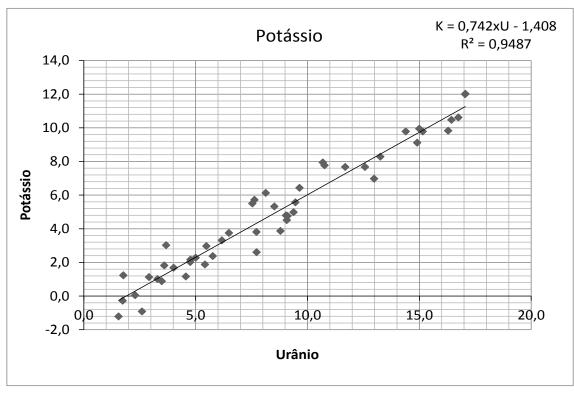


Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
683	694,84	56,79	33,25	16,44	5,90	210,38
003	926,48	70,01	48,85	15,86	8,24	215,37
684	667,83	54,98	32,09	14,85	5,78	216,81
004	856,29	65,44	47,07	15,57	8,29	214,08
685	723,28	57,94	34,90	17,55	6,07	211,90
003	838,32	64,51	45,04	15,17	7,37	219,32
686	646,18	54,23	31,75	15,32	5,39	213,04
080	771,81	61,46	40,93	15,75	7,29	215,86
687	667,24	55,30	32,36	15,14	5,12	211,80
087	842,12	65,08	43,94	15,37	7,76	216,59

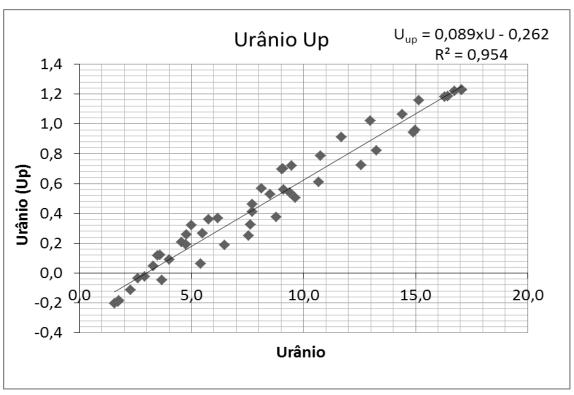


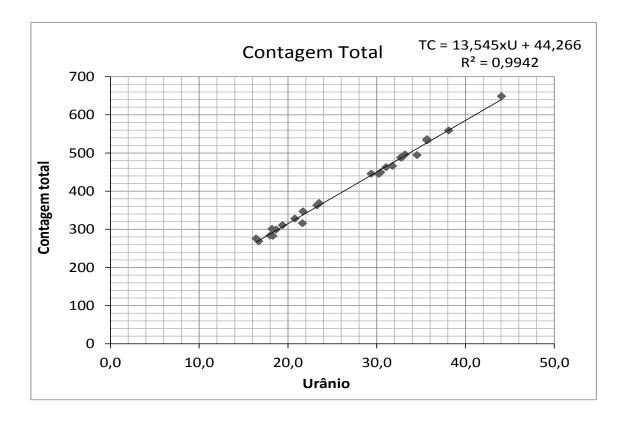
	Aerona	ve PT-DYK	- Média	s por vô	o (cps)	
Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
201	410,51	41,17	17,76	10,09	2,59	250,87
301	483,17	46,05	21,65	11,42	3,05	236,36
202	402,89	41,17	16,75	10,31	2,37	231,49
302	465,95	44,76	21,21	11,10	2,80	229,57
202	358,03	38,66	14,63	9,93	2,15	245,74
303	445,91	42,40	20,73	10,27	2,75	242,90
304	367,51	38,99	15,62	9,62	2,61	238,41
304	496,66	46,33	24,45	10,92	3,29	246,93
205	425,60	42,68	18,42	9,98	2,59	239,94
305	455,75	45,01	22,10	9,81	2,88	243,02
206	373,51	38,96	15,68	10,03	2,32	245,95
306	-	-	-	-	-	-
200	422,25	42,55	18,69	9,61	2,60	222,37
308	535,74	48,18	23,11	11,34	3,34	219,76
200	465,49	43,43	21,30	11,20	2,87	210,13
309	575,34	51,76	30,58	11,05	3,67	209,06
210	463,21	44,66	19,88	12,18	2,50	211,18
310	531,48	49,06	27,40	10,83	3,17	217,68
211	496,85	44,32	22,05	13,36	2,78	208,00
311	606,60	53,94	32,60	12,95	3,74	219,70
212	368,77	39,66	15,14	9,66	2,19	236,17
312	510,67	48,71	26,10	9,95	3,60	240,33
212	383,86	41,30	16,33	10,24	2,40	231,35
313	555,54	49,98	29,19	10,21	3,47	232,23
214	375,03	40,40	15,95	9,73	2,31	228,06
314	528,40	49,74	26,52	10,90	3,18	223,88
215	367,61	40,41	15,47	10,03	2,22	223,93
315	572,91	51,89	31,25	10,88	3,28	232,78
216	367,64	40,09	13,95	11,51	1,98	208,08
316	458,36	45,78	22,25	10,01	2,76	226,18
217	414,90	41,73	18,38	10,18	2,62	226,72
317	438,97	43,12	21,32	9,36	2,61	222,85
318	424,06	42,78	18,81	10,46	2,38	214,24
318	460,37	44,55	22,02	9,95	3,03	241,54
210	391,09	40,71	16,08	10,33	2,10	234,54
319	425,95	41,63	18,38	9,95	2,39	241,21
220	400,50	41,45	17,46	9,97	2,54	219,74
320	508,57	46,60	26,10	10,00	3,59	249,05
221	460,16	45,43	20,71	11,16	2,81	224,63
321	468,44	44,81	22,41	9,91	2,88	244,02

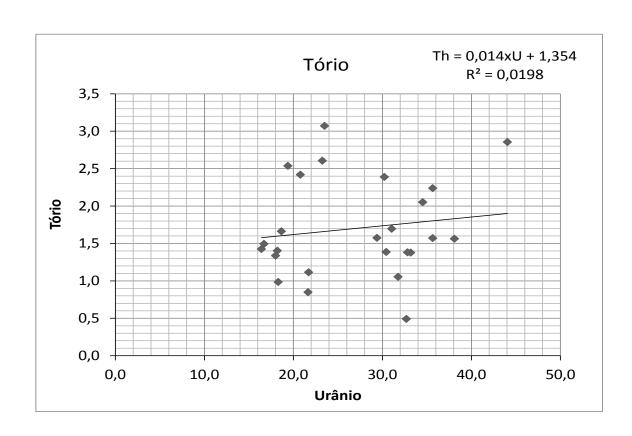


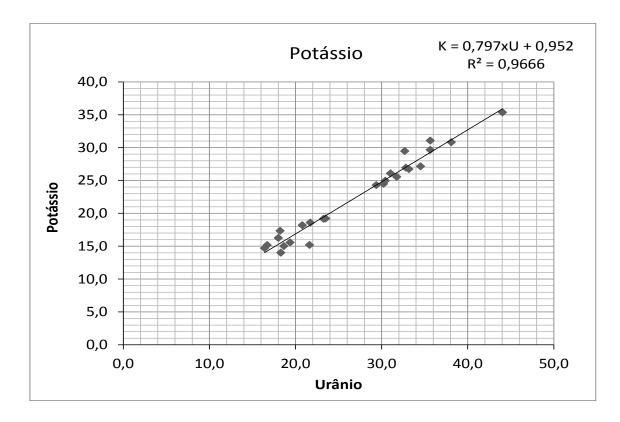

Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
222	408,58	41,67	17,53	9,84	2,54	232,27
322	474,63	45,02	22,53	9,55	2,99	260,20
222	404,64	40,89	16,95	10,59	2,36	208,70
323	509,56	47,45	25,70	10,69	3,04	219,51
22.4	455,74	44,16	19,53	12,52	2,37	200,65
324	612,39	53,73	33,18	13,96	3,42	217,45
225	369,01	38,99	14,28	10,55	2,05	223,25
325	457,25	44,49	20,82	12,32	2,43	212,21
226/227	378,82	39,87	15,78	10,98	2,31	212,99
326/327	507,62	46,84	25,02	13,50	2,94	219,64
220/220	499,47	46,96	23,24	10,60	3,01	220,46
328/329	566,98	51,04	29,39	11,66	3,42	214,46
220	486,39	46,46	20,81	13,01	2,84	213,13
330	620,85	52,76	33,32	13,07	4,26	218,87
221/222	328,75	37,45	25,00	9,88	2,03	226,82
331/332	483,74	47,27	23,28	9,97	2,86	225,62
222	419,49	42,55	25,33	10,05	2,66	225,28
333	557,71	51,43	29,74	11,03	3,50	229,64
334	431,78	43,51	28,73	11,59	2,50	222,21
	629,20	55,10	34,99	11,40	4,11	227,41
335	470,08	45,36	27,29	11,42	2,98	223,79
	609,14	52,57	33,87	11,19	4,24	222,26
226 227	517,87	49,04	26,93	9,84	3,30	223,07
336-337	511,14	47,20	25,55	10,88	3,32	223,41
	394,24	41,94	26,85	10,79	2,40	218,30
338	540,20	49,88	28,80	10,49	3,72	226,72
	424,30	47,14	27,53	10,60	2,61	218,65
339-340	483,03	49,19	29,59	10,51	3,16	221,15
	407,83	42,30	27,24	10,33	2,53	220,21
341	641,87	55,63	37,33	10,84	4,51	224,98
	404,36	54,02	33,09	12,77	2,50	224,11
342	624,14	41,96	27,51	10,44	4,01	217,60
	410,05	42,27	28,29	10,50	2,43	220,96
343	479,66	46,93	24,22	9,50	3,15	223,01
	343,40	37,85	29,89	9,39	2,31	223,81
344	556,27	50,33	31,28	9,74	3,95	224,77
	367,08	39,36	35,38	9,84	2,03	218,50
345	531,70	48,96	27,61	11,40	3,38	219,93
	467,55	44,58	21,77	10,70	2,91	213,77
346	820,38	65,82	29,99	11,78	5,62	219,94
	495,53	47,10	26,30	9,40	2,35	213,58
347-348	493,41	46,14	25,43	9,61	3,24	219,60

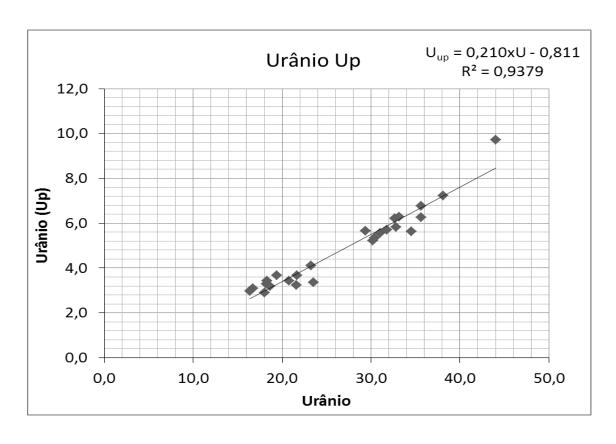
T/A	Contagem	D (()	T T A .	m/ ·	Urânio	G()
Vôo	Total	Potássio	Urânio	Tório	Upward	Cósmico
349-350	405,66	54,40	22,91	9,23	3,62	215,46
347-330	530,07	48,18	27,27	11,00	3,14	216,03
351	415,61	42,36	23,36	11,40	2,66	205,79
331	519,40	46,90	27,81	9,93	3,54	214,67
352	439,06	42,82	20,03	9,54	2,65	213,78
332	682,80	57,18	27,18	10,92	4,45	204,32
353	493,92	45,22	23,24	10,56	3,18	201,17
333	719,08	59,45	31,55	10,81	4,85	210,24
354	405,21	41,80	27,95	9,29	2,58	218,20
334	610,42	53,90	32,20	11,70	3,68	202,90
255 256	412,60	42,05	28,49	11,33	3,78	205,36
355-356	464,22	44,49	22,89	11,63	3,00	202,78
257 250	624,65	54,21	24,71	11,96	2,09	202,63
357-358	528,28	49,53	26,20	11,06	3,26	201,51
250	478,40	45,17	32,62	10,69	3,21	199,11
359	709,00	59,03	39,92	11,85	4,90	201,30
360	404,64	42,27	27,13	12,13	2,18	199,90
300	540,50	51,65	29,45	10,87	3,34	196,60
361-362	598,48	52,60	31,90	11,43	2,82	204,63
301-302	557,31	50,00	27,53	11,40	3,43	202,45
363	409,80	40,86	27,78	10,34	2,42	201,41
303	549,93	49,37	28,83	11,61	3,36	204,26
364	492,30	49,66	26,49	9,82	2,43	205,87
304	682,19	57,23	31,63	11,47	4,03	206,45
265	418,15	42,08	28,38	10,45	2,54	200,32
365	609,57	53,18	33,56	10,82	4,31	206,28
366	391,44	41,53	15,55	12,89	2,05	195,23
366	535,54	48,57	28,37	11,23	3,32	204,02
267 260	420,10	42,00	18,18	10,91	2,66	199,16
367-368	657,28	55,75	37,96	11,87	4,39	202,20








	Aeı	onave PR-P	PEC - Méd	lias por v	vôo (cps)	
Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
902	980,05	72,74	55,67	15,66	12,16	217,78
902	775,89	61,84	41,83	15,17	7,65	217,37
903	666,99	53,67	34,14	14,66	5,87	234,90
903	867,10	67,20	47,39	15,18	8,73	220,09
004	641,16	52,89	30,96	15,29	6,10	216,90
904	875,54	68,91	47,64	14,79	9,28	224,81
905	638,21	52,76	31,00	15,03	6,09	238,86
903	809,92	64,37	43,38	15,32	8,14	231,69
006	698,59	56,53	35,07	15,81	5,79	216,65
906	809,31	65,29	43,23	15,03	7,97	213,91
907	696,33	56,68	34,99	15,53	6,58	219,81
907	823,01	67,05	44,48	13,48	8,68	220,91
908	603,17	52,74	28,47	14,46	5,57	220,52
908	800,53	63,13	43,54	14,03	8,18	220,69
909	635,07	54,89	29,96	14,36	5,75	220,37
909	784,70	62,58	42,24	14,40	7,81	221,33
910	614,74	52,52	28,36	14,61	5,48	224,23
910	829,18	64,20	44,88	14,27	8,74	219,25
911	615,51	53,68	29,66	14,18	5,35	218,41
911	827,15	64,60	46,21	14,92	8,09	218,86
012	679,70	56,07	33,41	14,01	6,14	219,30
912	821,19	64,42	44,52	14,28	8,29	219,37
915	632,27	52,49	30,35	14,55	5,64	219,18
913	779,47	61,83	41,12	14,51	8,11	220,00
016	660,23	55,62	32,44	15,26	5,87	218,38
916	888,11	68,07	49,62	14,25	9,65	215,76



ANEXO I-e - CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES

AERONAVE PIPER NAVAJO PA31-350 PR-PRS

> RIO DE JANEIRO - RJ 23 DE MAIO DE 2009

CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS POTÁSSIO, URÂNIO E TÓRIO

SUMÁRIO

- 1 Considerações Gerais
- 2 Levantamento Terrestre
- 3 Levantamento Aéreo
- 4 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)
- 5 Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

- Figura 1 Gamaespectrômetro Portátil GR-320
- Figura 2 Coleta de Dados Terrestres na Pista de Calibração Dinâmica
- Figura 3 Calibração Dinâmica Perfil Comparativo Contagem Total
- Figura 4 Calibração Dinâmica Perfil Comparativo Potássio
- Figura 5 Calibração Dinâmica Perfil Comparativo Urânio
- Figura 6 Calibração Dinâmica Perfil Comparativo Tório
- Quadro 1 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
- Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
- Quadro 3 Resultado Estatístico do Levantamento Aéreo sobre a Pista de Calibração
- Quadro 4 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*
- Quadro 5 Coeficientes de Sensibilidade
- Tabela 1 Listagem dos Valores das Leituras do Levantamento Terrestre
- Mapa 1 Mapa de localização das Estações Terrestres sobre a Pista de Calibração Dinâmica

1. Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para a concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μR/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um *workshop* patrocinado pela CPRM, em conjunto com o *Geological Survey of Canada*, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" ($Dynamic\ Calibration\ Range\ - DCR$), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

No dia 23 de maio de 2009 a Prospectors Aerolevantamentos e Sistemas Ltda. efetuou os testes sobre a "pista de calibração dinâmica" no distrito de Inoã, município de Maricá-RJ.

2. Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração foi utilizado um gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, 256 canais, com detector de iodeto de sódio ativado à Tálio NaI(TI), medindo 76x76mm com resolução melhor que 8,5% para fotopico de Cs-137 (662KeV), como mostra a Figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotada pelo operador em planilha apropriada.

Figura 1 – Gamaespectrômetro Portátil EXPLORANIUM GR-320.

Foram registradas 87 estações, sendo 79 sobre a pista de calibração e 8 sobre a Lagoa de Maricá, estas últimas com vistas a remover o *background* atmosférico da região. A Tabela 1 e o Mapa 1 proporcionam, respectivamente, uma visão dos valores das leituras das estações e a locação das mesmas na Pista de Calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre.

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica.

Q	uadro 1	– Resultado	Estatístico do	Levantamento	Terrestre na	Pista de	Calibração.

		CONCE	NTRAÇÃO					
ESTATÍSTICA	CT(*) (μR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
MÉDIA	13,97	2,03	2,93	31,38	3330,67	669,03	238,15	245,42
DESVIO PADRÃO	5,62	0,66	0,81	8,89	1165,69	166,12	84,43	68,91
ERRO NA MÉDIA (1)	0,63	0,07	0,09	1,00	131,15	18,69	9,50	7,75
INCERTEZA (%) (2)	0,05	0,04	0,03	0,03				

• (*) Valor obtido através da expressão:

E = 1,505K + 0,653eU + 0,287eTh

 $E = Taxa de Exposição (\mu R/h)$

- (1) Erro na média = Desvio Padrão / (Número de Estações)1/2
- (2) Incerteza = Erro na Média/Média
- cpm = contagem por minuto
- 79 estações utilizadas no cálculo estatístico

Quadro 2 – Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (background).

		CONCI	ENTRAÇÃO					
ESTATÍSTICA	CT	K	eU	eTh	CT	K	U	Th
ESTATISTICA	(µR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	-0,17	-0,10	-0,03	-0,01	-414,13*	-21,00*	-0,63*	-0,13*
DESVIO PADRÃO	0,07	0,00	0,15	0,33	10,06	2,39	2,50	2,23
ERRO NA MÉDIA	0,04	0,00	0,07	0,17	5,03	1,20	1,25	1,12
INCERTEZA (%)	0,00	0,00	0,00	0,00				

^{*} Valores considerados como zero para efeito do cálculo de remoção do background

3. Levantamento Aéreo

Foi utilizada a aeronave PR-PRS equipada com gamaespectrômetro *Radiation Solutions* RS-500, com cristais detectores de NaI com 2560 pol³ *down* e 512 pol³ *up*. Foram realizadas 9 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 200, 330, 400, 500, 600, 700 e 800 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (*attenuation coefficients*), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4. Correção Altimétrica (Coeficientes de Atenuação Atmosférica)

Esse procedimento é comentado no próximo resumo.

5. Conversão para Concentração de Elementos

A sensibilidade dos detectores da aeronave PR-PRS para as janelas de Potássio, Urânio e Tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:

S = N/C, onde:

S corresponde à sensibilidade para cada janela,

 ${f N}$ é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100m) e situada no trecho de interesse das estações utilizadas,

C e a média das concentrações para cada canal das estações terrestres de interesse.

Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100m sobre a pista de calibração, correspondente ao intervalo de 50 metros entre as estações terrestres consideradas para efeito de cálculo da média dos elementos K, U e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (Exposure rate) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

E = 1,505 K% + 0,653 eU + 0,287 eTh, onde:

E é o símbolo para *Exposure rate*, K%, eU e eTh correspondem às concentrações médias destes elementos determinados em terra na pista de calibração dinâmica.

Os dados estatísticos e os resultados de calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração.

ESTATÍSTICA *	CT (cps)	K (cps)	U (cps)	Th (cps)	
MÉDIA	3361,66	162,86	34,88	141,53	
DESVIO PADRÃO	39,56	3,10	2,61	3,01	
ERRO NA MÉDIA	22,84	1,79	1,51	1,74	
INCERTEZA (%)	0,01	0,01	0,04	0,01	

^{*} tempo morto, background, stripping e atenuação corrigidos

Quadro 4 - Resultado Estatístico do Levantamento Terrestre na Pista de Calibração, após a correção do *background*.

		CONCE	NTRAÇÃO					
ESTATÍSTICA	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
MÉDIA	13,97	2,03	2,93	31,38	3330,67	669,03	238,15	245,42
DESVIO PADRÃO	9,05	0,88	1,16	12,45	1554,67	255,44	106,22	96,95
ERRO NA MÉDIA	0,97	0,09	0,12	1,33	166,68	27,39	11,39	10,39
INCERTEZA (%)	0,07	0,05	0,04	0,04				

cpm = contagens por minuto

Quadro 5 - Coeficientes de Sensibilidade

	CT	K	U	Th
	(cps/µR/h)	(cps/%)	(cps/ppm)	(cps/ppm)
SENSIBILIDADE (S)	240,55	80,23	11,90	4,51

As Figuras 3, 4, 5 e 6 apresentam os perfis comparativos dos levantamentos aéreo e terrestre:

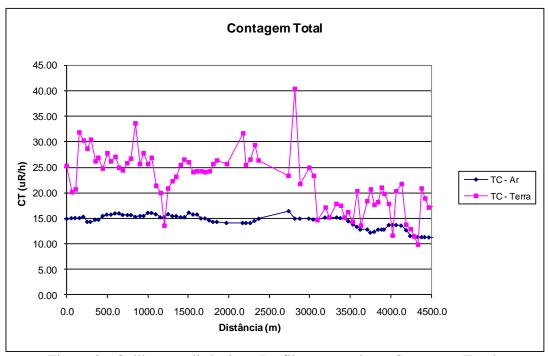


Figura 3 - Calibração dinâmica - Perfil comparativo - Contagem Total.

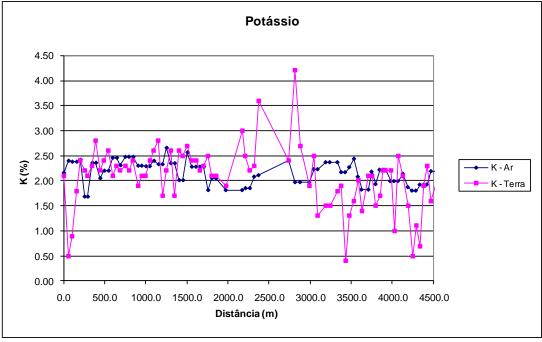


Figura 4 - Calibração dinâmica - Perfil comparativo - Potássio.

Figura 5 - Calibração dinâmica - Perfil comparativo – Urânio.

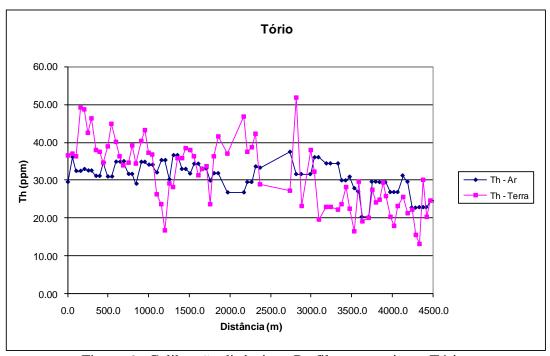
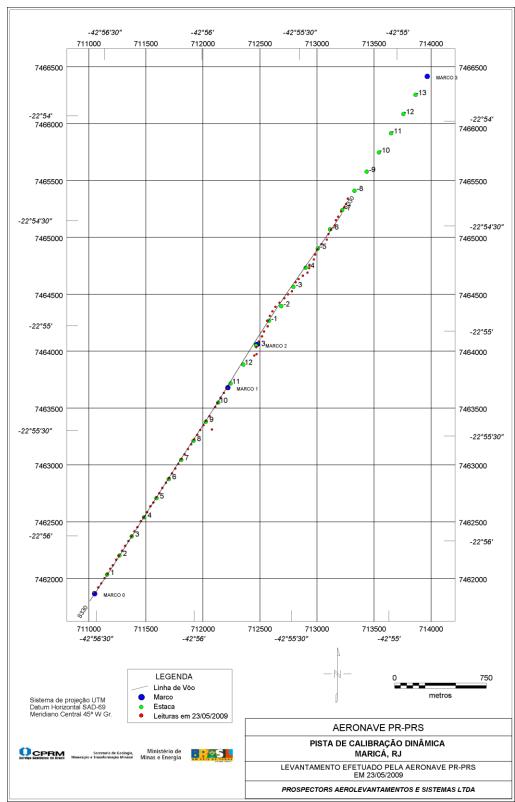


Figura 6 - Calibração dinâmica - Perfil comparativo - Tório.

TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE. PISTA DE CALIBRAÇÃO DINÂMICA - 23/05/2009. DADOS BRUTOS.

	UTM	UTM	CT.	V	-11	a.Th	СТ	V		Th
Estação	LESTE	NORTE	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
	(m)	(m)	(μινιι)	(70)	(ppiii)	(ppiii)	(cpiii)	(cpiii)	(cpiii)	(cpiii)
1	711041,76	7461878,72	25,30	2,10	3,20	36,50	3815,00	725,00	265,00	285,00
2	711082,25	7461921,23	20,20	0,50	2,80	37,00	3045,00	370,00	257,00	289,00
3	711108,41	7461957,79	20,60	0,90	2,20	36,20	3111,00	428,00	242,00	257,00
4	711137,55	7462003,53	31,80	1,80	4,80	49,30	4795,00	744,00	367,00	386,00
5	711163,76	7462043,17	30,20	2,40	2,60	48,70	4554,00	824,00	316,00	380,00
6	711187,16	7462085,92	28,70	2,20	3,50	42,40	1337,00	768,00	302,00	331,00
7	711210,38	7462116,36	30,40	2,10	2,50	46,30	4597,00	758,00	301,00	361,00
8	711239,57	7462165,18	26,10	2,30	2,80	38,00	345,00	758,00	265,00	296,00
9	711262,88	7462201,78	26,90	2,80	2,20	37,40	4067,00	847,00	249,00	291,00
10	711291,98	7462244,45	24,70	2,20	3,10	34,60	3726,00	730,00	252,00	270,00
11	711318,22	7462287,16	27,80	2,40	3,10	38,90	4198,00	794,00	275,00	305,00
12	711347,32	7462329,83	26,10	2,60	2,60	45,00	4394,00	850,00	296,00	350,00
13	711373,57	7462372,54	27,00	2,10	3,70	40,10	4082,00	753,00	294,00	313,00
14	711399,82	7462415,25	25,00	2,30	2,90	36,40	3768,00	747,00	257,00	284,00
15	711425,98	7462451,81	24,40	2,20	3,50	33,90	3678,00	725,00	257,00	264,00
16	711455,21	7462503,70	25,90	2,30	3,80	34,70	3916,00	767,00	268,00	271,00
17	711481,33	7462537,18	26,70	2,20	3,30	39,10	4039,00	756,00	287,00	305,00
18	711510,47	7462582,93	33,60	2,40	1,50	34,40	3559,00	732,00	217,00	268,00
19	711539,70	7462634,83	25,70	1,90	2,30	40,30	3880,00	673,00	265,00	314,00
20	711565,82	7462668,31	27,80	2,10	4,60	43,20	4194,00	773,00	829,00	338,00
21	711592,11	7462714,09	25,60	2,10	3,70	37,30	3871,00	726,00	279,00	292,00
22	711618,28	7462750,65	26,90	2,40	3,60	36,70	4058,00	798,00	274,00	286,00
23	711644,57	7462796,44	21,40	2,60	3,00	26,40	3231,00	767,00	207,00	205,00
24	711676,56	7462842,14	20,00	2,80	1,20	23,70	3025,00	752,00	154,00	184,00
25	711702,77	7462881,77	13,60	1,70	1,90	16,80	2049,00	496,00	132,00	130,00
26	711729,02	7462924,48	20,90	2,20	2,60	29,20	3162,00	692,00	217,00	233,00
27	711758,12	7462967,15	22,30	2,60	2,70	28,20	3362,00	769,00	210,00	219,00
28	711784,33	7463006,79	23,10	1,70	2,40	35,80	3494,00	715,00	243,00	279,00
29	711813,47	7463052,53	25,40	2,60	1,70	35,90	3834,00	750,00	229,00	279,00
30	711839,68	7463092,16	26,60	2,50	2,80	38,50	4018,00	800,00	266,00	300,00
31	711868,82	7463137,91	26,00	2,70	2,30	38,10	3922,00	838,00	255,00	297,00
32	711897,92	7463180,58	24,00	2,40	2,10	36,40	3626,00	747,00	240,00	284,00
33			24,20	2,40	3,50	31,20	3660,00	798,00	243,00	243,00
34		7463262,92	24,20	2,20	2,90	33,00	3653,00	705,00	239,00	257,00
35		7463305,63	24,00	2,30	2,00	33,80	3620,00	710,00	229,00	263,00
36		7463348,30	24,30	2,50	3,80	23,70	3670,00	783,00	257,00	255,00
37	712029,10	7463387,97	25,70	2,10	3,80	36,20	3885,00	736,00	275,00	283,00
38		7463427,56	26,30	2,10	2,70	41,50	3970,00	731,00	250,00	324,00
39		7463310,34	25,60	1,90	3,90	37,10	3861,00	702,00	283,00	290,00
40		7463506,87	31,60	3,00	1,70	46,80	9767,00	938,00	288,00	364,00
41		7463543,50	25,40	2,50	2,20	37,50	3893,00	781,00	248,00	292,00
42		7463589,29	26,50	2,20	3,00	38,80	4006,00	744,00	272,00	303,00
43			29,40	2,30	2,80	42,30	4440,00	781,00	286,00	330,00
44	712215,54	7463674,58	26,40	3,60	2,50	28,90	3989,00	982,00	210,00	224,00
45	712450,44	7463960,51	23,30	2,40	4,50	27,20	2417,00	767,00	243,00	212,00
46	712468,58		40,40	4,20	4,20	51,80	6099,00	1270,00	369,00	403,00
47		7463972,54	21,80	2,70	3,50	23,10	3297,00	782,00	200,00	180,00
48	712470,30		25,00	1,90	4,20	37,90	3780,00	696,00	293,00	297,00
49	712518,37		23,30	2,50	2,20	32,20	3525,00	757,00	221,00	251,00
50	712536,07		14,70	1,30	3,10	19,70	2221,00	454,00	172,00	154,00
51		7464266,62	17,10	1,50	3,60	22,90	2578,00	530,00	200,00	179,00
		, TUTZUU,UZ	17,10	1,50	J 3,00	_ ∠∠,∃U	2010,00	JJU,UU	UU.UU	1 1/3.00



Estação	UTM LESTE	UTM NORTE	СТ	К	eU	eTh	СТ	К	U	Th
Estação	(m)	(m)	(µR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
53	712586,47	7464309,37	17,90	1,80	3,00	22,20	2700,00	561,00	184,00	173,00
54	712609,83	7464349,04	17,40	1,90	2,40	23,60	2625,00	583,00	178,00	184,00
55	712636,04	7464388,68	15,20	0,40	3,40	28,20	2288,00	305,00	224,00	221,00
56	712670,76	7464425,11	16,30	1,30	3,70	22,50	2461,00	487,00	199,00	176,00
57	712714,07	7464464,50	14,30	1,60	2,20	16,60	2158,00	475,00	137,00	129,00
58	712745,90	7464497,90	20,40	2,00	1,90	29,70	3079,00	623,00	200,00	231,00
59	712780,49	7464525,10	13,50	1,40	2,60	19,10	2033,00	453,00	158,00	149,00
60	712812,96	7464604,65	18,40	2,10	3,80	20,10	2774,00	645,00	189,00	157,00
61	712839,00	7464631,97	20,70	2,10	2,90	27,60	3122,00	662,00	210,00	215,00
62	712876,48	7464662,22	17,60	1,50	3,10	24,10	2658,00	521,00	195,00	188,00
63	712916,77	7464689,34	18,20	1,70	2,70	24,90	2753,00	561,00	192,00	194,00
64	712931,59	7464729,13	21,10	2,20	1,70	29,30	3180,00	674,00	194,00	228,00
65	712934,83	7464756,78	19,80	2,20	2,20	25,80	2992,00	666,00	185,00	201,00
66	712972,57	7464805,48	17,90	2,20	2,50	20,40	2705,00	635,00	169,00	159,00
67	712984,58	7464848,39	11,70	1,00	3,10	18,00	1771,00	367,00	163,00	141,00
68	713002,28	7464891,21	20,30	2,50	3,10	23,30	3058,00	727,00	192,00	181,00
69	713040,03	7464939,91	21,80	2,10	3,90	25,60	3289,00	668,00	221,00	200,00
70	713086,19	7464979,26	13,80	1,50	1,30	21,20	2084,00	494,00	141,00	165,00
71	713101,14	7465028,28	12,90	0,50	3,20	22,20	1944,00	297,00	187,00	179,00
72	713124,50	7465067,95	11,50	1,10	3,10	15,50	1730,00	388,00	149,00	121,00
73	713156,37	7465104,43	9,90	0,70	3,60	13,10	1493,00	286,00	147,00	103,00
74	713165,57	7465150,45	20,90	1,90	2,80	30,10	3151,00	626,00	221,00	234,00
75	713185,96	7465180,94	18,90	2,30	3,50	20,40	2852,00	672,00	184,00	159,00
76	713212,26	7465226,72	17,10	1,60	3,10	24,60	2582,00	538,00	198,00	192,00
77	713238,43	7465263,27	17,30	1,90	1,90	24,10	2607,00	569,00	181,00	187,00
78	713255,97	7465293,80	17,30	1,20	4,30	25,40	2613,00	494,00	228,00	199,00
79	713270,87	7465339,74	20,30	0,40	4,30	37,30	3059,00	376,00	291,00	293,00
80	723374,00	7461316,00	-2,70	-0,10	0,00	0,20	-413,00	-20,00	-1,00	-1,00
81	723413,00	7460673,00	-2,80	-0,10	-0,20	0,30	-427,00	-21,00	-2,00	2,00
82	723424,00	7460669,00	-2,70	-0,10	-0,20	-0,20	-408,00	-23,00	-4,00	-1,00
83	723429,00	7460805,00	-2,70	-0,10	0,10	0,10	-410,00	-20,00	2,00	1,00
84	723435,00	7460854,00	-2,70	-0,10	-0,10	-0,30	-415,00	-22,00	-4,00	-2,00
85	723434,00	7460940,00	-2,80	-0,10	-0,10	0,50	-415,00	-17,00	1,00	4,00
86	723443,00	7461186,00	-2,80	-0,10	0,10	-0,40	-428,00	-25,00	1,00	-2,00
87	723230,00	7461426,00	-2,60	-0,10	0,20	-0,30	-397,00	-20,00	2,00	-2,00

* background na Lagoa de Maricá

cpm = Contagem por minuto; ppm = Parte por milhão

Mapa 1 - Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica.

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES

AERONAVE PIPER NAVAJO PA31-310 PT-DYK

> RIO DE JANEIRO - RJ 13 DE NOVEMBRO DE 2009

<u>CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS</u> <u>POTÁSSIO, URÂNIO E TÓRIO</u>

SUMÁRIO

- 1 Considerações Gerais
- 2 Levantamento Terrestre
- 3 Levantamento Aéreo
- 4 Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

- Figura 1 Gamaespectrômetro Portátil GR-320
- Figura 2 Coleta de Dados Terrestres na Pista de Calibração Dinâmica
- Figura 3 Calibração Dinâmica Perfil Comparativo Contagem Total
- Quadro 1 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
- Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
- Quadro 3 Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração
- Quadro 4 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*
- Quadro 5 Coeficientes de Sensibilidade
- Tabela 1 Listagem dos Valores das Leituras do Levantamento Terrestre
- Mapa 1 Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica

1. Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μR/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um workshop patrocinado pela CPRM, em conjunto com o Geological Survey of Canada, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" (Dynamic Calibration Range – DCR), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para a determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

2. Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração é utilizado um gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, 256 canais, com detector de iodeto de sódio ativado a tálio NaI(TI), medindo 76x76mm com resolução melhor que 8,5% para fotopico de Cs-137 (662 keV), como mostra a Figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotadas pelo operador em planilha apropriada.

Figura 1 – Gamaespectrômetro Portátil EXPLORANIUM GR-320

Cerca de 80 estações são registradas ao longo da linha de calibração. Para efeito da remoção do *background* atmosférico da região, são feitas medidas sobre a água, utilizando para isto a Lagoa de Maricá, nas proximidades da linha de calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre.

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica.

Os resultados apresentados a seguir, referem-se a seguinte aeronave:

Aeronave	Data da Calibração
PT-DYK	13/11/2009

Quadro 1 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração.

Aeronave	ESTATÍSTICA	CT(*) (μR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cps)	K (cps)	U (cps)	Th (cps)
	Nº de Amostras:	78							
	MÉDIA	14,61	2,24	2,84	32,66	4203,6	709,8	236,0	253,9
PT-DYK	DESVIO PADRÃO	3,72	0,68	0,85	10,61	968,5	191,2	62,1	82,7
	ERRO NA MÉDIA(1)	0,42	0,08	0,10	1,20	109,6	21,6	7,0	9,4
	INCERTEZA (%) (2)	2,88%	3,44%	3,39%	3,68%	2,61%	3,05%	2,98%	3,69%

 $E = Taxa de Exposição (\mu R/h)$

- (1) Erro na média = Desvio Padrão / (Número de Estações)½
- (2) Incerteza = Erro na Média/ Média

cps = contagem por segundo

Quadro 2 - Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (background)

Aeronave	ESTATÍSTICA	CT(*) (μR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cps)	K (cps)	U (cps)	Th (cps)
	Nº de Amostras:	6							
	MÉDIA	0,76	0,20	0,23	1,10	524,9	5,3	10,4	8,3
PT-DYK	DESVIO PADRÃO	0,07	0,00	0,16	0,27	14,9	0,3	2,4	2,1
	ERRO NA MÉDIA(1)	0,03	0,00	0,07	0,11	6,08	0,12	0,98	0,86
	INCERTEZA (%) (2)	3,76%	0,00%	28,40%	10,02%	1,16%	2,31%	9,42%	10,33%

3 Levantamento Aéreo

Foram utilizados os gamaespectrômetros Exploranium, modelo GR820, de 256 canais espectrais na aeronave PT-DYK. O sistema detector voltado para baixo (*downward looking*) é constituído por três conjuntos (caixas) de cristais de iodeto de sódio dopado com Tálio (NaI[TI]), que juntos possuem 10 cristais de 4,2 L (256 pol3), totalizando 42 L (2560 pol3) de cristais voltados para baixo e o sistema detector voltado para cima (*upward looking*) é constituído por dois cristais de 4,2 L (256 pol3), totalizando 8,4 L (512 pol3). Foram realizadas 8 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 330, 400, 500, 600, 700 e 800 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (attenuation coefficients), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4 Conversão para Concentração de Elementos

A sensibilidade dos detectores das aeronaves para as janelas de potássio, urânio e tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:

S = N / C, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100 m) e situada no trecho de interesse das estações utilizadas, C é a média das concentrações para cada canal das estações terrestres de interesse.

Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100 m sobre a pista de calibração, correspondente ao intervalo de 50 m entre as estações terrestres consideradas para efeito do cálculo da média dos elementos K, U, e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (Exposure rate) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

E = 1,505 K% + 0,653 eU + 0,287 eTh, onde:

E é o símbolo para Exposure rate, K%, eU e eTh correspondem às concentrações médias destes elementos determinadas em terra na pista de calibração dinâmica, após a redução do *background* medido na lagoa de Maricá.

Os dados estatísticos e os resultados da calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração.

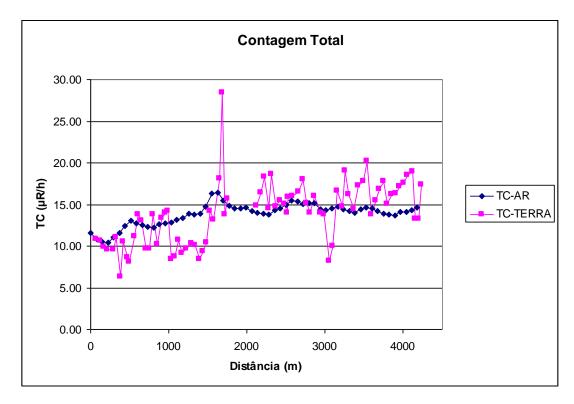
Aeronave	ESTATÍSTICA	CT (cps)	K (cps)	U (cps)	Th (cps)
	Nº de Amostras:	173			
	MÉDIA	2651,35	146,66	28,21	131,38
PT-DYK	DESVIO PADRÃO	255,10	23,38	7,11	17,68
	ERRO NA MÉDIA(1)	19,39	1,78	0,54	1,34
	INCERTEZA (%) (2)	0,73%	1,21%	1,92%	1,02%

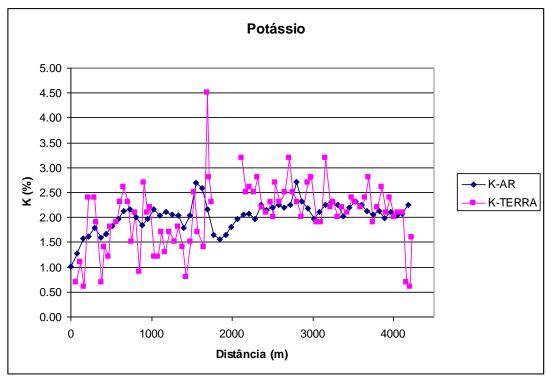
^{*} tempo morto, background, stripping e atenuação corrigidos

Quadro 4 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a

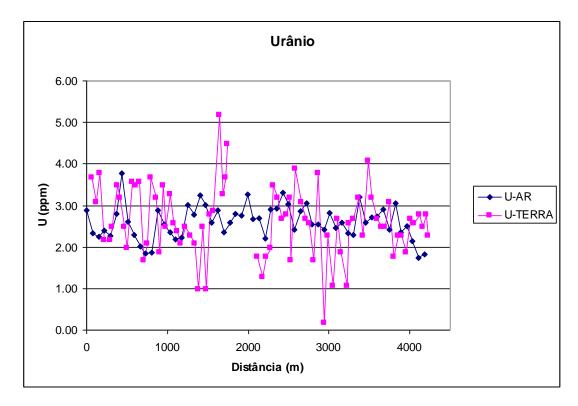
Correção do Background.

Aeronave	ESTATÍSTICA	CT(*) (μR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cps)	K (cps)	U (cps)	Th (cps)
	Nº de Amostras:	78							
	MÉDIA	13,85	2,04	2,61	31,56	3679	704,5	225,6	245,6
PT-DYK	DESVIO PADRÃO	3,65	0,67	0,69	10,34	953,6	190,9	59,7	80,6
	ERRO NA MÉDIA(1)	0,41	0,08	0,08	1,17	108,0	21,6	6,8	9,1
	INCERTEZA (%) (2)	2,9%	3,7%	2,9%	3,71	2,94	3,1%	3,0%	3,7%


cps = contagens por minuto


Quadro 5 – Coeficiente de Sensibilidade.

	SENSIBILIDADE (s)							
Aeronave	CT(*)	K	eU	eTh				
	$(cps / \mu R/h)$	(cps / %)	(cps / ppm)	(cps / ppm)				
PT-DYK	191,43	71,89	10,81	4,16				


As Figuras a seguir apresentam os perfis comparativos dos levantamentos aéreo e terrestre para cada aeronave envolvida

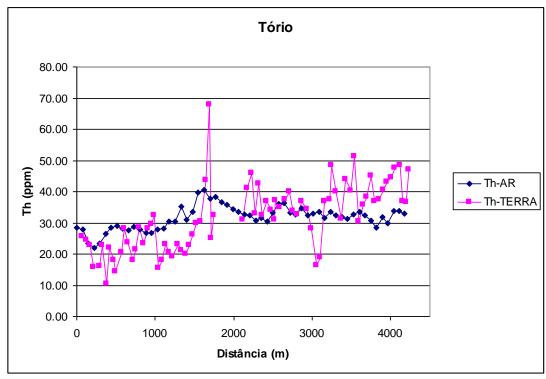
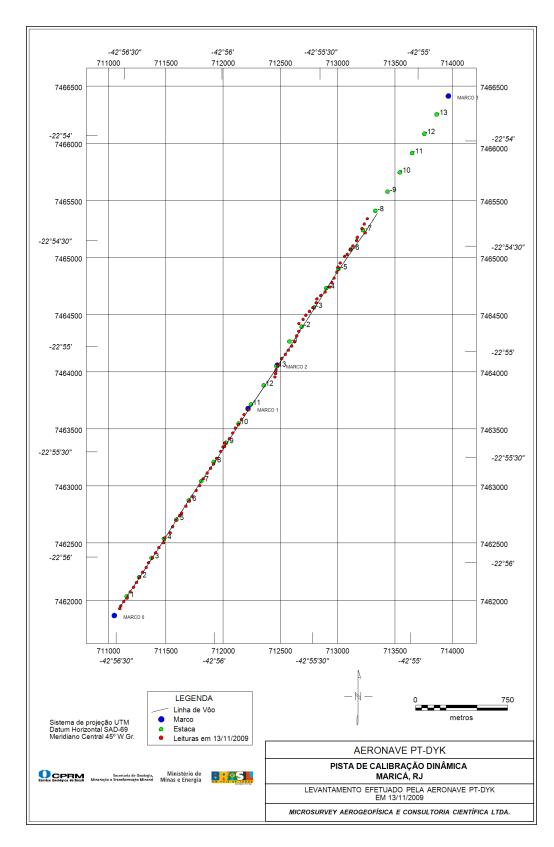


TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE PISTA DE CALIBRAÇÃO DINÂMICA – 13/11/2009 DADOS BRUTOS

DADOS BRUTOS												
Estação	UTM Leste (m)	UTM Norte (m)	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cps)	K (cps)	U (cps)	Th (cps)		
1	7465293.89	713215.16	11,59	0,90	3,90	26,80	3342	423	227	210		
2	7465248.11	713188.86	11,43	1,30	3,30	25,50	3309	476	208	199		
3	7465208.40	713168.35	10,65	0,80	4,00	23,80	3035	379	212	187		
4	7465171.08	713196.33	10,36	2,60	2,40	17,00	3190	701	143	132		
5	7465132.05	713127.36	10,39	2,60	2,40	17,10	3316	702	145	133		
6	7465104.44	713121.27	11,78	2,10	2,70	23,90	3618	644	186	186		
7	7465055.66	713089.23	7,04	0,90	3,70	11,40	2231	323	142	90		
8	7465025.18	713068.84	11,26	1,60	3,40	23,10	3308	548	197	180		
9	7464982.51	713039.74	9,38	1,40	2,70	19,20	2831	473	162	150		
10	7464964.38	713016.68	8,87	2,00	2,20	15,40	2919	572	132	123		
11	7464906.45	712978.80	11,87	2,10	3,80	21,70	3590	654	148	170		
12	7464869.81	712958.33	14,56	2,50	3,70	29,20	4316	773	236	228		
13	7464826.87	712949.17	13,84	2,80	3,80	24,90	4109	824	213	190		
14	7464774.89	712925.64	10,46	2,50	1,90	19,00	3262	873	144	147		
15	7464735.18	712905.12	10,49	1,70	2,30	22,40	3125	541	170	173		
16	7464695.43	712887.46	14,5	2,30	3,90	29,60	4386	727	242	231		
17	7464652.92	712846.95	10,94	1,10	3,40	24,60	3098	429	204	193		
18	7464622.68	712809.47	14,12	2,90	2,10	29,20	4251	819	201	226		
19	7464592.40	712774.84	14,72	2,30	3,70	30,80	4359	748	245	240		
20	7464558.64	712768.66	14,99	2,40	2,70	33,50	4221	753	239	261		
21	7464515.97	712739.56	9,13	1,40	3,50	16,50	2986	461	164	129		
22	7464482.53	712710.58	9,45	1,40	2,80	19,20	1771	473	165	150		
23	7464449.13	712678.76	11,53	1,90	2,60	24,30	3582	693	187	189		
24	7464412.54	712655.44	9,96	1,50	2,30	21,60	2994	479	165	168		
25	7464376.15	712617.87	10,45	1,90	2,70	20,30	3247	569	167	158		

Estação	UTM Leste (m)	UTM Norte (m)	CT (μR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cps)	K (cps)	U (cps)	Th (cps)
	. ,	. ,								
26	7464308.46	712616.92	11,11	1,70	2,50	24,10	3357	558	182	188
27	7464268.71	712599.25	10,91	2,00	2,30	22,30	3390	578	169	174
28	7464216.66	712581.42	9,22	1,60	1,20	21,00	2831	479	138	163
29	7464180.10	712555.25	10,16	1,00	2,70	24,00	2827	399	186	188
30	7464143.59	712526.23	11,18	1,70	1,20	27,30	3416	555	187	212
31	7464107.03	712500.07	14,92	2,70	3,00	31,00	4288	817	231	241
32	7464070.56	712468.20	13,9	1,90	3,10	31,40	3939	651	234	245
33	7464009.51	712433.13	18,82	1,60	5,40	44,90	4747	662	314	351
34	7463969.72	712418.32	29,19	4,70	3,50	69,10	7971	1465	446	537
35	7463938.99	712415.04	14,55	3,00	3,90	26,10	4303	878	224	203
36	7463908.31	712408.91	16,47	2,50	4,70	33,60	4625	816	282	262
37	7463622.30	712179.71	15,61	3,40	2,00	32,00	4834	1049	216	247
38	7463579.79	712139.21	17,15	2,70	1,50	42,20	5030	334	259	328
39	7463537.05	712115.81	19,04	2,80	2,00	47,10	5327	393	296	366
40	7463491.26	712089.51	15,26	2,70	2,20	34,00	4443	801	229	264
41	7463460.86	712063.43	19,42	3,00	3,70	43,50	5487	949	312	339
42	7463418.11	712040.03	15,45	2,40	3,40	33,50	4403	771	252	259
43	7463369.29	712010.84	16,23	2,30	2,90	37,90	4672	764	265	296
44	7463329.86	711970.39	15,85	2,50	3,00	35,30	4597	785	254	275
45	7463296.22	711955.66	14,72	2,20	3,40	32,00	4214	718	244	250
46	7463299.09	711969.95	16,63	2,90	1,90	38,40	4797	863	249	299
47	7463256.50	711935.15	16,74	2,50	4,10	35,90	4573	810	280	280
48	7463195.46	711900.09	17,33	2,70	3,30	38,70	5115	864	279	301
49	7463146.60	711873.76	18,81	3,40	2,90	41,10	5317	1020	284	320
50	7463110.04	711847.59	15,91	2,70	2,80	34,90	4620	826	248	272
51	7463067.37	711818.49	14,73	2,50	1,90	33,90	4345	764	222	264
52	7463018.63	711783.61	16,8	2,20	4,00	37,90	4432	755	289	296

Estação	UTM Leste (m)	UTM Norte (m)	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cps)	K (cps)	U (cps)	Th (cps)
53	7462957.54	711751.40	14,79	2,90	0,40	35,40	4434	818	199	274
54	7462914.87	711722.30	14,59	3,00	2,50	29,40	4373	858	201	228
55	7462863.06	711687.37	9	2,10	1,30	17,40	2910	570	123	135
56	7462820.35	711661.12	10,79	2,10	2,90	20,00	3243	617	170	156
57	7462777.68	711632.02	17,39	3,40	2,10	38,00	4958	981	250	295
58	7462716.67	711594.11	15,54	2,40	1,30	38,60	4615	747	235	300
59	7462695.38	711576.71	19,8	2,50	2,80	49,50	5527	855	325	386
60	7462652.75	711544.76	17	2,20	2,90	41,10	4802	754	283	321
61	7462597.77	711515.49	15,16	2,40	3,40	32,50	4371	753	248	353
62	7462542.68	711494.77	18,04	2,30	2,50	45,10	4487	785	295	351
63	7462500.25	711448.57	18,57	2,60	4,30	41,30	5214	865	313	322
64	7462457.34	711436.57	21,02	2,50	3,40	52,40	5909	897	352	408
65	7462414.83	711396.08	14,55	2,40	2,90	31,50	4252	759	232	245
66	7462369.08	711366.94	16,27	2,60	2,70	36,90	4684	805	256	203
67	7462326.37	711340.69	17,56	3,00	2,70	39,30	5077	919	269	305
68	7462283.78	711305.89	18,55	2,10	3,30	46,10	5263	772	318	360
69	7462240.99	711285.34	15,8	2,40	2,00	37,90	4672	770	247	295
70	7462198.36	711253.39	16,92	2,80	2,50	38,60	4836	863	261	301
71	7462152.58	711227.10	17,09	2,30	2,50	41,80	4817	781	278	326
72	7462109.87	711200.86	17,97	2,60	2,10	44,20	5125	833	283	344
73	7462067.16	711174.61	18,29	2,20	2,90	45,60	5206	788	307	356
74	7462027.57	711145.55	19,24	2,30	2,80	48,60	5363	822	321	379
75	7461972.55	711119.13	19,66	2,30	3,00	49,60	5248	818	330	387
76	7461942.19	711090.21	14,02	0,90	2,70	38,00	3969	463	260	297
77	7461905.63	711064.05	14,01	0,80	3,00	37,80	3797	434	266	296
78	7461881.14	711055.16	18,15	1,80	2,50	48,10	4437	660	374	321
*	7461386.49	723174.51	0,91	0,20	0,40	1,20	549	5,7	14	9



Estação	UTM Leste (m)	UTM Norte (m)	CT (μR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cps)	K (cps)	U (cps)	Th (cps)
*	7461388.85	723222.99	0,71	0,20	0,10	1,20	545	5,4	9	9
*	7461409.75	723266.05	0,71	0,20	0,10	1,20	525	5,1	8	9
*	7461362.12	723365.10	0,69	0,20	0,20	0,90	521	5,3	9	7
*	7461398.91	723374.19	0,83	0,20	0,50	0,70	515	4,7	14	5
*	7461353.95	723293.72	0,73	0,20	0,30	0,80	505	5,2	11	6

* Background na Lagoa de Maricá

cps= Contagem por minuto; ppm = parte por milhão.

Mapa 1 - Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica.

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 045/PR/09

CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES

AERONAVE PIPER NAVAJO PA31-350 PR-PEC

> RIO DE JANEIRO - RJ 20 DE FEVEREIRO DE 2009

CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS POTÁSSIO, URÂNIO E TÓRIO

SUMÁRIO

- 1 Considerações Gerais
- 2 Levantamento Terrestre
- 3 Levantamento Aéreo
- 4 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)
- 5 Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

- Figura 1 Gamaespectrômetro Portátil GR-320
- Figura 2 Coleta de Dados Terrestres na Pista de Calibração Dinâmica
- Figura 3 Calibração Dinâmica Perfil Comparativo Contagem Total
- Figura 4 Calibração Dinâmica Perfil Comparativo Potássio
- Figura 5 Calibração Dinâmica Perfil Comparativo Urânio
- Figura 6 Calibração Dinâmica Perfil Comparativo Tório
- Quadro 1 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
- Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
- Quadro 3 Resultado Estatístico do Levantamento Aéreo sobre a Pista de Calibração
- Quadro 4 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*
- Quadro 5 Coeficientes de Sensibilidade
- Tabela 1 Listagem dos Valores das Leituras do Levantamento Terrestre

Mapa 1 - Mapa de localização das Estações Terrestres sobre a Pista de Calibração Dinâmica

1. Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para a concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μR/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um *workshop* patrocinado pela CPRM, em conjunto com o *Geological Survey of Canada*, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" ($Dynamic\ Calibration\ Range\ -\ DCR$), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

No dia 20 de fevereiro de 2009 a Prospectors Aerolevantamentos e Sistemas Ltda. efetuou os testes sobre a "pista de calibração dinâmica" no distrito de Inoã, município de Maricá-RJ.

2. Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração foi utilizado um gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, 256 canais, com detector de iodeto de sódio ativado à Tálio NaI(TI), medindo 76x76mm com resolução melhor que 8,5% para fotopico de Cs-137 (662KeV), como mostra a Figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotada pelo operador em planilha apropriada.

Figura 1 – Gamaespectrômetro Portátil EXPLORANIUM GR-320.

Foram registradas 78 estações, sendo 74 sobre a pista de calibração e 4 sobre a Lagoa de Maricá, estas últimas com vistas a remover o *background* atmosférico da região. A Tabela 1 e o Mapa 1 proporcionam, respectivamente, uma visão dos valores das leituras das estações e a locação das mesmas na Pista de Calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre.

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica

Quadro 1 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração

		CONCE	NTRAÇÃO					
ESTATÍSTICA	CT(*) (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
MÉDIA	15,22	2,24	2,88	34,74	6898,18	1260,15	418,81	452,14
DESVIO PADRÃO	5,31	0,51	0,79	9,37	1242,49	212,93	88,47	118,21
ERRO NA MÉDIA (1)	0,62	0,06	0,09	1,09	144,44	24,75	10,28	13,74
INCERTEZA (%) (2)	0,04	0,03	0,03	0,03				

• (*) Valor obtido através da expressão:

E = 1,505K + 0,653eU + 0,287eTh

 $E = Taxa de Exposição (\mu R/h)$

- (1) Erro na média = Desvio Padrão / (Número de Estações)1/2
- (2) Incerteza = Erro na Média/Média
- cpm = contagem por minuto
- 74 estações utilizadas no cálculo estatístico

Quadro 2 – Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (background)

		CONCI	ENTRAÇÃO					
ESTATÍSTICA	CT	K	eU	eTh	CT	K	U	Th
ESTATISTICA	(µR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	0,00	-0,10	-0,05	0,63	250,00*	39,25*	17,50*	11,75*
DESVIO PADRÃO	0,08	0,00	0,21	1,19	14,90	4,50	5,32	2,75
ERRO NA MÉDIA	0,04	0,00	0,10	0,59	7,45	2,25	2,66	1,38
INCERTEZA (%)	-10,81	0,00	-2,08	0,94				

^{*} Valores considerados como zero para efeito do cálculo de remoção do background

3. Levantamento Aéreo

Foi utilizada a aeronave PR-PEC equipada com gamaespectrômetro Radiation Solutions RS-500, com cristais detectores de NaI com 2560 pol³ down e 512 pol³ up. Foram realizadas 9 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 300, 330, 400, 500, 600, 700 e 800 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (attenuation coefficients), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4. Correção Altimétrica (Coeficientes de Atenuação Atmosférica)

Esse procedimento é comentado no próximo resumo.

5. Conversão para Concentração de Elementos

A sensibilidade dos detectores da aeronave PR-PEC para as janelas de Potássio, Urânio e Tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:

S = N/C, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100m) e situada no trecho de interesse das estações utilizadas.

C e a média das concentrações para cada canal das estações terrestres de interesse.

Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100m sobre a pista de calibração, correspondente ao intervalo de 50 metros entre as estações terrestres consideradas para efeito de cálculo da média dos elementos K, U e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (Exposure rate) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

E = 1,505 K% + 0,653 eU + 0,287 eTh, onde:

E é o símbolo para Exposure rate, K%, eU e eTh correspondem às concentrações médias destes elementos determinados em terra na pista de calibração dinâmica.

Os dados estatísticos e os resultados de calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração.

ESTATÍSTICA *	CT (cps)	K (cps)	U (cps)	Th (cps)
MÉDIA	2908,32	139,91	29,28	125,97
DESVIO PADRÃO	5,93	3,88	0,64	0,58
ERRO NA MÉDIA	3,43	2,24	0,37	0,33
INCERTEZA (%)	0,00	0,02	0,01	0,00

^{*} tempo morto, background, stripping e atenuação corrigidos

Quadro 4 - Resultado Estatístico do Levantamento Terrestre na Pista de Calibração, após a correção do *background*.

		CONCE	NTRAÇÃO					
ESTATÍSTICA	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
MÉDIA	15,22	2,24	2,88	34,11	6648,18	1260,15	418,81	440,39
DESVIO PADRÃO	5,08	0,44	0,81	8,84	1186,58	194,69	83,67	111,29
ERRO NA MÉDIA	0,58	0,05	0,09	1,00	134,35	22,04	9,47	12,60
INCERTEZA (%)	0,04	0,02	0,03	0,03				

cpm = contagens por minuto

Quadro 5 - Coeficientes de Sensibilidade.

	CT (cps/µR/h)	K (cps/%)	U (cps/ppm)	Th (cps/ppm)
SENSIBILIDADE (S)	191,09	62,46	10,17	3,69

As Figuras 3, 4, 5 e 6 apresentam os perfis comparativos dos levantamentos aéreo e terrestre:

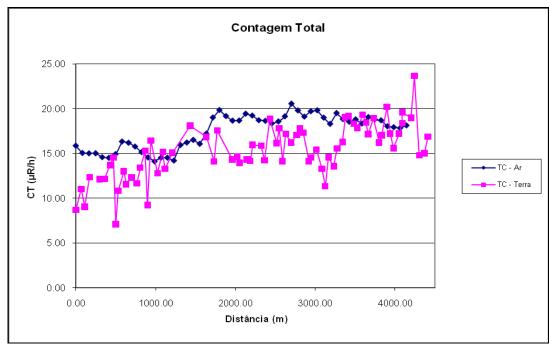


Figura 3 - Calibração dinâmica - Perfil comparativo - Contagem Total.

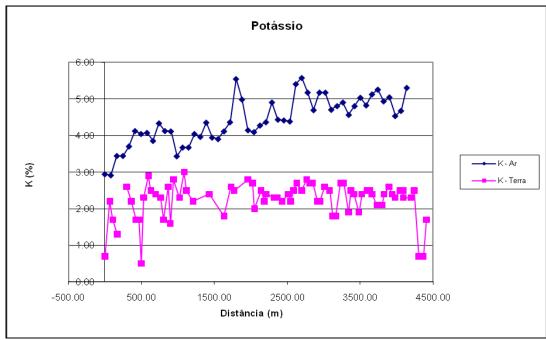


Figura 4 - Calibração dinâmica - Perfil comparativo - Potássio.

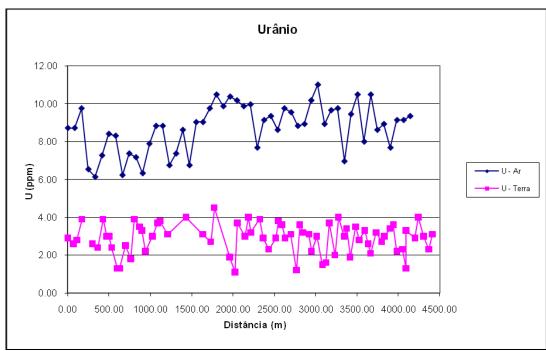
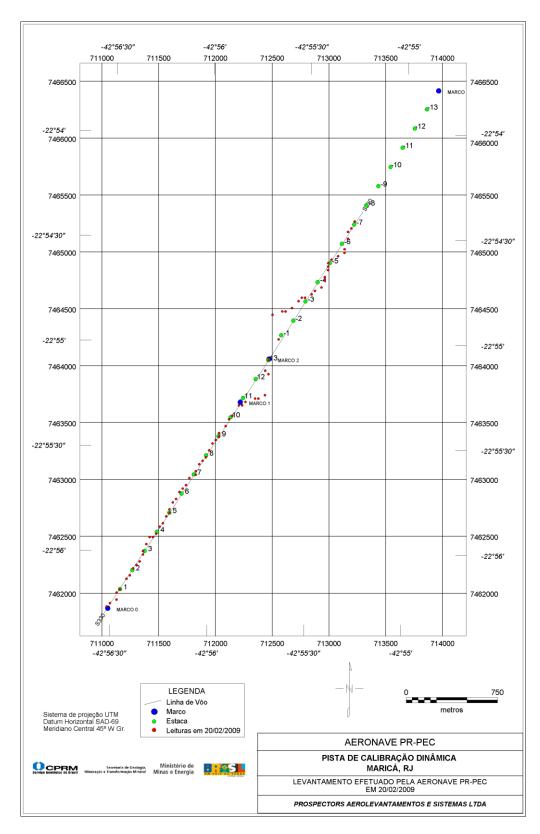


Figura 5 - Calibração dinâmica - Perfil comparativo – Urânio.

Figura 6 - Calibração dinâmica - Perfil comparativo — Tório.

TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE. PISTA DE CALIBRAÇÃO DINÂMICA - 20/02/2009. DADOS BRUTOS.

	UTM	UTM		.,				17		
Estação	LESTE	NORTE	CT	(0/)	eU (nnm)	eTh	CT (cnm)	K (anm)	(anm)	Th (anm)
,	(m)	(m)	(µR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
1	713227,07	7465266,51	12,80	0,70	2,90	20,10	4064,00	581,00	296,00	268,00
2	713197,71	7465205,39	16,50	2,20	2,60	21,00	4972,00	1117,00	295,00	278,00
3	713168,77	7465175,02	14,40	1,70	2,80	16,20	4460,00	902,00	259,00	217,00
4	713167,90	7465113,50	18,60	1,30	3,90	27,30	5509,00	897,00	396,00	361,00
5	713138,10	7465021,61	18,00	2,60	1,60	20,80	5358,00	1211,00	257,00	274,00
6	713137,66	7464990,84	20,40	2,60	2,60	22,70	5949,00	1264,00	311,00	299,00
7	713080,23	7464960,88	20,10	2,20	2,40	25,40	5865,00	1148,00	325,00	334,00
8	713022,80	7464930,93	21,10	1,70	3,90	29,90	6104,00	1057,00	418,00	393,00
9	712993,87	7464900,56	20,70	1,70	3,00	34,90	6001,00	881,00	430,00	457,00
10	712993,43	7464869,80	8,80	0,50	3,00	15,30	3071,00	484,00	258,00	208,00
11	712993,00	7464839,04	16,70	2,30	2,40	20,20	5020,00	1160,00	281,00	267,00
12	712963,63	7464777,91	21,90	2,90	1,30	27,20	6208,00	1383,00	304,00	355,00
13	712963,20	7464747,15	18,60	2,50	1,30	24,20	5493,00	1211,00	276,00	317,00
14	712933,83	7464686,02	18,80	2,40	2,50	24,60	5552,00	1207,00	323,00	324,00
15	712876,40	7464656,06	19,40	2,30	1,80	24,50	5701,00	1166,00	299,00	322,00
16	712847,46	7464625,70	20,70	1,70	3,90	28,90	6019,00	1045,00	409,00	380,00
17	712790,03	7464595,74	25,10	2,60	3,50	31,70	7089,00	1375,00	421,00	414,00
18	712761,53	7464596,14	14,90	1,60	3,30	16,30	4573,00	904,00	279,00	219,00
19	712732,60	7464565,78	27,50	2,80	2,20	37,60	7686,00	1457,00	427,00	488,00
20	712674,74	7464505,06	19,80	2,30	3,00	25,70	5800,00	1207,00	350,00	338,00
21	712617,31	7464475,10	25,20	3,00	3,70	28,70	7121,00	1498,00	400,00	375,00
22	712588,81	7464475,50	21,90	2,50	3,80	24,50	6308,00	1312,00	368,00	323,00
23	712502,88	7464445,94	23,60	2,20	3,10	34,00	6728,00	1261,00	424,00	444,00
24	712556,84	7464229,79	28,10	2,40	4,00	41,40	7821,00	1433,00	520,00	538,00
25	712468,75	7464046,41	25,10	1,80	3,10	42,20	7087,00	1193,00	496,00	548,00
26	712438,95	7463954,52	23,10	2,60	2,70	29,40	6591,00	1336,00	373,00	384,00
27	712467,02	7463923,36	27,90	2,50	4,50	37,90	7768,00	1423,00	507,00	494,00
28	712435,92	7463739,17	24,40	2,80	1,90	30,90	6921,00	1384,00	358,00	402,00
29	712378,49	7463709,21	24,00	2,70	1,10	34,40	6826,00	1365,00	361,00	447,00
30	712350,00	7463709,61	22,10	2,00	3,70	29,70	6354,00	1179,00	410,00	389,00
31	712264,07	7463680,05	22,70	2,50	3,00	30,00	6505,00	1315,00	386,00	392,00
32	712235,14	7463649,69	23,50	2,20	4,00	28,80	6696,00	1256,00	413,00	378,00
33	712206,65	7463650,09	27,10	2,40	3,20	35,80	7584,00	1327,00	443,00	466,00
34	712148,35	7463558,60	25,90	2,30	3,90	34,30	7288,00	1315,00	455,00	448,00
35	712119,43	7463528,24	23,50	2,30	2,90	31,00	6711,00	1259,00	394,00	405,00
36	·	7463467,11	30,70	2,20	2,30	48,90	8474,00	1350,00	527,00	633,00
37	712032,21		25,30	2,40	2,90	37,10	7135,00	1343,00	445,00	482,00
38	712031,77	7463375,62	28,40	2,20	3,80	41,90	7901,00	1362,00	518,00	545,00
39	712002,84		23,00	2,50	3,60	28,00	6574,00	1314,00	390,00	367,00
40	711973,92	7463314,90	27,20	2,70	2,90	39,10	7604,00	1467,00	463,00	508,00
41	711944,56	7463253,77	25,40	2,50	3,10	36,30	7172,00	1387,00	445,00	472,00
42	711915,19	7463192,64	27,70	2,80	1,20	42,10	7722,00	1463,00	430,00	545,00
43	711886,27	7463162,28	29,10	2,70	3,60	39,60	8086,00	1512,00	493,00	514,00
44	711857,34	7463131,92	28,20	2,70	3,20	38,90	7841,00	1467,00	470,00	505,00
45	711827,98	7463070,79	22,40	2,20	3,10	30,70	6441,00	1211,00	396,00	402,00
46	711827,55	·	23,30	2,20	2,20	34,10	6648,00	1233,00	394,00	444,00
47	711770,12	7463010,06	26,50	2,60	3,00	33,30	7429,00	1396,00	415,00	434,00
48	711740,76	7462948,93	21,90	2,50	1,50	29,80	6310,00	1251,00	332,00	389,00
49	711711,84	7462918,57	17,90	1,80	1,60	26,40	5329,00	1014,00	307,00	346,00
50	711682,91	7462888,21	22,40	1,80	3,70	32,90	6422,00	1107,00	436,00	431,00
51	711653,55		27,70	2,70	2,00	28,60	6264,00	1342,00	341,00	374,00
~ '		52521,50	,. 0	_,,,,	_,00	_5,55	0_0 1,00		5.7,00	0. 1,00



Estação	UTM LESTE (m)	UTM NORTE (m)	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
53	711595,27	7462735,59	25,20	1,90	3,00	39,90	7114,00	1191,00	474,00	519,00
54	711594,83	7462704,83	31,00	2,50	3,40	45,50	8531,00	1454,00	535,00	589,00
55	711565,91	7462674,46	29,00	2,40	1,90	49,90	8052,00	1364,00	477,00	581,00
56	711536,55	7462613,33	38,50	1,90	3,50	45,90	7923,00	1276,00	541,00	596,00
57	711507,62	7462582,97	28,00	2,40	2,80	43,20	7797,00	1402,00	494,00	560,00
58	711478,27	7462521,84	31,20	2,50	3,30	46,70	8593,00	1469,00	541,00	605,00
59	711449,34	7462491,48	29,60	2,50	2,60	45,30	8206,00	1430,00	505,00	586,00
60	711420,84	7462491,88	27,40	2,40	2,10	42,40	7646,00	1368,00	463,00	550,00
61	711391,49	7462430,75	31,10	2,10	3,20	47,70	8571,00	1351,00	556,00	630,00
62	711362,13	7462369,62	25,80	2,10	2,70	39,30	7269,00	1241,00	458,00	511,00
63	711361,70	7462338,86	26,90	2,40	3,00	39,90	7529,00	1357,00	473,00	518,00
64	711332,34	7462277,73	32,60	2,60	3,40	49,00	8940,00	1530,00	565,00	634,00
65	711303,42	7462247,37	28,10	2,40	3,60	39,20	7830,00	1386,00	489,00	510,00
66	711274,49	7462217,00	24,80	2,30	2,20	37,20	7024,00	1297,00	423,00	484,00
67	711245,14	7462155,87	28,20	2,50	2,30	41,70	7858,00	1388,00	464,00	540,00
68	711216,21	7462125,51	30,40	2,50	1,30	48,00	8386,00	1430,00	485,00	620,00
69	711216,21	7462125,51	32,60	2,30	3,30	48,80	8947,00	1428,00	560,00	632,00
70	711157,93	7462034,02	30,70	2,30	2,90	47,50	8465,00	1403,00	534,00	615,00
71	711129,01	7462003,65	38,00	2,50	4,00	60,20	10249,00	1613,00	683,00	776,00
72	711128,14	7461942,13	23,00	0,70	3,00	41,10	6587,00	799,00	511,00	537,00
73	711070,73	7461912,16	22,60	0,70	2,30	43,40	6474,00	766,00	476,00	565,00
74	711041,80	7461881,80	27,70	1,70	3,10	42,80	7250,00	1147,00	500,00	557,00
75	723005,00	7461402,00	-2,60	-0,10	-0,10	2,40	247,00	37,00	18,00	15,00
76	722976,00	7461371,00	-2,70	-0,10	0,00	-0,10	232,00	34,00	17,00	9,00
77	723004,00	7461371,00	-2,50	-0,10	0,20	0,00	268,00	43,00	24,00	10,00
78	722976,00	7461402,00	-2,60	-0,10	-0,30	0,20	253,00	43,00	11,00	13,00

^{*} background na Lagoa de Maricá

cpm = Contagem por minuto ppm = Parte por milhão

Mapa 1 - Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica.

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES

AERONAVE PIPER NAVAJO PA31-350 PR-PEC

> RIO DE JANEIRO - RJ 09 DE MARÇO DE 2010

CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS POTÁSSIO, URÂNIO E TÓRIO

SUMÁRIO

- 1 Considerações Gerais
- 2 Levantamento Terrestre
- 3 Levantamento Aéreo
- 4 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)
- 5 Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

- Figura 1 Gamaespectrômetro Portátil RS-230 BGO SUPER SPEC
- Figura 2 Coleta de Dados Terrestres na Pista de Calibração Dinâmica
- Figura 3 Calibração Dinâmica Perfil Comparativo Contagem Total
- Figura 4 Calibração Dinâmica Perfil Comparativo Potássio
- Figura 5 Calibração Dinâmica Perfil Comparativo Urânio
- Figura 6 Calibração Dinâmica Perfil Comparativo Tório
- Quadro 1 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
- Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
- Quadro 3 Resultado Estatístico do Levantamento Aéreo sobre a Pista de Calibração
- Quadro 4 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*
- Quadro 5 Coeficientes de Sensibilidade
- Tabela 1 Listagem dos Valores das Leituras do Levantamento Terrestre
- Mapa 1 Mapa de localização das Estações Terrestres sobre a Pista de Calibração Dinâmica

1. Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para a concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μR/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um *workshop* patrocinado pela CPRM, em conjunto com o *Geological Survey of Canada*, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" ($Dynamic\ Calibration\ Range\ - DCR$), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

No dia 09 de março de 2010 a Prospectors Aerolevantamentos e Sistemas Ltda. efetuou os testes sobre a "pista de calibração dinâmica" no distrito de Inoã, município de Maricá-RJ.

2. Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração foi utilizado um gama espectrômetro portátil *Radiation Solutions*, modelo RS-230 Super-SPEC, 1024 canais, com detector de Óxido de Germanato de Bismuto (BGO) com 6,3 pol³, como mostra a figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotadas pelo operador em planilha apropriada.

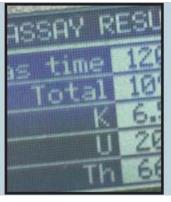


Figura 1 – Gamaespectrômetro Portátil Radiation Solutions RS-230 BGO SUPER SPEC.

Foram registradas 85 estações, sendo 77 sobre a pista de calibração e 8 sobre a Lagoa de Maricá, estas últimas com vistas a remover o background atmosférico da região. A Tabela 1 e o Mapa 1 proporcionam, respectivamente, uma visão dos valores das leituras das estações e a locação das mesmas na Pista de Calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre.

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica

Quadro 1 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração

		CONCE	NTRAÇÃO					
ESTATÍSTICA	CT(*) (μR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
MÉDIA	19,36	2,48	4,26	44,75	4027,19	906,32	374,73	354,18
DESVIO PADRÃO	7,88	0,78	1,22	14,47	1097,34	241,73	123,79	119,86
ERRO NA MÉDIA (1)	0,90	0,09	0,14	1,65	125,05	27,55	14,11	13,66
INCERTEZA (%) (2)	0,05	0,04	0,03	0,04				

• (*) Valor obtido através da expressão:

E = 1,505K + 0,653eU + 0,287eTh

 $E = Taxa de Exposição (\mu R/h)$

- (1) Erro na média = Desvio Padrão / (Número de Estações)^{1/2}
- (2) Incerteza = Erro na Média/Média
- cpm = contagem por minuto
- 77 estações utilizadas no cálculo estatístico
 Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (background)

		CONCE	NTRAÇÃO					
ESTATÍSTICA	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
MÉDIA	0,69	0,09	0,38	1,09	137,75	31,25	15,75	9,00
DESVIO PADRÃO	0,11	0,04	0,12	0,24	15,27	7,09	1,83	1,77
ERRO NA MÉDIA	0,04	0,01	0,04	0,08	5,40	2,51	0,65	0,63
INCERTEZA (%)	0,06	0,14	0,11	0,08				

3. Levantamento Aéreo

Foi utilizada a aeronave PR-PEC equipada com gama espectrômetro Radiation Solutions RS-500, com cristais detectores de NaI com 2560 pol³ down e 512 pol³ up. Foram realizadas 9 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 200, 330, 400, 500, 600, 700 e 800 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (attenuation coefficients), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4. Correção Altimétrica (Coeficientes de Atenuação Atmosférica)

Esse procedimento é comentado no próximo resumo.

5. Conversão para Concentração de Elementos

A sensibilidade dos detectores da aeronave PR-PEC para as janelas de Potássio, Urânio e Tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:

$$S = N/C$$
, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100m) e situada no trecho de interesse das estações utilizadas.

C e a média das concentrações para cada canal das estações terrestres de interesse.

Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100m sobre a pista de calibração, correspondente ao intervalo de 50 metros entre as estações terrestres consideradas para efeito de cálculo da média dos elementos K, U e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (Exposure rate) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

E = 1.505 K% + 0.653 eU + 0.287 eTh, onde:

E é o símbolo para Exposure rate, K%, eU e eTh correspondem às concentrações médias destes elementos determinados em terra na pista de calibração dinâmica.

Os dados estatísticos e os resultados de calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração

ESTATÍSTICA *	CT (cps)	K (cps)	U (cps)	Th (cps)
MÉDIA	2718,80	133,96	27,26	117,15
DESVIO PADRÃO	23,18	7,13	2,65	0,93
ERRO NA MÉDIA	13,38	4,12	1,53	0,54
INCERTEZA (%)	0,00	0,03	0,06	0,00

^{*} tempo morto, background, stripping e atenuação corrigidos

Quadro 4 - Resultado Estatístico do Levantamento Terrestre na Pista de Calibração, após a correção do *Background*

	CONCENTRAÇÃO							
ESTATÍSTICA	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
MÉDIA	18,67	2,39	3,88	43,66	3889,44	875,07	358,98	345,18
DESVIO PADRÃO	10,71	1,02	1,63	18,81	1547,46	344,87	158,06	152,57
ERRO NA MÉDIA	1,16	0,11	0,18	2,04	167,85	37,41	17,14	16,55
INCERTEZA (%)	0,06	0,05	0,05	0,05				

cpm = contagens por minuto

Quadro 5 - Coeficientes de Sensibilidade

	CT	K	U	Th
	(cps/µR/h)	(cps/%)	(cps/ppm)	(cps/ppm)
SENSIBILIDADE (S)	145,62	56,05	7,03	2,68

As Figuras 3, 4, 5 e 6 apresentam os perfis comparativos dos levantamentos aéreo e terrestre:

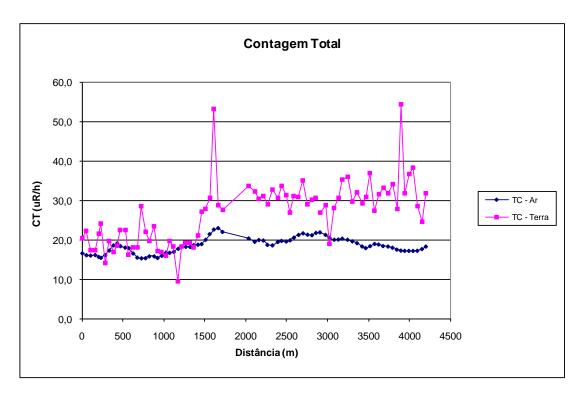


Figura 3 - Calibração dinâmica - Perfil comparativo - Contagem Total

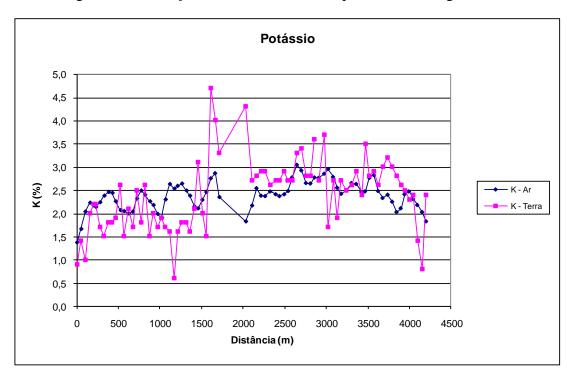


Figura 4 - Calibração dinâmica - Perfil comparativo - Potássio

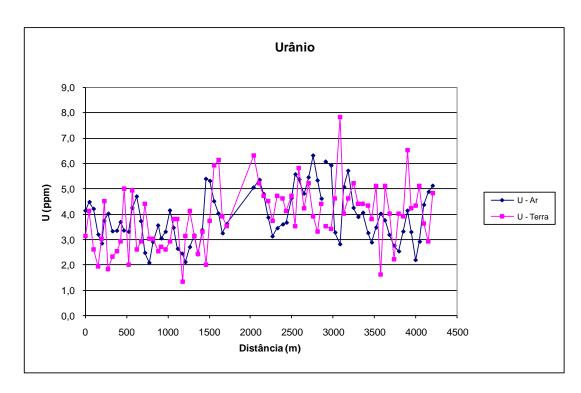


Figura 5 - Calibração dinâmica - Perfil comparativo - Urânio

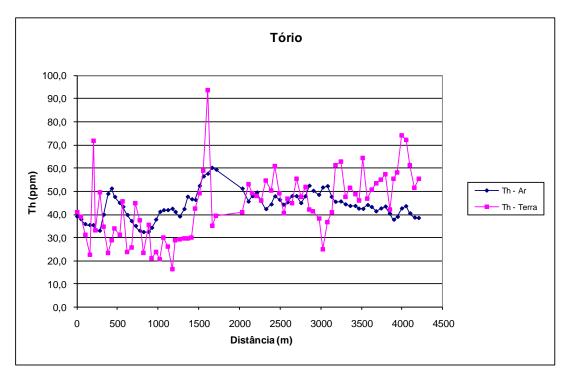
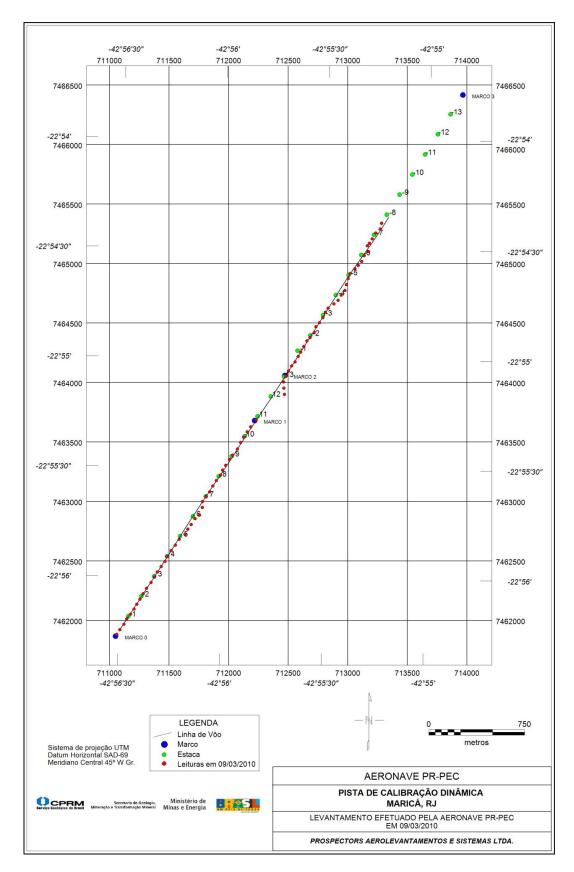


Figura 6 - Calibração dinâmica - Perfil comparativo - Tório

TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE PISTA DE CALIBRAÇÃO DINÂMICA – 09/03/2010 DADOS BRUTOS – PR-PEC

Estação	UTM LESTE (m)	UTM NORTE (m)	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
1	711050,94	7461866,17	36,70	2,40	4,70	75,30	5541,00	1080,00	565,00	613,00
2	711017,47	7461835,51	31,80	2,50	5,20	56,50	4803,00	995,00	467,00	461,00
3	711043,67	7461875,15	24,60	0,90	3,30	52,60	3715,00	580,00	396,00	429,00
4	711078,51	7461920,81	28,70	1,50	4,00	62,30	4331,00	790,00	471,00	508,00
5	711101,95	7461966,64	38,50	2,50	5,50	73,40	5809,00	1120,00	576,00	598,00
6	711159,29	7462034,27	31,70	2,70	5,50	51,80	4783,00	1029,00	446,00	423,00
7	711162,95	7462048,86	32,00	2,60	4,60	59,20	4831,00	1010,00	499,00	450,00
8	711186,31	7462088,53	54,50	2,70	6,90	56,70	5204,00	1089,00	512,00	463,00
9	711212,55	7462131,24	28,00	2,90	4,30	43,20	4233,00	997,00	365,00	351,00
10	711238,85	7462177,03	34,20	3,10	4,40	58,60	5165,00	1126,00	459,00	477,00
11	711267,99	7462222,78	31,80	3,30	2,60	56,30	4799,00	1121,00	402,00	457,00
12	711305,72	7462271,48	33,30	3,10	4,40	54,50	5022,00	1110,00	436,00	449,00
13	711267,65	7462202,38	29,40	2,50	4,70	49,70	4433,00	949,00	414,00	405,00
14	711358,26	7462359,97	27,40	3,00	2,00	48,00	4132,00	1003,00	337,00	389,00
15	711390,25	7462405,68	37,00	2,90	5,50	65,50	5589,00	1144,00	528,00	534,00
16	711422,20	7462448,31	30,90	3,60	4,20	47,20	4660,00	1157,00	387,00	384,00
17	711376,01	7462370,48	35,30	2,80	5,00	62,30	5338,00	1108,00	497,00	508,00
18	711474,78	7462539,88	32,10	3,00	4,80	52,80	4851,00	1084,00	435,00	430,00
19	711509,62	7462585,55	29,80	2,70	4,80	48,70	4503,00	977,00	410,00	397,00
20	711541,66	7462634,33	36,00	2,60	5,60	64,00	5432,00	1083,00	521,00	522,00
21	711484,36	7462538,58	28,90	3,80	3,80	39,50	4362,00	1148,00	330,00	321,00
22	711614,10	7462719,47	30,80	2,00	4,40	42,10	4654,00	1220,00	365,00	447,00
23	711643,16	7462759,06	28,10	2,80	8,20	37,60	4246,00	1010,00	430,00	308,00
24	711675,19	7462807,84	19,10	1,80	5,00	26,20	2877,00	664,00	282,00	215,00
25	711592,72	7462706,69	29,10	2,90	4,30	48,60	4388,00	1019,00	397,00	396,00
26	711736,37	7462902,37	26,90	2,80	3,90	42,60	4069,00	949,00	352,00	346,00
27	711737,06	7462951,59	30,70	3,70	4,80	43,20	4640,00	1172,00	377,00	352,00
28	711766,12	7462991,18	30,20	2,90	3,70	53,10	4566,00	1031,00	409,00	432,00
29	711701,07	7462874,79	27,10	2,80	3,90	41,80	4090,00	942,00	346,00	341,00
30	711824,41	7463082,67	35,20	3,50	5,60	56,40	5308,00	1233,00	476,00	459,00
31	711853,55	7463128,42	30,90	3,40	4,60	46,10	4671,00	1125,00	391,00	375,00
32	711888,39	7463174,08	31,10	2,80	6,20	47,80	4689,00	1039,00	439,00	390,00
33	711809,43	7463042,90	29,10	3,00	4,10	47,10	4392,00	1021,00	383,00	383,00
34	711932,30	7463256,54	31,50	3,00	5,10	50,10	4749,00	1076,00	487,00	409,00
35	711964,34	7463305,32	33,80	2,80	4,50	62,10	5106,00	1078,00	483,00	506,00
36	711990,51	7463341,88	30,70	2,80	5,00	51,50	4628,00	1030,00	433,00	420,00
37	712031,14	7463393,62	32,80	2,70	5,10	55,90	4959,00	1048,00	459,00	455,00
38	711917,79	7463211,00	33,80	4,40	6,70	41,90	5103,00	1359,00	918,00	341,00
39	712083,81	7463491,34	31,10	3,00	4,90	49,20	4702,00	1058,00	416,00	401,00
40	712112,96	7463537,09	30,40	2,90	5,10	50,20	4590,00	1038,00	427,00	409,00
41	712142,06	7463579,75	32,40	2,80	5,60	54,00	4888,00	1058,00	461,00	441,00
42	712026,14	7463379,10	30,70	1,60	6,30	60,10	4637,00	839,00	515,00	492,00
43	712418,15	7463957,41	53,30	4,80	6,50	94,60	8047,00	1756,00	725,00	770,00
44	712420,26	7463905,07	28,90	4,10	4,30	36,30	4370,00	1200,00	325,00	295,00
45	712425,23	7463852,70	27,60	3,40	3,90	40,40	4168,00	1068,00	338,00	321,00
46	712134,50	7463547,21	18,20	1,70	2,80	30,70	2751,00	625,00	252,00	250,00
47	712459,35	7464049,14	28,00	2,10	4,10	50,40	4228,00	844,00	409,00	411,00
48	712485,60	7464091,85	27,20	3,20	2,40	43,80	4113,00	1011,00	322,00	256,00
49	712514,57	7464125,29	21,10	2,20	3,70	31,00	3187,00	745,00	277,00	252,00


Estação	UTM LESTE (m)	UTM NORTE (m)	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
50	712471,98	7464057,16	9,60	0,70	1,70	17,40	1448,00	291,00	146,00	142,00
51	712561,34	7464207,71	19,40	1,90	3,50	30,60	2926,00	671,00	269,00	249,00
52	712587,66	7464255,03	19,40	1,90	4,50	30,20	2928,00	689,00	293,00	246,00
53	712613,98	7464302,35	18,40	1,70	3,50	30,10	2781,00	621,00	267,00	246,00
54	712579,08	7464226,07	17,00	1,80	3,00	24,90	2572,00	606,00	224,00	203,00
55	712674,82	7464372,27	18,50	1,70	4,20	27,40	2788,00	624,00	270,00	224,00
56	712689,77	7464421,29	19,80	1,80	4,20	31,30	2984,00	671,00	292,00	255,00
57	712718,74	7464454,72	16,10	2,00	3,30	21,70	2424,00	642,00	211,00	177,00
58	712686,18	7464394,97	22,20	1,90	3,40	38,40	3358,00	723,00	315,00	319,00
59	712768,45	7464543,26	17,20	2,10	3,10	22,10	2590,00	663,00	209,00	180,00
60	712791,72	7464576,77	23,50	1,60	2,90	36,70	3548,00	860,00	292,00	299,00
61	712840,69	7464613,01	19,80	2,70	3,40	24,70	2983,00	804,00	233,00	201,00
62	712793,27	7464563,88	16,40	1,60	5,30	46,80	2474,00	590,00	256,00	171,00
63	712901,58	7464686,00	28,60	2,60	4,80	46,00	4318,00	945,00	394,00	375,00
64	712933,49	7464725,55	18,20	1,80	3,30	26,80	2749,00	624,00	293,00	219,00
65	712945,59	7464774,61	18,20	2,20	3,00	24,80	2755,00	705,00	224,00	201,00
66	712900,37	7464732,79	17,10	1,90	2,90	24,40	2585,00	624,00	218,00	198,00
67	712975,39	7464866,50	22,70	2,70	2,40	32,20	3431,00	865,00	278,00	262,00
68	713015,89	7464909,00	22,70	2,00	5,40	35,10	3428,00	770,00	344,00	287,00
69	713044,78	7464936,29	18,60	1,90	3,30	30,00	2815,00	663,00	260,00	244,00
70	713007,47	7464901,70	21,60	2,30	3,40	72,80	3266,00	769,00	280,00	267,00
71	713094,41	7465018,67	19,80	1,60	2,70	35,70	2990,00	626,00	281,00	291,00
72	713121,23	7465101,37	24,30	2,30	4,90	34,20	3666,00	821,00	327,00	279,00
73	713131,93	7465051,98	14,20	1,80	2,20	50,50	2146,00	558,00	176,00	166,00
74	713114,57	7465070,61	20,60	1,00	3,50	42,00	3116,00	554,00	337,00	343,00
75	713161,95	7465159,25	17,40	2,10	2,30	23,90	2631,00	656,00	199,00	194,00
76	713191,15	7465208,07	17,60	1,10	3,00	32,40	2654,00	518,00	269,00	265,00
77	713228,67	7465241,39	22,40	1,50	4,50	40,10	3388,00	676,00	350,00	327,00
80	724166,98	7460282,42	0,90	0,10	0,40	1,10	134,00	37,00	15,00	9,00
81	724034,87	7460213,61	0,80	0,10	0,40	0,90	121,00	28,00	15,00	8,00
82	724021,26	7460256,89	0,90	0,10	0,40	1,10	137,00	30,00	16,00	9,00
83	723982,70	7460346,70	1,00	0,10	0,40	1,10	148,00	28,00	18,00	9,00
84	723957,65	7460387,08	1,00	0,10	0,20	1,60	156,00	37,00	14,00	13,00
85	723935,36	7460421,26	1,10	0,10	0,30	1,00	159,00	43,00	15,00	8,00
86	723939,61	7460131,94	0,80	0,00	0,60	0,80	128,00	22,00	19,00	7,00
87	723882,58	7460129,71	0,80	0,10	0,30	1,10	119,00	25,00	14,00	9,00

^{*} Background na Lagoa de Maricá

cpm = Contagem por minuto;

ppm = Parte por milhão

Mapa 1 - Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica.

ANEXO I-f - ATENUAÇÃO ATMOSFÉRICA - RESULTADOS DOS TESTES

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

ATENUAÇÃO ATMOSFÉRICA – RESULTADO DOS TESTES

AERONAVE PIPER NAVAJO PA31-350 PR-PRS

> RIO DE JANEIRO - RJ 23 DE MAIO DE 2009

SUMÁRIO

1 - Cálculo das constantes de atenuação atmosférica para a aeronave PR-PRS

Índice do Quadro, Tabelas e Figuras

Quadro 1 - Coeficientes de Atenuação Atmosférica

Tabela 1 - Cálculo dos Coeficientes de Atenuação Atmosférica

- a) Médias Terra, Água e Terra-Água
- b) Médias em cps
- c) Médias em Logaritmo

Figura - Coeficientes de Atenuação

- a) Contagem Total
- b) Potássio
- c) Urânio
- d) Tório

1. Cálculo das Constantes de Atenuação Atmosférica para a Aeronave PR-PRS

Durante os vôos sobre a pista de calibração dinâmica (*dynamic calibration range - DCR*) realizados em 23/05/2009 nas proximidades de Maricá-RJ, objetivando a determinação dos coeficientes de sensibilidade para converter os dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para concentração de elementos (% K, ppm para eU e eTh e μR/h para o canal de contagem total), também são realizados vôos em diversas alturas (de 200 a 800 pés com intervalo de 100 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (μ) dos radioelementos Potássio, Urânio e Tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada pela fórmula (IAEA, 1991):

$$N_{\rm H} = N_0 \cdot e^{-\mu H}$$
 (1), onde:

 N_{H} é a radiação à distância H da fonte,

N₀ é a radiação na superfície do terreno (H=0),

μ é o coeficiente de atenuação atmosférica.

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$Ln (N_H) = -\mu H + Ln (N_0)$$

que é a equação de uma reta de coeficiente angular - μ e coeficiente linear Ln (N₀). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos Ln (NH) em relação às alturas de vôo (de 330, 400, 500, 600, 700 e 800 pés) sobre a "pista de calibração dinâmica" (*dynamic calibration range - DCR*) situada no distrito de Inoã, Município de Maricá-RJ.

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) $H = H_{100} = 100$ m (altura nominal do levantamento) tem-se:

$$N_{100} = N_0 \cdot e^{-\mu H} 100 (2)$$

Dividindo-se (2) por (1), obtêm-se:

$$N_{100} = N_{H} \cdot e^{-\mu(\dot{H}_{100} - \dot{H})}$$
 (3)

onde:

- N100 é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal;
- NH é a taxa de contagem corrigida dos *background*s da aeronave, cósmico e do radônio, bem como do efeito do espalhamento *Compton*;
- μ é o coeficiente de atenuação atmosférica para determinado canal;
- H100 é a altura nominal do vôo (100m);
- H é a altura medida.

Os valores das médias obtidas são apresentados na Tabela 1a.

Tabela 1a – Médias Terra, Água e Terra-Água.

	MÉDIAS SOBRE A TERRA*					
ALTURA	СТ	K	U	Th		
(pés)	(cps)	(cps)	(cps)	(cps)		
330	3889,58	319,76	101,96	164,80		
331	3994,52	327,18	106,72	165,76		
332	3942,26	325,82	102,92	164,10		
400	3432,76	280,84	93,69	142,47		
500	2935,98	230,16	82,02	119,90		
600	2544,75	204,02	70,44	102,31		
700	2207,08	172,58	64,65	91,37		
800	1950,69	153,89	57,22	79,93		
		AS SOBRE A				
ALTURA	СТ	K	U	Th		
(pés)	(cps)	(cps)	(cps)	(cps)		
330	402,84	45,47	15,56	11,52		
331	399,38	45,71	15,12	11,22		
332	393,46	45,86	15,54	10,84		
400	408,70	47,11	16,49	11,67		
500	413,96	45,54	17,07	11,14		
600	419,80	45,69	16,51	11,44		
700	420,38	44,73	17,53	11,46		
800	414,27	44,09	16,56	11,54		
		IAS TERRA-Á				
ALTURA	CT (arra)	(ana)	U (ana)	Th (ana)		
(pés)	(cps)	(cps)	(cps)	(cps)		
330	3486,74	274,29	86,40	153,28		
331	3595,14	281,47	91,60	154,54		
332	3548,80	279,96	87,38	153,26		
400	3024,06	233,73	77,20	130,80		
500	2522,02	184,62	64,95	108,76		
600	2124,95	158,33	53,93	90,87		
700	1786,70	127,85	47,12	79,91		
800	1536,42	109,80	40,66	68,39		

^{*} valores corrigidos do tempo morto

A tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

- Tempo morto
- Background
- Espalhamento Compton

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica.

Tuocia io	Carearo dos Coerretentes de Friendação Frintosterioa.					
LINHA	Altura Efetiva (m)	CT (cps)	K (cps)	U (cps)	Th (cps)	
330	96,42	3484,64	171,68	32,85	148,46	
331	90,54	3591,38	174,37	38,09	149,57	
332	90,37	3548,82	176,87	34,36	148,53	
400	114,19	3016,76	142,14	30,29	126,45	
500	139,39	2515,91	106,78	24,61	105,20	
600	168,62	2122,58	92,74	18,97	88,10	
700	190,74	1780,68	69,82	15,41	77,31	
800	212,29	1532,66	59,39	12,83	66,27	

A Tabela 1c apresenta o logaritmo neperiano dos valores da Tabela 1b.

Tabela 1c – Cálculo dos Coeficientes de Atenuação Atmosférica.

Tabela Te	Carculo dos Coefficientes de Mendação Minosterica.					
LINHA	Altura Efetiva	In CT	In K	In U	In Th	
LINHA	(m)	(cps)	(cps)	(cps)	(cps)	
330	96,42	8,16	5,15	3,49	5,00	
331	90,54	8,19	5,16	3,64	5,01	
332	90,37	8,17	5,18	3,54	5,00	
400	114,19	8,01	4,96	3,41	4,84	
500	139,39	7,83	4,67	3,20	4,66	
600	168,62	7,66	4,53	2,94	4,48	
700	190,74	7,48	4,25	2,74	4,35	
800	212,29	7,33	4,08	2,55	4,19	

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das figuras 1a, 1b, 1c e 1d, conforme mostra o quadro 1 a seguir:

Quadro 1 – Coeficientes de Atenuação Atmosférica.

Canal Radiométrico	μ em m ⁻¹
Contagem Total	-0,0069
Potássio	-0,009
Urânio	-0,0084
Tório	-0,0067

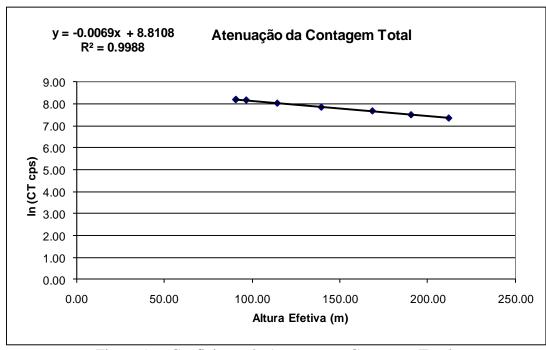


Figura 1a - Coeficiente de Atenuação - Contagem Total.

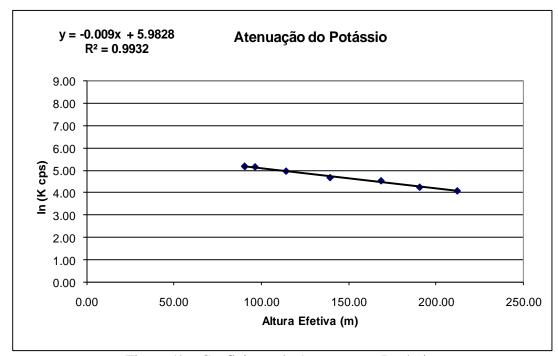


Figura 1b - Coeficiente de Atenuação - Potássio.

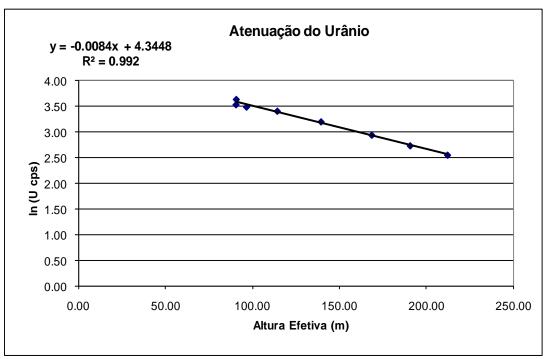


Figura 1c - Coeficiente de Atenuação - Urânio.

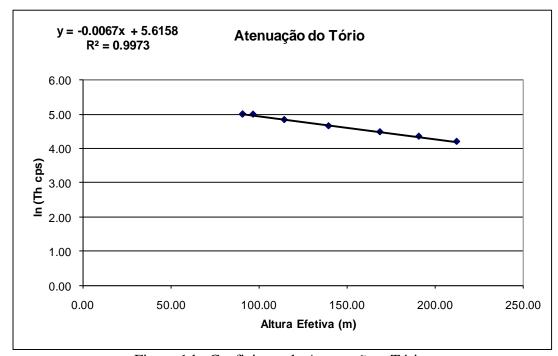


Figura 1d - Coeficiente de Atenuação - Tório.

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

ATENUAÇÃO ATMOSFÉRICA – RESULTADO DOS TESTES

AERONAVE PIPER NAVAJO PA31-310 PT-DYK

> RIO DE JANEIRO - RJ 13 DE NOVEMBRO DE 2009

SUMÁRIO

1 - Cálculo das constantes de atenuação atmosférica para a aeronave PT-DYK

Índice do Quadro, Tabelas e Figuras

Quadro 1 - Coeficientes de Atenuação Atmosférica

Tabela 1 - Cálculo dos Coeficientes de Atenuação Atmosférica

- a) Médias Terra, Água e Terra-Água
- b) Médias em cps
- c) Médias em Logaritmo

Figura - Coeficientes de Atenuação

- a) Contagem Total
- b) Potássio
- c) Urânio
- d) Tório

1 - Cálculo das Constantes de Atenuação Atmosférica

Durante os vôos sobre a pista de calibração dinâmica (dynamic calibration range – DCR) também são realizados vôos em diversas alturas (de 200 a 900 pés com intervalo de 100 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (µ) dos radioelementos potássio, urânio e tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada, pela equação (IAEA, 1991):

$$NH = N0 \cdot e - \mu H \tag{1},$$

onde:

NH é a radiação à distância H da fonte,

N0 é a radiação na superfície do terreno (H=0),

μ é o coeficiente de atenuação atmosférica.

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$ln (NH) = -\mu H + ln (N0)$$

que é a equação de uma reta de coeficiente angular -μ e coeficiente linear ln(N0). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos ln (NH) em relação às alturas de vôo (de 200, a 900 pés) sobre a "pista de calibração dinâmica" (dynamic calibration range - DCR) situada no distrito de Inoã, Município de Maricá (RJ).

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) $\mathbf{H} = \mathbf{H}\mathbf{100} = \mathbf{100}$ m (altura nominal do levantamento) tem-se: $N\mathbf{100} = N\mathbf{0.e} - \mu H\mathbf{100}$ (2)

Dividindo-se (2) por (1), obtém-se:

$$N100 = NH.e-\mu(H100 - H)$$
 (3)

onde:

N100 é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal:

NH é a taxa de contagem corrigida dos *backgrounds* da aeronave, cósmico e do radônio, bem como do efeito do espalhamento *Compton*;

u é o coeficiente de atenuação atmosférica para determinado canal;

H100 é a altura nominal de vôo (100m);

H é a altura medida.

Os valores das médias obtidas são apresentadas na Tabela1a.

Data da Calibração: 13/11/2009

Tabela 1a – Médias Terra, Água e Terra-Água.

	Tabela 1a – Médias Terra, Agua e Terra-Agua. MÉDIAS SOBRE A TERRA*				
					Th (ana)
	ALTURA (pés) 242	CT (cps) 4396,01	K (cps) 394,44	U (cps) 99,04	Th (cps) 196,45
	355	3491,40	302,04	82,84	154,82
	328	3638,29		83,74	
			310,80		164,44
	324	3671,25	324,86	85,97	168,59
	419	3024,04	256,91	71,05	135,19
	512	2525,07	214,36	60,56	114,35
	599	2151,49	183,39	52,48	95,40
	669	1899,91	162,94	47,39	84,30
	759	1633,79	136,29	42,46	71,92
	853	1395,41	121,66	38,08	60,83
		MÉDIAS SOB			T
	ALTURA (pés)	CT (cps)	K (cps)	U (cps)	Th (cps)
	242	275,28	43,66	8,31	6,77
	355	266,82	41,38	8,41	6,17
	328	265,31	39,53	8,03	6,26
	324	263,68	39,93	8,16	6,81
PT-DYK	419	265,67	39,27	8,32	6,47
	512	261,86	39,41	8,39	7,17
	599	257,04	37,22	8,07	6,08
	669	254,99	38,02	7,47	6,67
	759	251,93	37,35	8,18	6,84
	853	248,08	35,60	8,06	6,92
		MÉDIAS TER	RRA - ÁGU	A *	
	ALTURA (pés)	CT (cps)	K (cps)	U (cps)	Th (cps)
	242	4120,73	350,78	90,73	189,68
	355	3224,58	260,66	74,43	148,65
	328	3372,98	271,27	75,71	158,18
	324	3407,57	284,93	77,81	161,78
	419	2758,37	217,64	62,73	128,72
	512	2263,21	174,95	52,17	107,18
	599	1894,45	146,17	44,41	89,32
	669	1644,92	124,92	39,92	77,63
	759	1381,86	98,94	34,28	65,08
	853	1147,33	86,06	30,02	53,91
	*να	alores corrigida	as do tempo	morto	•
	rate of the same and the same of the same				

A Tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

Tempo morto

Background

Espalhamento Compton

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica.

LINHA	Altura Efetiva (m)	CT (cps)	K (cps)	U (cps)	Th (cps)
200	73,7	4120,7	350,8	90,7	189,7
300	108,1	3224,6	260,7	74,4	148,7
301	99,9	3373,0	271,3	75,7	158,2
302	98,7	3407,6	284,9	77,8	161,8
400	127,6	2758,4	217,6	62,7	128,7
500	156,1	2263,2	175,0	52,2	107,2
600	182,6	1894,5	146,2	44,4	89,3
700	203,8	1644,9	124,9	39,9	77,6
800	231,3	1381,9	98,9	34,3	65,1
900	259,9	1147,3	86,1	30,0	53,9

A próxima T 1c apresenta o logaritmo neperiano dos valores obtidos na Tabela 1b:

Tabela 1c – Cálculo dos Coeficientes de Atenuação Atmosférica (logarítmica).

LINHA	Altura Efetiva (m)	Ln CT (cps)	Ln K (cps)	Ln U (cps)	Ln Th (cps)
200	73,7	8,3	5,9	4,5	5,2
300	108,1	8,1	5,6	4,3	5,0
301	99,9	8,1	5,6	4,3	5,1
302	98,7	8,1	5,7	4,4	5,1
400	127,6	7,9	5,4	4,1	4,9
500	156,1	7,7	5,2	4,0	4,7
600	182,6	7,5	5,0	3,8	4,5
700	203,8	7,4	4,8	3,7	4,4
800	231,3	7,2	4,6	3,5	4,2
900	259,9	7,0	4,5	3,4	4,0

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das Figuras 1a, 1b, 1c e 1d, conforme mostra o Quadro 1.

Quadro 1 - Coeficientes de Atenuação Atmosférica.

Canal Radiométrico	μ em m-1
Contagem Total	-0,0069
Potássio	-0,0076
Urânio	-0,0061
Tório	-0,0068

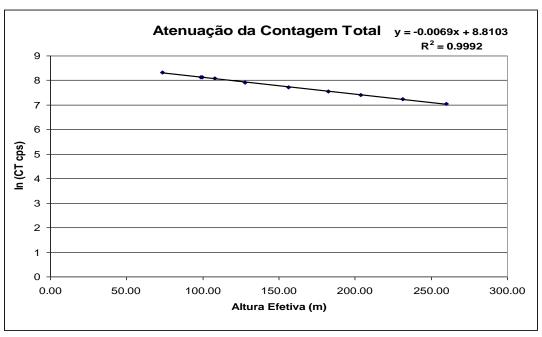


Figura 1a – Coeficiente de Atenuação - Contagem Total

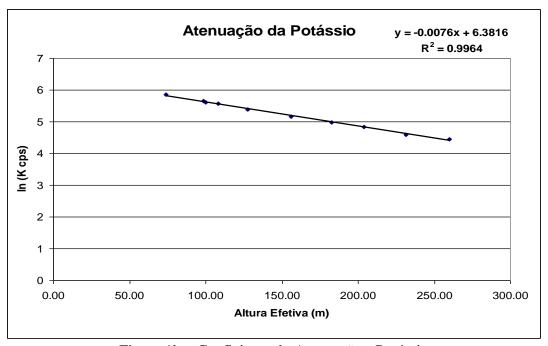


Figura 1b – Coeficiente de Atenuação - Potássio

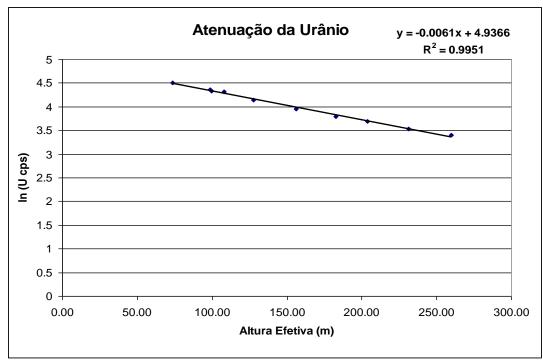


Figura 1c – Coeficiente de Atenuação - Urânio

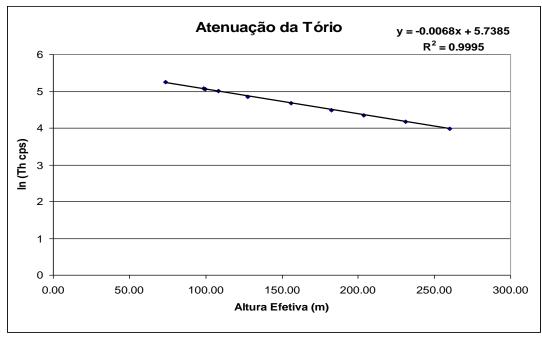


Figura 1d – Coeficiente de Atenuação - Tório

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

ATENUAÇÃO ATMOSFÉRICA – RESULTADO DOS TESTES

AERONAVE PIPER NAVAJO PA31-350 PR-PEC

> RIO DE JANEIRO - RJ 20 DE FEVEREIRO DE 2009

SUMÁRIO

1 - Cálculo das constantes de atenuação atmosférica para a aeronave PR-PEC

Índice do Quadro, Tabelas e Figuras

- Quadro 1 Coeficientes de Atenuação Atmosférica
- Tabela 1 Cálculo dos Coeficientes de Atenuação Atmosférica
 - a) Médias Terra, Água e Terra-Água
 - b) Médias em cps
 - c) Médias em Logaritmo

Figura - Coeficientes de Atenuação

- a) Contagem Total
- b) Potássio
- c) Urânio
- d) Tório

1. Cálculo das Constantes de Atenuação Atmosférica para a Aeronave PR-PEC

Durante os vôos sobre a pista de calibração dinâmica (*dynamic calibration range - DCR*) realizados em 20/02/2009 nas proximidades de Maricá-RJ, objetivando a determinação dos coeficientes de sensibilidade para converter os dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para concentração de elementos (% K, ppm para eU e eTh e μR/h para o canal de contagem total), também são realizados vôos em diversas alturas (de 300 a 800 pés com intervalo de 100 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (μ) dos radioelementos Potássio, Urânio e Tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada pela fórmula (IAEA, 1991):

$$N_{\rm H} = N_0 \cdot e^{-\mu H}$$
 (1), onde:

 N_{H} é a radiação à distância H da fonte,

N₀ é a radiação na superfície do terreno (H=0),

μ é o coeficiente de atenuação atmosférica.

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$Ln(N_H) = -\mu H + Ln(N_0)$$

que é a equação de uma reta de coeficiente angular - μ e coeficiente linear Ln (N₀). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos Ln (NH) em relação às alturas de vôo (de 300, 330, 400, 500, 600, 700 e 800 pés) sobre a "pista de calibração dinâmica" (*dynamic calibration range - DCR*) situada no distrito de Inoã, Município de Maricá-RJ.

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) $H = H_{100} = 100 \text{ m}$ (altura nominal do levantamento) tem-se:

$$N_{100} = N_0.e^{-\mu H} 100$$
 (2)

Dividindo-se (2) por (1), obtêm-se:

$$N_{100} = N_{H} \cdot e^{-\mu(\dot{H}_{100} - \dot{H})}$$
 (3)

onde:

- N100 é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal;
- NH é a taxa de contagem corrigida dos *background*s da aeronave, cósmico e do radônio, bem como do efeito do espalhamento *Compton*;
- μ é o coeficiente de atenuação atmosférica para determinado canal;
- H100 é a altura nominal do vôo (100m);
- H é a altura medida.

Os valores das médias obtidas são apresentados na Tabela 1a.

Tabela 1a – Médias Terra, Água e Terra-Água.

Tabela	MÉDIAS SOBRE A TERRA*				
ALTURA	CT	K	U	Th	
(pés)	(cps)	(cps)	(cps)	(cps)	
300	3550,52	295,94	89,16	156,88	
330	3346,96	274,21	84,12	145,46	
331	3117,57	259,98	78,25	135,84	
332	3253,51	272,82	82,38	142,36	
400	2891,78	242,51	73,20	122,80	
500	2576,38	213,79	66,70	112,92	
600	2231,08	181,71	60,53	97,71	
700	1950,44	159,85	54,51	82,69	
800	1677,91	138,30	45,76	71,11	
	MÉDI	AS SOBRE A	ÁGUA*		
ALTURA	СТ	K	U	Th	
(pés)	(cps)	(cps)	(cps)	(cps)	
300	273,52	38,19	7,48	9,85	
330	276,60	38,59	7,79	9,05	
331	279,89	39,20	8,24	9,52	
332	275,23	38,12	8,23	8,95	
400	278,84	38,79	8,49	8,96	
500	281,06	37,63	9,13	9,48	
600	279,34	37,81	8,58	9,20	
700	287,91	38,17	9,25	9,64	
800	289,80	37,12	9,44	10,25	
		IAS TERRA-Á		—	
ALTURA	CT (cps)	K (cps)	U (cps)	Th (cps)	
(pés) 300	3277,00	257,75	81,68	147,03	
330	3070,36		76,33	136,41	
331	2837,68	235,62 220,78	70,01	126,32	
332					
400	2978,28 2612,94	234,70	74,15 64,71	133,41 113,84	
500	2295,32	203,72		103,44	
600		176,16	57,57 51.05		
700	1951,74 1662,53	143,90 121,68	51,95 45,26	88,51 73,05	
800					
800	1388,11	101,18	36,32	60,86	

^{*} valores corrigidos do tempo morto

A Tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

- Tempo morto
- Background
- Espalhamento Compton

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica.

LINHA	Altura Efetiva (m)	CT (cps)	K (cps)	U (cps)	Th (cps)
300	82,07	3272,55	161,40	34,13	142,61
330	91,76	3068,49	145,26	31,64	132,46
331	104,18	2834,56	137,08	27,80	122,62
332	96,55	2974,12	146,50	30,05	129,43
400	116,83	2611,30	126,35	26,02	110,59
500	136,22	2293,19	106,21	21,39	100,50
600	161,81	1949,18	80,82	19,90	86,00
700	185,76	1658,44	66,80	17,94	70,91
800	209,30	1389,05	56,26	12,93	59,34

A Tabela 1c apresenta o logaritmo neperiano dos valores da Tabela 1b.

Tabela 1c – Cálculo dos Coeficientes de Atenuação Atmosférica.

1 151114	Altura Efetiva	In CT	In K	In U	In Th
LINHA	(m)	(cps)	(cps)	(cps)	(cps)
300	82,07	8,09	5,08	3,53	4,96
330	91,76	8,03	4,98	3,45	4,89
331	104,18	7,95	4,92	3,33	4,81
332	96,55	8,00	4,99	3,40	4,86
400	116,83	7,87	4,84	3,26	4,71
500	136,22	7,74	4,67	3,06	4,61
600	161,81	7,58	4,39	2,99	4,45
700	185,76	7,41	4,20	2,89	4,26
800	209,30	7,24	4,03	2,56	4,08

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das figuras 1a, 1b, 1c e 1d, conforme mostra o quadro 1 a seguir:

Quadro 1 – Coeficientes de Atenuação Atmosférica.

Canal Radiométrico	μ em m ⁻¹
Contagem Total	-0,0067
Potássio	-0,0085
Urânio	-0,0069
Tório	-0,0067

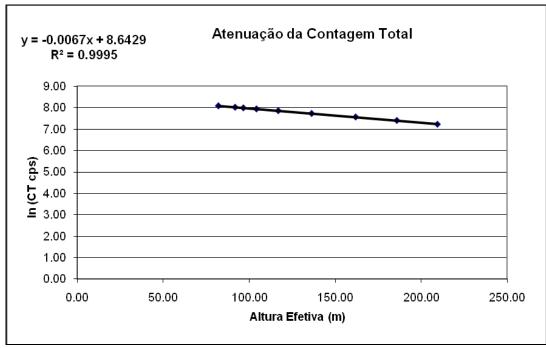


Figura 1a - Coeficiente de Atenuação - Contagem Total.

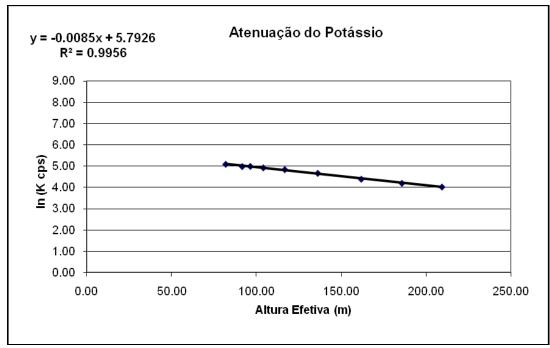


Figura 1b - Coeficiente de Atenuação - Potássio.

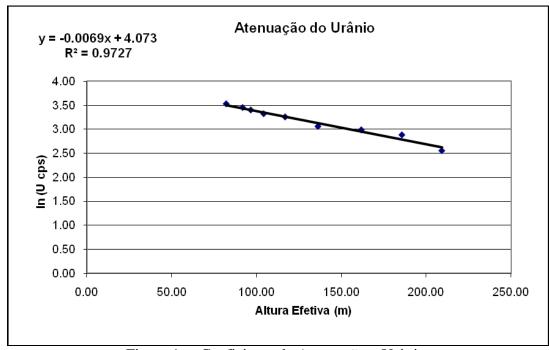


Figura 1c - Coeficiente de Atenuação - Urânio.

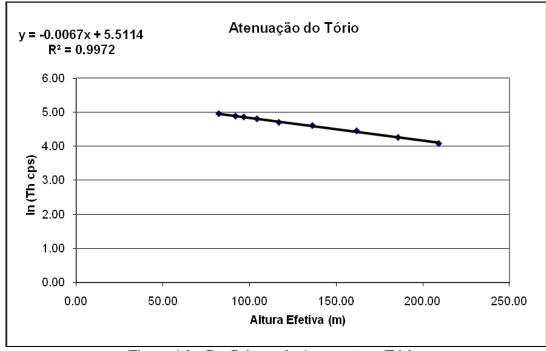


Figura 1d - Coeficiente de Atenuação - Tório.

PROCEDIMENTOS DE CALIBRAÇÃO PROJETO PILOTO DE INVESTIMENTO - PPI

PROJETO AEROGEOFÍSICO SUCUNDURI CPRM CONTRATO N.º 054/PR/09

ATENUAÇÃO ATMOSFÉRICA – RESULTADO DOS TESTES

AERONAVE PIPER NAVAJO PA31-350 PR-PEC

> RIO DE JANEIRO – RJ 09 DE MARÇO DE 2010

SUMÁRIO

1 - Cálculo das constantes de atenuação atmosférica para a aeronave PR-PEC

Índice do Quadro, Tabelas e Figuras

- Quadro 1 Coeficientes de Atenuação Atmosférica
- Tabela 1 Cálculo dos Coeficientes de Atenuação Atmosférica
 - a) Médias Terra, Água e Terra-Água
 - b) Médias em cps
 - c) Médias em Logaritmo

Figura - Coeficientes de Atenuação

- a) Contagem Total
- b) Potássio
- c) Urânio
- d) Tório

1. Cálculo das Constantes de Atenuação Atmosférica para a Aeronave PR-PEC

Durante os voos sobre a pista de calibração dinâmica (dynamic calibration range - DCR) realizados em 09/03/2010 nas proximidades de Maricá (RJ), objetivando a determinação dos coeficientes de sensibilidade para converter os dados aerogamaespetrométricos, medidos em contagens por segundo (cps), para concentração de elementos (%K, ppm para eU e eTh e μR/h para o canal de contagem total), também são realizados voos em diversas alturas (de 200 a 800 pés com intervalo de 100 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (μ) dos radioelementos Potássio, Urânio e Tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada pela fórmula (IAEA, 1991):

 $NH = N0.e - \mu H$ (1), onde:

NH é a radiação à distância H da fonte,

N0 é a radiação na superfície do terreno (H=0),

 μ é o coeficiente de atenuação atmosférica,

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

 $Ln(NH) = -\mu H + Ln(N0)$

que é a equação de uma reta de coeficiente angular -μ e coeficiente linear Ln (N0). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos Ln (NH) em relação às alturas de voo (de 200, 330, 400, 500, 600, 700 e 800 pés) sobre a "pista de calibração dinâmica" (dynamic calibration range - DCR) situada no distrito de Inoã, Município de Maricá (RJ).

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) H = H100 = 100 m (altura nominal do levantamento) tem-se:

 $N100 = N0.e - \mu H100$ (2)

Dividindo-se (2) por (1), obtêm-se:

 $N100 = NH.e-\mu(H100-H)$ (3) onde:

N100 é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal;

NH é a taxa de contagem corrigida dos *backgrounds* da aeronave, cósmico e do radônio, bem como do efeito do espalhamento *Compton*;

μ é o coeficiente de atenuação atmosférica para determinado canal;

H100 é a altura nominal do voo (100m);

H é a altura medida.

Os valores das médias obtidas são apresentados na tabela 1a.

	MÉDIAS SOBRE A TERRA*				
ALTURA	СТ	K	U	Th	
(pés)	(cps)	(cps)	(cps)	(cps)	
330	3286,60	279,10	86,65	138,98	
331	3304,91	272,67	89,44	140,58	
332	3319,07	274,98	84,13	141,20	
400	2902,17	240,21	79,68	123,15	
500	2577,34	209,04	70,79	105,30	
600	2178,87	175,78	61,89	90,51	
700	1940,62	155,23	55,62	78,73	
800	1650,10	130,29	51,69	67,16	
	MÉDIA	AS SOBRE A	ÁGUA*		
ALTURA	CT	K	U	Th	
(pés)	(cps)	(cps)	(cps)	(cps)	
330	370,83	41,61	14,94	9,47	
331	391,21	44,86	14,76	11,00	
332	366,96	41,08	14,55	9,95	
400	392,58	45,69	15,95	10,55	
500	378,51	42,49	15,60	9,78	
600	401,71	43,19	15,89	11,06	
700	385,69	40,94	15,36	9,88	
800	398,71	43,24	16,49	10,33	
		IAS TERRA-Á			
ALTURA	СТ	, K	U	Th	
(pés)	(cps)	(cps)	(cps)	(cps)	
330	2915,77	237,49	71,71	129,51	
331	2913,70	227,81	74,68	129,58	
332	2952,11	233,90	69,58	131,25	
400	2509,59	194,52	63,73	112,60	
500	2198,83	166,55	55,19	95,52	
600	1777,16	132,59	46,00	79,45	
700	1554,93	114,29	40,26	68,85	
800	1251,39	87,05	35,20	56,83	

^{*} valores corrigidos do tempo morto

A Tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

- Tempo morto
- Background
- Espalhamento Compton

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica

LINHA	Altura Efetiva	СТ	К	U	Th
	(m)	(cps)	(cps)	(cps)	(cps)
330	92,12	2909,28	152,94	28,92	125,25
331	89,94	2909,91	140,84	32,13	125,45
332	89,66	2951,21	151,04	26,49	127,21
400	110,59	2512,23	119,10	25,76	109,36
500	132,40	2196,61	100,77	21,84	92,59
600	159,39	1773,20	77,00	17,15	76,96
700	181,54	1563,41	65,30	14,83	67,32
800	212,95	1253,50	44,13	13,23	55,36

A Tabela 1c apresenta o logaritmo neperiano dos valores da Tabela 1b.

Tabela 1c - Cálculo dos Coeficientes de Atenuação Atmosférica

LINHA	Altura Efetiva	In CT	In K	In U	In Th
LINIA	(m)	(cps)	(cps)	(cps)	(cps)
330	92,12	7,98	5,03	3,36	4,83
331	89,94	7,98	4,95	3,47	4,83
332	89,66	7,99	5,02	3,28	4,85
400	110,59	7,83	4,78	3,25	4,69
500	132,40	7,69	4,61	3,08	4,53
600	159,39	7,48	4,34	2,84	4,34
700	181,54	7,35	4,18	2,70	4,21
800	212,95	7,13	3,79	2,58	4,01

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das figuras 1a, 1b, 1c e 1d, conforme mostra o quadro 1 a seguir:

Quadro 1 – Coeficientes de Atenuação Atmosférica

Canal Radiométrico	μ em m ⁻¹
Contagem Total	-0,0069
Potássio	-0,0096
Urânio	-0,0069
Tório	-0,0068

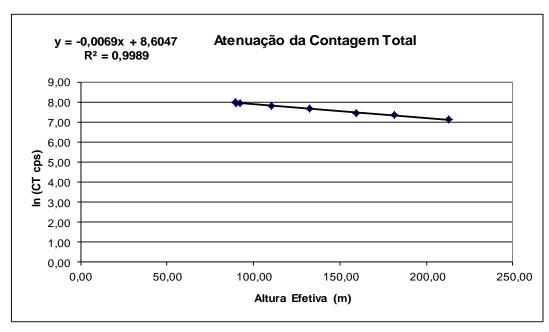


Figura 1a - Coeficiente de Atenuação - Contagem Total

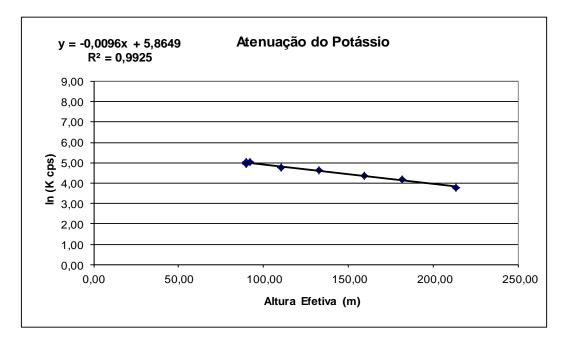


Figura 1b - Coeficiente de Atenuação - Potássio

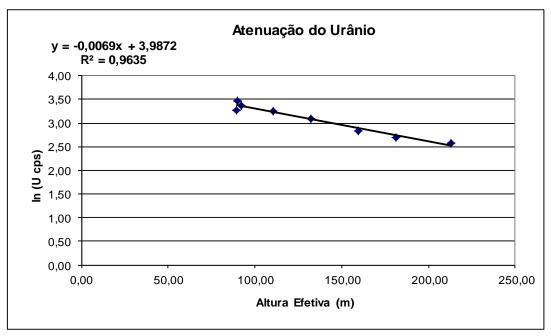


Figura 1c - Coeficiente de Atenuação - Urânio

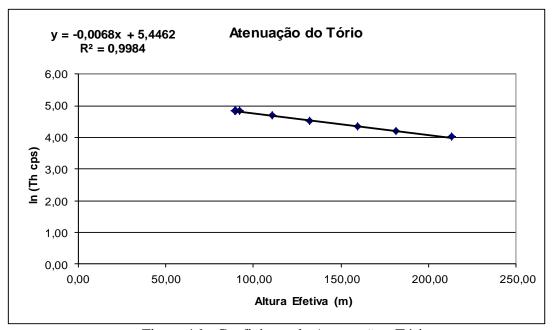
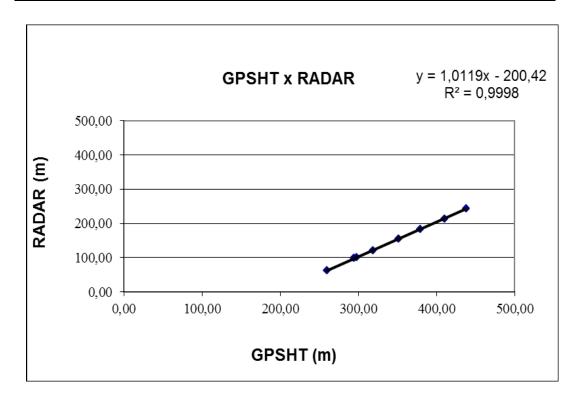
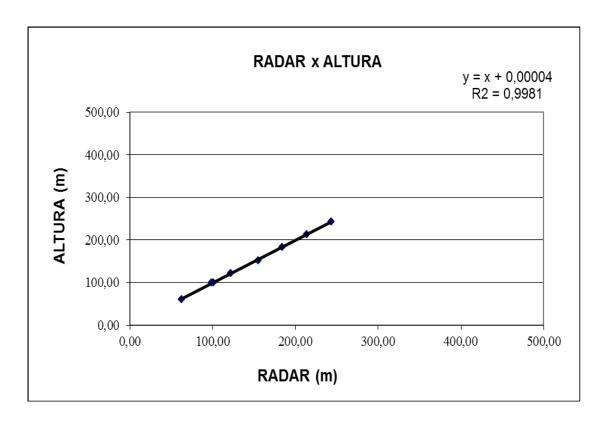


Figura 1d - Coeficiente de Atenuação - Tório

ANEXO II – TESTES CONTRATUAIS

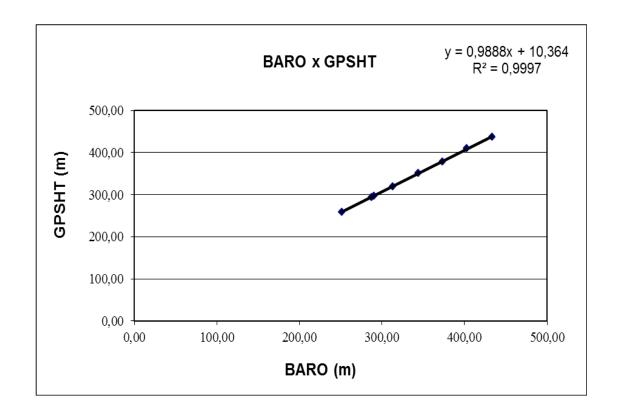


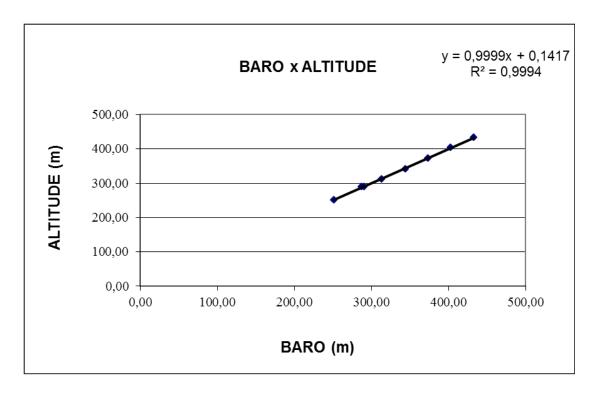
Anexo II-a – Teste de Altímetros

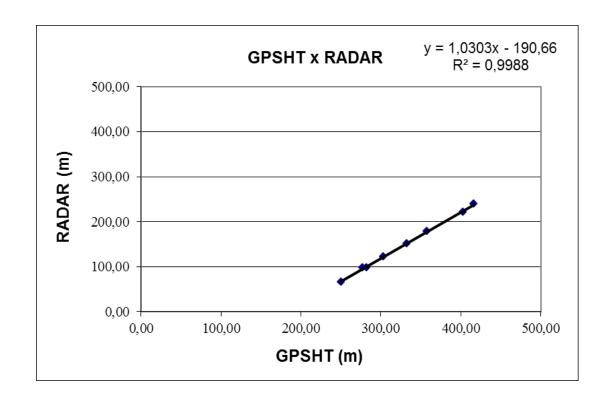


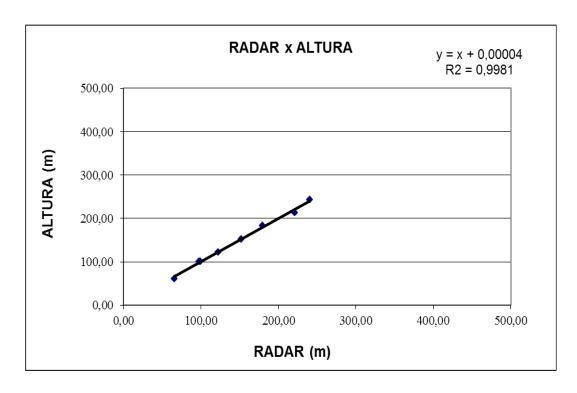
Nº Projeto	AGFW43-2009
Base	Apuí - AM
Aeronave	PR-PRS
Data	24/02/2010
Nº Vôo	605

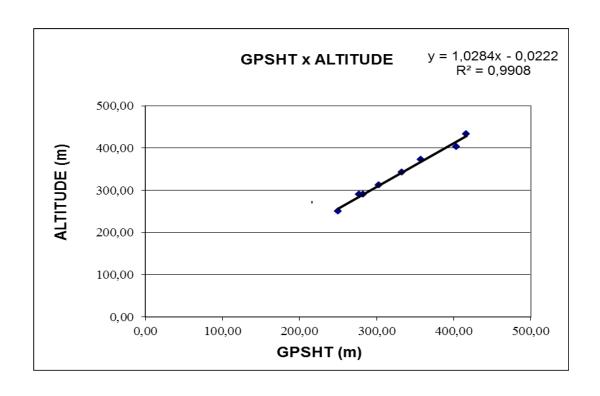
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	250,96	259,50	62,07	251,57
330	100,58	290,58	297,67	100,45	290,27
330	100,58	290,58	294,24	98,29	287,32
400	121,92	311,92	318,66	121,43	313,29
500	152,40	342,40	351,46	154,81	344,07
600	182,88	372,88	378,83	183,85	373,30
700	213,36	403,36	410,19	213,43	402,52
800	243,84	433,84	437,64	243,06	433,19



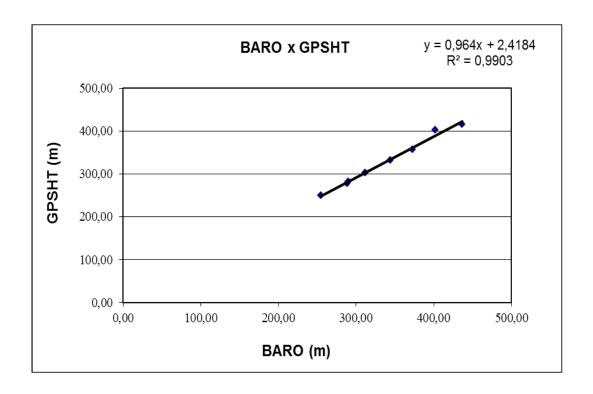


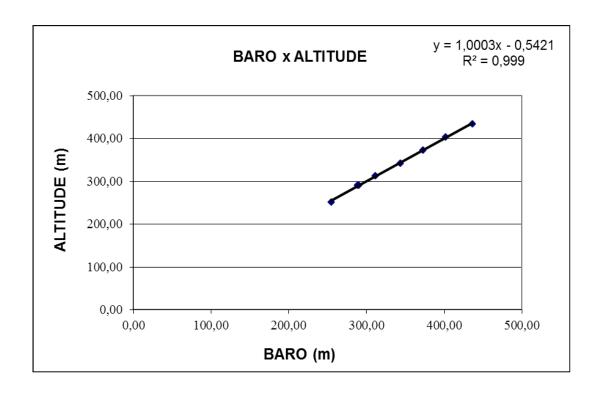


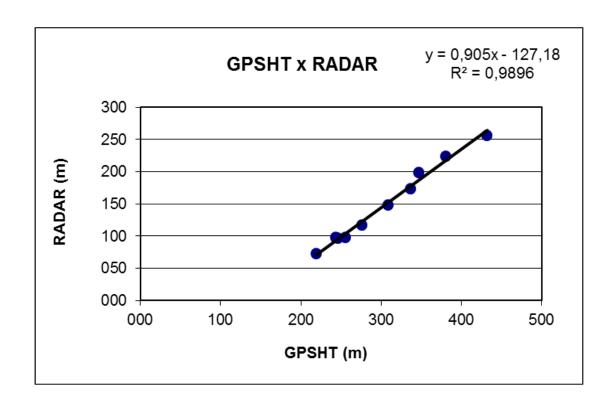


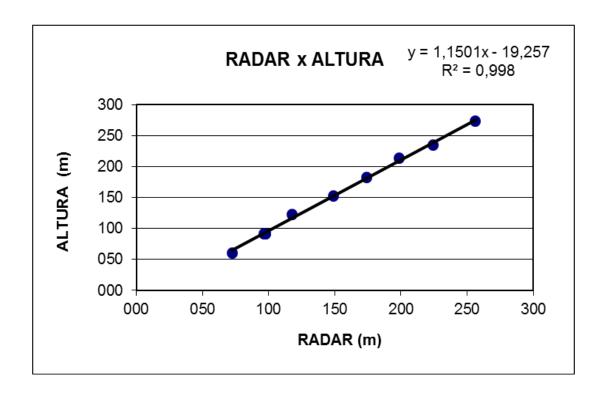

Nº Projeto	AGFW43-2009
Base	Apuí - AM
Aeronave	PR-PRS
Data	07/05/2010
Nº Vôo	653

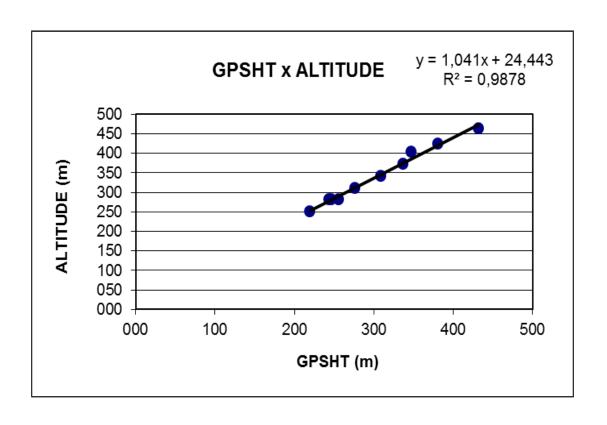
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	250,96	250,15	65,37	254,73
330	100,58	290,58	282,35	98,77	290,15
330	100,58	290,58	277,31	97,86	288,44
400	121,92	311,92	302,77	121,85	311,62
500	152,40	342,40	332,52	151,80	344,10
600	182,88	372,88	357,63	179,34	372,61
700	213,36	403,36	403,10	221,19	402,09
800	243,84	433,84	416,42	240,34	436,39



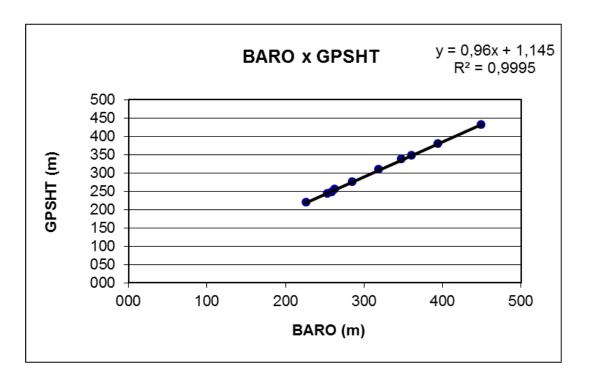


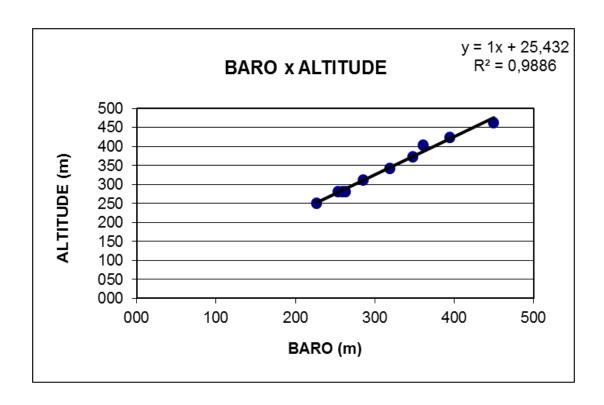


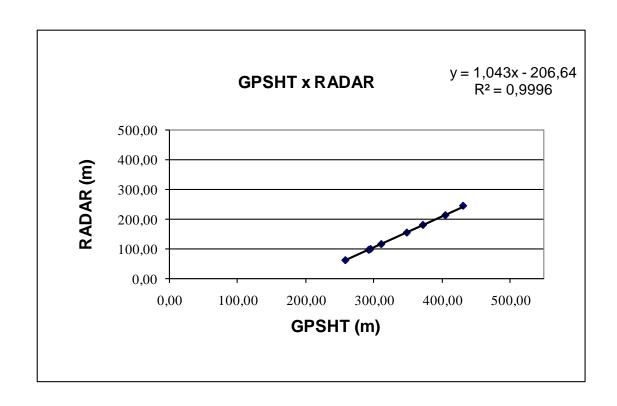


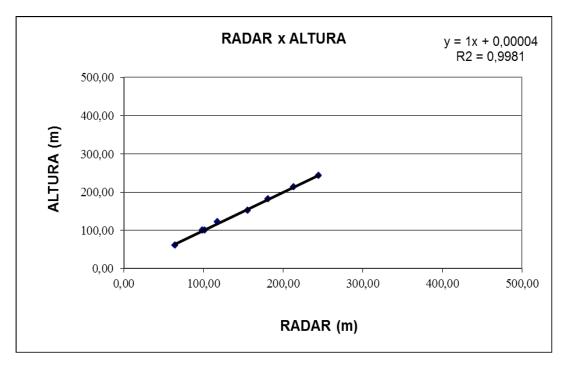

Nº Projeto	AGFW43-2009
Base	Apuí - AM
Aeronave	PT-DYK
Data	24/11/2009
Nº Vôo	300

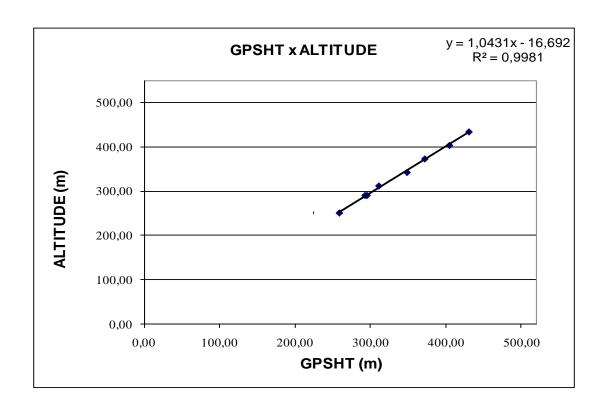
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO(m)	BARÔMETRO (m)
200	60,69	250,69	219,30	72,38	226,27
300	91,44	281,44	246,44	96,48	259,05
300	91,44	281,44	243,34	97,84	253,33
300	91,44	281,44	255,25	97,67	262,92
400	121,92	311,92	276,09	117,47	285,70
500	152,40	342,40	308,36	148,72	319,21
600	182,88	372,88	336,80	173,98	348,07
700	213,36	403,36	346,73	198,62	360,76
800	234,84	424,84	380,18	224,15	394,22
900	273,42	463,42	432,06	256,36	449,83



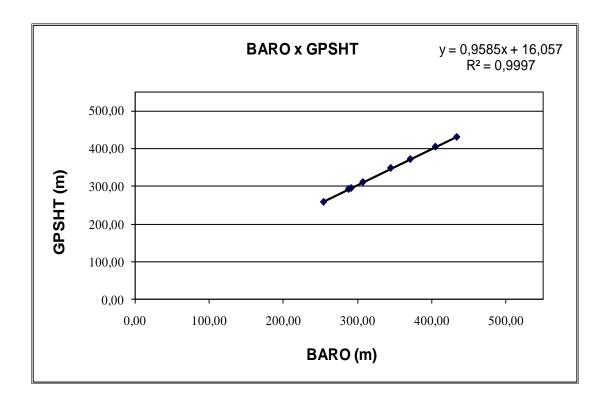


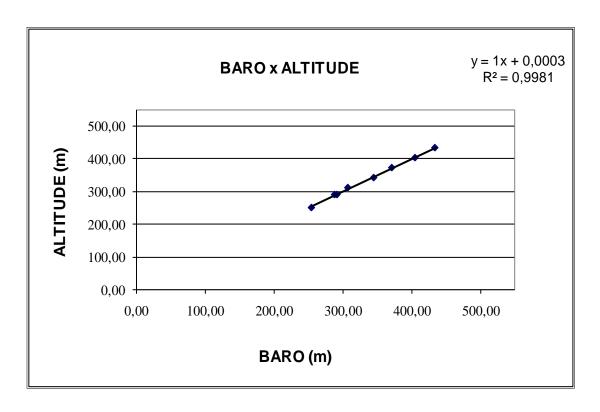


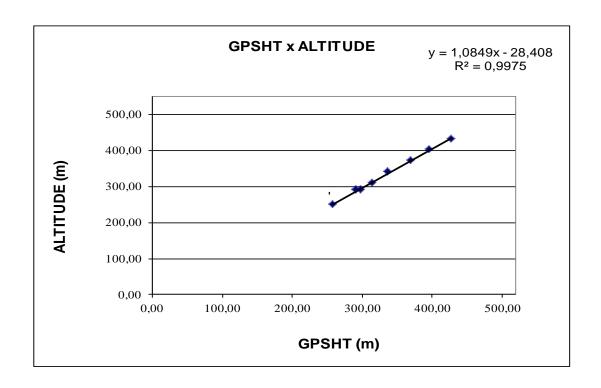


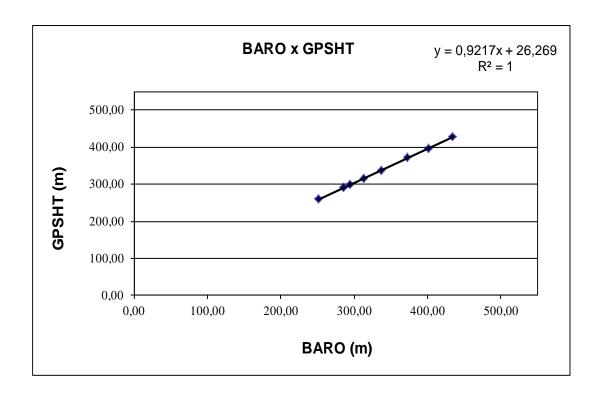

N° Projeto	AGFW43-2009
Base	Apuí - AM
Aeronave	PR-PEC
Data	20/11/2009
N° Vôo	003

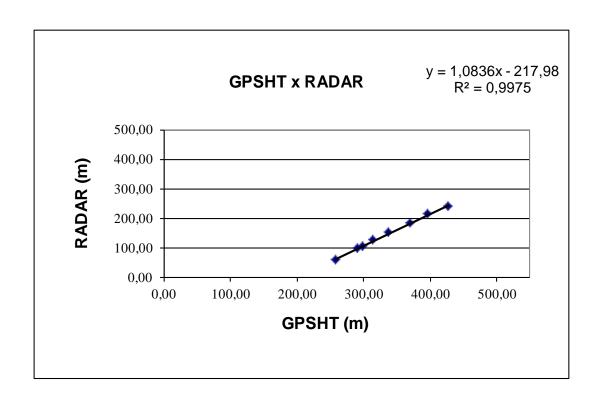
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO(m)	BARÔMETRO (m)
200	60,96	250,96	258,54	64,11	254,45
330	100,58	290,58	292,74	98,49	288,11
330	100,58	290,58	295,33	101,28	291,57
400	121,92	311,92	311,00	117,57	307,36
500	152,40	342,40	348,35	155,73	344,94
600	182,88	372,88	371,94	181,20	371,23
700	213,36	403,36	404,67	213,37	404,99
800	243,84	433,84	430,54	244,77	433,87



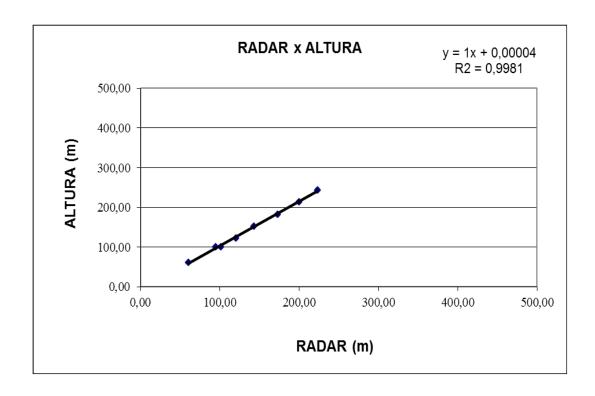


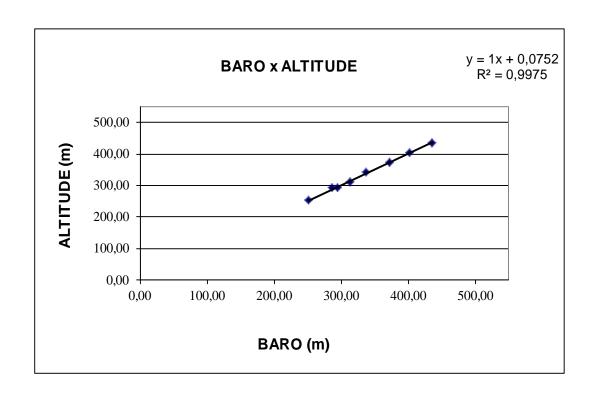


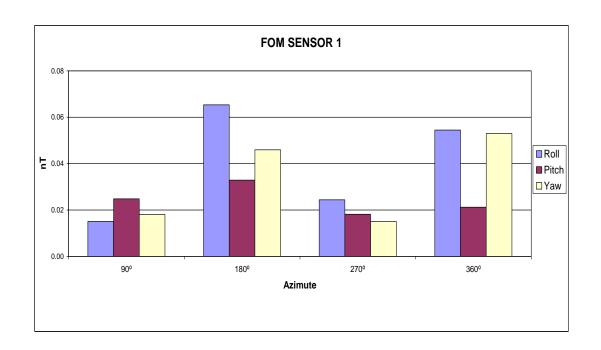



N° Projeto	AGFW43-2009
Base	Apuí - AM
Aeronave	PR-PEC
Data	10/06/2010
N° Vôo	901

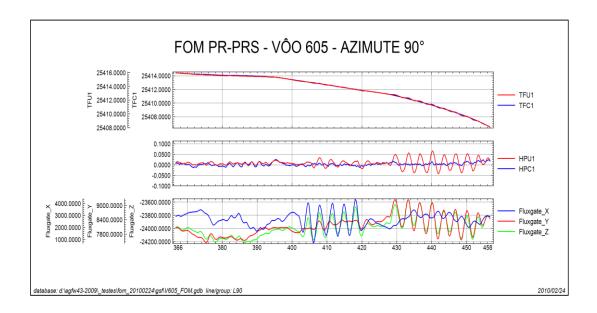
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	250,96	258,19	60,21	251,85
330	100,58	290,58	298,67	101,70	295,24
330	100,58	290,58	291,03	95,11	286,58
400	121,92	311,92	314,72	120,65	313,53
500	152,40	342,40	337,30	143,37	337,76
600	182,88	372,88	370,44	172,65	373,17
700	213,36	403,36	396,64	199,86	402,17
800	243,84	433,84	428,05	223,34	435,64

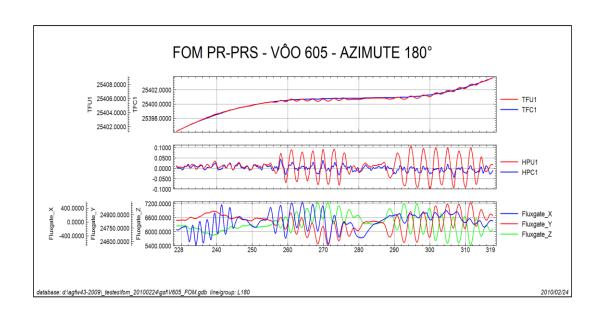




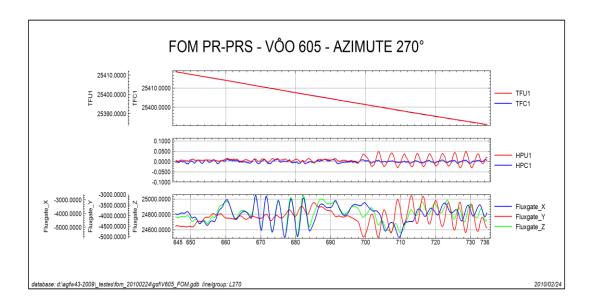


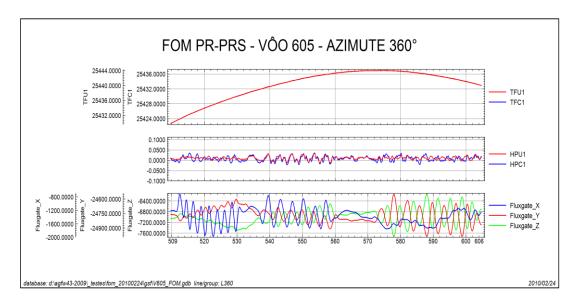
Anexo II-b – Compensação Magnética

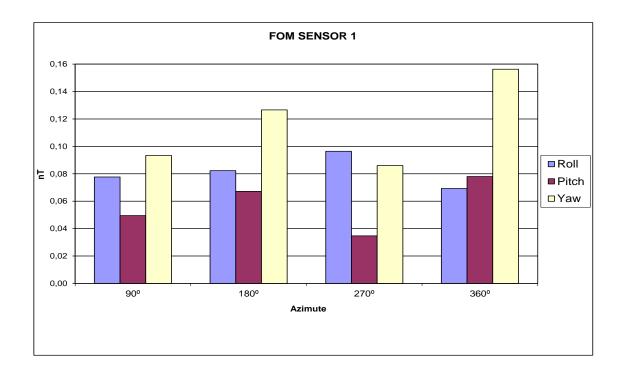



Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PR-PRS
Data	24/02/2010
Nº Vôo	605

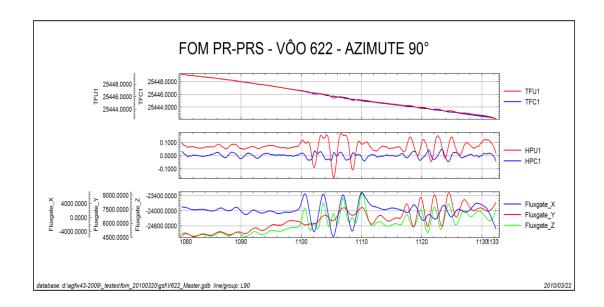
SENSOR 1					
N° da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
90	90°	0,02	0,02	0,02	0,06
180	180°	0,07	0,03	0,05	0,15
270	270°	0,02	0,02	0,02	0,06
360	360°	0,05	0,02	0,05	0,12
				TOTAL	0,39

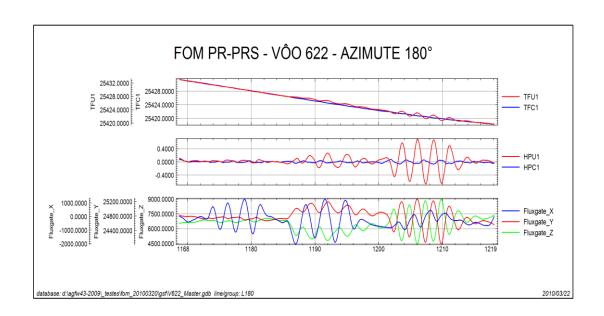




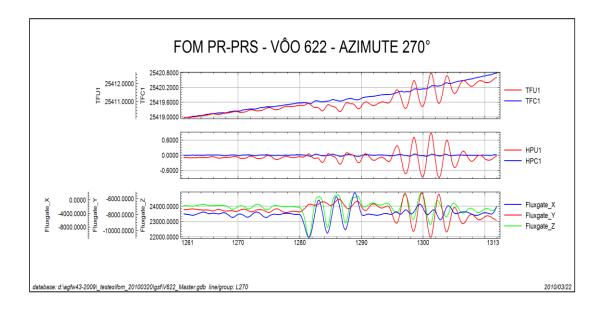


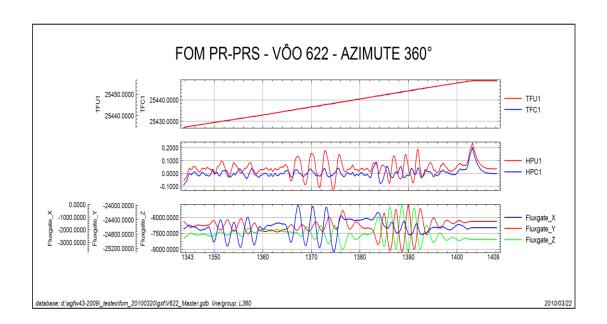
- TFU1 Campo Magnético Total não Compensado.
- TFC1 Campo Magnético Total Compensado.
- $HPU1-Filtro\ passa-alta\ (8s)\ aplicado\ sobre\ Campo\ Magnético\ Total\ n\~{a}o\ Compensado.$
- HPC1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total Compensado.
- FluxgateX Componente X da Fluxgate.
- FluxgateY Componente Y da Fluxgate.
- FluxgateZ Componente Z da Fluxgate.

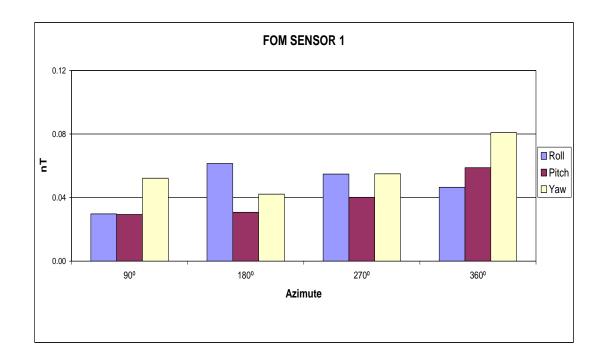



Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PR-PRS
Data	21/03/2010
Nº Vôo	622

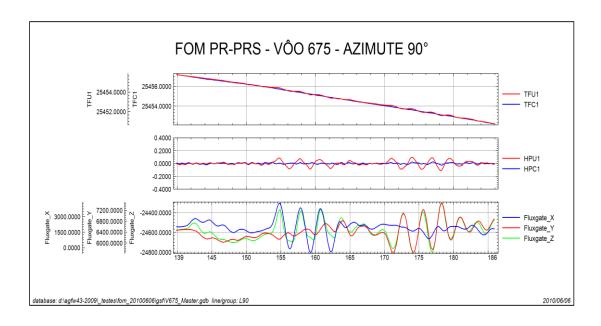
SENSOR 1					
N° da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
90	90°	0,08	0,05	0,09	0,22
180	180°	0,08	0,07	0,13	0,28
270	270°	0,10	0,03	0,09	0,22
360	360°	0,07	0,08	0,16	0,31
		-		TOTAL	1,03

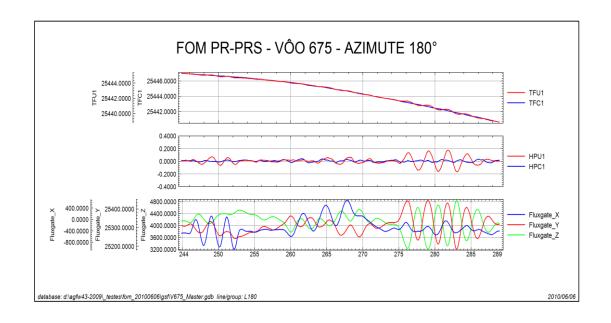




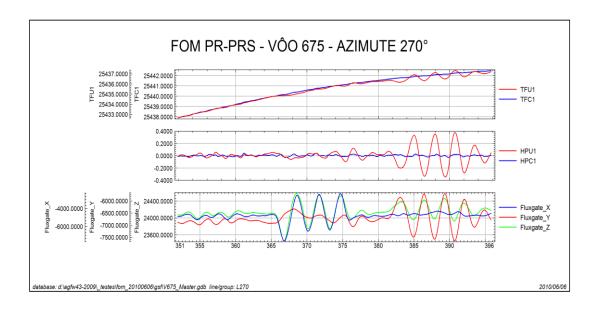


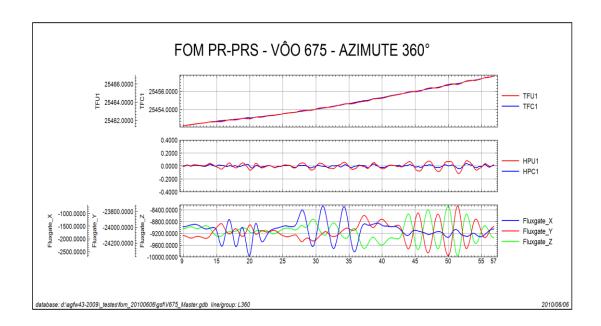
- TFU1 Campo Magnético Total não Compensado.
- TFC1 Campo Magnético Total Compensado.
- HPU1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total não Compensado.
- HPC1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total Compensado.
- FluxgateX Componente X da Fluxgate.
- FluxgateY Componente Y da Fluxgate.
- FluxgateZ Componente Z da Fluxgate.

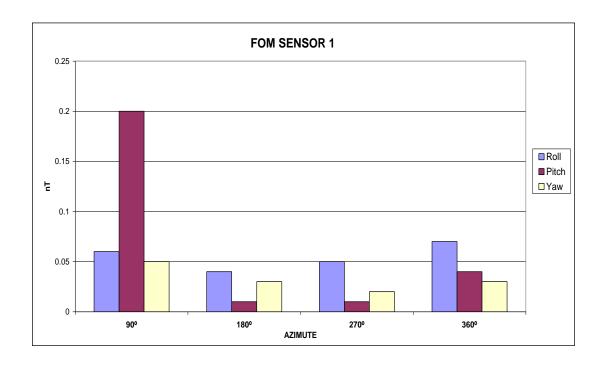



Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PR-PRS
Data	06/06/2010
Nº Vôo	675

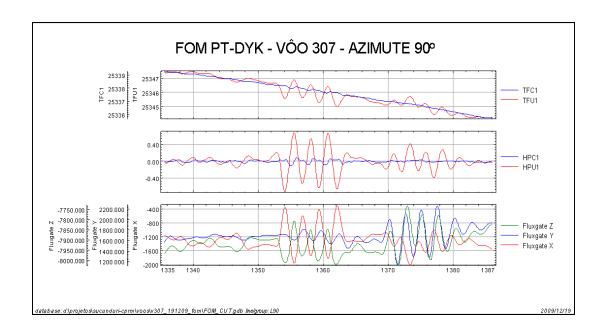
SENSOR 1					
N° da Linha	N° da Linha Azimute	ROLL	PITCH	YAW	FOM
1\ uu ziiiu		(nT)	(nT)	(nT)	(nT)
90	90°	0,03	0,03	0,05	0,11
180	180°	0,06	0,03	0,04	0,13
270	270°	0,05	0,04	0,05	0,14
360	360°	0,05	0,06	0,08	0,19
				TOTAL	0,57

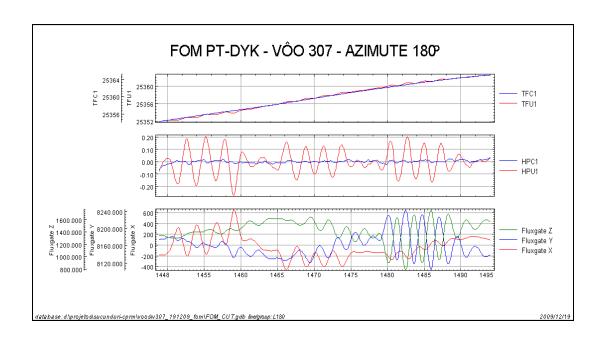




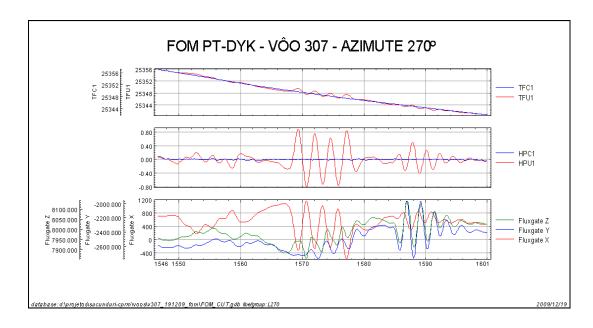


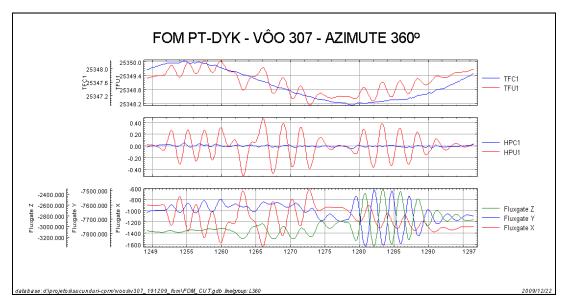
- TFU1 Campo Magnético Total não Compensado.
- $TFC1-Campo\ Magn\'etico\ Total\ Compensado.$
- HPU1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total não Compensado.
- HPC1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total Compensado.
- FluxgateX Componente X da Fluxgate.
- FluxgateY Componente Y da Fluxgate.
- FluxgateZ Componente Z da Fluxgate.

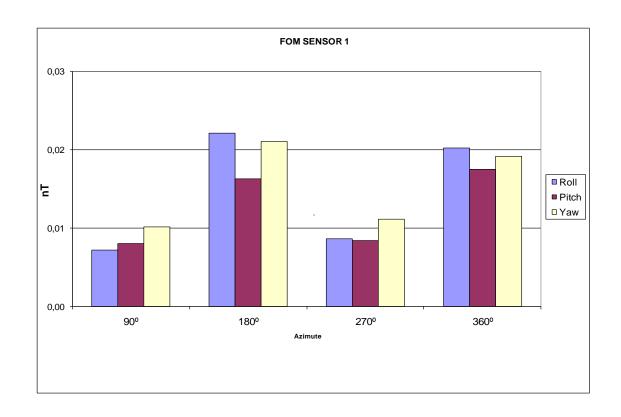



Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PT-DYK
Data	19/12/2009
Nº Vôo	307

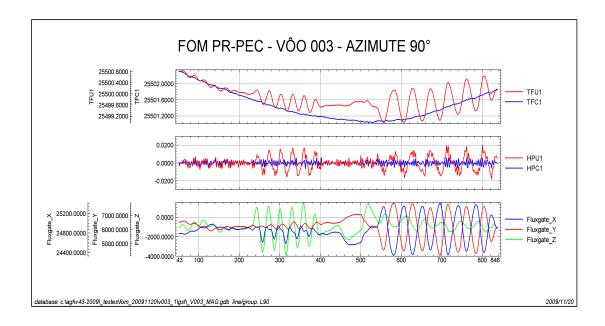
SENSOR 1					
NIO do I imbo	A4 a	ROLL	PITCH	YAW	FOM
N° da Linha	Azimute	(nT)	(nT)	(nT)	
90	90°	0,06	0,20	0,05	0,31
180	180°	0,04	0,01	0,03	0,08
270	270°	0,05	0,01	0,02	008
360	360°	0,07	0,04	0,03	0,14
				TOTAL	0,61





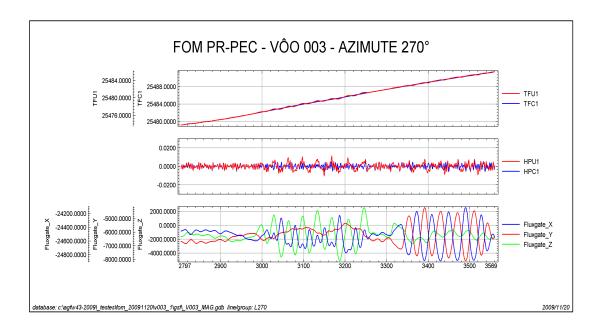


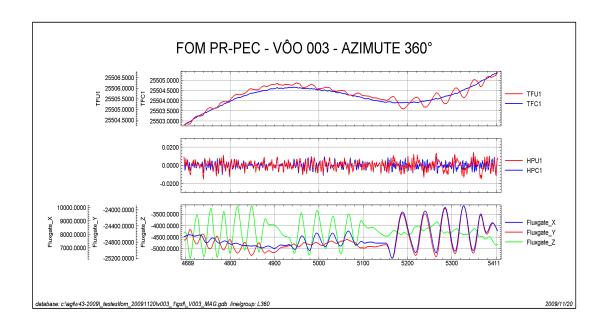
- TFU1 Campo Magnético Total não Compensado.
- TFC1 Campo Magnético Total Compensado.
- HPU1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total não Compensado.
- HPC1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total Compensado.
- FluxgateX Componente X da Fluxgate.
- FluxgateY Componente Y da Fluxgate.
- FluxgateZ Componente Z da Fluxgate.



Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PR-PEC
Data	20/11/2009
Nº Vôo	003

SENSOR 1					
N° da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
90	90°	0,01	0,01	0,01	0,03
180	180°	0,02	0,02	0,02	0,06
270	270°	0,01	0,01	0,01	0,03
360	360°	0,02	0,02	0,02	0,06
				TOTAL	0,18





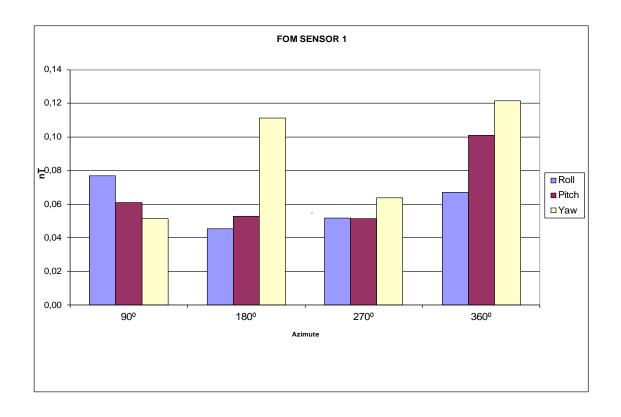
TFU1 – Campo Magnético Total não Compensado.

TFC1 – Campo Magnético Total Compensado.

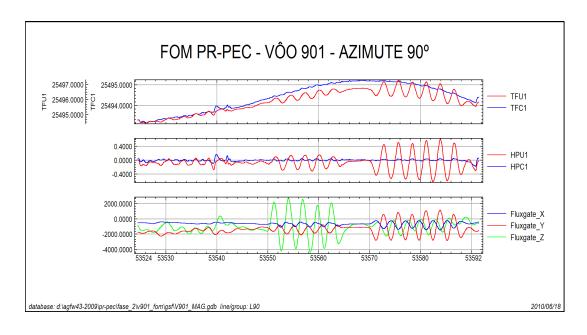
HPU1 – Filtro passa-alta (8s) aplicado sobre Campo Magnético Total não Compensado.

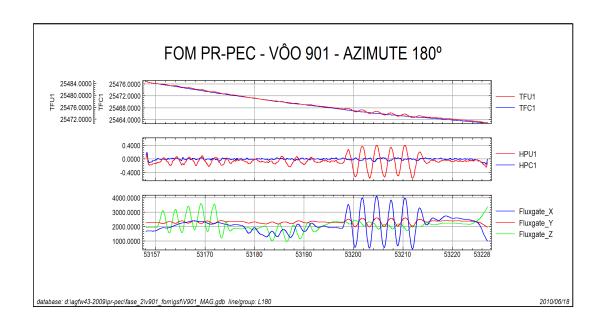
HPC1 – Filtro passa-alta (8s) aplicado sobre Campo Magnético Total Compensado.

FluxgateX – Componente X da Fluxgate.

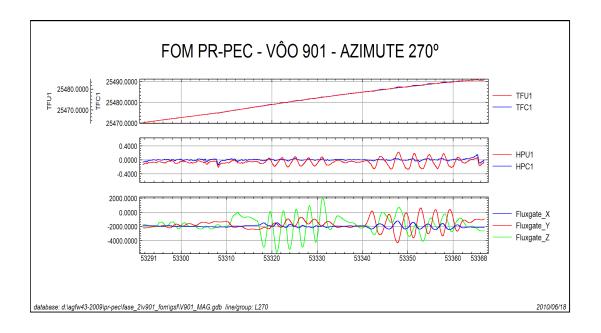

 $Fluxgate Y-Componente\ Y\ da\ Fluxgate.$

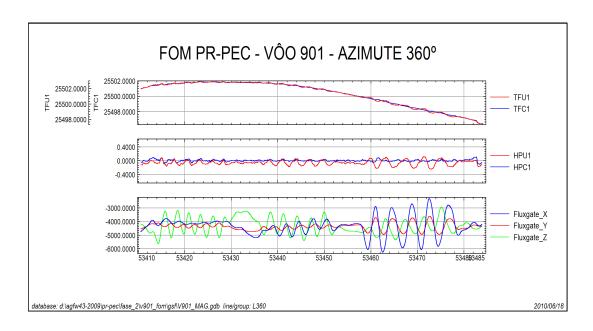
FluxgateZ – Componente Z da Fluxgate.

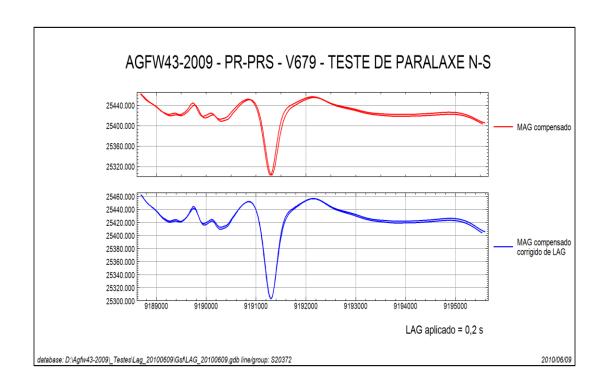



Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PR-PEC
Data	10/06/2010
Nº Vôo	901

SENSOR 1					
N° da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
90	90°	0,08	0,06	0,05	0,19
180	180°	0,05	0,05	0,11	0,21
270	270°	0,05	0,05	0,06	0,16
360	360°	0,07	0,10	0,12	0,29
				TOTAL	0,85

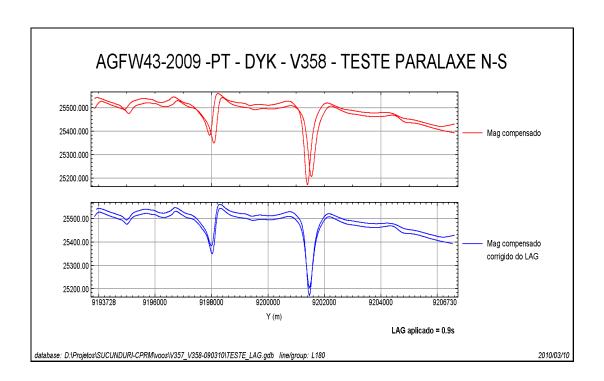





- TFU1 Campo Magnético Total não Compensado.
- TFC1 Campo Magnético Total Compensado.
- HPU1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total não Compensado.
- HPC1 Filtro passa-alta (8s) aplicado sobre Campo Magnético Total Compensado.
- FluxgateX Componente X da Fluxgate.
- FluxgateY Componente Y da Fluxgate.
- FluxgateZ Componente Z da Fluxgate.

Anexo II-c – Teste de Paralaxe

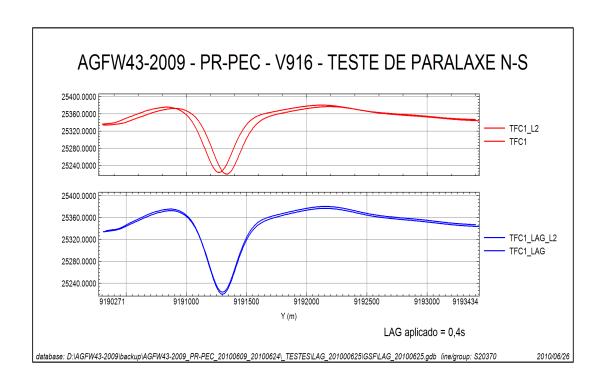
Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PR-PRS
Data	09/06/2010
Nº Vôo	679



MAG Compensado = Campo Magnético Total Compensado

MAG Compensado corrigido de LAG = Campo Magnético Total Compensado Corrigido Paralaxe (0,20 segundos)

Nº Projeto	AGFW43-2009
Base	Apuí - AM
Aeronave	PT-DYK
Data	09/03/2010
Nº Vôo	358



Mag Compensado = Campo Magnético Total Compensado

Mag Compensado corrigido do LAG = Campo Magnético Total Compensado Corrigido Paralaxe (0,9 segundos)

Nº Projeto	AGFW43-2009
Base	Apuí – AM
Aeronave	PR-PEC
Data	25/06/2010
Nº Vôo	916

MAG Compensado = Campo Magnético Total Compensado

MAG Compensado corrigido de LAG = Campo Magnético Total Compensado Corrigido Paralaxe (0,40 segundos)

ANEXO III – QUADROS SINÓPTICOS DAS OPERAÇÕES DE CAMPO

ANEXO IV – CONTEÚDO DO CD-ROM E DOS DVDs-ROM

Este arquivo apresenta a relação do conteúdo dos arquivos digitais que compõe o acervo do Projeto Aerogeofísico Sucunduri.

Um total de 1 CD-ROM e 4 DVDs-ROM compõem a totalidade dos arquivos conforme descrito abaixo:

Mídia	Conteúdo	
CD#01	Relatório Final, Arquivo de Metadados do Projeto e Arc Gis Engine	
	Grids	
DVD#01	Arquivos de Mapas Geosoft	
	Arquivos de Poligonais das Folhas 1:100.000, 1:250.000 e 1:500.000	
	Geosoft PLY	
	Arquivos com as articulações das Folhas 1:100.000, 1:250.000 e	
DAIDHOO	1:500.000	
DVD#02	Banco de Dados <i>Geosoft</i>	
Arquivos XYZ - Magnetometria e Gamaespectrometria		
DVD#03	Arquivos de Plotagem HPGL	
DVD#04	Arquivos de Mapas em formato PDF	

Estrutura dos Arquivos de Mapas:

A codificação para os arquivos de mapas é apresentada a seguir, onde o asterístico presente refere-se a codificação das folhas:

1098_*_1DV = 1^a. Derivada Vertical do Campo Magnético Total (Reduzido do IGRF)

1098_*_MAG = Campo Magnético Total (Reduzido do IGRF)

1098_*_SA = Sinal Analítico do Campo Magnético Total

1098_MDT = Modelo Digital do Terreno

 1098_* _CTexp = Contagem Total (μ R/h)

1098_*_Kperc = Potássio (%)

 $1098_*eU = Urânio (ppm)$

 1098_* _eTh = Tório (ppm)

1098_*_ThKrazao = Razão Tório/Potássio

1098_*_UThrazao = Razão Urânio/Tório

1098_*_ThKrazao = Razão Tório/Potássio

1098_*_UKrazao = Razão Urânio/Potássio

1098 TERNÁRIO = Ternário (K-U-Th)

Exemplos:

1098_SB-21-Y-A-I_MAG.map = *Geosoft* MAP da Folha SA.21-Y-A-I Escala 1:100.000 do Campo Magnético Total (Reduzido do IGRF)

1098_SA-21-Y-A_SA.map = *Geosoft* MAP da Folha SA.21-Y-A Escala 1:250.000 do Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)

1098_ThKrazao.map = *Geosoft* MAP da Folha Única na Escala 1:500.000 da Razão Tório/Potássio

Observações:

A codificação para os arquivos HGPL segue a mesma regra utilizada para os arquivos de Mapas *Geosoft* (*.map).

A sigla HPGL significa: Hewlett-Packard Graphics Language.

O prefixo 1098 em todos os arquivos corresponde ao nº do projeto na Base Aero da CPRM.

Relação dos Arquivos: georeferenciados a zona UTM 21S (Meridiano Central 57°W Gr).

Arquivos de GRIDS:

Arquivo	Conteúdo	Unidade
1098_MAG.grd	Campo Magnético Total (Reduzido IGRF)	nT
1098_1DV.grd	1a. Derivada Vertical do Campo Magnético Total	nT/m
1098_SA.grd	Sinal Analítico do Campo Magnético Total	nT/m
1098_CTexp.grd	Taxa de Exposição da Contagem Total	μR/h
1098_Kperc.grd	Concentração de Potássio	%
1098_eU.grd	Concentração de Urânio	ppm
1098_eTh.grd	Concentração de Tório	ppm
1098_ThKrazao.grd	Razão Tório/Potássio	-
1098_UKrazao.grd	Razão Urânio/Potássio	-
1098_UThrazao.grd	Razão Urânio/Tório	-
1098_MDT.grd	Modelo Digital do Terreno	m

Arquivos de Banco de Dados GDB:

Arquivo	Conteúdo	
1098_GamaLine.gdb	Banco de dados de gamaespectrometria com as linhas de vôo	
1098_GamaTie.gdb	Banco de dados de gamaespectrometria com as linhas de controle	
1098_MagLine.gdb	Banco de dados de magnetometria com as linhas de vôo	
1098_MagTie.gdb	Banco de dados de magnetometria com as linhas de controle	
1098_Gama256.gdb	Banco de dados de gamaespectrometria com os 256 canais up e down	

Arquivos de Banco de Dados XYZ:

Arquivo	Conteúdo	
1098_GamaLine.XYZ	Gamaespectrometria Linhas de Vôo	
1098_GamaTie.XYZ	Gamaespectrometria Linhas de Controle	
1098_MagLine.XYZ	Magnetometria Linhas de Vôo	
1098_MagTie.XYZ	Magnetometria Linhas de Controle	

Arquivos de cruzamentos:

Arquivo	Conteúdo	
1098_Cruzamentos.XYZ	Cruzamentos do Nivelamento Magnetométrico	

Arquivos de Poligonais:

Arquivo	Conteúdo
1098_SB-21-Y-A-I	Polígono Referente à Folha SB.21-Y-A-I
1098_SB-21-Y-A-II	Polígono Referente à Folha SB.21-Y-A-II
1098_SB-21-Y-A-III	Polígono Referente à Folha SB.21-Y-A-III
1098_SB-21-Y-A-IV	Polígono Referente à Folha SB.21-Y-A-IV
1098_SB-21-Y-A-V	Polígono Referente à Folha SB.21-Y-A-V
1098_SB-21-Y-A-VI	Polígono Referente à Folha SB.21-Y-A-VI
1098_SB-21-Y-C-I	Polígono Referente à Folha SB.21-Y-C-I
1098_SB-21-Y-C-II	Polígono Referente à Folha SB.21-Y-C-II
1098_SB-21-Y-C-III	Polígono Referente à Folha SB.21-Y-C-III
1098_SB-21-Y-C-IV	Polígono Referente à Folha SB.21-Z-C-IV
1098_SB-21-Y-D-V	Polígono Referente à Folha SB.21-V-C-V
1098_SB-21-Y-D-VI	Polígono Referente à Folha SB.21-V-C-VI
1098_SC-21-V-A-I	Polígono Referente à Folha SC.21-V-A-I
1098_SC-21-V-A-II	Polígono Referente à Folha SC.21-X-A-II
1098_SC-21-V-A-III	Polígono Referente à Folha SC.21-V-A-III
1098_SC-21-V-A-IV	Polígono Referente à Folha SC.21-V-A-IV
1098_SC-21-V-A-V	Polígono Referente à Folha SC.21-V-A-V
1098_SC-21-V-A-VI	Polígono Referente à Folha SC.21-V-A-VI
1098_SB-21-Y-A	Polígono Referente à Folha SB.21-A
1098_SB-21-Y-C	Polígono Referente à Folha SB.21-C
1098_SC-21-V-A	Polígono Referente à Folha SA.21-A

A descrição dos campos nos arquivos de Banco de Dados (GDB e XYZ), bem como a dos arquivos de perfis e cruzamentos, encontra-se no texto do Relatório Final e no Anexo V.

ANEXO V – FORMATO DE GRAVAÇÃO DOS DADOS DO PROJETO

PROJETO AEROGEOFÍSICO SUCUNDURI FORMATO DIGITAL DOS DADOS MAGNÉTICOS PARA AS LINHAS DE VÔO - LINES FOLHA 1 de 1 95 Z9 MAGCOR (CORNIGIDO) (F10.3) (In) Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS MAGNETOMÉTRICOS (LINHAS DE VÔO - LINES) 95 95 95 -06 90 9 (F10.3) 85 85 85 8 80 (HH:MM:SS:S) Z17 HORA (A10) (F10.3) (Tu) 2 2 Z16 DATA (A10) 65 Z6 MAGBASE (F10.3) (In) 65 65 65 -09 9 (GRAUS DECIMAIS) 9 9 Z15 LATITUDE (F11.6) (F8.2) Z5 MDT (E) 55 55 -55 20 Z4 ALTURA (RADAR ALTÍMETI 20 20 (E) (F8.2) (GRAUS DECIMAIS) LONGITUDE Z14 (F11.6) 45 45 Z3 BARO (F8.2) (E 4 40 4 40 Z13 (F10.3) (Lu) Z2 GPSALT ALTITUDE GPS) 35 (F8.2) $\widehat{\underline{\epsilon}}$ 30 30 30 MAGIGRF (IGRF) Z12 (F10.3) 25 Z1 FIDUCIAL (Lu) (F8.1) 25 20 MAGMIC MICRONIVELADO) Z11 (F10.3) (nT) F10.0 15 NÚMERO DA LINHA 0 10 COORDENADA UTM LESTE Z10 MAGNIV (NIVELADO) (F10.3) (LU) F10.0 (m) LINE REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE MAGNÉTICO

PROJETO AEROGEOFÍSICO SUCUNDURI FORMATO DIGITAL DOS DADOS MAGNÉTICOS PARA AS LINHAS DE CONTROLE -TIES FOLHA 1 de 1 295 Z9 MAGCOR (CORRIGIDO) Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS MAGNETOMÉTRICOS (LINHAS DE CONTROLE - TIES) (F10.3) 95 95 -8 90 -06 (F10.3) 85 85 80 8 Z17 HORA (A10) (F10.3) (In) 75 2 Z16 DATA (A10) 65 Z6 MAGBASE (F10.3) 65 92 9 (GRAUS DECIMAIS) 09 09 Z15 LATITUDE (F11.6) (F8.2) Z5 55 55 55 Z4 ALTURA (RADAR ALTIMET 20 (F8.2) (GRAUS DECIMAIS) Z14 LONGITUDE (F11.6) 45 (F8.2) 40 40 Z13 (F10.3) 35 35 (m) (F8.2) Z12 MAGIGRF (IGRF) (F10.3) 25 Z1 FIDUCIAL 25 20 Z11 F10.0 15 10 NÚMERO DA LINHA COORDENADA UTM LESTE Z10 MAGNIV (NIVELADO) (F10.3) 里 REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE MAGNÉTICO

E LINHAS D	E CONTROLE			FOLHA	1 de 1
	96 06	96	56 06	56 06	
	85 Z7 Z VÕO	(4) (4) (8)		80 85	
	75 Z6 RESIDUO (25-24)	(F8.3) 75	75	75	
	65 70 ZS MAGNIV (WWRELDO)	(£10.3) 	65 70	65 70	
	24 Z4 MAGCOR (CORRISIDO)	(F10.3) 	09 55	99 255	
	40 45 50 Z3 ATURA (M) (m)	(F8.2) 40 45 50	40 45 50	45 50	
	35 4 35 4 2 2 2 2 2 3 35 44 4 3 35 44 3 4 4 3 4 4 4 4 4 4 4	(182)	35 4	35 40	
	25 30 Z1 FIDUCIAL	(F8.2) 25 30	25 30	25 30	
	15 20 COONDENADA UTM NORTE	F10.0	15 20	15 20	
NÚMERO DA LINHA	S 10 X COORDENADA UTM LESTE	5 10	5 10	5 10	
OOL	COOF		E		

PROJETO AEROGEOFÍSICO SUCUNDURI FORMATO DIGITAL DOS DADOS RADIOMÉTRICOS PARA AS LINHAS DE VÔO - LINES FOLHA 1 de 1 Z12 cósmico (CPS) (F6.0) Z23 UKRAZÃO (F9.3) LIVE_TIME 95 95 Z11 (F6.0) (ms) Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS RADIOMÉTRICOS (LINHAS DE VÔO - LINES) 90 Z22 THKRAZÃO Z10 (F6.0) (CPS) 85 Z9 (CPS) (F6.0) eTH TRAÇÃO DE TH) 80 Z21 (F9.3) Z8 (F6.0) (CPS) (F6.0) 70 Z20 (CPS) Z Z Z eU TRAÇĀ (F9.3) -2 70 65 65 65 9Z (CPS) (F6.0) 60 Z19 (F9.3) -09 09 09 (m) (F8.2) Z5 55 55 55 Z18 CTEXP (F9.3) Z4 ALTURA 20 (HH:MM:SS:S) Z28 HORA (A10) Z17 THCOR (CPS) (F9.3) Z3 BARO 40 40 Z27 DATA (A10) Z2 GPSALT LTTUDE GPS) Z16 (CPS) (F9.3) 30 (GRAUS DECIMAIS) Z26 (F11.6) 25 Z1 FIDUCIAL (F8.1) Z15 KCOR (F9.3) (GRAUS DECIMAIS) COORDENADA UTM NORTE LONGITUDE Z14 **Z25** (F9.3) (CPS) (F11.6) F10.0 15 NÚMERO DA LINHA Z13 COORDENADA UTM LESTE (F8.2) Z24 UTHRAZÃO F10.0 (m) LINE REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE ADIOMÉTRICO REGISTRO DE DETALHE ADIOMÉTRICC

PROJETO AEROGEOFÍSICO SUCUNDURI FORMATO DIGITAL DOS DADOS RADIOMÉTRICOS PARA AS LINHAS DE CONTROLE - TIES FOLHA 1 de 1 Z12 cósmico Z23 UKRAZÃO (F9.3) Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS RADIOMÉTRICOS (LINHAS DE CONTROLE - TIES) 95 95 (F6.0) (ms) -06 Z22 THKRAZÃO Z10 (F6.0) (CPS) (F9.3) 85 85 (F6.0) Z9 (CPS) 80 80 Z21 (F9.3) Z8 UB (F6.0) (CPS) 75 (CPS) (F6.0) 70 Z20 5 7 8 (F9.3) 2 65 65 26 GTB (F6.0) (CPS) 219 KPERC (F9.3) 9 09 9 (F8.2) Z5 55 55 55 -52 (F9.3) Z4 ALTURA (RADAR ALTÍMETRO) 20 20 -29 50 (HH:MM:SS:S) Z28 HORA (A10) 45 Z17 THCOR (F9.3) (CPS) Z3 BARO 40 40 40 Z27 DATA (A10) Z2 GPSALT LTITUDE GPS) 35 Z16 UCOR (F9.3) (F8.2) (CPS) 30 30 -00 30 (F11.6) 25 Z1 FIDUCIAL Z15 25 KCOR (CPS) 25 20 Z14 (F9.3) F10.0 15 15 10 10 NÚMERO DA LINHA 10 Z13 COORDENADA UTM LESTE Z24 UTHRAZÃO TE REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE ADIOMÉTRICE REGISTRO DE DETALHE ADIOMÉTRICE

ANEXO VI – LISTAGEM DAS LINHAS APROVADAS E UTILIZADAS NO PROCESSAMENTO

Linha	Voo	Fiducial Inicial	Fiducial Final
11170	301	1294.6	3099.6
11171	310	3098.8	4207.6
11172	367	3271.4	4582.4
11173	368	2043.1	2510.0
11180	301	3271.7	7626.2
11190	301	7817.6	12409.4
11200	301	12562.0	13120.0
11201	303	2284.3	5749.5
11202	306	5836.7	6296.4
11210	302	1206.9	3029.3
11211	306	5132.6	5588.2
11212	313	5444.5	7519.2
11213	356	4753.6	5053.0
11220	302	3201.7	7560.5
11230	302	7717.1	12363.4
11240	302	12511.2	14213.5
11241	309	10608.1	13201.5
11242	345	938.6	1101.1
11250	304	1064.9	2924.1
11251	305	7492.2	10089.7
11252	345	1276.3	1444.6
11260	304	3076.9	5935.6
11261	305	5666.7	7346.1
11262	345	5125.5	5287.0
11270	304	6067.3	8856.7
11271	305	3659.0	5301.2
11272	345	4330.7	4494.3
11280	304	9000.9	10860.3
11281	305	727.7	3521.4
11290	306	577.8	1416.0
11291	306	6444.5	8815.0
11292	314	4827.4	5936.4
11293	355	10046.9	10346.6
11300	306	1485.8	4973.0
11301	314	2967.9	4060.9
11310	308	1595.0	3019.2
11311	308	7933.6	11174.0
11320	308	3184.5	7794.5
11330	309	718.0	2437.5
11331	309	7295.0	10278.0
11340	309	2611.2	7155.4
11350	310	891.6	2437.1
11351	312	1117.8	2820.5
11352	323	7318.2	8595.9
11360	312	2977.7	7318.7
11370	311	1140.8	2787.1
11371	311	7614.7	10491.6
11380	311	2915.4	7466.5
11390	312	7426.6	11843.7
-	•	•	•

Linha	Voo	Fiducial Inicial	Fiducial Final
11400	312	11976.1	12645.7
11401	313	1362.6	4850.7
11402	366	1762.4	1938.5
11410	314	922.0	2793.2
11411	323	3647.7	6124.5
11412	350	5639.0	5920.1
11420	314	6104.4	7942.0
11422	323	930.5	3434.4
11423	328	9169.9	9334.9
11430	314	8091.0	10033.0
11431	323	8817.2	11273.8
11432	328	9825.6	10128.4
11440	314	10155.8	11830.0
11441	328	2283.3	4994.7
11450	315	1020.7	2773.6
11451	328	5275.2	7720.5
11452	328	8261.2	8704.9
11460	315	2914.4	5312.5
11461	324	1594.6	3700.4
11470	315	5572.3	7997.5
11471	350	3272.2	5319.0
11480	315	8143.5	10533.0
11481	350	1070.2	3028.1
11490	316	1251.8	2741.7
11491	329	3938.0	6903.8
11492	355	8400.0	8566.8
11500	316	2888.8	4657.6
11501	329	870.4	3490.1
11502	355	4142.0	4317.1
11510	316	4832.7	6724.5
11511	345	7805.5	10439.2
11520	316	6868.3	8609.0
11521	335	1421.8	1986.3
11522	355	1437.3	3619.2
11530	316	8817.3	10743.3
11531	325	1969.6	2569.8
11532	355	4505.4	6674.1
11540	316	10878.1	11677.0
11541	319	1293.8	1852.9
11542	345	2548.9	3940.7
11543	345	5854.0	7597.8
11550	317	1030.9	2779.1
11551	335	2102.9	2669.7
11552	356	2549.1	3842.8
11553	365	3185.7	4178.4
11560	318	3136.7	5380.3
11561	326	1571.0	3746.6
11570	318	965.8	2891.1
11571	326	3986.8	6132.7

Linha	Voo	Fiducial Inicial	Fiducial Final
11572	367	5631.5	6226.4
11580	318	8110.7	10610.7
11581	356	1355.8	2344.9
11582	365	4357.1	5365.5
11590	318	5586.8	7910.4
11591	361	10738.6	13025.8
11600	320	3105.4	5631.6
11601	358	1231.5	1929.2
11602	365	1734.8	3015.6
11610	320	1102.1	2902.6
11611	335	7766.0	8855.0
11612	365	5521.5	7057.7
11613	367	5069.3	5242.1
11620	320	8596.4	11156.5
11621	364	1391.6	3378.9
11630	320	5813.3	8384.6
11631	364	3609.2	5558.3
11640	321	3076.9	4292.4
11641	335	6757.6	7713.9
11642	364	5960.6	7660.1
11643	366	3442.6	4160.5
11650	321	1808.5	2878.5
11651	335	4702.2	5394.0
11652	365	8906.5	10860.6
11653	366	2251.5	3197.8
11660	322	9066.1	11574.4
11661	362	1374.7	2216.8
11662	365	7524.1	8663.3
11670	322	766.4	2779.8
11671	358	2090.3	3394.9
11672	363	3418.6	4724.0
11680	322	2965.1	5870.7
11681	364	9681.5	11233.5
11690	322	5988.5	8899.6
11691	364	11476.2	13012.4
11700	324	8972.6	11021.8
11701	335	4066.3	4630.9
11702	361	1402.5	3399.7
11710	324	4070.4	8759.7
11720	327	2559.0	5446.5
11721	363	1548.3	3212.1
11730	327	593.7	2346.0
11731	327	5605.2	6762.0
11732	334	10675.4	12305.1
11733	348	6453.8	6625.6
11740	330	2984.5	7524.1
11750	330	1067.6	2757.2
11751	330	7737.4	10648.9
11760	334	6062.0	10500.6

Linha	Voo	Fiducial Inicial	Fiducial Final
11770	331	4078.8	6935.7
11771	332	1237.7	1921.9
11772	334	4909.9	5861.9
11780	331	1180.0	3877.9
11781	332	2137.1	3004.3
11782	334	3299.2	4278.3
11790	333	6848.3	10192.6
11791	334	1004.1	1955.0
11792	363	12788.3	13091.7
11800	333	2579.1	6643.0
11801	334	2150.8	2462.6
11810	333	785.8	2292.9
11811	334	2826.3	3127.2
11812	364	7944.1	9473.6
11813	364	13318.7	14559.6
11820	336	8318.4	10412.4
11821	349	1478.6	3770.6
11830	336	1981.3	3424.7
11831	337	4898.3	5770.2
11832	349	4003.3	6380.8
11840	336	3608.0	5712.9
11841	349	6815.6	9058.8
11850	336	5837.5	8106.6
11851	349	9310.9	11650.3
11860	337	2714.0	4818.8
11861	348	1136.4	3403.4
11870	336	10556.7	11829.4
11871	337	1508.2	2530.2
11872	348	3670.2	6023.6
11880	338	8529.0	10651.7
11881	347	1514.0	3846.9
11890	338	1131.7	3701.8
11891	346	9243.6	11557.9
11900	338	3881.3	6013.8
11901	346	6674.4	9028.9
11910	338	6131.9	8365.9
11911	346	3887.8	6222.2
11920	343	2628.7	4819.8
11921	346	1288.7	3605.5
11930	338	10753.4	11743.5
11931	343	1205.1	2438.3
11932	347	4241.9	6596.1
11940	340	3059.4	4700.8
11941	359	934.3	3900.1
11950	340	1331.7	2862.3
11951	359	4155.3	7221.9
11960	340	6684.8	8311.6
11961	342	1075.1	4035.6
11970	340	4817.6	6485.5

Linha	Voo	Fiducial Inicial	Fiducial Final
11971	361	4153.0	7200.0
11980	341	3464.3	6833.5
11981	363	5003.7	6247.0
11990	339	1099.7	1928.1
11991	347	7358.2	8783.1
11992	366	10015.9	12539.8
12000	340	9534.5	10755.3
12001	359	7791.5	10479.4
12002	360	8633.0	9368.3
12010	340	8418.4	9385.3
12011	359	10710.1	13649.7
12012	360	9600.3	10351.6
12020	360	3805.6	8412.1
12030	340	10833.1	11803.1
12031	354	1944.0	2993.8
12032	354	6949.0	7816.2
12033	357	12678.6	13247.1
12034	363	6458.5	7785.8
12040	342	8903.5	11110.0
12041	360	1124.1	3558.3
12050	341	1122.4	3296.9
12051	363	9386.0	11835.8
12060	343	7319.6	9474.1
12061	361	7916.6	10286.5
12070	341	6980.4	10216.4
12071	357	10568.2	11864.9
12080	341	10405.8	10996.9
12081	347	9540.6	10767.3
12082	357	7507.6	10295.4
12090	342	4243.9	8744.2
12100	344	1230.1	4006.2
12101	366	5333.1	7127.3
12110	343	4996.4	7170.3
12111	344	4303.7	6668.5
12120	354	3440.6	6737.5
12121	363	7941.2	9183.0
12130	343	9573.4	11750.3
12131	357	4553.8	6969.3
12140	357	1497.0	4275.8
12141	360	10606.2	12519.7
12150	353	1906.0	3821.3
12151	353	4325.3	4500.3
12152	353	9414.6	11775.9
12160	353	4724.9	9170.2
12170	352	1492.1	3229.1
12171	352	8148.7	10777.7
12180	352	3448.9	7875.9
12190	351	1252.3	3040.6
12191	351	7994.4	10721.2

Linha	Voo	Fiducial Inicial	Fiducial Final
12200	351	3300.7	7707.1
20010	606	1683.1	2735.7
20020	606	2810.0	4472.6
20021	608	1256.4	1688.1
20030	609	1830.6	4890.1
20040	608	4735.8	8785.0
20050	608	1819.4	4118.1
20051	608	8861.9	11045.4
20060	608	11120.4	13338.2
20061	609	9572.2	11988.8
20070	608	13438.3	15602.4
20071	610	1306.7	3636.3
20080	609	4965.0	9515.8
20090	610	3684.9	8414.8
20100	610	8492.2	12948.2
20110	610	13037.8	17645.0
20120	610	17722.6	19747.7
20121	611	1310.0	3839.7
20130	611	3928.7	8516.1
20140	611	8595.0	13092.4
20150	611	13174.0	17725.3
20160	611	17792.2	19909.0
20161	612	1237.9	3614.7
20170	612	3684.6	8203.0
20180	612	8272.2	12839.1
20190	612	12914.5	17353.5
20200	612	17416.7	19592.9
20201	613	1164.3	3664.9
20210	613	3742.6	8192.0
20220	613	8284.3	12937.9
20230	613	13021.1	17481.2
20240	613	17546.3	19727.3
20241	615	1488.3	4025.7
20250	614	1471.0	3828.0
20251	614	8789.5	11473.0
20260	614	3944.1	8648.0
20270	615	4092.0	7247.3
20271	615	144.8	1461.8
20272	615	142.4	467.1
20280	615	593.6	1616.4
20281	615	216.8	3543.8
20282	615	410.9	892.6
20290	615	996.0	1867.9
20291	618	4647.0	8497.7
20300	616	1404.6	3014.9
20301	617	17.7	3151.2
20310	616	3120.6	5029.5
20311	617	3595.2	4666.2
20312	617	175.5	1820.6

20321 616 266.3 58 20322 617 500.6 34 20330 616 691.6 18 20331 616 260.9 97 20332 617 1086.5 35 20333 617 77.2 38	18.3 36.3 07.2 58.3 71.9 51.5 88.2
20322 617 500.6 34 20330 616 691.6 18 20331 616 260.9 97 20332 617 1086.5 35 20333 617 77.2 38	07.2 58.3 71.9 51.5
20330 616 691.6 18. 20331 616 260.9 97 20332 617 1086.5 35. 20333 617 77.2 38	58.3 71.9 51.5
20331 616 260.9 97 20332 617 1086.5 35 20333 617 77.2 38	71.9 51.5
20332 617 1086.5 35. 20333 617 77.2 38.	51.5
20333 617 77.2 38	
	38.2
20340 618 965.0 36	
	00.3
20341 619 3640.4 50	80.1
20342 619 285.3 85	51.3
20350 618 8568.8 93	96.0
20351 618 195.6 17	83.7
20352 618 402.8 24	03.3
20360 618 2510.5 37	89.8
20361 618 155.9 15.	51.9
	54.7
20370 619 991.3 19	62.3
	93.0
20372 619 6494.1 85	27.5
20380 619 1788.8 64	01.2
20390 619 8642.5 879	99.5
20391 619 196.6 18	67.7
20392 620 4431.4 70-	45.8
20393 620 6385.6 669	90.0
20400 619 296.4 16	34.5
20401 620 1071.8 43.	36.1
20410 620 108.8 19	04.9
20411 620 408.6 11	36.8
20412 620 6746.4 87	98.6
20420 620 1249.3 59.	58.8
20430 623 849.7 30.	56.9
20431 623 7878.2 89.	38.7
20432 623 382.3 20	07.3
20440 623 3181.5 77	76.5
20450 623 2104.3 45	19.0
20451 635 3049.1 50	48.8
20460 623 4618.2 72.	54.3
20461 624 1271.4 33	77.2
20470 625 1516.2 30	27.2
20471 625 402.8 20	22.5
20472 626 91.0 14	00.5
20480 625 2172.5 50	17.8
20481 626 1182.4 28	33.7
20490 626 1522.5 30	82.5
20491 629 5620.4 69	42.7
20492 630 2989.7 40	85.6
20493 630 5637.6 60	47.6
20500 626 3270.5 52	71.5
20501 626 160.3 84	6.9

Linha	Voo	Fiducial Inicial	Fiducial Final
20502	629	3977.6	5310.4
20503	630	4393.6	4775.6
20510	626	963.9	1498.2
20511	629	12096.4	13308.4
20512	630	6301.6	8975.2
20520	627	1288.9	4036.5
20521	627	9292.9	11003.9
20530	627	4187.5	6553.9
20531	627	7171.4	9156.0
20540	627	11192.9	12916.2
20541	628	4209.7	6858.7
20550	627	13041.4	14747.9
20551	628	1335.7	4074.0
20560	629	1180.4	3863.7
20561	635	16175.9	17923.8
20570	629	7155.8	11465.8
20580	630	1251.6	2885.4
20581	630	9082.6	11619.6
20590	631	1042.4	3847.3
20591	631	8346.2	10103.4
20600	631	3979.9	8236.9
20610	634	994.3	3645.5
20611	635	12404.6	14154.8
20620	634	3785.2	8140.9
20630	634	8271.0	12565.3
20640	634	12695.5	15298.3
20641	635	1057.8	2829.0
20650	635	5365.8	7787.2
20651	636	8712.0	10741.4
20660	635	7905.0	12316.2
20670	636	1035.4	3823.6
20671	639	18232.6	20016.7
20680	635	14272.8	15989.8
20681	636	3957.4	6637.4
20690	636	6894.4	8638.6
20691	645	4211.7	7102.1
20700	637	1042.6	3805.9
20701	644	3204.6	5077.0
20710	637	3938.6	8339.8
20720	637	8455.8	12835.2
20730	637	12970.0	15459.6
20731	638	1062.9	2946.1
20740	638	3066.3	7422.4
20750	638	7547.2	8767.9
20751	644	5184.0	7042.7
20752	647	5600.1	7147.1
20760	639	1246.7	4110.7
20761	640	18357.1	20118.9
20770	639	4243.8	8892.1

Linha	Voo	Fiducial Inicial	Fiducial Final
20780	639	8991.9	13507.6
20790	639	13598.8	18104.8
20800	640	1163.9	4006.0
20801	644	7143.2	9011.0
20810	640	4101.8	8838.0
20820	640	8929.9	13508.1
20830	640	13597.1	18264.3
20840	641	1246.8	4054.1
20841	644	12175.6	13742.0
20842	644	14149.0	14430.0
20850	641	4128.7	6392.8
20851	644	9691.0	12071.2
20860	645	1146.1	4023.1
20861	648	9581.4	11415.6
20870	644	1131.0	3024.2
20871	646	16908.4	19687.0
20880	645	7315.1	9123.0
20881	646	15809.0	16808.3
20882	648	13438.4	15188.6
20890	645	310.1	746.1
20891	645	1343.1	3779.1
20892	646	14417.7	15563.0
20893	647	10091.1	10821.6
20900	646	1290.0	2610.0
20901	646	12751.0	14322.4
20902	655	5584.2	7410.9
20910	646	3100.0	6186.0
20911	646	11078.7	12653.0
20920	646	6284.2	10971.5
20930	647	7354.1	9204.9
20931	647	15632.4	16749.1
20932	647	17300.1	18783.1
20933	648	1398.6	1552.6
20940	647	1311.1	4201.2
20941	650	18695.5	20476.1
20950	648	4760.5	9371.2
20960	647	10907.1	15541.6
20970	648	11552.6	13326.3
20971	650	13824.9	16579.1
20980	648	1716.6	4639.5
20981	655	9724.2	10425.8
20982	657	14656.9	15651.8
20983	664	6674.9	6822.8
20990	650	4243.0	8930.6
21000	650	1235.1	4146.1
21001	659	15864.2	17719.1
21010	650	16765.1	18582.2
21011	651	4189.9	6971.0
21020	650	9004.1	13661.7

Linha	Voo	Fiducial Inicial	Fiducial Final
21031	655	1281.9	3125.1
21033	687	4273.6	7073.1
21041	659	12103.8	14004.1
21043	687	1310.1	4188.9
21050	655	7570.9	9352.9
21051	659	7608.3	10291.1
21060	651	169.0	3926.8
21061	655	3241.0	3840.9
21062	655	4197.9	4488.9
21070	656	5433.7	10127.7
21080	656	2353.0	5256.4
21080	656	18329.4	20053.0
21082	657	13407.9	13560.9
21092	656	14486.0	15618.0
21090	656	15881.0	18241.6
21091	657	4505.8	
21092	658	11519.7	5364.2 11797.7
21100	656	10201.2	12633.0
	656	12965.0	
21101			14399.0
21102	657	5491.2	6421.6
21110	657	6524.1	11087.7
21120	657	1423.4	4430.8
21121	657	11214.3	13115.9
21130	658	4162.2	8578.4
21140	658	1042.7	4078.2
21141	658	18762.3	20591.7
21150	658	14252.0	18669.6
21160	658	8660.1	11421.7
21161	658	12156.7	14177.7
21170	659	2518.7	7456.9
22200	902	46479.0	49044.5
22201	902	63177.0	65302.9
22210	902	49159.4	53740.0
22220	902	53872.1	58472.6
22230	902	58586.2	63070.7
22240	903	44470.0	47217.8
22241	903	61032.0	62664.9
22242	915	61385.0	61525.7
22250	903	47360.4	49949.9
22251	903	50200.0	51830.0
22252	916	50363.7	50635.1
22260	903	51960.7	56412.0
22270	903	56556.7	60959.4
22280	904	43949.0	45371.9
22281	904	45712.0	47118.5
22282	904	61012.3	62783.9
22290	904	47241.0	51717.2
22300	904	51841.3	56364.6
22310	904	56503.0	60942.1

Linha	Voo	Fiducial Inicial	Fiducial Final
22320	905	42456.0	44269.9
22321	905	44655.0	45631.8
22322	905	59564.0	61358.4
22330	905	45747.0	50134.5
22340	905	50247.0	54827.3
22350	905	54948.0	59497.0
22360	906	41798.7	44554.7
22361	906	58384.2	60120.0
22370	906	44678.3	49114.6
22380	906	49361.1	53787.0
22390	906	53906.6	56178.8
22391	906	56555.0	58294.1
22392	915	60743.2	61154.3
22400	907	42269.0	45033.7
22401	907	58717.0	60440.9
22410	907	45143.3	49528.9
22420	907	49672.1	54081.2
22430	907	54191.4	58573.5
22440	908	44339.5	47279.8
22441	908	61282.3	62922.6
22450	908	47408.7	51892.8
22460	908	52010.3	56561.3
22470	908	56725.3	61199.2
22480	909	43575.0	46354.7
22481	909	60086.8	61858.9
22490	909	46472.8	50904.9
22500	909	51011.7	55497.1
22510	909	55611.6	59999.2
22520	910	43112.0	45884.3
22521	910	59487.6	61243.9
22530	910	46000.9	50367.5
22540	910	50488.6	55007.0
22550	910	55134.1	59396.9
22560	911	53347.0	55950.7
22561	911	56347.2	56521.9
22562	911	60903.2	62221.9
22563	912	58857.7	59289.4
22570	911	56653.3	60669.9
22571	912	59526.4	59968.0
22580	912	42618.2	45320.7
22581	912	60067.3	61815.5
22590	912	45431.5	49823.0
22600	912	49946.2	54355.7
22610	912	54473.8	58782.3
22620	915	41811.1	44551.4
22621	915	58481.3	60215.3
22630	915	44671.1	49233.0
22640	915	49366.5	53818.8
22650	915	53932.6	58402.7

Linha	Voo	Fiducial Inicial	Fiducial Final
22660	916	51116.9	53938.3
22661	916	67599.1	69387.2
22670	916	54053.6	58436.8
22680	916	58551.5	63076.5
22690	686	15461.1	20049.0
22691	916	63202.8	67513.0
22700	686	10641.7	15360.0
22710	686	5900.8	10549.2
22720	686	2851.5	5799.2
22721	686	20121.2	21949.5
22730	685	14641.0	19207.5
22740	685	9947.7	14545.4
22750	685	5300.9	9855.0
22760	685	2362.8	5209.6
22761	685	19361.8	21160.8
22770	684	9994.4	14551.5
22780	684	5355.4	9901.8
22790	683	17501.7	19316.0
22791	684	2381.1	5245.3
22800	683	15634.0	17417.5
22801	684	14640.3	17377.1
22810	683	8951.2	13512.3
22820	683	4190.8	8851.4
22830	682	19098.0	21795.4
22831	683	2239.0	4104.3
22840	682	16224.4	19006.4
22841	683	13681.3	15512.0
22850	682	5726.5	10311.8
22860	682	2778.4	5634.9
22861	682	10413.7	12240.4
22870	681	18995.4	21690.5
22871	682	12356.4	14156.9
22880	681	16079.5	18906.7
22881	682	14237.8	16057.4
22890	681	8434.8	13126.1
22900	681	6481.5	8348.8
22901	681	13218.2	15958.5
22910	680	2370.6	5289.7
22911	681	4510.6	6378.5
22922	687	11438.0	15950.7
22931	687	8532.1	11341.7
22932	687	16044.1	17878.1
22940	680	15030.3	17762.6
22941	681	2556.5	4438.4
22950	680	10205.6	14932.8
22960	680	5374.8	10102.8
22970	679	14194.7	18936.0
22980	679	9564.8	14102.9
22990	679	4703.5	9465.4

Linha	Voo	Fiducial Inicial	Fiducial Final
23000	679	2736.3	4604.2
23001	679	19029.8	21718.3
23010	678	14073.8	18804.6
23020	678	9439.8	13984.3
23030	678	4501.7	9344.7
23040	677	15254.6	18018.6
23041	678	2494.6	4361.1
23050	677	10460.7	15135.3
23060	677	5792.4	10355.0
23070	676	14200.4	16067.6
23071	677	2771.6	5677.1
23080	676	4549.0	9229.9
23090	674	15115.9	17878.2
23091	676	2622.6	4438.8
23100	674	10353.4	15009.3
23110	674	5645.5	10253.1
23120	673	13666.5	15428.9
23121	674	2662.2	5543.0
23130	664	3785.9	4934.9
23131	676	12827.6	14064.8
23132	678	18944.3	21102.6
23140	673	8934.9	13573.8
23150	673	4260.7	8788.6
23160	672	5330.4	10049.7
23170	672	2552.9	5184.4
23171	672	10148.9	12094.9
23180	671	14199.2	16977.6
23181	673	2240.9	4088.4
23190	671	4810.2	9340.3
23200	671	2823.0	4683.8
23201	671	9486.9	11724.6
23202	671	18076.6	18617.6
23210	668	14165.0	15943.5
23211	671	12017.6	14042.3
23212	671	17091.6	17794.6
23220	668	12280.5	14064.2
23221	669	5686.5	7752.9
23222	669	8159.8	8867.8
23230	667	9107.8	13481.7
23240	667	4328.2	8965.2
23250	666	11983.7	14671.7
23251	667	2413.5	4182.7
23260	666	9028.6	11879.0
23261	667	13594.0	15440.5
23270	660	15069.2	17644.1
23271	661	2697.2	4640.3
23280	660	10265.2	14965.2
23290	660	5688.0 2777.1	10154.2 5579.6
23300	660	4///.1	5579.6

Linha	Voo	Fiducial Inicial	Fiducial Final
23301	661	4710.5	6718.2
23310	661	6892.2	8826.5
23311	661	13644.0	16250.2
23320	661	8933.0	13539.5
23330	661	16383.2	18188.4
23332	676	9476.9	12202.6
23340	661	18300.0	20074.2
23341	664	2862.9	3446.9
23342	666	3758.5	6050.9
23350	668	10273.1	12130.5
23351	669	2668.1	5474.6
23360	668	5609.0	9995.4
23370	668	3038.4	5504.7
19010	8	58502.0	82021.0
19020	8	84195.0	105618.0
19030	7	29613.0	52452.0
19040	7	54586.0	61657.0
19041	7	64451.0	80001.0
19050	7	81867.0	104247.0
19060	7	106036.0	128594.0
19070	7	130476.0	152366.0
19080	7	154253.0	177095.0
19090	7	178965.0	201315.0
19100	7	203292.0	209202.0
19101	8	29918.0	45880.0
19110	6	179646.0	200878.0
19120	6	156192.0	177944.0
19130	6	132808.0	154326.0
19140	6	108762.0	130909.0
19150	6	85136.0	106611.0
19160	6	60330.0	83011.0
19170	6	36405.0	58164.0
19180	6	11426.0	34415.0
19190	5	182982.0	204468.0
19200	5	158538.0	181211.0
19210	5	135124.0	156672.0
19220	5	110467.0	133239.0
19230	5	86561.0	108359.0
19240	5	61368.0	84499.0
19250	5	37587.0	59332.0
19260	5	12101.0	35453.0
19270	4	196382.0	217773.0
19280	4	171792.0	194613.0
19290	4	148415.0	169974.0
19300	4	123447.0	146655.0
19310	4	99476.0	121082.0
19320	4	73969.0	97562.0
19330	4	50465.0	71929.0
19340	4	24878.0	48499.0

