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Resumo

No ciclo de vida de desenvolvimento de software, especificação de requisitos é uma atividade
muito propensa a definições incorretas. Isto geralmente acontece porque esses documentos são
normalmente escritos em linguagem natural, tornando muito alta a possibilidade de introduzir
ambiguidades e interpretações errôneas. Por outro lado, a utilização de linguagem natural traz
simplicidade e flexibilidade ao se especificar requisitos, considerando que esta é uma notação
que pode ser compreendida tanto pelo cliente quanto pelo desenvolvedor.

Uma vez que projetos de software possuem documentos precisos, engenheiros de software
que tenham bom conhecimento em linguagens formais podem criar manualmente uma especi-
ficação formal com o propósito de validar as propriedades do sistema. No entanto, esta criação
manual pode não cobrir todos os requisitos ou podem conter inconsistências. Desta forma, a
geração automática de modelos formais a partir de documento de requisitos parece ser uma boa
solução para este problema. Para alcançar este objetivo, os documentos de requisitos devem ser
simples, diretos, uniformes e sem ambuiguidades. Para que isto aconteça, Linguagens Naturais
Controladas (Controlled Natural Languages - CNL) são comumente utilizadas.

Este trabalho faz parte do projeto de Pesquisa e Desenvolvimento do CIn Brazil Test Cen-
ter (CInBTCRD), que é uma cooperação entre a Motorola e o Centro de Informática da Uni-
versidade Federal de Pernambuco (CIn-UFPE). Em primeiro lugar, este trabalho propõe uma
linguagem restrita (CNL) para definir casos de uso contendo uma noção de estado, os quais
consideram dados de entrada, saída, guarda e atualização de variáveis, como um complemento
para a descrição textual. Depois disso, uma tradução automática dessa linguagem para a alge-
bra de processos CSP foi proposta, a fim de permitir a análise formal de requisitos e geração de
casos de teste. Finalmente, foi realizada a implementação e integração desta linguagem e sua
tradução para CSP em uma ferramenta conhecida como TaRGeT, cujo propósito é a geração
de casos de teste a partir de documentos de casos de uso que seguem um template padrão e
são escritos utilizando uma CNL. A TaRGeT original não era capaz de lidar com definições
de dados e as manipulações destes dados, e utiliza sistemas rotulados por transição (labelled
transition systems) em vez de CSP, como formalismo.

Para ilustrar as técnicas propostas neste trabalho, um estudo de caso foi realizado no ambi-
ente da Motorola, adaptando um exemplo de caso de uso real da indústria de modo a encaixá-lo
no nosso template. O documento de caso de uso considera situações de envio e recebimento de
SMS/MMS, contendo uma feature com 7 casos de uso, incluindo definições e manipulações de
dados, relacionamentos entre casos de uso e 6 fluxos alternativos. O CSP gerado contém 570
linhas de código e a verificação de suas propriedades foi checada com sucesso utilizando-se a
ferramenta FDR, um verificador de modelo para CSP.

Palavras-chave: Especificação de Casos de Uso, Linguagem Natural Controlada, Geração de
Especificação Formal, CSP
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Abstract

In the software development life cycle, requirements specification is an activity very prone to
incorrect definitions. This commonly happens because these documents are usually written in
natural language, making the possibility of introducing ambiguities and unclear interpretation
very high. On the other hand, the use of natural language brings simplicity and flexibility when
specifying requirements, once this is a notation which can be understood by both the customer
and the system developer.

Once a project has precise documents, software engineers that have good knowledge in
formal languages can manually create a formal specification in order to validate the system
properties. The manual creation of formal models, nevertheless, may not cover all require-
ments or may contain inconsistencies. Thus, the automatically generation of formal models
from requirements documents seems to be an effective solution for this problem. In order to
automate the construction of formal models, the requirements documents should be simple, di-
rect, unambiguous and uniform. In order to make this feasible, Controlled Natural Languages
(CNL),with a precise syntax and semantics, can be used.

This research is part of the CIn Brazil Test Center Research and Development (CInBTCRD)
team, which is a cooperation between Motorola Inc. and the Informatics Centre of the Federal
University of Pernambuco (CIn-UFPE). In the first place, this work proposes a restricted lan-
guage (a CNL) to define state based use cases, which considers input, output, guard and state
update, as a complement to the textual description. After that, an automatic translation of this
language to the CSP process algebra was proposed in order to allow formal analysis of require-
ments and test case generation. Finally, we implemented and integrated this language and its
CSP translation in a framework of tools, known as TaRGeT, whose purpose is the generation
of test cases from use case documents written in a CNL and following a specific template. The
original TaRGeT was not able to deal with data definitions and manipulations, and uses labeled
transition systems, rather than CSP, as formalism.

To illustrate the techniques proposed in this work, a case study was performed in Motorola’s
environment, adapting a real industrial use case example to fit in our template. The context of
the use case document considers situations in the act of sending and receiving SMS/MMS; it
contains a feature with 7 use cases, including data definitions and manipulations, relationship
among use cases and 6 alternative flows. The generated CSP contains 570 lines of codes and
the verification of its properties was successfully checked using the FDR tool, a model checker
for CSP.

Keywords: Use case specification, Controlled Natural Language, Formal specification gener-
ation, CSP
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CHAPTER 1

Introduction

Software development encompasses an extreme competitive market. Given that the system
quality is an important fact to guarantee the company position in the market, great effort has
been dedicated to ensure the product quality and customer satisfaction. The insertion of er-
rors during the software development process decreases the final quality of the products and
increases considerably the cost of fixing those errors.

The cost to make a modification in an implemented system, resulting from a requirement
problem, is much greater than a modification during the design, requirements, analysis, or code
phases [Som03b]. As said in [BBL76], the sooner a problem is found during the software devel-
opment cycle the least expensive is to fix it. In this way, requirements elicitation is considered
a fundamental task.

Once a project has precise documents, software engineers that have good knowledge in
formal languages can create a formal specification in order to validate the system properties.
Nevertheless, the manual creation of formal models may not cover all requirements or may
lead to inconsistencies. Thus, the necessity of automatically generating formal models from
requirements documents seems to be an important task to be accomplished. In order to auto-
mate the construction of formal models, the requirements documents should be simple, direct,
unambiguous and uniform.

In order to make this feasible, an important ingredient in the process is the choice of lan-
guage used to write requirements. Typically, a graphical or a textual language with a restricted
syntax is adopted. The textual languages are normally called Controlled Natural Languages
(CNL) [SLH03]. They contain a smaller and restricted grammar than the natural languages.
Thus, they prevent the writer from introducing ambiguous and non-uniform sentences, retain
readability and understandability by all stakeholders and also allow an automated derivation of
formal specifications.

There are some academic researches about this automatic generation of formal models from
requirements. Somé’s work [Som06] proposes a restricted form of natural language for use
cases such that automated derivation of specification is possible. Lee’s [Lee01] work proposed
to realize an automatic conversion of a requirements document written in a natural language
into a formal specification language. The work of Cabral et. al. [CS08] proposes a Controlled
Natural Language (CNL) used to write use case specifications according to a template. From
these use cases, a complete strategy and tool enable the generation of process algebraic formal
models in the CSP notation (our work belongs to the same project as this work, where our
strategy is based on it). The details of these works and others more can be seen in Chapter 6.

Software testing is another very important activity in order to guarantee the quality of the
products. Due to the enormous possibility of injecting human failures and its associated costs,

1



1.1 OBJECTIVES AND CONTEXT 2

a really careful and well planned testing process is definitely necessary. The main role of
software testing is to find defects in the product so that the development team can fix them on
time, before the product reaches the customer. It can be done by verifying if all implemented
requirements are according to their specification and by producing test cases which have high
probability of revealing an error that was not found yet with reduced time and effort.

In this way, software testing is a hard task and can reach 50% of the total software devel-
opment cost [Mye04]. In order to try to reduce the time dedicated to this activity a lot has
been invested in test automation. The work of Elfriede Dustin et. al. [DRP99] shows that the
automation of testing process activities leads to an average decrase of 75% of the total effort
comparing to the effort of the same activities being performed mannually.

There are a lot of approaches to automatic test generation based on a formal representation
of the system [BBC+03]. Such approaches are based on a formal specification of the system
and produce as output a set of formal test cases, where the traditional elements of a test case
are written in some formal notation. One of the benefits of using formal test cases is the ability
to guarantee properties about the tests created and being mechanically translated to some other
notation more suitable for manual or automatic execution of tests on an implementation.

The work of Cabral et. al. [CS08], previously cited, also considers an automatic test gen-
eration having the CSP specification of the use case as input. Another work following this
direction is the work of Nebut et. al [NFTJ06], which proposes an approach for automating
the generation of system test scenarios from use cases in the context of object-oriented em-
bedded software. Another research in this context is Riebisch’s work [RPG03]. It proposes
an approach for generating system-level test cases based on UML use case models which can
be further refined by state diagrams. The details of these works and others are described in
Chapter 6.

1.1 Objectives and Context

This work is part of the CIn Brazil Test Center Research and Development project (CInBTCRD),
which is a cooperation between Motorola Inc. and the informatics centre of the Federal Uni-
versity of Pernambuco (CIn-UFPE). The CInBTCRD focuses mainly on the definition of an
integrated process for the generation, selection and evaluation of test cases for mobile applica-
tions. Figure 1.1 provides a vision of the main research project.

Starting from a use case template written using a restricted form of natural language (CNL),
or from a UML specification, test cases can be automatically generated, calculating the test
execution effort as well as analyzing code coverage. As Figure 1.1 illustrates, the test cases
are generated from an intermediate notation, which in our case is the CSP [RHB97, Hoa85]
process algebraic notation. This model is automatically generated based on the requirements.

The use cases are written in a CNL with a fixed grammar in order to allow the automatic
and mechanized translation into CSP (the intermediate representation). As the context of this
work is a research cooperation between CIn/UFPE and Motorola, related to mobile applications
testing, the proposed CNL [TLB06] reflects this domain, but they can also be used to describe
other domains of applications. The formal specification generated in CSP is used in the project
as an internal model to the automatic generation of test cases.



1.1 OBJECTIVES AND CONTEXT 3

Figure 1.1 CInBTCRD initiatives overview

This work focuses on the following activities: definition of a notation for describing use
cases using a CNL and automatic generation of a model in the CSP notation. Here, we pro-
pose a strategy that initially extends the current use case template used in CInBTCRD project
(introduced in next chapter, Section 2.2.1) so as to consider data definitions and manipulation.
Actually, the existing CNL used to describe use cases remains the same. We specifically pro-
pose a mix between the original notation with data fields and state manipulation (these new
fields are introduced separated from the CNL sentences and so, they do not impacted in the
CNL).

In this way, the first contribution is the definition of a language that allows a state based
use case specification considering data (inputs, outputs, guards, variables, constants and types).
The intention is that this language be as close to a natural language as possible, in order to
allow requirements analysts to express the requirements models in a precise but user-friendly
way.

The second contribution is the implementation of the automatic generation of the interme-
diate representation in CSP having the extended use case template (already considering data)
as input. This project is integrated with a framework of tools, known as TaRGeT [CU10,
NCT+07], which has been developed in the CInBTCRD context. This tool will be better ex-
plained in the next chapter.
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1.2 Dissertation Organization

• Chapter 2 introduces an overview of the CSP notation and the TaRGeT tool, and provides
the initial use case template.

• Chapter 3 presents the proposed use case template, where the notion of state is now
considered. Every clause of the language to support data is explained in details.

• Chapter 4 shows how the mechanization of the CSP generation from a use case specifi-
cation following the new template was implemented.

• Chapter 5 introduces a case study performed in order to investigate our strategy within a
real application context.

• Chapter 6 discusses some works that are somehow related to ours.

• Chapter 7 finally summarizes our contributions and suggests topics for further research.



CHAPTER 2

Background

According to the UML [OMG10] specification, a use case is “the specification of a sequence
of actions, including variants, that a system (or other entity) can perform, interacting with
actors of the system”. Every use case provides one or more scenarios that describe how the
system interacts with end users or other systems. Use cases can be used to validate the system’s
architecture and are a fundamental source to perform system tests.

Use case specifications capture system behaviour, possibly at different levels of abstraction.
Therefore, depending on the developer’s need, use cases are created for different purposes.
Nowadays, use cases are generally specified using a natural language. While on the one hand
the use of natural language is quite simple and attractive, on the other hand, it is known that
natural languages are prone to ambiguities and are also hard to be supported by automation
tools. The latter issue is critical in the context of making the software development faster, in
particular, for test case generation, which has a significant reduction in the time spent.

In order to make sure that use case specifications are uniform and have no ambiguities,
Controlled Natural Languages (CNLs) can be used to describe them. They can be seen as
subsets of natural languages with a small and more restricted grammar, making it possible to
accomplish formal validations and transformations while still being easy to use and understand
— features not possible using a formal language.

This chapter introduces some background to help understanding the strategy developed in
this work. First of all, an introduction to formal methods focusing on the chosen notation
(CSP) is presented (Section 2.1). Then, Section 2.2 introduces an overview of the TaRGeT
tool [CU10, NCT+07] and the current template for use case specifications (written with a CNL)
adopted in the Motorola context, where no data is considered.

2.1 Formal Methods

Formal methods means the mathematics and modeling applicable to the specification, design,
and verification of software. The use of formal methods for software and hardware design is
motivated by the expectation that, as in other engineering disciplines, performing appropriate
mathematical analysis can contribute to the reliability and robustness of a design.

Industrial-quality model checkers and advanced theorem provers make it possible to do so-
phisticated analyses of formal specifications in an automated or semi-automated mode, making
these tools attractive for commercial use. Given a finite model of a system, it is possible to test
automatically whether this model meets a given specification.

The choice of which notation to use is somewhat application dependent. The use of a no-
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2.1 FORMAL METHODS 6

tation such as Z [Spi92] or VDM [Jon90] is indicated when state based aspects are specified.
On the other hand, when there is the presence of distributed or concurrent characteristics in the
system, it is better to use a process algebra, which is useful to specify and design concurrent
and distributed system’s behaviour of hardware and software. Examples of such notation are:
CSP (Communicating Sequential Processes) [RHB97] and CCS (Communication and Concur-
rency) [Mil89].

CSP offers a rich set of operators that allows us to model use cases as communicating
processes. We also model state information as separate memory processes whose data can be
read and updated by the use case processes. Furthermore, the FDR tool [Gar97] is a model
checker for CSP that allows the automation of a strategy to generate test cases as counter-
examples of model verification.

Considering that our purpose is to introduce a notion of state (with memories) in a use case
specification, CSP seems to be a interesting formal language for our goal; it provides us with a
formalism that make possible the modeling of use cases communicating with local and global
memories as well a refinement checker FDR [Gar97], a tool for automatic model checking and
test case generation. That is why this process algebra seems to be an interesting choice in the
context of our work. Now let us have a look in the CSP notation.

2.1.1 CSP Notation

CSP is a formal language for describing patterns of interaction in concurrent systems [Ros97].
CSP allows the description of systems in terms of component processes that operate indepen-
dently, and interact with each other through message-passing communication. The language
of CSP was designed for describing systems of interacting components and is supported by an
underlying theory for reasoning about them [Sch99].

The conceptual framework taken by CSP is to consider components, or processes, as inde-
pendent self-contained entities with particular interfaces through which they interact with their
environment. This viewpoint is compositional, in the sense that if two processes are combined
to form a larger system, that system is again a self-contained entity with a particular interface:
a larger process.

The relationships between different processes, and the way each process communicates
with its environment, are described using various process algebraic operators. Using this alge-
braic approach, quite complex process descriptions can be easily constructed from few primi-
tive elements.

The interface of a process is described as a set of events. An event describes a particular
kind of atomic indivisible action that can be performed or suffered by the process. In describing
a process, the first issue to be decided must be the set of events that the process can perform.
This set provides the framework for the description of the process. Each event has a unique
name. One event may occur many times in the process behaviour. Along with events, datatypes
are defined to structure the data transmitted between events. The set of datatypes and events,
defined during the formal model specification of a specific domain application, is called an
alphabet.

The behaviour of a CSP process is described in terms of events, which are instantaneous
actions, like OPEN or CLOSE, that may transmit information. A primitive process can be
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understood as a representation of a basic behaviour. There are two primitive processes: Stop
and Skip. Stop is the process that does not communicate anything and is used to describe
a broken system, as well as a deadlock situation. Skip is the process that always terminates
successfully.

Some of the CSP operators and constructors will now be presented. Actually, some of the
following constructions follow the ASCII (textual) form of CSP (CSPm), which can be readable
and processable by a machine. The complete set of these constructors and operators can be
found in the works of Roscoe [RHB97] or Hoare [Hoa85]. The structure of the explanation
presented here is based on the master’s thesis of Cabral [Cab06].

• Datatype
Whenever some information needs to be transmitted it is necessary to define its type
and possible values through a datatype definition. Therefore, complex datatypes can be
defined and used in the channel definitions (events with data transferring) to specify the
communication channel. Now we introduce a simple example of a datatype declaration:
datatype SimpleColour = Red | Green | Blue, where SimpleColour is the defined type and
Red, Green and Blue are its possible values. Actually, this constructor is used in CSPm;
in CSP there is no need of using the word datatype.

• Nametype
Nametype definitions associate a name with a type expression. An example of a name-
type declation is: nametype SomeColours = Red, Green, which associates the id Some-
Colours with some elements of the type SimpleColour (defined above). Like the previous
constructor, the word nametype is used only in CSPm.

• Channel
An event is specified by the channel constructor. When an event is defined it is possible to
determine if it will only represent an event or if it will communicate some data (a proper
channel). An example of two channels declaration is: channel in, out : SimpleColour,
where the channels in and out both carry a SimpleColour.

• Process
Processes are the basic unit to capture bahaviour. Each process is defined by equations
and, in general, a set of processes is used to specify a large system. Processes com-
municate with each other through synchronization in their events, and as explained, this
communication may or may not carry data. The primitive processes Skip and Stop are
terminal processes (no communications happen). Another kind of process constructors
can be done using the operators explained below.

• Prefix
The prefix is the simpler operation involving a process. It defines a process engagement
on an event and then the process behaviour is like the suffixed process. Let x be an event
and P a process, then x→ P represents the process that waits indefinitely by x, and then
behaves like the process P.
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• Communication
A process can pass to or receive information from other processes. In CSP, a communi-
cation is represented by a pair c.v where c is the channel name and v is the message value
sent by the channel. The process P = c1!v1→ c2?v2→ Q initially sends v1 through
the channel c1, receives the value v2 through the channel v2 and then behaves like Q.
A channel can also send and receive information simultaneously, such as the process
P = c1!v1?v2→ Q, where it simultaneously sends v1 and receives v2 through the chan-
nel c1 and then behaves like Q.

• Sequential Composition
Processes execute when they are invoked, and it is possible that they continue to execute
indefinitely, retaining control over execution. It is also possible that control may pass to a
second process because the first process reaches a particular point in its execution where
it is ready to pass control. The mechanism for transferring control from a terminated pro-
cess to another process is sequential composition. The sequential composition operator
used is (; ). The process P = A; B initially behaves like A, and then like B whenever A
terminates successfully (Skip).

• Internal and External Choices
There are also the operators for external choice and internal choice. The operator 2 is the
external choice. In this case, the environment controls the choice between the options of
behaviour. The process a→ P 2 b→ Q tries to communicate the initial events a and b.
If the environment accepts to communicate a, the process starts to behave like P. On the
other hand, if the environment accepts to communicate b, the process starts to behave like
Q. The operator [] represents the external choice in CSPm. The operator u is the internal
choice. This operator is similar to the previous operator but denotes a process whose
choice is made internally by the process with no control from the environment. The
process P u Q means that the choice between P and Q is non-deterministically defined.
The process behaves like P or Q, arbitrarily. The operator | ˜ | represents the internal
choice in CSPm.

• Parallel Composition
When two processes are put in concurrent execution, in general, we hope they could
interact with each other. The interactions can be viewed as events that require the simul-
taneous participation of both processes. Let P and Q be processes with the same alphabet,
P ‖ Q represents a process in which P and Q must be synchronized in all events. So an
event x only occurs when both processes are ready to accept it. The process P |[X ]|Q
synchronizes P and Q in the events of the set X. P and Q can interact independently with
the environment through the events outside the set X. The process P ||| Q allows P and
Q to execute concurrently without synchronization between them. Each event offered to
the interleave of two processes occurs only in one of them. If both are ready to accept
that event, the choice between the processes is non-deterministic.
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• Interruption
Consider the process P 4 Q; it indicates that Q can interrupt the behaviour of P if an
event offered by Q is communicated. In CSPm, the equivalent operator is / \

• Hiding
Consider the CSP notation P \ X; it defines a process which behaves like P, communicat-
ing all its events except the events that belong to X, which become internal (invisible).
The character “\” stands for the hiding operator, which is the same for CSPm notation.

• Let ... within clause
Additionally, consider the CSPm expression P = let ... within Q, which specifies the
behavior of the process P as that defined by Q, in the context of local declarations to Q
introduced by the let ... within clause.

CSP (actually, CSPm) is the notation we use to model use cases. We automatically trans-
form use cases into CSPm processes which are, subsequently, used to generate test cases. In
what follows we describe how use cases are specified in the TaRGeT tool (Section 2.2). Chap-
ters 3 and 4 show how this transformation is extended to deal with data and with includes and
extends relationships among use cases.

2.2 TaRGeT Overview

TaRGeT [CU10, NCT+07] stands for Test and Requirements Generation Tool. It is a tool for
automatic test case generation from use case scenarios written in a CNL. TaRGeT automates
a systematic approach to deal with requirements and test artifacts in an integrated way. The
use cases are written following a XML schema, which was designed to contain the necessary
information for generating test procedure, description and related requirements. Moreover, the
tool can generate traceability matrices between test cases, use cases and requirements.

Three major aspects distinguish TaRGeT from other behavioural model-based testing tools:
1) the use of test purposes, provided by test engineers, to restrict the number of generated test
cases and to focus on test cases that are more critical or relevant to a given task; 2) algorithms
for eliminating similar test cases, reducing the test suite size without significant impact on
effectiveness; and 3) use cases written in a controlled natural language as system input, which
is more natural for engineers when contrasting to formal behaviour specification languages.

As said before, TaRGeT’s main functionality is the automatic generation of test cases from
use cases scenarios written in a controlled natural language. Supporting this main functionality,
TaRGeT features the following facilities:

• Automatic purpose-based generation of test suites, with adequate coverage criteria;

• Elimination of similar test cases according to parameters informed by the user;

• Selection of requirements or use cases to generate specific test suites;
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• Use cases are flexible enough to handle different platforms or domains;

• Automatic generation of traceability matrices: Requirements × Test Cases, Require-
ments × Use Cases and Test Cases × Use Cases;

• A consistency management that allows to compare test suites and keep the integrity of
test cases id;

• A Controlled Natural Language (CNL) that defines some writing rules and a restricted
vocabulary in order to avoid authors to introduce ambiguities into their test case steps;

• Two options for use case editing: the TaRGeT editor and Microsoft Word;

• Exporting test case suites in many formats, including the XML format for TestLink (a
web-based test management and software testing execution tool);

• Friendly GUI to guide the generation processes.

In what follows we present the use case specification template currently used in TaRGeT.
(We call current template, or current TaRGeT the version of TaRGeT currently being used,
which does not contain any of the extensions proposed by this work.) The template presented
below does not accept data manipulation yet. The extension for data manipulation is introduced
in Chapter 3.

2.2.1 Use Case Specification Template

In this section we present an example according to the current template used by TaRGeT. Al-
though includes and extends relationships among use cases have been recently introduced to
the current template, they are not part of the current TaRGeT implementation yet. This devel-
opment has also been done as part of this dissertation work. The subsequent sections explain
the current template in more details.

2.2.2 Feature and Use Case

Use cases are initially grouped to form a feature. As can be seen in Figure 2.1, each feature
contains an identification number and a name (in the example we can see the Important Mes-
sages feature, which contains three use cases - UC01, UC02 and UC03 - and is identified by the
11169 Id). This grouping is convenient for organization purposes. The use case itself also con-
tains an identification number and a name, execution flows and may include lists of inclusions,
extensions and extension points (for the relationship among use cases).

A use case can also be tagged as auxiliary, meaning that it is not activated. An auxiliary use
case is a dependent functional unit that performs the specified behaviour as a consequence of
its relation (inclusion or extension) with some activated use case. To specify an auxiliary use
case in the template, it is necessary to enter the mark «auxiliary» in the end of the use case
name (see the use case UC01 in Figure 2.1).
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Figure 2.1 Use case specification example

2.2.3 Execution Flow

Usually a use case can be used to specify usage scenarios, depending on user inputs and actions.
Hence, each execution flow represents a possible sequence of steps that a user can take. Now
we are going to have a look at the execution flow components.

• Step - A step is represented by the tuple (user action, system state, system response)
and each of them is identified by an identifier (step id). The user action describes an
operation accomplished by the user. The system state is an optional condition on the
system state just before the user action is executed. Thus, it can be a condition on the
current application configuration (setup) or memory status. The system response is a
description of the operation result after the user action occurs based on the current system
state. In Figure 2.1 we can see the step 1M of use case UC01, for example, which has
no condition but has the user action “Go to inbox folder” and the system response “All
Inbox Messages are displayed”. In the step 1M of UC02 we can note the user action,
system state and system response are specified.

• Flow Types - Execution flows are categorized as main, alternative or exception flows.
The main execution flows represent the use cases happy path, which is a sequence of
steps where everything works as expected. An alternative execution flow represents a
choice situation; during the execution of a flow, such as the main flow, it may be possi-
ble to execute other actions, comprising choices. If an action from an alternative flow is
executed, the system continues its execution behaviour according to the new path spec-
ification. Alternative flows can also begin from a step of another alternative flow; this
enables reuse of specification.
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The exception flows specify error scenarios caused by invalid input data or critical system
states. Alternative and exception flows are strictly related to the user choices and to the
system state conditions. The latter may cause the system to respond differently given the
same user action. We can see in Figure 2.1 a main flow in every use case, and use case
UC02, which contains an alternative flow.

• Reference between Execution Flows - There are situations when a user can choose
between different paths. When this happens it is necessary to define one flow for each
path. Every execution flow has one starting point, or initial state, and one final state. The
From step field represents the initial state in which it contains the set of initial steps
to be executed, while the To step field references the final state, also containing a set
of steps, but in this case the last steps to be executed. After the From step items are
executed, the first step from the specified execution flow is executed up to the last step,
and after this last step, the control passes to the steps defined in the To step field.

Whenever the From Step field is defined as START, in the main flow, this means that
the use case does not depend on any other, so it can be the starting point of the system
usage. The other possibility is when the main flow From step field refers to other use
case steps, meaning that this flow can be executed after a sequence of events had been
performed in the correspondent use case. In the case of the To step field, when it is set
to END, in any execution flow, this flow will terminate successfully after its last step is
executed. Subsequently, the user can execute another use case that has the From step
field set to START.

The From step and the To step fields are essential to define the application nav-
igation and also enable the reuse of existing flows; a new scenario may start from a
preexistent step from some flow. Every Main Flow has its From step set to START
and its To step set to END as default, that is why they do not have to be specified for
this flow type, as can be seen in Figure 2.1. The Alternative Flow in UC02 specifies that
the initial state of this flow is the beginning of the use case, and when the execution of
this flow ends it also comes back to the beginning.

2.2.4 Relationship among use cases

In order to allow relationships among use cases, the template includes a list of inclusions, a list
of extensions and another list of extension points in a use case. The field Includes indicates
where the behaviour of the included use cases will be added in the including use case. We can
see an example in Figure 2.1, where UC01 is included after the START step of UC02. In this
way, each inclusion is done by following the format: UCID@Position, where UCID represents
the ID of the use case being included and Position is related to the position (START, END or a
step ID) where this inclusion is done (see the Includes field of UC02 at Figure 2.1).

The field Extension points defines the extension points of a use case, where an ex-
tension point is a location internal to a use case, labeled by a name that allows extensions to
add behaviour (optionally) to that point by referring to the label. In Figure 2.1 UC02 defines an
extension point labeled Clean up after the step 1A. Extensions associated with such an ex-
tension point will assume control after the step 1A and resume before its continuation (START
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step). We can see that the format of an extension is: Label:Position, where Label is the ex-
tension point’s label (unique in the list), and Position is the step ID (or the words START and
END) after which the behaviour of an extension use case associated with Label will be added.

The field Extends specifies the extension points to where an extension use case adds
behaviour. Once again, Figure 2.1 shows that UC03 extends UC02 in the extension point
Clean up provided the Important Messages folder is not empty. Each extension is a tuple of
the form (Condition, UCID@Label), where Condition represents the (optional) condition for
the extension, and UCID@Label the extension point Label in the extended use case UCID to
where behaviour is added.

Note that use cases can only be related through inclusion and extension relations. The
fields From Step and To Step are local references inside a use case. Figure 2.2 presents
the complete use case template, showing all possible constructions of such a specification.

Figure 2.2 Use case specification template
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2.3 Concluding Remarks

We can see that a tool such as TaRGeT offers great facilities to test generation. However its
use cases and test purposes do not take into consideration input and output data or the notion
of state. If a representation like that could be included in the tool, CSP test purposes could
describe test scenarios that match particular states of the specification. Based on Cabral’s work,
Nogueira et al. [NSM] proposes a strategy to generate CSP code from a use case document that
considers data, and in this strategy, the translation of a complete CNL sentence is captured by
a CSP event. The implementation of the CSP generation in our work is based on Nogueira’s
strategy, which is explained in details in Chapter 4.

In the CinBTCRD research project there was a first attempt of extending this control flow
template with a notion of state, where it is possible to define types, constants and variables an to
build constructions for state update, input, output and guards. Figure 2.3 shows a small example
of this first attempt of specifying use case documents considering the state information. Note
how the language used for this purpose is formal and also very difficult to understand and use.
Formal specification is mixed together with Controlled Natural Language (see the text between
square brackets).

Figure 2.3 Use case specification template

In Figure 2.3 we can see that it is possible to define some data, in the data definition field.
The constructions nametype and datatype are from the CSPm language. To define variables, it
was necessary to use the construction var, as can be seen in Figure 2.3. In this case we have
two defined variables (inbox and selected) of the type ℘(Message), representing the power set
of Message datatype. In the use case UC01, in step 2M, there is an input in the power set of
inbox not considering the empty set. The other sentence in brackets represents an assignment
of this input value to the variable selected.

That is why it was necessary to define a more friendly language aiming at making the
specification easier and better to understand. In this way, this is the first contribution of this
dissertation work. The next chapter (Chapter 3) presents in details this new language – with its
BNF and examples – and the new data supporting use case template.



CHAPTER 3

Use Case Extension

This chapter introduces how the use case specification template is extended to support the
notion of state, as well as constructions for state update, input, output and guard. The intention
here is to textually describe use cases — considering an explicit notion of state — in a way that
it is described in a notation as close to a natural language as possible, unlike the one briefly
presented in the end of the previous chapter, and at the same time, it is not so unrestricted as a
common natural language.

In other words, the specification for data makes a bridge between a natural language de-
scription and a formal specification language, thus, it is more user-friendly and still fits its
purpose. Once it is necessary to deal with variables, constants, types, and to manipulate them,
the user of the proposed language needs to have some basic notion of a programming language.

3.1 Extended Use Case Specification Overview

This section introduces the extended use case specification, supporting data definition and data
manipulation. The template for control was extended with new fields to consider data. Fig-
ure 3.1 presents a simple example just to provide an overview of the extended use case specifi-
cation template. In this example a global constant a is defined with value 2; then, a variable b
is declared in the scope of use case UC01 and has its initial value set to 0.

The use case UC01 has only one step just to provide the general idea of how it is possible
to define inputs, guards, output and variable assignments. Note that, now, we mix natural
language with our language. For example, the command “Input x from {1,2,3,4}” means to
input a value from the set {1,2,3,4} - which is an element of the type SetValue (it will be
introduced later) - and associates this value with the variable x (in the scope of the step). The
expression x + a >= b tests if the sum of the input value and the value of the constant a exceeds
the value of the variable b.

Output x outputs the inputed value and b := x assigns the inputed value to the variable b.
This examples gives a flavour of our language. It is by no means a complete example. The
subsequent sections explain all the new fields of this template in more details and introduces
all constructs of the language.

3.1.1 Data Definition

Every feature has the Data Definition field, in which the data related to each feature can be
specified. It is possible to define types (Name Types and New Types), constants and variables

15
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Figure 3.1 Use case specification example with data

in the scope of the feature. Note that each use case also has this Data Definition field, thus rep-
resenting the data specified in the scope of the use case. These kinds of data can be created by
filling the tables shown in Figure 3.2. Its fields contain comments explaining how the template
should be filled.

Each table is related to a specific data definition (Name Type, New Type, Constant and
Variable), and each line of the table represents a tuple to create them. The first two elements of
the tuples are the same for all of them, which are: an Id - an identifier - and a description of the
introduced data. The third element depends on the type of data created (they are described in
detail below). The idea of using tables to define data was based on the work of Blackburn et.
al [BBF97].

There are primitive types, such as Bool (boolean) and Natural. User defined types can also
be created, by using the New Type construct. There is still the possibility of dealing with sets
(we call SetValues), in which their elements can be of Natural type or the type of any New
Type previously introduced. The following sections describe how each kind of data definition
can be specified.

3.1.1.1 Name Type

A Name Type specification associates a name with a subset of elements of an existent type. In
other words, it represents a pre-defined subset of elements of a specific type, and this subset is
associated with a name. Thus, when this name is referenced, it means that it is just a synonym
to the type expression it represents.

Figure 3.3 shows the BNF related to a Name Type definition, which can be represented by
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Figure 3.2 Data Definition template

the tuple (Name Type Id, Description, Elements). The fields in bold are values of the existent
types.

Figure 3.3 BNF for a Name Type definition

The field Elements can be specified in two ways, as can be seen in the BNF. One, which
is called SetRange, can be used only for the Natural type and is used to specify the values
in the range of the two Natural values introduced. This is illustrated in the first Name Type
definition of the Figure 3.4, which presents some examples of Name Type definitions. In this
first example, the Name Type SomeNaturals is composed of the values 0, 1 and 2.

The second way is by properly enumerating the desired elements, which can be of the
Natural type or of some already defined New Type (just like the definition of a set value).
The other two Name Type definitions in the Figure 3.4 illustrates this case: SomeNaturals 2
introduces a Name Type with the values 0 and 4, and SomeMesssages is composed by the values
M.0 and M.2.

We assume here that these values have already been defined previously by using the New
Type construct (see the next section). This is the only case in which there is no problem of using
values that are specified after its use; in all other cases (definitions of New Types, Constants
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Figure 3.4 Name Type definitions example

and Variables) this is not possible.

3.1.1.2 New Type

A New Type is used to associate a type name with atomic values. Alternatively, values can also
be associated with tags. Figure 3.5 shows the BNF related to a New Type definition, which can
be represented by the tuple (New Type Id, Description, Elements). Figure 3.6 presents some
examples of the New Type definitions.

Figure 3.5 BNF for a New Type definition

Figure 3.6 New Type definitions example

The New Type elements can be specified in three ways: Enumeration, Indexing and Base-
TypeList, as can be seen in Figure 3.5. A New Type that is nothing more than just introducing
each value is called Enumeration. An example is the New Type Color, in Figure 3.6; their



3.1 EXTENDED USE CASE SPECIFICATION OVERVIEW 19

elements are the atomic values: green, blue and red. The Indexing and BaseTypeList associate
values with tags. The Indexing associates a tag with the values defined in a range of Natural
values. The New Type Phone exemplifies this case, where it comprises the elements: Phone1,
Phone2 and Phone3. A BaseTypeList is just a list of BaseType, which is used to create elements
by associating a tag with the elements of an existent type (making a disjoint union); this asso-
ciation is done by using a dot, and after the dot the ID required needs to be a Name Type or
New Type ID.

The Message example illustrates a New Type composed by the elements M.0, M.1 and
M.2 (recall that the Id SomeNaturals represents a previously defined Name Type containing
the values 0, 1 and 2). See that these are the elements used in the definition of the Name Type
SomeMessages. Another more complex example is the ColorPhone New Type, which uses a
list with two BaseType, thus, it is composed of A.green, A.blue, A.red, B.Phone1, B.Phone2
and B.Phone3.

It is worth emphasizing that the values associated with a New Type Id can not be used as
values of any other New Yype Id of the whole use case document. After all, when the user
define new types, the values of such type can only be associated to such type.

3.1.1.3 Constants and Variables

Constants and Variables are defined by assigning a name with a value expression. The differ-
ence between them is just that a Constant remains unchanged in all document while a Variable
may have its value changed by an assignment. The Constant can be represented by the tuple
(Constant Id, Description, Value) and the Variable is defined by the tuple (Variable Id, Descrip-
tion, Initial Value). Figure 3.7 shows the BNF related to Constant and Variable definitions.

A value (or initial value, in the case of a variable) is represented by an expression. As Fig-
ure 3.7 illustrates, an expression can be a single value, a unary expression, a binary expression
or an Id (of another Constant or Variable). A single value may be of any of the types already
explained (Natural, Boolean, Set or New Type). Now let us have a look at the operators used
to build a unary expression; the first four operators described below are related to sets.

• “#” - the cardinality of a set; thus, it is an expression of type Natural.

• “powerSet of” - the power set of a set, which still returns a set.

• “is non-empty” - a boolean that verifies whether a set is non-empty.

• “is empty” - a boolean that verifies whether a set is empty.

• “not” - a boolean that negates another boolean expression.

Concerning binary expressions, the operators “+”, “-” and “*” are overloaded. When used
with two expressions of type Natural, they just mean the standard operations of sum, subtraction
and multiplication, respectively. If they are applied to sets, they mean union, set difference and
intersection of sets, respectively.

The extended language also supports ordering operators “>”, “>=”, “<”, “<=”, which can be
used for naturals and sets. Equality operators “=”, “!=” can be used for all types. The operators
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Figure 3.7 BNF for Constant and Variable definitions

“and” and “or” are used for logical boolean expressions and the operators “is in” and “is not
in” are used to verify if a value (first expression) is a member of a set expression.

Figure 3.8 introduces some simple examples to illustrate the definition of constants and
variables. There are three constant definitions: the first associates the Id MAX with the natural
value 2, then the Id a is assigned to the boolean value false, and finally, the Id b receives the New
Type value M.0, which is of the type Message (recall the New Type example in Section 3.1.1.2).

In the variable definitions there are three Ids being associated with a set of Messages: inbox,
selected and important. The variable inbox is initialized with the set {M.0, M.1}; the variable
selected is initialized with an empty set; and the variable important contains a single element:
M.2. The variables c and d are examples of a case of overloading, where the operator “+”
represents the union of two sets (the values of the variables inbox and selected) (variable c),
while d is assigned to the sum of two natural values (2 and 3).

3.1.2 Flow Step

The step specification of the execution flows was extended in order to support the manipula-
tion of data. Now it is possible to define inputs, outputs, assignments and state guards in the
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Figure 3.8 Constant and Variable definitions example

specification of each flow step. Data fields are enclosed between two “%” characters, and are
not part of the CNL sentence. Hence, the proposed template extensions have no impact on the
existing CNL [TLB06].

Figure 3.9 illustrates this idea and the next sections explain how the user can write each
kind of data use.

Figure 3.9 Extended flow step template

3.1.2.1 Inputs

Inputs are supplied by actors and are associated with the User Action column (Figure 3.9).
Figure 3.10 presents the BNF for inputs.

Figure 3.10 BNF for defining inputs

A list of inputs is defined by separating each input definition with a comma. Looking at
Figure 3.10, it is noteworthy to know that the input variable Id is in the scope of the step. The
expression in which the input is realized (the first expression after the word “from”) has to be a
set expression.
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After this, it is optional (the brackets delimit an optional statement in a BNF) to define a
restriction on the input variable. Thus, the expression after “such that” can be used for that
purpose, and must be a boolean expression which makes a restriction in the input variable.
Figure 3.11 shows an example of an input.

Figure 3.11 Input example

The input variable x represents the set of non-empty messages selected by the user from the
inbox (recall that inbox is a previously defined variable representing the set of inbox messages).
Formally, this input takes a value from the set ℘(inbox)−{ /0}, where ℘(S) is the power set
of S.

3.1.2.2 State Guard

State guard is a condition that enables the step to be performed; it is defined as a boolean
expression placed in the System State column. Thus a guard is simply a boolean expression.
This is an important contribution with respect to the previous template, where conditions are
abstractedly captured by events, without any state information. Figure 3.12 illustrates the use
of a state guard in the flow step.

Figure 3.12 Guard example

The guard of this example specifies the condition to execute the User Action: the cardi-
nality of the union of the important messages and the selected messages must not exceed the
maximum capacity of the important messages folder.

3.1.2.3 Variable Assignments and Output Values

The System Response column can be of two kinds: variable assignments and outputs. Variable
assignments specify updates in the system state after the step finalization and output values are
data sent back to the user. Figure 3.13 introduces the BNF associated with these commands.

A sequence of assignments and outputs are allowed in the System Response by separating
them with a comma, as can be seen in the BNF. A variable assignment is specified by the
definition of a new expression that will be now associated with the variable ID. In order to
output an expression it is just necessary to specify an expression in any format of the expression
BNF already presented.
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Figure 3.13 BNF for defining assignments and outputs

Figure 3.14 illustrates an example involving outputs and assignments. The example shows
the variable important (set of important messages) being updated to the expression “important -
selected”, which means to remove the selected messages (variable selected) from the important
messages folder. Variables not assigned to are assumed unchanged. The output expression se-
lected completes the system response message by outputting the number of removed messages.

Figure 3.14 Assignment and output example

3.1.3 Use Case Relations

Our use case specification still considers relationship among use cases. There is, however, a
small difference with respect to the original template: the condition in the Extends relation-
ship can now be expressed with a state guard. For example, the extension Extends (Important
Messages folder is not empty, UC02@Clean up) can be replaced by Extends (#important >
0, UC02@Clean up). The guard can also be expressed as important is non-empty, which is
equivalent to #important > 0: it tests if the variable important has at least one element.

3.2 Complete Extended Use Case Template

Now that the language for data has been explained in detail, the complete template is presented
in Figure 3.15, gathering every part of the new template that has been explained separately
above. The purpose is to provide the general view of the new use case specification, where the
new fields are now included.

Figure 3.16 introduces a complete example for the Feature Important Messages, presented
in Chapter 2. This example illustrates how the data approach can be used in a real specification.
The complete BNF can be found in Appendix A. Now let us have a look at the complete exam-
ple, which puts together the pieces already explained above. As the Data Definition section of
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Figure 3.15 Complete use case specification template
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Figure 3.16 Important Messages Feature in the new template
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this example has already been introduced previously, we start from the description of the use
cases.

The auxiliary use case UC01 specifies the selection of messages from the inbox messages
folder. In the first step of this use case there are no data involved, thus, it was not necessary to
use the extended language for data. The second step updates the set of selected messages with
the messages that come from the input.

The use case UC02 includes UC01 after the START step, and defines an extension point
named Clean up. The main flow of UC02 specifies the successful attempt of moving the se-
lected messages to the important messages folder. In order to move the messages, the selected
messages are removed from the inbox messages folder and added to the important messages
folder.

The alternative flow of UC02 specifies the unsuccessful attempt to move those messages.
The guard of step 1A is a complement to that of step 1M, thus, they are mutually exclusive. If
the guard of step 1A holds, then a message is displayed indicating that a cleanup is required;
the minimum number of messages to be deleted is indicated.

The use case UC03 extends UC02 with the Clean up extension if there is some messages
in the important messages folder. It defines a local variable named selected which is initialized
with an empty set. When a local variable has the same name as a global variable (overloading),
references to the variable name will refer to the local one. In UC03 the messages selected
from the important messages folder are assigned to the local variable (step 1M), and the same
selected messages are removed from that folder.

3.3 Concluding Remarks

This chapter introduced the new template, where the new language to support data definition
and manipulation is now included. The entire language constructs were explained in details, so
that a software engineer responsible for building a use case specification is now able to make
use of those new improvements inside the use case document. An example illustrating the
usage of the new template was also presented.

The major advantage that this extension brings to the old use case specification is the ex-
plicit notion of state, as well as constructions for state update, input, output and testing condi-
tions. For that purpose, the concept of memory in the scope of feature and use case was also
included in order to embody the definitions of constants, variables and types. A real case study
is presented in Chapter 5.



CHAPTER 4

Implementation

The work of Cabral et. al. [CS08] presents a strategy for generating formal specifications
in CSP from a use case document. Based on this work, Nogueira et al. [NSM] extended this
idea so that the includes and extends relationships among use cases and the data definition and
manipulation are now supported. We extended the TaRGeT tool in order to mechanize the work
proposed by Nogueira et al.

This chapter introduces the mechanization of the CSP generation from a use case specifi-
cation following the template presented in the previous chapter. Actually, the generated model
follows the syntax of CSPm [Gol04], which is the ASCII (textual) form of CSP, in which FDR
scripts are expressed. It is the standard syntax accepted by CSP tools. Our implementation is
conservative, which means that previous use case specifications that do not use our extensions
still work in TaRGeT [NCT+07]. Similar to TaRGeT, our implementation is also in the Java
language and based on the representation of a use case specification in XML.

Our first task was to extend the TaRGeT XML Schema to support the new features and
to include the processing of these features. After that, the class responsible for generating the
CSP specification (and its auxiliary classes) and the classes needed to represent the new features
were created. Every new constructor of the language is supported by a class. For example, an
input is represented by the class Input, a guard is represented by the class Guard, etc.

Figure 4.1 shows a high level view of TaRGeT’s architecture before the inclusion of CSP
generation (a) and after this inclusion (b). The following sections explain what was needed to
be changed and to be created in TaRGeT in order to mechanize our CSP generator.

Figure 4.1 TaRGeT Architecture
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4.1 XML Schema Extension

The XML Schema that represents the use case specification template was extended so as to
support the data definition and manipulation. Our language was included as elements in the
new Schema in a conservative way. Having in mind that the XML Schema is very large, we
show in this subsection just the main parts added to support the new features. The complete
Schema can be found in Appendix B.

Even though the extends and includes relationships had been already defined and included
in the use case specification template, it was not implemented in the previous version of the
TaRGeT tool. Thus, we also had to embody this feature in the XML Schema. Figure 4.2
illustrates the diagram and Figure 4.3 shows an excerpt of the Schema. This illustrates the three
elements needed to be created to represent the inclusion and extension relationships among use
cases: include, extension and extension point.

Figure 4.2 Relationship among use cases

Figure 4.3 Relationship among use cases in XML Schema

When the type of an element in the XML Schema has “spec:SomeType” this means that
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“SomeType” is already defined as a primitive or complex type in the Schema. Thus, useCa-
seId, expression and stepId types in Figure 4.3 are complex types already defined. The minOc-
curs and maxOccurs requires that each kind of relationship contains zero or more elements,
preserving the situations that does not consider relationships.

Figure 4.4 shows the diagram that represents the dataDefinition component, which repre-
sents the definition of Name Types, New Types, constants and variables; Figure 4.5 presentes
the corresponding XML Schema. Note that each kind of data definition follows the BNF pre-
sented in the previous chapter and the elements also have the minOccurs set to zero.

Figure 4.4 Data Definition

Figure 4.5 Data Definition in XML Schema
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Another important change was in the flow step in order to include the data manipulation
(inputs, guards, outputs and assignments). In order to preserve the original Schema definition,
the necessary elements were included but the old elements remains the same. Figure 4.6 illus-
trates the diagram for a flow step and Figure 4.7 shows the flow step Schema. Once again, the
Schema represents exactly the BNF presented in the previous chapter.

Figure 4.6 Flow step

Figure 4.7 Flow step in XML Schema

It can be seen that the existing fields to build a step in the new template are: stepId, action,
input, condition, guard, response and the list of outputs and assignments. Note that the new
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features included have the minOccurs set to 0 (Figure 4.7), thus preserving the compatibility
with the original Schema in which no data is included.

4.2 Architecture Extension

Looking forward to implementing the CSP model generation, TaRGeT had to be extended in
order to support the new XML template. For that purpose, we needed to create new basic
classes to support each new element created in the XML Schema. First of all, three entity
classes were created to include the relationship among use cases: UCExtension, UCInclude
and UCExtensionPoint, representing extension, inclusion and extension point, respectively.
These classes were grouped into another entity class, called UCRelations, aiming at architec-
ture organization.

Figure 4.8 shows the class diagram that represents the relationship among use cases. Recall
that these relationships are just at use case level; therefore, it is not possible to create relation-
ship among features. For that purpose, a UCRelations attribute was added in the UseCase
entity class (already defined in TaRGeT). Note that the attribute - auxiliary - also had to be
included in the UseCase class (and in the XML Schema) so as to identify whether a use case is
auxiliary or not.

Figure 4.8 Class diagram for relationship among use cases

In order to implement the inclusion of data, other changes had to be performed in the archi-
tecture. We can divide this inclusion into two groups: data definition and data manipulation. To
support the first group, a DataDefinition entity class was created, which embodies the defini-
tion of types (New Type and Name Type), constants and variables implemented by the classes
NameType, NewType, Constant and Variable, respectively.

Having in mind that data can be defined both in the scope of a Feature and a use case, the
DataDefiniton class was included as an attribute of the corresponding classes Feature (already
existent in the original TaRGeT) and UseCase. Figure 4.9 illustrates the class diagram.
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Figure 4.9 Class diagram for data definition

The NameTypeElements and NewTypeElements are two interfaces and were created to
support the elements definition of Name Types and New Types. Figure 4.10 presents the class
diagrams for these interfaces. Note that the entity classes SetLiteral and SetRange implements
NameTypeElements and were included so that the two ways of defining the elements of Name
Type could be implemented. Following the same idea, BaseTypeList (and BaseType), Index-
ing and Enumeration classes implements NewTypeElements and represents the three ways
of defining the elements of a New Type (recall the data definitions introduced in Chapter 3).

Figure 4.10 Class diagram for Name Type and New Type elements

To represent an expression — used for defining the values of constants, variables and the
guard in an extension — the interface Expression was added. The classes BinaryExpression,
UnaryExpression, Id and Value implement this interface and represent all kinds of possible
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expressions. The NaturalValue, BoolValue, SetValue and NewTypeValue classes extends the
parametrized abstract class Value, where the type of the value attribute depends on the subclass
instantiated as can be seen in Figure 4.11.

Figure 4.11 Class diagram for expression

To support data manipulation, the entity class FlowStep was extended with new attributes
representing the inputs, guard, outputs and assignments. Figure 4.12 shows this architecture,
where the entity classes Input and Guard represent the use of inputs and guard, respec-
tively. For the purpose of architecture organization the class OutputAssignList encapsulates
the classes Output and Assign, in which it is possible to output expressions and perform vari-
able assignments, respectively.

Figure 4.12 Class diagram for the extended flow step
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4.3 CSP Model Generation

This section presents an overview of the CSP generation strategy adopted by this work. Fig-
ure 4.13 displays the structure of the CSP specification model with data. The process System
models the behavior of the features F1, F2, ..., FN that reflect the document structure. Basically,
for each document feature a CSP process is generated. Each feature gives rise to a process, and
accordingly, each use case of a feature is modelled by a process (the FLOW processes in Fig-
ure 4.13).

Figure 4.13 Structure of the CSP model

If the feature contains variables, additionally to the use case processes, there is another
process (the MEM processes in Figure 4.13) that specifies the feature state; this process plays
the role of an abstract memory. A memory process stores variable values and allows the use
cases (also represented by processes) to read from and write to the memory. Local memories
are added if a use case contains local variables.

Flow and memory processes communicate through special events that enable reading (get)
and updating the memory (set). Such events are shared among flows and memory processes.
A use case memory is only accessed by the use case flow, while a feature memory is shared
among the feature use cases.

In what follows we incrementally present the translation of some elements of the example
introduced in Chapter 3. We will see how the Important Messages feature is translated into its
respective composition of CSP processes. Such a composition follows the structure depicted in
Figure 4.13.

Figure 4.14 reintroduces the data definition of the Important Messages feature with its re-
spective CSP model. This figure shows the translation of types, constants and variables de-
clared in the template into CSP. As can be seen in Figure 4.14, a Name Type is transformed
into a nametype in CSP and a New Type is mapped into a datatype. A constant is simply
mapped to a constant in CSP.

The general rule for the names in the CSP model is that elements valid in the scope of a
feature F are prefixed with fF , and those valid in the scope of a use case uc of the feature F
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are prefixed with fF uc . Moreover, the types are preceded with the character t instead of f.

Figure 4.14 CSP translation of Important Messages data definition

Each variable declared in the document is enumerated in the datatype Var. Figure 4.14
shows the datatype Var enumerating three variables in the scope of feature: f11169 inbox,
f11169 selected and f11169 important. If there is any variable declared in the
scope of a use case, it is also enumerated in this datatype. For example, supposing that a
variable also named selected is declared in the scope of a use case UC03, the variable
f11169 UC03 selected is also enumerated in the datatype Var.

Furthermore, each variable type is enumerated in the datatype Type, whose purpose is to
represent the union of all the relevant types of the state variables; this is then used as the type
of the variables placed in the memory. Each type is declared by a tag that identifies the type
and the separator “.” followed by the set of values for the type. In this way, the datatype Type
produces values in the form typeTag.typeValue, which are denominated tagged values.

For example, in Figure 4.14 we can see that Type enumerates the (single) type of the
variables declared in the Important Messages feature. These variables are tagged with the iden-
tifier t11169 1 (typeTag) and values in the superset of message sets (typeValue). Still in
Figure 4.14, b11169 MEM is the initial binding for the three variables in the scope of the Im-
portant Messages feature. The binding of variables local to a use case is specified analogously,
but in the memory created for that use case.

As already explained, get and set events are used by control flow processes to access mem-
ory processes. In the CSP translation these events are channels communicating values of type
Var.Type, thus, they are able to communicate the pairs (variable, tagged value) whose values
come from the already defined datatypes Var and Type, respectively. Based on these channels
the process that models a memory can be defined. The strategy presented here considers an
interleaving of processes, each one concerned with the store of a single variable, to represent
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state information in CSP. In this way, we can say that the memory process is the interleaving
among memory cells that carry variables and values from an initial binding. Supposing this
memory process is already defined for the Important Messages feature, its memory model can
be defined as f11169 MEMORY = Memory(b11169 MEM).

To illustrate a CSP model example for a use case flow, Figure 4.15 reintroduces the use case
UC02 of Important Messages feature and its corresponding generated CSP process. The pro-
cess flow of the use case UC02 (f11169 UC02 FLOW) is parametrized by the use case exten-
sion (f11169 UC02 Cleanup). Its start step includes the use case UC01 that is sequentially
composed with the continuations of the step (f11169 UC02 1M [] f11169 UC02 1A):
an external choice between steps 1M and 1A because the From Step of the Alternative Flow is
the START step.

Figure 4.15 Generated CSP of UC02 flow

Since a use case step can refer to variable values, current values must be in the context of
the step process before being used. The process for the step 1M initially reads the referred
variables (important, selected and inbox) from memory and places their values in the
context, using the get channels (suppose these get and set channels are already defined and
can communicate values of type Var.Type).

The subsequent behaviour is guarded by the state guard. If the guard expression holds
(i.e. if card(union(important,selected)) <= f11169 MAX holds) the subse-
quent actions and response (also supposing that the events action11169 UC02 1M and
response11169 UC02 1M are already defined) are performed and the system state is up-
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dated accordingly: set events update variables inbox and important.
The auxiliary event mem update indicates the finalization of a sequence of assignments.

The process for the step 1A is created using the same idea of the step 1M. The difference is
that there is no assignments in the System Response, but an output command. For instance,
the output channel out1 11169 UC02 1A is used to communicate the value of the output
expression.

After that, the extension f11169 UC02 Cleanup represents the behaviour of a use case
that extends use case UC02 in the Clean up extension point. The step 1A continues as the start
step (f11169 UC02 START) because of the To Step field. Because UC02 does not contain
local variables (thus, no memory), the process f11169 UC02(f11169 UC02 Cleanup)
is equivalent to its flow process (f11169 UC02 FLOW(f11169 UC02 Cleanup)).

We illustrate the use of extension, input and local memory in Figure 4.16, which presents
the use case UC03 of the Important Messages feature and its generated CSP code. There
is the need of a memory in this use case since a local variable selected is defined. Af-
ter the initial binding (b11169 UC03 MEM) also supposes the definition of UC03 memory
(f11169 UC03 MEMORY). The start process f11169 UC03 START is simply modeled by
its continuation (f11169 UC03 1M). The process for the step 1M (f11169 UC03 1M) ini-
tially reads the set of important messages from memory (variable important).

Figure 4.16 Generated CSP of UC03 memory, extension and flow

After that, it inputs a value in x (a non-empty subset of messages from the important mes-
sages folder). Note that the values for an input variable are specified in CSP by a previously
defined channel (in 11169 UC03 1M x). The process communicates the step action and



4.3 CSP MODEL GENERATION 38

response, updates the set of selected messages (variable selected) and continues as step 2M.
Considering that this step is simple and only has features already explained, it was omitted in
Figure 4.16.

The extension is defined as the process f11169 UC03 Ext 11169 UC02 Cleanup,
modeling the extension that the use case UC03 performs in the extension point Clean up of
the use case UC02. It reads the variables referenced in its condition (variable important)
and behaves as f11169 UC03 if the extension condition (card(important) > 0) holds.

As we could see in the CSP model of UC02, a use case process has a subprocess for its
control part (FLOW process), possibly parametrized by a list of extension points defined in the
use case. When a use case contains local variables, the behaviour of the use case is modeled
in CSP as the parallel composition of its control part and its memory, with synchronization on
the events from memory, which represent the alphabet of the memory. This alphabet is internal
to control and memory processes, so, they are hidden. Consequently, get and set events are
synchronized between the flow and the memory processes and are invisible for the environment.

Because the memory process is a recursive, non terminating process, its direct composition
with a flow process would also lead to nontermination; a parallel composition successfully ter-
minates only when its argument processes do terminate. Consider the special event success
that is not in the alphabet of the memory, neither in the use case alphabet. Such an event is
used to define the process success → Skip, which communicates success and termi-
nates, behaving like Skip. Figure 4.17 shows the CSP process that models UC03 behaviour.
It terminates whenever the flow does.

Figure 4.17 UC03 process

In this process, whenever the flow terminates with success (in the left-hand side of the
parallel composition) it behaves as the process success → Skip. Because success is
in the synchronization alphabet of the parallel composition, the event success can only be
communicated if the same event is offered on the right-hand side of the parallel composition. At
this point, the only possible behavior for f11169 UC03 MEMORY \ success → Skip is
success → Skip. As a consequence, the resultant behavior of the composition becomes
success → Skip \ success; since the only visible event is hidden (success), it is
equivalent to Skip.

For brevity, some constructions of the generated CSP are omitted and not explained here. In
order to have a complete and clear explanation about the whole translation of a use case speci-
fication following the idea of our template into a CSP specification see the work of Nogueira et
al. [NSM]. The following subsection explains how the translation to CSP was implemented
considering a use case document following the XML Schema presented as input.
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4.3.1 Implementation of the CSP translation

This section introduces how the CSP generation was implemented from the classes introduced
in Section 4.2. In order to provide the CSP translation from a use case document, the principal
class CSPgenerator was implemented together with 17 auxiliary classes. The main idea behind
CSPgenerator’s implementation is that it is composed of templates, each of them containing
meta-variables that will be replaced by their respective concrete CSP terms. Figure 4.18 shows
the templates created for that purpose: templates for data definitions, use cases, flows and flow
steps.

Figure 4.18 CSPGenerator templates

Now let us explain how this is done in more details. First of all, a method called build
receives the list of features as parameter, and for each feature it calls the method buildFeature.
This method then calls buildDataDefinition, that is the method responsible for constructing the
CSP code according to the data definition template. Let us illustrate this process with the data
definitions of the Important Messages feature (Figure 4.19).
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Figure 4.19 Data definition CSP code example

In order to build the first line of the code presented in Figure 4.19 (“datatype Var =
...”), a method called buildAllVariables - created in an auxiliary class - is initially invoked in
the method build. That method is responsible for creating a map that will contain the mappings
between all variable ids with their respective types. After that, the method buildDataDefini-
tion, which receives an object of the class DataDefinition as parameter, invokes the method
buildVar of another auxiliary class so as to properly generate the string “datatype Var =
f11169 inbox | f1169 selected | f11169 important” using the previously
created map. In this particular case, it just iterates over each variable id to build the target
string.

Following the same idea, we can build the complete structure of the CSP code to be gen-
erated. Once the CSP code is generated, we can see in Figure 4.19 how each meta-variable of
the data definition template (dataDefTemplate in Figure 4.18) can be replaced by its respective
CSP code. For example, #variables# is replaced by the CSP construct “datatype Var =
...”. The meta-variable #varTypes# is replaced by “datatype Type = ... ”, and so
on. Recall that this code is generated by the method buildDataDefinition.

Back to the buildFeature method, after treating the case of data definition, a method named
buildUseCase is needed to be called for each use case of the current feature. Following the same
idea described before, the buildUseCase method is responsible for constructing the CSP code
related to the use case template (remember this template in Figure 4.18). Thus, this method
also has to call the dataDefinition method (supporting the case in which data local to a use case
is defined), construct the rest of the CSP code related to use case, and finally, for each flow of
the use case, call the method buildFlow.

The method buildFlow is responsible for creating the code related to the flow template and
for calling the method buildFlowStep, for every flow step of the current flow. This method,
like the others, replaces each meta-variable of the flow step template by their respective CSP
code. Figure 4.20 reintroduces another example of the Important Messages feature, in this case
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illustrating the creation of a CSP code for a flow step according to its template.

Figure 4.20 Flow step CSP code example

Looking at the flow step template (stepTemplate in Figure 4.18) and at Figure 4.20 we can
see that #STEPID# is replaced by the respective flow step ID: f11169 UC02 1A. Consid-
ering that there is no inclusions in this step, #INCLUSION LIST# is replaced with an empty
string. Then, #gets# is replaced by the CSP code containing the needed variables memory
reading, and so on.

In this way, doing that for every defined template, the complete CSP code can be generated.
Just to finalize, there is also a method to build the feature behaviour (buildFeatureBehaviour),
and another method responsible to build the system (buildSystem). To see the complete CSP
code generated from the Important Messages feature specification see the Appendix C.

4.4 Concluding Remarks

As explained previously in this chapter, it was developed an implementation of automatic CSP
generation from a use case specification following the template explained in Chapter 3. This
implementation was done integrated with the framework of tools named TaRGeT, which also
had to be extended to with new classes to support data definitions and their manipulation, as
well as relationship among use cases, which was not considered inside TaRGeT yet.

Having a CSP model that represents the use case document in hands, it is then possible
to automatically generate test cases. As proposed in the work of Nogueira et al. [NSM], test
generation can be expressed as counter-examples of refinement checking, mechanized using
the FDR tool. After test generation, state based test selection is also possible, which is an
important task to reduce cost and time effort dedicated during software testing activities.



CHAPTER 5

Case Study

This chapter presents a case study that was performed at the CInBTCRD project. In order to test
the ideas and validate the approach proposed in this work, a use case document from Motorola
was adapted to fit in the template used in this work, also including relationship among use cases
and data fields. In order to use a shorter document, some requirements were not considered
and a compacted version of the specification was used. Then, the CSP formal model of its
specification was generated and the verification of its properties (non-determinism, deadlock
and livelock freedom, for instance) was successfully checked using the FDR tool.

Considering that the case study was developed in the Motorola environment, the use case
specification reflects the mobile devices domain. The use case we chose describes the sending
and receiving of SMS (Short Message Service)/MMS (Multimedia Messaging Service) mes-
sages. Particularly, it deals with the act of adding multiple recipients to a single SMS/MMS
message while being interrupted by a call, by the arrival of a new SMS or by the plug of the
phone charger. The recipients to be added can be a phone number or an email address.

Another situation encompassed in this document is the receiving of an SMS with an email
address in its body. This email address can be clicked on so that it is possible to send a text
message to this address or store it to the Address Book. Besides that, the parsing of the From
Address (in this case an email or a phone number) in SMS or MMS is also handled by the use
case. The following sections present the use case document in more details.

5.1 Feature Types, Variables and Constants

This section presents the use case specification data definition in the scope of the feature. Fig-
ure 5.1 illustrates the declaration of the types, constants and variables that can be accessed by
any use case of the feature 33629, whose name is Sending and Receiving SMS/MMS.

At first, let us take a look at the New Type definitions. There are two types of contacts
data (numbers and addresses); thus, number and address represent the types which contain
all (phone) numbers and (email) addresses, respectively. Because CSP has the integer type
as built-in, it does not allow the use of integer values in the definition of other types; for that
purpose we used the prefix “n ” before numbers. Also, it does not allow to use “@” and other
special characters (only underscore) and dot can be only used to specify a basetype; thus, the
emails are expressed with “ AT ” and “ DOT ”. The type contact is the union of numbers
and addresses, which associate the tags Phone and Email to differentiate among them. The type
interaction represent two types of interactions that can happen while composing a message: a
dialog call can open (dialog call) or an SMS notification can pop up (SMS notification).

42
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Figure 5.1 Data Definition of the feature 33629

In the group of constants we define max selection as the maximum number of contacts data
that can be added to send a message. The constant all contacts is the set containing all existing
contact information. In the same way, JohnSmith info composes the set of all information
related to John Smith, and UFPE group represents an existing group of UFPE students filtered
from all contacts. The only variable declared in the scope of this feature is selected, which
represents the set of selected contacts.

Figure 5.2 Data Definition CSP Model of the feature 33629

In Figure 5.2 we can see an excerpt of the generated CSP model from the set of data defi-
nitions presented. Note that in the Var datatype two more variables are defined: the variables
f33629 UC7 current type and f33629 UC3 current mode are local to use cases
UC7 and UC3 (described below), respectively. Remember that variables local to use cases are
also defined in the top-level Var datatype declaration.
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5.2 Use Case UC1

Figure 5.3 presents the use case UC1 of feature 33629, named Editing SMS/MMS message. As
can be seen in the figure, this use case is responsible for creating an SMS or MMS message and
it is an auxiliary use case, i.e, an use case that is not activated. It is a very simple use case, just
containing CNL sentences, without any data fields.

Figure 5.3 Use case UC1 of the feature 33629

Figure 5.4 shows an excerpt of the generated CSP of the use case UC1. Once UC1 does
not contain any data manipulation, we can see that each sentence of Figure 5.3 is translated in
a CSP event. Once this use case contains no variable, its process (f33629 UC1) is equivalent
to its flow process (f33629 UC1 FLOW). This part is omitted here, and in the others use case
CSP excerpts, for purpose of brevity. To see the complete generated CSP, see the Appendix D.

Figure 5.4 Generated CSP Model of UC1

5.3 Use Case UC2

Figure 5.5 presents the use case UC2, named Adding multiple recipients, which describes the
possibility of adding multiple recipients to a single message composition. It can be seen that,
firstly, this use case includes the behaviour of the use case UC1 (the inclusion is done in the
START step), representing that, at first, it is needed to pick the option of sending a message
before adding the recipients.
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Figure 5.5 Use case UC2 of the feature 33629
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UC2 also contains 6 extension points (interruptions in our case), labeled by the names
Interruption and containing the steps where the extension use cases can be added. In this
context, while adding the recipients it is possible to receive a call, receive a new SMS or be
interrupted by the charger. These extension points are explained in the following sections.

The main flow of UC2 shows the addition of recipients chosen from a list where all con-
tacts are available. The input variable x represents the contacts selected from the all contacts
set; non-selection is not allowed (see the restriction that x is non-empty). The system state
guarantees that the maximum number of contacts is not reached (x must be less or equal to
max selection). Once this condition is satisfied, the input x is assigned to the set of selected
contacts and the message can be sent.

The first alternative flow (containing step 1A) considers the situation when the number of
contacts selected reaches the maximum, as can be seen in the system state. Because of that,
the user is notified and advised to remove the exceeding number of contacts (the number of
contacts to be removed is then output); thus, it comes back to the START step.

The two following alternative flows (containing the steps 1B and 1C) are very similar to the
previous two flows; the only difference is that they are considering the case where the recipients
are chosen from the subset of the complete list of contacts called UFPE group (the input repre-
sents the set of non-empty contacts selected from that list). After that, again the two following
flows (containing the steps 1D and 1E) are similar to 1B and 1C, but the selection comes from
JohnSmith info. Now, Figure 5.6 and Figure 5.7 present an excerpt of the generated CSP for
UC2.

Figure 5.6 Generated CSP Model of UC2 - Part 1
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Figure 5.7 Generated CSP Model of UC2 - Part 2

UC2 first behaves like UC1, followed by the external choice through f33629 UC2 1M
(of main flow), f33629 UC2 1A to f33629 UC2 1E (of the alternative flows). Each step
is then translated into processes with inputs, guards, and so on, depending on the data manip-
ulation described in each one. For example, in f33629 UC2 1M, x is input through channel
in 33629 UC2 1M x. If the cardinality of x is less or equal to f33629 max selection
the events action33629 UC2 1M and response33629 UC2 1M are produced, and the
assignment to x id done (set!f33629 selected!t33629 1.x). The other steps have
similar translations. UC2 process (f33629 UC2) is also equivalent to its flow process.
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5.4 Use Case UC3

Figure 5.8 shows the use case UC3, named Calling interaction. First this use case contains
data defined in the UC3 scope: a New Type mode, which enumerates two types of phone
modes (selection mode and call mode) and the variable current mode (of mode type), which
is initialized with the value selection mode. This mode type represents the cell phone in 2
states (or modes). Selection mode defines the action of selecting contacts (in UC2) while call
mode is when the user receives a call. We can also see that UC3 extends UC2 in all extension
points contained in UC2. So, UC2 extended by UC3 represent the scenario of a call received
while selecting the contacts before sending a message.

In the main flow, it can be seen that when the user receives a call in step 1M, a dialog is
displayed. The output represents this situation: remember that dialog call is a value of type
interaction, which was defined in the scope of the feature (see Figure 5.1). A dialog call inter-
rupts the contacts’ selection (that is why the current phone mode is changed to call mode). In
step 2M, when the user finishes the call, the phone returns to the selection state, thus, current-
mode returns to selection mode.

Figure 5.8 Use case UC3 of the feature 33629

Figure 5.9 shows an excerpt of the generated CSP model of use case UC3. The type
mode is translated to t33629 UC3 mode and the local variable current mode becomes
f33629 UC3 current mode. Because UC3 contains a local variable, a local memory
is then created (b33629 UC3 MEM). After that, every extension that UC3 performs in the
extension points of UC2 is modeled by a process. The process for step 1M is modeled with
events for user action and system response, followed an output and a local memory update.
Step 2M is similar; it just does not contain the output. Once this use case contains vari-
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able, its process (f33629 UC3) is modeled as the parallel composition of its control part
(f33629 UC3 FLOW) and its memory (also omitted here).

Figure 5.9 Generated CSP Model of UC3

5.5 Use Case UC4

Figure 5.10 shows the use case UC4, named New SMS interaction, which represents the receiv-
ing of a new SMS while selecting the contacts to send a message. The list of extensions shows
that this interaction extends UC2 in all extension points contained in UC2.

The main flow of UC4 shows that when the user receives a new SMS in step 1M, a notifica-
tion of the new SMS is shown but does not interrupt the selection of contacts. That is why there
is an output of SMS notification and there is no changing of mode, once the task of selecting
contacts is not interrupted (the notification can be simply a beep or the appearance of an icon).
The change of mode on UC2 meant that the contact selection was interrupted for the call to
be taken. After the call, the contact selection screen was enabled again. This interruption and
change of screen does not happen in the use case UC4. So, we do not need a mode variable for
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controlling the state of the phone.

Figure 5.10 Use case UC4 of the feature 33629

Figure 5.11 shows an excerpt of the generated CSP model of use case UC4. This translation
is very similar to that for UC3, except that there is no local data and memory and it contains
only one step, with just one output. Once again, this use case does not contain variables, thus,
its process (f33629 UC4) is modeled as its control (f33629 UC4 FLOW) part.

Figure 5.11 Generated CSP Model of UC4

5.6 Use Case UC5

Figure 5.12 shows the use case UC5, named Interaction with charger. This use case describes
the act of removing the cell phone from charger while selecting the contacts before sending a
message. The list of extensions show this interaction, where UC5 extends UC2 in all extension
points contained in UC2, just like UC3 and UC4.
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The main flow of UC5 shows that when the user removes the cell phone from the charger in
step 1M (the system state establishes the condition that there is a charger inserted in the phone),
the action of removing the charger does not interrupt the selection of contacts nor displays a
notification to the user. That is why there is no output and no changing of mode.

Figure 5.12 Use case UC5 of the feature 33629

Figure 5.13 shows an excerpt of the generated CSP model of use case UC5. This translation
is very similar to that for UC3 and Uc4, where in this case, the steps are translated into events as
there are no state change, no inputs, and no outputs in this use case. The process f33629 UC5
is once again equivalent to its flow process.

Figure 5.13 Generated CSP Model of UC5

5.7 Use Case UC6

Figure 5.14 presents the use case UC6, which is named Receiving an SMS with an email ad-
dress attached to its body. This use case describes the situation in which the user receives an
SMS containing an email address in its body. When this happens, this address is highlighted,
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allowing the user to click on it, and consequently, the options of sending a message to this
email or storing it in the address book are available. As can be seen in Figur 5.14, this use case
contains no data fields.

Figure 5.14 Use case UC6 of the feature 33629

Figure 5.15 then shows an excerpt of the generated CSP model of use case UC6. The
translation is trivial: every action and system response is translated to an event. The CSP
process is similar to that for UC1 (Figure 5.4). One more time, as the processes of the others
use cases, the process of UC6 is equivalent to its flow process.

Figure 5.15 Generated CSP Model of UC6

5.8 Use Case UC7

Figure 5.16 introduces the use case UC7, which is named Parsing From Address in SMS or
MMS. It describes the situation where the From Address of a received SMS/MMS is highlighted
so that the user can click on it and some options are available, just like in UC6. In UC7, the
From Address can be either an email or a phone number (i.e, the sender can send the message
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from his phone or from his email). We defined a New Type address type enumerating the two
options (number or email). A variable, named current type, was also declared to store the
current source type.

In the main flow of UC7 it can be seen that the source type of the From Address is input
from a set containing the two available types. After that, this source type is stored in the
current type variable. Then, in the step 2M, the system state establishes the condition in which
the From Address is a number: the guard current type = number guarantees that. When the
From Address is clicked on there are three possible options: make a call, send a message and
store to address book. The alternative flow considers the opposite situation, in which the From
Address is an email. In this, when the user clicks on the From Address, only two options are
available: send a message and store to Address Book.

Figure 5.16 Use case UC7 of the feature 33629

Figure 5.17 then shows an excerpt of the generated CSP model of use case UC7. The trans-
lation follows the same idea of the other use case. The type and variable defined are translated
into t33629 UC7 address type and f33629 UC7 current type, respectively. A
local memory (b33629 UC7 MEM) to store the variable (f33629 UC7 current type)
is created.

Step 1M is translated into the process which inputs the value number or email to the
input variable sourceType and then produces the events for user action and system response;
after that, it can go to the processes of the steps 2M or 1A. Step 2M and step 1A (of the
alternative flow) are very similar; both of them need firstly to read the value of the local variable
from memory (the get clause), then it is verified whether its value is equal number (step 2M)
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or to email (step 1A). Finally, if the condition holds, the user action and system response are
produced. Once UC7 contains variable, its process (f33629 UC7) is modeled as the parallel
composition of its control part (f33629 UC7 FLOW) and its memory (also omitted here).

Figure 5.17 Generated CSP Model of UC7

5.9 Concluding remarks

An overview of the whole context of the use case specification used in the case study was
described and some excerpts were presented, separately by each use case and their feature data
definitions (some constructions of the CSP are omitted for brevity). The complete CSP model
generated can be seen in Appendix D.

As said previously, this document was adapted from a real Motorola’s specification to fit in
our template, once the current Motorola’s template for specifying use cases is different from
ours. Also as already mentioned, we extended the original template with use case operations,
state, input and output data. Besides that, we have produced a compacted version of the doc-
ument so that performing the case study could be more easily achievable. The insertion of
data and the use of relationship among use cases were also necessary in order to validate our
approach in a real application context. We consider that the case study significantly illustrates
the proposed templates and the translation strategy.
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One thing we can notice is that most of the data defined in the scope of the feature are used
only in the use case UC2. Thus, we can ask why those data are not defined in the scope of UC2.
The answer for that question is: once we used a compacted version of the use case document
in the case study, those data are only used in UC2, but, supposing that we can extend this use
case specification to consider everything that was left behind, those data definitions might be
used in other use cases.

We could also see that there are some restrictions in defining the elements of datatypes
in CSP, where we cannot use numbers and strings containing special characters. Because of
this, it was necessary to define the New Types in the use case document following the same
restrictions. One thing that we can try to do in the future (considering that we have not though
about these restrictions earlier) is to treat these restrictions in the generated CSP model, in
order to allow the user to enter with type elements like these (numbers and strings with special
characters).

Some classical system properties (non-determinism, deadlock and livelock freedom, for
instance) of the CSP formal model were successfully checked using the FDR tool. In the
CInBTCRD project, this generated CSP model is the input to a test generation strategy, which
is mechanized by the ATG tool [NSM08]. Our translation from use case to CSP ran on an AMD
Turion 64, 1.4 Ghz, 1 MB of RAM, and took approximately 1 second. FDR (version 2.82, for
Linux) ran on the same machine (in Ubuntu 8.10, emulated with a virtual machine) and the
verification of the CSP model (for the three properties commented here) took 12 seconds.

The CSP model generator was also verified in other circumstances, not just in the CSP
model generated for the case study and the Important Messages feature, in order to test other
constructions of the proposed language and its generated CSP that is not approached in these
cases.



CHAPTER 6

Related Works

In this chapter some approaches that are somehow related to this work are described. The ap-
proaches are divided into two different domains: formal specification generation from require-
ments and test case generation from requirements. In general, the requirements documentation,
in the approach considered here, makes use of a restricted form of natural language due to the
problem of ambiguous, unclear and imprecise specifications.

6.1 Processable specification generation from requirements

This section introduces some works that aims at the generation, from a requirements document,
of specifications which can be processed by a computer. These generated specifications also
serve to verify properties of the requirements. The titles of the following subsections are relative
to the name of each discussed work.

6.1.1 Supporting use case based requirements engineering

Somé’s work [Som06] proposes an approach to support use case based requirements elicitation,
clarification, composition and simulation. It introduces a restricted form of natural language
for use cases such that automated derivation of specification is possible while readability and
understandability of use cases by all stakeholders is retained.

This approach is supported by a tool called UCEd (Use Case Editor [Som07]) that takes
a set of related use cases written in a restricted form of natural language and generates an
executable specification integrating the partial behaviours of the use cases. The work uses UML
(Unified Modeling Language [OMG10]) class diagrams for the specifications and semantics of
use cases, and also for the syntactic analysis and specification generation.

Figure 6.1 shows a use case diagram modelled in UML. The system under consideration is
a Patient Monitoring System (PM System), which is used to monitor patients’ vital signs in a
hospital.

The relationship among use cases (inclusion and extension) are also supported, as can be
seen in the Figure 6.1. This work distinguishes two kinds of use case descriptions: normal use
cases and extension use cases. The former is presented in Figure 6.2 while the latter is showed
in the Figure 6.3.

There are two basic components of use cases: conditions and operations. The restricted
form of natural language proposed in this work is related with the description of these elements.
Figure 6.4 outlines the grammar for conditions, which are predicative sentences describing

56



6.1 PROCESSABLE SPECIFICATION GENERATION FROM REQUIREMENTS 57

Figure 6.1 Example of use case diagram for a PM system

situations prevailing within the system and its environments. Figure 6.5 shows the syntax for
operations.

The UCED tool uses an algorithm for the generation of a hierarchical type of finite state
transition machines from use cases. The algorithm can be found in [Som03a, Som04]. A state
machine generated from a use case includes all the use case scenarios. It is possible to find
a sequence of transitions in the state machine corresponding to the sequence of operations of
each scenario. State machines have the property of being executable and used as prototypes.
Consequently, simulation can be efficiently applied within this approach, and because of that,
UCEd includes a simulator tool that allows use cases simulation using generated state machines
as prototypes.

It can be seen that the language of this presented work seems to be a more structured
language, with a well defined syntax for conditions and operations, while in our work it just
happens in the use of data, where we have a specific BNF to defined the data fields. Also, the
generated model of this work is more operational (using state machines), and ours considers
a process algebra (CSP). There is one direction of this work whose final purpose includes test
case generation (see Section 6.2.3).

6.1.2 Attempto — From Specifications in Controlled Natural Language towards
Executable Specifications

The work of Schwitter et. al [SF96] proposes a language specification - Attempto Controlled
English (ACE) - which is a subset of natural language that can be accurately and efficiently
processed by a computer, but is expressive enough to allow natural usage. It is a textual view
for writing functional requirements specifications so as to solve the problem of ambiguous,
imprecise and unclear specifications.
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Figure 6.2 Use case describing a login procedure in a PM system

Figure 6.3 Extension use case
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Figure 6.4 Grammar for conditions

Figure 6.5 Grammar for use case operations
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The subset of controlled natural language proposed gives a well-defined syntax and se-
mantics that can serve as a suitable view of a logic language. In ACE declarative sentences
can be combined by constructors to compose more elaborate sentences, while certain forms
of anaphora and ellipsis leave the language concise and natural. Furthermore, interrogative
sentences are placed at the user’s disposal for verifying the translated specification text.

Finite verbs can only be used actively, in the simple present tense, and in their third person
singular and plural forms. In this way, users are supported to express statements that are always
true. Figure 6.6 shows an example of a small excerpt of an ACE specification for a simple
automated teller machine, called SimpleMat.

Figure 6.6 Small excerpt of the SimpleMat specification

Attempto accepts specifications in ACE and translates them into discourse representation
structures (a structured form of first-order predicate logic), and then into Prolog [SS94]. Parsing
errors and ambiguities to be resolved by the user are reported back by the dialog component.
The specification text is parsed by a top-down recursive-descent parser that comes free with
Prolog. Top-down parsing is very fast for short sentences but for longer composite sentences
the exponential costs of backtracking can slow down the parsing.

There are two tools together with Attempto: a Lexical Editor and a Spelling Checker. The
first one allows users to interactively modify and extend the full-form lexicon while the system
parses the specification text. Figure 6.7 presents a screen shot of how a non-expert would add
the common noun “customer” to the lexicon. The user has to enter the singular and the plural
forms, to select the gender and to decide between the classes of count nouns and mass nouns.

Figure 6.7 Insertion of a new substantive example

The second tool - Spelling Checker - allows users to determine whether all words of a
specification text are in the lexicon. This spelling checker is invoked automatically if (part of)
a specification text cannot be parsed.

The knowledge base can be used for simulation or prototyping by executing it. As it stands,
however, the specification does not provide all the necessary information and needs to be en-
hanced in three situations:
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• A chronological order of events has to be established, e.g. it has to make sure that during
the simulation the event of entering a card has to precede the event of checking the
personal code.

• Many relations representing events, e.g. I/O operations, are not only truth-functional, but
also cause side-effects. These side-effects can be defined by interface predicates in the
form of Prolog clauses.

• Finally, the execution needs some situation specific information, or scaffolding (this point
can be better understood below, where we introduce how the execution is performed).

Now, suppose that the user enters the specification text showed in Figure 6.8. Its execution
needs situation specific information and queries the user, e.g. to get an instance of a specific
customer. In this way, the execution of the above specification text leads to the dialog showed
in Figure 6.9. Side-effects of events are simulated by simply printing out a trace, informing
the user - step-by-step - about the relevant events that have been triggered, as exemplified in
Figure 6.10.

Figure 6.8 Specification example

Figure 6.9 Specific information required from the user

We can see that the language used to specify a use case in this work allows the user to
add new words, requires some specific information to the user; it has some interaction. In
our approach there is no interaction with the user like that. Another difference that we can
emphasize is that Attempto includes NL processing and does not propose a way of generating
test cases.

6.1.3 Automatic Transformation of Natural Language Requirements into Formal
Specifications

The main objective of Lee’s work [Lee01] is to provide an automatic conversion of a require-
ments document written in a natural language (NL) into a formal specification language, once,
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Figure 6.10 Step-by-step execution

even though there are many formal specification languages, it is not easy for a domain expert
to learn and use them in practice.

This generation process has three phases. The first phase is the automated translation from
a requirements documentation written in NL into a knowledge base. The second phase is
to convert this knowledge base into a formal specification, known as Two Level Grammar
(TLG [vW65]). TLG is used to construct a bridge between a NL requirements document and
a formal specification language. In the last phase, the translation from TLG into a formal
specification language, called Vienna Development Method (VDM [BJ78]) is made.

The unstructured document with requirements is automatically converted into a structured
knowledge base by decomposing and abstracting the information. Given a requirements docu-
ment, first each sentence is parsed into a list of words (decomposition). Syntactic and semantic
information is retrieved from these parsed sentences to build up the knowledge base (abstrac-
tion).

In this way, the knowledge base is constructed using data structures. A conceptual data
structured is used to store the vocabularies whereas a contextual data structure is used to store
the sentences and the contexts.

Figure 6.11 shows a requirements specification example of an Automatic Teller Machine
(ATM). Using the conceptual and contextual representations (knowledge base) generated in the
first phase, the TLG specification shown in Figure 6.12 is automatically obtained. The logic
programming model of TLG was extended in this work to include object oriented programming
functionalities. Because of the NL-like syntax of TLG the translation from the knowledge base
is relatively straightforward.

The generated TLG specification is used as an input to generate a VDM specification ex-
tension, known as VDM++ [DvK92], which supports object orientation as well.

It can be noted that this work is different from ours (and a lot of other works) because it
does not use a restricted form of natural language, but uses the language in its natural form.
Besides that, the generated model in this work includes object oriented programming features
(as we said, VDM++ includes object oriented features) and also does not have its effort directed
to test case generation.
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Figure 6.11 ATM requirements specification

6.1.4 Autonomous Requirements Specification Processing Using Natural Language
Processing

The work of MacDonell et. al. [MMC05] describes the architecture of an autonomous re-
quirements specification processing system that utilizes a limited version of a natural language
processing (NLP) system and an interactive user interface system.

As a way to decrease the problems and ambiguities introduced in a requirements documen-
tation, this work is therefore focused on the verification of requirements specification analysis
with a view to producing a design model - a use case diagram, an entity-relationship model or
similar. The system has the goal of automatically extracting objects of interest from a require-
ments document that is being processed by a systems analyst.

The system is composed of three modules: the first - a tokeniser - reads sentences from a
document, the second module parses each sentence and extracts all unique noun terms (an NLP
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Figure 6.12 TLG specification of the ATM

tool), and the third module - a term management system - performs the filtering of unimportant
terms, the classification of the remaining terms into one of three categories (function, entity, or
attribute), and the insertion of objects of interest into a project knowledge base.

In the second module, each sentence is parsed by a syntactic parser based on a chart parsing
technique [Ear70] with a context-free grammar (CFG) that is augmented with constraints. The
current prototype system uses a dictionary with about 32000 entries and 79 rules. A parse tree
example for the sentence “A system requires entry of patient’s information” can be visualized
in Figure 6.13. The term management system allows the user to select terms to create classes

Figure 6.13 Parse tree example
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of objects of interest and to also manage the term’s addition to and deletion from the defined
class.

Unlike our work, this work includes natural language processing. Their final purpose is
also different, aiming at producing design models such as entity-relationship model, while ours
generates a process algebra (CSP) and includes test case generation.

6.1.5 Improved Processing of Textual Use Cases: Deriving Behaviour Specifications

The work of Drazan et. al. [DM07] proposes a new method for processing textual require-
ments (described using a subset of natural language) based on the scheme earlier described
in [Men04], which focus on the derivation of behaviour specification, such as UML state ma-
chines. The new method allows processing the commonly used complex sentence structures,
obtaining more descriptive behaviour specifications, which may be used to verify and validate
requirements and to derive the initial design of the system.

While the original method [DM07] is applicable to sentences following the guidelines
of [Coc00, Gra00], this work aims at broadening its range of use. Industry use cases often
do not adhere to these guidelines, making use of complex sentences. Abstracting from the
common patterns and proposing rules applicable to a broad range of industrial use cases is the
main focus of this work.

For complex sentences, there is an increased risk that the statistical parser would return an
incorrect parse tree. An additional goal is to propose a metric to evaluate parse tree quality and
select the best parse tree if more then one is available.

It was developed a prototype tool [Dra06] implementing the improved method proposed.
The method was evaluated on a substantial collection of use cases (307 use case steps), con-
sisting of examples from methodology sources [Lar01, Cor03] respected by the industry, and
also on the collection of sample use cases used in the earlier work.

The new method has proven to be more reliable also on the original test data. Part of the
improvement is due to the ability of the new method to select a correct parse tree for sentences
where the original method failed. The detailed results obtained in this case study are available
in the appendices of [Dra06].

We can see that this approach differs from ours in some points: it includes natural language
processing, the generated model is more operational (state machines), aiming at deriving the
initial design of the system. Most importantly, it has evaluated the proposed approach in an
experimental/industrial validation, which in our case can be considered a weakness.

6.2 Test cases generation from requirements

This section introduces some works that aims at reducing the cost of testing through the gen-
eration of test cases from a requirements document. The titles of the following subsections are
relative to the name of each discussed work.
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6.2.1 Automated Formal Specification Generation and Refinement from Requirement
Documents

The work of Cabral et. al. [CS08] proposes a Controlled Natural Language (CNL), a subset of
English, used to write use case specifications according to a template. From these use cases
a complete strategy and tools enable the generation of process algebraic formal models in the
CSP notation. Cabral’s work is related to the same project that this work belongs to, in the
research cooperation between CIn-UFPE and Motorola, called CInBTCRD.

Because the context of this work includes Motorola environment, the proposed CNL re-
flects this domain. The generated formal model is used in this project as an internal model to
automatically generate test cases, both in Java (for automated ones) and in CNL (for manually
executed). Thus, this work provides both a formal specification generation in CSP and test
cases generation from the requirements document, addressing to the two sections discussed in
this chapter.

The use cases are considered in views that represent different abstraction levels of the ap-
plication specification: there are user and component views. A refinement relation between
these views is also explored, which is the major contribution of their work; the use of CSP is
particularly relevant in this context: its semantic models and refinement notions allow precisely
capturing formal relations between user and component views.

Some tools were developed in order to support the adopted approach. There is a plug-in to
Microsoft Word 2003 [SSLM04] to allow checking adherence of the use case specifications to
the CNL grammar. Another tool has been developed to automate the translation of use cases
written in CNL into CSP; FDR [Ros95], a CSP refinement checker, is used to check refinement
between user and component views.

Figure 6.14 shows the strategy overview. After System Requirements are described in an
abstract way, defining what the system is intended to perform, user view use cases are created
based on requirements analysis. This first set of use cases designs the ways actors interact with
the system. Later, component view use cases are created based on the user view use cases and
the adopted System Architectural Information.

Figure 6.14 Proposed strategy overall process

The user view use cases are translated into a user view use model and the component view
use cases are translated into a component view use model. Then, based on these models,
the relation between user and component use cases is established. After that, the automatic
execution is possible.

As just said previously, this work belongs to the same project as ours. The idea of our work
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is based on this presented strategy, and includes relationship among use cases and a notion of
state to the use case template and its generated formal model. The template used in our work
only considers the user view. The generated CSP model is also different, where the translation
of a entire sentence is captured by a CSP event.

6.2.2 UML-Based Statistical Test Case Generation

The work of Riebisch et. al. [RPG03] proposes an approach for generating system-level test
cases based on UML use case models and refined by state diagrams. These models are trans-
formed into usage models [WPT95] to describe both system behaviour and usage. The usage
model serves as input for automated statistical testing [Sel99]. The approach is characterized
by the following features:

• It is usage-oriented and specification-based, thus performing black box testing.

• It is intended for system-level testing, since a given specification usually describes the
system’s overall functionality rather than that of units or components in isolation.

• It aims at statistical (reliability) testing rather than fault detection.

The method is intended for integration into an iterative software development process model.
The activity diagram (Figure 6.15) shows the sequence of activities in the context of the soft-
ware development process.

Figure 6.15 Activities of the proposed approach within the software development process

The resulting test cases are suited to be carried out in conventional ways, i.e., either manu-
ally or using test tools. The method is supported by an XML-based tool for model transforma-
tion. The approach described in this work is implemented in the tool UsageTester [Goe02] to
provide a proof of concept and to support the method application.
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We can see that the final purpose of this work is close to ours, considering the generation
of test cases. In the case of this work it is also necessary to refine the use case models with
state diagrams, which in our work there is not this need. Besides that, the intermediate model
generated is usage-oriented.

6.2.3 An Approach for Supporting System-level Test Scenarios Generation from
Textual Use Cases

Somé’s work [SC08] describes an approach proposed toward test cases generation from require-
ments captured as use cases. This work uses the restricted form of natural language described
in [Som06], which was already presented in this chapter, to overcome the problem of use cases
specification ambiguities.

A second challenge, which is to ensure an adequate coverage of the sequences of actions
defined by each use case, is resolved with the generation of a control-flow state machine from
use cases. After that, traditional code coverage techniques are used to derive test sequences.

Finally, a third problem is that important sequential constraints between use cases are usu-
ally left out of the use cases and only assumed implicitly. They overcome this problem by
inferring use case sequential relations based on a comparison of use case pre-conditions and
post-conditions. This allows the combination of use cases behaviour in a global control-flow
based state model.

As said before, this work is based on [Som06], but, while the state machine generation
approach discussed now is based on use cases control-flow, the basis of state machine synthesis
on the previous work is the domain operation pre-conditions and post-conditions. Synthesis
based on domain operations produces state machines that depend on how operation pre/post-
conditions are specified.

As mentioned in [Som06], resulting state machines may exhibit extra behaviours from those
defined in the use cases. Synthesis based on use cases control-flow on the other hand, results in
state machines that are an exact reflection of the use cases. They are therefore, more appropriate
for test derivation. In addition, no specification of operations is required.

Test scenarios are generated using depth-first traversal of the generated control flow-based
state machines according to criteria inspired from traditional white-box code coverage. In their
approach, concrete (executable) test cases need to be manually derived from test scenarios
because of an “abstraction gap” between test scenarios and concrete test cases.

These works which generates more operational models, such as state machines, the test
case generation is based in explicit algorithms that runs through the model. In the case of a
process algebra, such as CSP, our strategy to generate test cases is based in model checking;
test cases are generated as counter-examples of models verification, without needing to define
explicit generation algorithms.

6.2.4 Automatic Test Generation: A Use Case Driven Approach

It is well known that formal methods can be used both for validating requirements as well as
for reducing the cost of testing through automatic test case generation. With this purpose, the
work of Nebut et. al [NFTJ06] proposes to start from established practices and gently lead them
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toward formally exploitable models. The focus is in an approach for automating the generation
of system test scenarios from use cases in the context of object-oriented embedded software.

With the aim to eliminate the problem of specifying ambiguous use cases in natural lan-
guages, the work proposes to build UML use cases enhanced with contracts (based on use
cases pre and postconditions) as they are defined in [NFTJ06, Coc97]. Lifting up Meyer’s De-
sign By Contract [Mey92] idea to the requirement level, it is proposed to make these contracts
executable by writing them in the form of requirement-level logical expressions. Based on
those more formalized (but still high-level) requirements, a simulation model of the use cases
is defined.

Figure 6.16 summarizes the two-phase method to automatically generate functional test
scenarios from requirement artefacts. The first phase of the method (steps (a) to (c) in Fig-
ure 6.16), aims at generating test objectives from a use case view of the system described using
the contract idea.

Figure 6.16 Global methodology for requirement-based testing

These contracts are used to infer the correct partial ordering of functionalities that the sys-
tem should offer, and by using them, the actors involved in a use case can be considered as
parameters of this use case. The use case contracts are first-order logical expressions com-
bining predicates with logical operators. The precondition expression is the guard of the use
case execution. The postcondition specifies the new values of the predicates after the execution
of the use case. Figure 6.17 exemplifies a use case specification with contracts for a virtual
meeting.

There are some limitations of the contractualized use case model:

• Difficulty of building a contractualized use case model. The declarative definition of
such contract expressions forces the requirement analyst to be precise and rigorous in the
semantics given to each use case and, thus, may not be so easy to build. To decrease
this complexity, there is an editor tool to manage the predicates and guide the design of
contracts.
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Figure 6.17 Contracts of use cases open and close

• Numeric types. The requirements that can be expressed with contracts on the use cases
are high level ones, e.g., they are not suitable to handle complex data types (including
arithmetic calculus for example).

• Restriction on postcondition. In this model, there is a restricted usage of the postcondi-
tions: the postconditions must be deterministic.

Back to the Figure 6.16, still in the first phase, a prototype tool (UCSystem) builds a sim-
ulation model from the use cases and their contracts (step (b) of Figure 6.16) and generates
correct sequences of use cases (step (c) of Figure 6.16), called test objectives.

The second phase (steps (c) to (e) of Figure 6.16) aims at generating test scenarios from
the test objectives. To go from the test objectives to the test scenarios, additional information
is needed, specifying the exchanges of messages involved between the environment and the
system. Such information can be attached to a given use case in the form of several artefacts:
sequence diagrams, state machines, or activity diagrams. For simplicity, this work deal with
sequence diagrams, which are called use case scenarios.

The principle of the transformation from test objectives to test scenarios is inspired by
Briand et. al. [BL02] and consists of replacing each use case of the test objective by one of its
use case scenarios, using the prototype tool UC-SCSystem.

We can see that this work proposes some different strategies in order to generate test cases.
At first, the use cases specification are enhanced with the idea of contracts, making them more
object-oriented, and consequently, less prone to ambiguities and possible to perform simulation.
But, as previously said, it has some limitations due to this contractualized use cases and also
there is the need to attach additional information to use cases in order to generate test cases.

6.3 Discussion

This section introduces a comparison between all cited works and ours. As we could notice,
all of these works are applicable to requirements specification as the input for the strategy. To
facilitate the understanding, Table 6.1 presents some features and shows which works contain
each feature. This table shows that this work neither supports NL processing nor industrial
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Uses
CNL

Formal
specifi-
cation
generation

Test
genera-
tion

Automatic
extraction

Data
manipu-
lation

NL pro-
cessing

Industrial
valida-
tion

[Som06]
x x x

[SF96]
x x x x

[Lee01]
x x

[MMC05]
x x

[DM07]
x x x x

[CS08]
x x x x

[RPG03]
x

[SC08]
x x x

[NFTJ06]
x x x

Our work x x x x x

Table 6.1 Comparison among related works

validation; the test case generation is provided by the work of Nogueira et al. [NSM], which
belongs to the same project as ours. We can also try to include the NL processing in the future,
analyzing the possibility of integrating with the work reported in [Lei06].

Each of these works has a different way of writing the requirement specification. As we
could see, some needed additional information, such as state diagrams, other introduced the
idea of contracts, other used a non-restricted language, and so on. Every different use case
description like those depends pretty much on the final purpose of each strategy.

It is worth emphasizing that almost every work that produces a formal specification could
easily lead to test case generation. Then, the works cited here that do not generate test cases
could do that if it was they wanted to.



CHAPTER 7

Conclusion and Future Work

It is well known that quality is one of the most important goals of any company that produces
software. Some improvements during previous steps of the software life cycle can be accom-
plished in order to hit this target. The first artifact to give a special attention is the requirements
specification, since the sooner a problem is found during the software development cycle the
cheaper is to fix it [BBL76].

Guaranteeing that a software is as free of bugs as possible is another very important point to
increase its quality. In this way, an essential activity for that purpose is software testing, whose
main role is to find defects in the product, so that the development team can fix them before
the product reaches the customer. One way to achieve that is to produce test cases that present
high probability of revealing a fault that was not identified yet, with a minimum amount of
time and effort. In addition to that, the test case itself should be reliable. Automatic generation
of tests from requirements (preferably formal requirements) gives us more confidence on the
soundness of the test suite.

Even though most of the software engineers frequently hesitate in using formal models, the
benefits that they bring to software quality are enormous. For example, a formal specification
can be used to verify the overall system properties, and besides that, it promotes a better and
more precise description of the system behaviour, therefore contributing to avoid the introduc-
tion of errors.

As software developers, our work is to create mechanisms that make it possible to automate
tasks to our clients. It is more than natural that we bring automation to our environment too, in
order to develop software better and faster. This work puts together every point made above so
as to improve product quality and facilitates software engineers job; in this way, this dissertation
proposes an automatic generation of CSP formal models from use case specifications. In our
domain of application, such a CSP model is used to represent feature use cases, which are able
to describe inputs, outputs, guards and variables assignment, in addition to the specification of
a control flow.

In order to translate use cases into CSP, we proposed a Controlled Natural Language (CNL)
to guarantee the absence of ambiguity and inconsistent sentences. The first contribution of our
work was the specification of a language for use case specification that is as friendly as possible
and that allows us to define and manipulate data, inputs and outputs. The CNL description of
the use cases [TLB06], combined with the data fields and state manipulation we proposed,
is automatically translated to CSP process algebraic models. The generated specification is
the formal representation of the system, which holds the same system behaviour as specified
by the use case document. Since a CSP specification is inherently stateless, we model state
information as a separate process, which is accessed by the application via get and set channels.
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With the CSP model in hand, the system properties (such as deadlock, livelock and non-
determinism) can be easily verified through the use of the FDR model checker. Besides that,
the generated CSP may be used as input for the generation of feature test cases, as reported in
the work of Nogueira et al. [NSM], which proposes a strategy to automatically generate test
cases from CSP. Although Nogueira et al. have proposed a strategy for automation, no concrete
implementation of it had been implemented previously. The CSP processes accepted by the test
generation strategy proposed by Nogueira et al. are fully compatible to the CSP we generate
from use cases. After that, state based test selection is also possible, which is an important task
to reduce cost and time effort dedicated during software testing activities, besides producing
sound (reliable) test cases.

This work is part of a research effort between Motorola and the Informatics Center/UFPE
for improving Motorola’s software testing process. Thus, we conducted a case study in the
Motorola environment in order to validate the proposed strategy. The Motorola’s use case
specification had to go through some adjustments to make it fit in the template, as well as some
definitions of data and its manipulation were created in conformance to Motorola’s behavioral
specification and to our template. Both the language supporting data and its generated CSP
model worked well in a real case study of industry.

Besides the definition of a language to capture data definitions and their manipulations, and
the implementation of an automatic generation of CSP models from use case documents, this
dissertation also has contributed to provide some improvements in the strategy proposed by
Nogueira’s work. During the development of the software for CSP generation we faced some
situations in the strategy that had not being considered originally. For example, the transla-
tion of an input sentence into its correspondent CSP event was not generic enough to support
different situations of restriction in the input variable. Thus, by implementing a translation
proposed originally on paper, we could pay more attention to all those situations and take them
into account in the original strategy for generating the CSP from use cases.

7.1 Future Work

In what follows we outline some improvements to complement the work presented here.

• Type verification of data fields
Our CSP generator reads every data field and translate to CSP sentences considering
that all types of constants and variables (and their manipulation) are correctly specified.
Then, one future work is to verify all types of the specified data, checking if everything
was defined and used in the way it should be and if there are any inconsistencies. For
example, suppose that a variable of type Natural was defined, and then this variable is
assigned to a Set. This should result in a type error.

• Inclusion of parameterization in the use case template and in the implementation of
the CSP generation
Another future work is to propose a way of defining parameters in the use case specifica-
tion. Also a way of using these parameters in the use case steps, in a friendly way, needs
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to be proposed. For example, suppose that a parameter FNAME is defined in the scope
of a feature; and Figure 7.1 shows a use case using this parameter. In this situation, it is
possible to make the selection of messages generic, and so, depending on the parameter
value, the use case represents the messages selection in different folders. After that, the
implementation also has to be extended to support this new feature, thus, the generated
CSP shall consider the parameterization, corresponding to the use case specification.

Figure 7.1 Parameterization example

• Integrate this work with the work of Nogueira et al. [NSM]
The work of Nogueira et al. [NSM] describes a strategy for the automatic generation
of test cases from use case templates that capture control flow, state, input and output.
In other words, it accepts a use case specification in the CSP process algebra as input to
generate test cases. This approach allows test scenario selection based on particular traces
or states of the model. The test generation is expressed as counter-examples of refinement
checking, mechanized using the FDR tool. Taking everything into consideration, the
CSP generated by our work can be used as an input to Nogueira’s work to automatically
generate test cases and to capture test selection by CSP test purposes (CSP processes
that describe the properties of interest to be captured by the generated tests). The final
outcome of this integrated system (our generated CSP model used as input for test case
generation) is a set of test cases translated back to CNL (for manual execution).

• Apply an abstraction approach to automatically transform infinite CSP models into
finite ones
Because the FDR tool enumerates data, which easily leads to state space explosion, we
plan to apply the abstraction approach proposed by Mota et al. [MBS02, DFM09] to
automatically transform infinite CSP models into finite ones with behavior preservation.
Such an abstraction corresponds to find equivalent classes of data that are suitable to
select a representative and finite set of use case behaviors and avoid state space explosion.

• Translation of CNL sentences into sentences containing data
One future work that could also be developed is to find a way to implement a translation
of the CNL sentences, written in every use case steps that would contain data sentences,
to the respective data fields. For example, Figure 7.2 shows a use case flow without our



7.1 FUTURE WORK 75

data fields. The idea of this proposed work would be to translate the sentence “Select
inbox message(s).” to the data field sentence “Input x from powerSet of inbox such that
x is non-empty” and the sentence “Message(s) are highlighted.” to the sentence “selected
:= x ”. That translation would be done for the whole use case document.

Figure 7.2 Use Case Main Flow Example

• Parsing the use case specification in MS Word template to XML
Once the implementation of the CSP generation takes as input a use case document in a
XML format, an important work to do is to parse the use case document written in MS
Word format to its representation in XML, following the Schema used in this work. The
type verification of all data definitions and their use (the first future work proposed here)
can be done first; and after every data constructors are accepted, the parsing would be
executed.

• Treating CSP restrictions in the CSP model generator
As we could see in Section 5.9, there are some restrictions in defining the elements of
datatypes in CSP, where we can not use numbers and strings containing special charac-
ters. Because of this, it is necessary to define the New Types in the use case document
following the same restrictions. One thing that we can try to do in the future is to treat
these restrictions in the generated CSP model, in order to allow the user to enter with
type elements like these.



APPENDIX A

Complete BNF

This appendix presents the complete BNF for the use case specification, including the data
definition and manipulation. The fields in bold are considered primitive types (or a user defined
type in the case of a NewTypeValue).

Document ::= FeatureList

FeatureList ::= Feature | Feature FeatureList

Feature ::= FID FeatureDef

FID ::= ([0-9])+

FeatureDef ::= FName [DataDefinition] UseCaseList

FName ::= StringValue

DataDefinition ::= NameTypeList | NewTypeList | ConstantList | VariableList

NameTypeList ::= Nametype | Nametype NameTypeList

NameType ::= ID Description NameTypeElements

ID ::= (([a-zA-Z ])+([a-zA-Z 0-9])*)?

Description ::= StringValue

NameTypeElements ::= SetLiteral | SetRange

SetLiteral ::= SetValue

SetRange ::= “[” NaturalValue “,” NaturalValue “]”

NewTypeList ::= NewType | NewType NewTypeList

NewType ::= ID Description NewTypeElements
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NewTypeElements ::= BaseTypeList | Indexing | Enumeration

BaseTypeList ::= BaseType | BaseType “|” BaseTypeList

BaseType ::= Tag “.” TypeID

Tag ::= ID

TypeID :: = ID

Indexing ::= Tag SetRange

Enumeration ::= NewTypeId | NewTypeId “,” Enumeration

NewTypeId ::= ([a-zA-Z 0-9])+([a-zA-Z .0-9])*)?

ConstantList ::= Constant | Constant ConstantList

Constant ::= ID Description Expression

VariableList ::= Variable | Variable VariableList

Variable ::= ID Description Expression

UseCaseList ::= UseCase | UseCase UseCaseList

UseCase ::= UCID UCName [RelationList] [DataDefinition] FlowList

UCID ::= ([0-9a-zA-Z ])+

UCName ::= StringValue

RelationList ::= IncludeList | ExtendList | ExtensionPointList

IncludeList ::= Include | Include “,” IncludeList

Include ::= UCID “@” Position

Position ::= StartEnd | StepID

StartEnd ::= “START” | “END”

StepID ::= (([0-9])+([A-Z])+)?
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ExtendList ::= Extend | Extend “,” ExtendList

Extend ::= “(” Guard “,” UCID “@” Label “)”

Label ::= StringValue

Guard ::= Expression

Expression ::= Value | UnaryExp | BinaryExp | ID

Value ::= NaturalValue | BoolValue | SetValue | NewTypeValue

UnaryExp ::= “#” Expression
| “powerSet of” Expression
| Expression “is non-empty”
| Expression “is empty”
| “not” Expression

BinaryExp ::= Expression “+” Expression
| Expression “-” Expression
| Expression “*” Expression
| Expression “>” Expression
| Expression “>=” Expression
| Expression “<” Expression
| Expression “<=” Expression
| Expression “=” Expression
| Expression “!=” Expression
| Expression “and” Expression
| Expression “or” Expression
| Expression “is in” Expression
| Expression “is not in” Expression

ExtensionPointList ::= ExtensionPoint | ExtensionPoint “,” ExtensionPointList

ExtensionPoint ::= Label “:” Position

FlowList ::= Flow | Flow FlowList

Flow ::= FlowType FromStep ToStep StepList

FlowType ::= “Main Flow” | “Alternative Flow”

FromStep ::= “From Step: ” Position
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ToStep ::= “To Step: ” Position

StepList ::= Step | Step StepList

Step ::= StepID Action [InputList] Condition [Guard] Response [OutputAssignList]

Action ::= StringValue

InputList ::= Input | Input “,” InputList

Input ::= “Input” ID “from” Expression [“such that” Expression]

Condition ::= StringValue

Response ::= StringValue

OutputAssignList ::= Output
| Assign
| Output “,” OutputAssignList
| Assign “,” OutputAssignList

Output ::= “Output“ Expression

Assign ::= ID “:=” Expression
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Complete XML Schema for use case template

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f −8" ?>
< xs : schema x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d "
t a r g e t N a m e s p a c e =" use r−view . t a r g e t . v20071129 "
x m l n s : s p e c =" use r−view . t a r g e t . v20071129 ">

< !−− d e f i n e s t h e f e a t u r e I d t y p e −−>
< x s : s i m p l e T y p e name=" f e a t u r e I d ">

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : p a t t e r n v a l u e =" ( [0−9])+ " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< !−− d e f i n i t i o n o f useCase Id t y p e −−>
< x s : s i m p l e T y p e name=" u s e C a s e I d ">

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : p a t t e r n v a l u e =" ([0−9 a−zA−Z_ ] ) + " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< !−− d e f i n i t i o n o f s t e p Id t y p e −−>
< x s : s i m p l e T y p e name=" s t e p I d ">

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : p a t t e r n v a l u e =" ( ( [ 0 −9 ] ) + ( [A−Z ] ) + ) ? " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< !−− d e f i n e s t h e Id t y p e −−>
< x s : s i m p l e T y p e name=" IdType ">

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : p a t t e r n v a l u e =" ( ( [ a−zA−Z_ ] ) + ( [ a−zA−Z_0−9] )* )? " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< !−− d e f i n e s t h e new t y p e Id v a l u e −−>

80



APPENDIX B COMPLETE XML SCHEMA FOR USE CASE TEMPLATE 81

< x s : s i m p l e T y p e name=" newTypeValue ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : p a t t e r n v a l u e =" ( ( [ a−zA−Z_ . 0 −9 ] ) * ) ? " / >
< / x s : r e s t r i c t i o n >

< / x s : s i m p l e T y p e >

< !−− d e f i n e s t h e S e t Value −−>
< xs :complexType name=" s e t V a l u e ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" e l e m e n t " t y p e =" s p e c : e x p r e s s i o n "
maxOccurs=" unbounded " minOccurs = " 0 " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< !−− d e f i n e s t h e p o s s i b l e t y p e s and a v a l u e −−>
< xs :complexType name=" t y p e d V a l u e ">

< x s : c h o i c e >
< x s : e l e m e n t name=" N a t u r a l " t y p e =" x s : u n s i g n e d I n t " / >
< x s : e l e m e n t name=" Bool " t y p e =" x s : b o o l e a n " / >
< x s : e l e m e n t name=" S e t V a l u e " t y p e =" s p e c : s e t V a l u e " / >
< x s : e l e m e n t name=" NewType " t y p e =" spec :newTypeValue " / >

< / x s : c h o i c e >
< / xs :complexType >

< !−− d e f i n e s t h e f l o w T yp e t y p e −−>
< x s : s i m p l e T y p e name=" flowType ">

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : e n u m e r a t i o n v a l u e =" Main Flow " / >
< x s : e n u m e r a t i o n v a l u e =" A l t e r n a t i v e Flow " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< !−− d e f i n e s t h e unaryOpera to r t y p e −−>
< x s : s i m p l e T y p e name=" u n a r y O p e r a t o r ">

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : e n u m e r a t i o n v a l u e =" # " / >
< x s : e n u m e r a t i o n v a l u e =" p o w e r s e t o f " / >
< x s : e n u m e r a t i o n v a l u e =" i s non−empty " / >
< x s : e n u m e r a t i o n v a l u e =" i s empty " / >
< x s : e n u m e r a t i o n v a l u e =" n o t " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >
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< !−− d e f i n e s t h e b i n a r y O p e r a t o r t y p e −−>
< x s : s i m p l e T y p e name=" b i n a r y O p e r a t o r ">

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : e n u m e r a t i o n v a l u e ="+" / >
< x s : e n u m e r a t i o n v a l u e ="−" / >
< x s : e n u m e r a t i o n v a l u e =" * " / >
< x s : e n u m e r a t i o n v a l u e ="&g t ; " / >
< x s : e n u m e r a t i o n v a l u e ="&g t ;= " / >
< x s : e n u m e r a t i o n v a l u e ="& l t ; " / >
< x s : e n u m e r a t i o n v a l u e ="& l t ;= " / >
< x s : e n u m e r a t i o n v a l u e ="=" / >
< x s : e n u m e r a t i o n v a l u e =" != " / >
< x s : e n u m e r a t i o n v a l u e =" and " / >
< x s : e n u m e r a t i o n v a l u e =" o r " / >
< x s : e n u m e r a t i o n v a l u e =" i s i n " / >
< x s : e n u m e r a t i o n v a l u e =" i s n o t i n " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< !−− d e f i n e s t h e e x p r e s s i o n t y p e −−>
< xs :complexType name=" e x p r e s s i o n ">

< x s : c h o i c e >
< x s : e l e m e n t name=" v a l u e " t y p e =" s p e c : t y p e d V a l u e " / >
< x s : e l e m e n t name=" u n a r y E x p r e s s i o n " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" u n a r y O p e r a t o r "
t y p e =" s p e c : u n a r y O p e r a t o r " / >
< x s : e l e m e n t name=" e x p r e s s i o n "
t y p e =" s p e c : e x p r e s s i o n " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" b i n a r y E x p r e s s i o n " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" e x p r e s s i o n 1 "
t y p e =" s p e c : e x p r e s s i o n " / >
< x s : e l e m e n t name=" b i n a r y O p e r a t o r "
t y p e =" s p e c : b i n a r y O p e r a t o r " / >
< x s : e l e m e n t name=" e x p r e s s i o n 2 "
t y p e =" s p e c : e x p r e s s i o n " / >

< / x s : s e q u e n c e >
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< / xs :complexType >
< / x s : e l e m e n t >
< x s : e l e m e n t name=" Id " t y p e =" s p e c : I d T y p e " / >

< / x s : c h o i c e >
< / xs :complexType >

< !−− d e f i n e s t h e nameTypeElements t y p e −−>
< xs :complexType name=" nameTypeElements ">

< x s : c h o i c e >
< x s : e l e m e n t name=" s e t L i t e r a l "

t y p e =" s p e c : s e t V a l u e " / >
< x s : e l e m e n t name=" s e t R a n g e " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" f i r s t V a l u e "
t y p e =" x s : u n s i g n e d I n t " / >

< x s : e l e m e n t name=" l a s t V a l u e "
t y p e =" x s : u n s i g n e d I n t " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : c h o i c e >

< / xs :complexType >

< !−− d e f i n e s t h e newTypeElements t y p e −−>
< xs :complexType name=" newTypeElements ">

< x s : c h o i c e >
< x s : e l e m e n t name=" baseType " maxOccurs=" unbounded ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" t a g " t y p e =" s p e c : I d T y p e " / >
< x s : e l e m e n t name=" t y p e I d " t y p e =" s p e c : I d T y p e " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" i n d e x i n g " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" t a g " t y p e =" s p e c : I d T y p e " / >
< x s : e l e m e n t name=" f i r s t V a l u e "
t y p e =" x s : u n s i g n e d I n t " / >
< x s : e l e m e n t name=" l a s t V a l u e "
t y p e =" x s : u n s i g n e d I n t " / >
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< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" e n u m e r a t i o n " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" e l e m e n t "
t y p e =" spec :newTypeValue " maxOccurs=" unbounded " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : c h o i c e >

< / xs :complexType >

< !−− b e g i n n i n g o f d e f i n i t i o n o f t y p e d a t a D e f i n i t i o n −−>
< xs :complexType name=" d a t a D e f i n i t i o n ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" nameType " maxOccurs=" unbounded "
minOccurs = " 0 ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" i d " t y p e =" s p e c : I d T y p e " / >
< x s : e l e m e n t name=" d e s c r i p t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" nameTypeElements "
t y p e =" spec :nameTypeElement s " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" newType " maxOccurs=" unbounded "
minOccurs = " 0 ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" i d " t y p e =" s p e c : I d T y p e " / >
< x s : e l e m e n t name=" d e s c r i p t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" newTypeElements "
t y p e =" spec :newTypeElemen t s " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" c o n s t a n t " maxOccurs=" unbounded "
minOccurs = " 0 ">

< xs :complexType >
< x s : s e q u e n c e >
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< x s : e l e m e n t name=" i d " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" d e s c r i p t i o n "
t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" c o n s t V a l u e "
t y p e =" s p e c : e x p r e s s i o n " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" v a r i a b l e " maxOccurs=" unbounded "
minOccurs = " 0 ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" i d " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" d e s c r i p t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" i n i t i a l V a l u e "
t y p e =" s p e c : e x p r e s s i o n " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : s e q u e n c e >

< / xs :complexType >

< !−− b e g i n n i n g o f d e f i n i t i o n o f t y p e r e l a t i o n s −−>
< xs :complexType name=" r e l a t i o n s ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" i n c l u d e " maxOccurs=" unbounded "
minOccurs = " 0 ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" u s e C a s e I d "
t y p e =" s p e c : u s e C a s e I d " / >
< x s : e l e m e n t name=" p o s i t i o n " t y p e =" x s : s t r i n g " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" e x t e n s i o n " maxOccurs=" unbounded "
minOccurs = " 0 ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" guard " t y p e =" s p e c : e x p r e s s i o n " / >
< x s : e l e m e n t name=" u s e C a s e I d "
t y p e =" s p e c : u s e C a s e I d " / >
< x s : e l e m e n t name=" l a b e l " t y p e =" x s : s t r i n g " / >
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< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" e x t e n s i o n P o i n t " maxOccurs=" unbounded "
minOccurs = " 0 ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" l a b e l " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" s t e p I d " t y p e =" x s : s t r i n g " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : s e q u e n c e >

< / xs :complexType >

< !−− b e g i n n i n g o f d e f i n i t i o n o f t y p e Flow −−>
< xs :complexType name=" f low ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" flowType " t y p e =" s p e c : f l o w T y p e " / >
< x s : e l e m e n t name=" d e s c r i p t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" f r o m S t e p s " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" t o S t e p s " t y p e =" x s : s t r i n g " / >
< !−− b e g i n n i n g o f d e f i n i t i o n o f e l e m e n t s t e p −−>
< x s : e l e m e n t maxOccurs=" unbounded " name=" s t e p ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" s t e p I d " t y p e =" s p e c : s t e p I d " / >
< x s : e l e m e n t name=" a c t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" i n p u t " minOccurs=" 0 "
maxOccurs=" unbounded " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" v a r " t y p e =" s p e c : I d T y p e " / >
< x s : e l e m e n t name=" e x p r e s s i o n "
t y p e =" s p e c : e x p r e s s i o n " / >
< x s : e l e m e n t name=" r e s t r i c t i o n "
t y p e =" s p e c : e x p r e s s i o n " minOccurs=" 0 " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" c o n d i t i o n " t y p e =" x s : s t r i n g "
minOccurs=" 0 " / >
< x s : e l e m e n t name=" guard " t y p e =" s p e c : e x p r e s s i o n "
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minOccurs=" 0 " / >
< x s : e l e m e n t name=" s e t u p " t y p e =" x s : s t r i n g "
maxOccurs=" 1 " minOccurs=" 0 " / >
< x s : e l e m e n t name=" r e s p o n s e " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" o u t p u t A s s i g n L i s t " minOccurs=" 0 ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" o u t p u t "
t y p e =" s p e c : e x p r e s s i o n "
minOccurs=" 0 " maxOccurs=" unbounded " / >
< x s : e l e m e n t name=" a s s i g n " minOccurs=" 0 "
maxOccurs=" unbounded " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" Id "
t y p e =" s p e c : I d T y p e " / >
< x s : e l e m e n t name=" e x p r e s s i o n "
t y p e =" s p e c : e x p r e s s i o n " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : s e q u e n c e >

< / xs :complexType >
< / x s : e l e m e n t >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : s e q u e n c e >

< / xs :complexType >
< !−− end o f d e f i n i t i o n o f t y p e f l o w −−>

< !−− b e g i n n i n g o f d e f i n i t i o n o f t y p e useCaseType −−>
< xs :complexType name=" useCaseType ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" i d " t y p e =" s p e c : u s e C a s e I d " / >
< x s : e l e m e n t name=" name " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" a u x i l i a r y " t y p e =" x s : b o o l e a n "
d e f a u l t =" f a l s e " minOccurs=" 0 " / >
< x s : e l e m e n t name=" d e s c r i p t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" s e t u p " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" d a t a D e f i n i t i o n "
t y p e =" s p e c : d a t a D e f i n i t i o n " minOccurs=" 0 " / >
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< x s : e l e m e n t name=" r e l a t i o n s " minOccurs = " 0 "
t y p e =" s p e c : r e l a t i o n s " / >
< x s : e l e m e n t name=" f low " t y p e =" s p e c : f l o w "
maxOccurs=" unbounded " / >

< / x s : s e q u e n c e >
< / xs :complexType >
< !−− end o f d e f i n i t i o n o f t y p e useCaseType −−>

< !−− b e g i n n i n g o f d e f i n i t i o n o f t y p e i n t e r r u p t i o n T y p e −−>
< xs :complexType name=" i n t e r r u p t i o n T y p e ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" i d " t y p e =" s p e c : u s e C a s e I d " / >
< x s : e l e m e n t name=" name " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" d e s c r i p t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t maxOccurs=" unbounded " name=" f low ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" d e s c r i p t i o n " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" f r o m S t e p s " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" t o S t e p s " t y p e =" x s : s t r i n g " / >
< !−− b e g i n n i n g o f d e f i n i t i o n o f e l e m e n t s t e p −−>
< x s : e l e m e n t maxOccurs=" unbounded " name=" s t e p ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" s t e p I d "
t y p e =" s p e c : s t e p I d " / >
< x s : e l e m e n t name=" a c t i o n "
t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" c o n d i t i o n "
t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" r e s p o n s e "
t y p e =" x s : s t r i n g " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / x s : s e q u e n c e >

< / xs :complexType >
< / x s : e l e m e n t >

< / x s : s e q u e n c e >
< / xs :complexType >
< !−− end o f d e f i n i t i o n o f t y p e i n t e r r u p t i o n T y p e −−>
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< xs :complexType name=" f e a t u r e T y p e ">
< x s : s e q u e n c e >

< x s : e l e m e n t name=" f e a t u r e I d " t y p e =" s p e c : f e a t u r e I d " / >
< x s : e l e m e n t name=" name " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" d a t a D e f i n i t i o n "
t y p e =" s p e c : d a t a D e f i n i t i o n " minOccurs=" 0 " / >
< !−− b e g i n n i n g o f d e f i n i t i o n o f e l e m e n t useCase −−>
< x s : e l e m e n t maxOccurs=" unbounded " name=" useCase "
t y p e =" s p e c : u s e C a s e T y p e " / >
< !−− end o f d e f i n i t i o n o f e l e m e n t useCase −−>

< / x s : s e q u e n c e >
< / xs :complexType >

< xs :complexType name=" phoneType ">
< x s : s e q u e n c e >

< x s : e l e m e n t name=" f e a t u r e " minOccurs=" 0 "
maxOccurs=" unbounded " t y p e =" s p e c : f e a t u r e T y p e " / >

< x s : e l e m e n t name=" i n t e r r u p t i o n " minOccurs=" 0 "
maxOccurs=" unbounded " t y p e =" s p e c : i n t e r r u p t i o n T y p e " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< !−− d e f i n i t i o n o f s y s t e m phone −−>
< x s : e l e m e n t name=" phone " t y p e =" spec :phoneType " / >

< / xs : s chema >
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CSPm generated from Important Messages feature

transparent sbdia

-- composes the memory and the flow and compress the composition
-- special event is used to force successful termination of
-- composition whenever the left RHS does

channel success
FEND(F) = F; success -> SKIP
MEND(Mem) = Mem /\ (success -> SKIP)

-- the channels used for memory read/writte
-- the values transmitted by the memory will be defined further

channel get,set : Var.Type

-- yields the range of a var which type us tn

values(tn) = { val | v<-Var, val<-extensions(get.v.tn) }

-- the memory process

Mcel(v,val) = get!v!val -> Mcel(v,val)
[] let t = tag(val) within

set!v!t?val_:values(t) -> Mcel(v,t.val_)

Memory(binding) = ||| (v,val) : binding @ Mcel(v,val)

-- given a set of variables mVars, this function yields the
-- alphabet of get/set events over the given variables

pick({x}) = x
varType(v,b) = pick( { t | (v2,t)<-b, v == v2 } )
dom(m) = { x | (x,y)<-m }

alphaMem(b)={g,s | vname<-dom(b), tname<-{tag(varType(vname,b))},
g<-productions(get.vname.tname),
s<-productions(set.vname.tname) }

90
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-- given a memory process MEM, this function creates a copy get2 of
-- the channel get

dupGet(MEM)=MEM[[get.x<-get.x,get.x <- get2.x|x <- extensions(get)]]

-- channel dedicated to test selection, used to read the value
-- of the variables

channel get2 : Var.Type

-- given a set of variables mVars, this function yields the
-- alphabet of get2 events over the given variables

alphaGet2(b) = { get2.v.t.val | get.v.t.val <- alphaMem(b) }

-- control event that makes the test selection more efficient
-- we will only verify the system state after steps that change the
-- state mem_update is an auxiliary event to mark mem_update of a
-- sequence of variables update after the test purpose synchronizes
-- in this event it verifies the boolean guards

channel mem_update

-- a subset of the naturals set which will be used in every
-- occurency of declared variables of such type
nametype Number = {0..5}

--11169
datatype Var = f11169_inbox | f11169_UC03_selected | f11169_selected

| f11169_important
datatype Type = t11169_1.Set(t11169_Message)

tag(t11169_1.v) = t11169_1

-- 11169 data

-- types
nametype t11169_Natural = {0..2}
datatype t11169_Message = M.t11169_Natural

-- constants
f11169_MAX = 2

-- memory
b11169_MEM = {
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(f11169_inbox,t11169_1.{(M.0),(M.1)}),
(f11169_selected,t11169_1.{}),
(f11169_important,t11169_1.{(M.2)})
}

a11169_MEM = alphaMem(b11169_MEM)

f11169_MEMORY = dupGet( Memory(b11169_MEM) )

-- 11169_UC01

-- types

-- constants

-- memory

-- input values
channel in_11169_UC01_2M_x : Set(t11169_Message)

a11169_UC01in = {|in_11169_UC01_2M_x|}

-- output values

-- channels
channel action11169_UC01_1M, response11169_UC01_1M,
action11169_UC01_2M, response11169_UC01_2M

--uc alphabets
a11169_UC01i = Union({action11169_UC01_1M, action11169_UC01_2M,

a11169_UC01in})
a11169_UC01o = Union({response11169_UC01_1M, response11169_UC01_2M})
a11169_UC01 = Union({a11169_UC01i, a11169_UC01o})

f11169_UC01_FLOW = let

f11169_UC01_START =
SKIP;
f11169_UC01_1M

f11169_UC01_1M =
action11169_UC01_1M ->
response11169_UC01_1M ->
SKIP;
f11169_UC01_2M
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f11169_UC01_2M =
get!f11169_inbox.t11169_1?inbox ->
in_11169_UC01_2M_x?x : { v | v<-Set(inbox), (not empty(v)) } ->
action11169_UC01_2M ->
response11169_UC01_2M ->
set!f11169_selected!t11169_1.x -> mem_update ->
SKIP

within f11169_UC01_START

f11169_UC01 = f11169_UC01_FLOW

-- 11169_UC02

-- types

-- constants

-- memory

-- input values

-- output values
channel out1_11169_UC02_1A : Number

a11169_UC02out = {|out1_11169_UC02_1A|}

-- channels
channel action11169_UC02_1M, response11169_UC02_1M,
action11169_UC02_1A, response11169_UC02_1A

--uc alphabets
a11169_UC02i = Union({action11169_UC02_1M, action11169_UC02_1A})
a11169_UC02o = Union({response11169_UC02_1M, response11169_UC02_1A,

a11169_UC02out})
a11169_UC02 = Union({a11169_UC02i, a11169_UC02o})

f11169_UC02_FLOW(f11169_UC02_Cleanup) = let

f11169_UC02_START =
f11169_UC01;
SKIP;
f11169_UC02_1M [] f11169_UC02_1A

f11169_UC02_1M =
get!f11169_important.t11169_1?important ->
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get!f11169_selected.t11169_1?selected ->
get!f11169_inbox.t11169_1?inbox ->
card(union(important,selected)) <= f11169_MAX &
action11169_UC02_1M ->
response11169_UC02_1M ->
set!f11169_inbox!t11169_1.diff(inbox,selected) ->
set!f11169_important!t11169_1.union(important,selected) ->
mem_update ->
SKIP

f11169_UC02_1A =
get!f11169_important.t11169_1?important ->
get!f11169_selected.t11169_1?selected ->
card(union(important,selected)) > f11169_MAX &
action11169_UC02_1A ->
response11169_UC02_1A ->
out1_11169_UC02_1A!(card(union(important,selected))-f11169_MAX) ->
SKIP;
(f11169_UC02_Cleanup [] SKIP);
f11169_UC02_START

within f11169_UC02_START

f11169_UC02(f11169_UC02_Cleanup) = f11169_UC02_FLOW(
f11169_UC02_Cleanup)

-- 11169_UC03

-- types

-- constants

-- memory
b11169_UC03_MEM = {
(f11169_UC03_selected,t11169_1.{})
}

a11169_UC03_MEM = alphaMem(b11169_UC03_MEM)

f11169_UC03_MEMORY = dupGet( Memory(b11169_UC03_MEM) )

-- input values
channel in_11169_UC03_1M_x : Set(t11169_Message)

a11169_UC03in = {|in_11169_UC03_1M_x|}



APPENDIX C CSPM GENERATED FROM IMPORTANT MESSAGES FEATURE 95

-- output values

-- channels
channel action11169_UC03_1M, response11169_UC03_1M,
action11169_UC03_2M, response11169_UC03_2M

--uc alphabets
a11169_UC03i = Union({action11169_UC03_1M, action11169_UC03_2M,
a11169_UC03in})
a11169_UC03o = Union({response11169_UC03_1M, response11169_UC03_2M})
a11169_UC03 = Union({a11169_UC03i, a11169_UC03o})

f11169_UC03_Ext_11169_UC02_Cleanup =
get!f11169_important.t11169_1?important ->
card(important) > 0 & f11169_UC03

f11169_UC03_FLOW = let

f11169_UC03_START =
SKIP;
f11169_UC03_1M

f11169_UC03_1M =
get!f11169_important.t11169_1?important ->
in_11169_UC03_1M_x?x : { v | v<-Set(important), (not empty(v)) } ->
action11169_UC03_1M ->
response11169_UC03_1M ->
set!f11169_UC03_selected!t11169_1.x -> mem_update ->
SKIP;
f11169_UC03_2M

f11169_UC03_2M =
get!f11169_important.t11169_1?important ->
get!f11169_UC03_selected.t11169_1?selected ->
action11169_UC03_2M ->
response11169_UC03_2M ->
set!f11169_important!t11169_1.diff(important,selected) ->
mem_update ->
SKIP

within f11169_UC03_START

(
FEND(f11169_UC03_FLOW)
[|union(a11169_UC03_MEM,{success})|]

MEND(f11169_UC03_MEMORY)
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) \ union(a11169_UC03_MEM,{success})

-- 11169 behaviour
aget2_11169 = Union({alphaGet2(b11169_MEM),
alphaGet2(b11169_UC03_MEM)})

a11169 = Union({a11169_UC01, a11169_UC02, a11169_UC03})

f11169 =
(
FEND(f11169_UC02(f11169_UC03_Ext_11169_UC02_Cleanup)[]f11169_UC03)
[|union(a11169_MEM,{success})|]

MEND(f11169_MEMORY)
) \ union(a11169_MEM,{success})

-- system
aget2 = Union({aget2_11169})
acontrol = union(aget2,{mem_update})
aS = Union({a11169,acontrol})

S = f11169



APPENDIX D

CSPm generated from Sending and Receiving
SMS/MMS feature

transparent sbdia

-- composes the memory and the flow and compress the composition
-- special event is used to force successful termination of
-- composition whenever the left RHS does

channel success
FEND(F) = F; success -> SKIP
MEND(Mem) = Mem /\ (success -> SKIP)

-- the channels used for memory read/writte
-- the values transmitted by the memory will be defined further

channel get,set : Var.Type

-- yields the range of a var which type us tn

values(tn) = { val | v<-Var, val<-extensions(get.v.tn) }

-- the memory process

Mcel(v,val) = get!v!val -> Mcel(v,val)
[] let t = tag(val) within

set!v!t?val_:values(t) -> Mcel(v,t.val_)

Memory(binding) = ||| (v,val) : binding @ Mcel(v,val)

-- given a set of variables mVars, this function yields the
-- alphabet of get/set events over the given variables

pick({x}) = x
varType(v,b) = pick( { t | (v2,t)<-b, v == v2 } )
dom(m) = { x | (x,y)<-m }

alphaMem(b)={g,s | vname<-dom(b), tname<-{tag(varType(vname,b))},
g<-productions(get.vname.tname),

97
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s<-productions(set.vname.tname) }

-- given a memory process MEM, this function creates a copy get2 of
-- the channel get

dupGet(MEM)=MEM[[get.x<-get.x,get.x <- get2.x|x <- extensions(get)]]

-- channel dedicated to test selection, used to read the value
-- of the variables

channel get2 : Var.Type

-- given a set of variables mVars, this function yields the
-- alphabet of get2 events over the given variables

alphaGet2(b) = { get2.v.t.val | get.v.t.val <- alphaMem(b) }

-- control event that makes the test selection more efficient
-- we will only verify the system state after steps that change the
-- state mem_update is an auxiliary event to mark mem_update of a
-- sequence of variables update after the test purpose synchronizes
-- in this event it verifies the boolean guards

channel mem_update

-- a subset of the naturals set which will be used in every
-- occurency of declared variables of such type
nametype Number = {0..5}

--33629
datatype Var = f33629_selected | f33629_UC7_current_type

| f33629_UC3_current_mode
datatype Type = t33629_1.Set(t33629_contact)

| t33629_2.t33629_UC7_address_type
| t33629_3.t33629_UC3_mode

tag(t33629_1.v) = t33629_1
tag(t33629_2.v) = t33629_2
tag(t33629_3.v) = t33629_3

-- 33629 data

-- types
datatype t33629_number = n_99887766 | n_88446622
datatype t33629_address = js_AT_gmail_DOT_com | ps_AT_ufpe_DOT_br
datatype t33629_contact = Phone.t33629_number | Email.t33629_address
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datatype t33629_interaction = dialog_call | SMS_notification

-- constants
f33629_max_selection = 10
f33629_all_contacts = {(Phone.n_99887766),(Phone.n_88446622),

(Email.js_AT_gmail_DOT_com),
(Email.ps_AT_ufpe_DOT_br)}

f33629_JohnSmith_info = {(Phone.n_99887766),
(Email.js_AT_gmail_DOT_com)}

f33629_UFPE_group = {(Phone.n_88446622),(Email.ps_AT_ufpe_DOT_br)}

-- memory
b33629_MEM = {
(f33629_selected,t33629_1.{})
}

a33629_MEM = alphaMem(b33629_MEM)

f33629_MEMORY = dupGet( Memory(b33629_MEM) )

-- 33629_UC1

-- types

-- constants

-- memory

-- input values

-- output values

-- channels
channel action33629_UC1_1M, response33629_UC1_1M,

action33629_UC1_2M, response33629_UC1_2M

--uc alphabets
a33629_UC1i = Union({action33629_UC1_1M, action33629_UC1_2M})
a33629_UC1o = Union({response33629_UC1_1M, response33629_UC1_2M})
a33629_UC1 = Union({a33629_UC1i, a33629_UC1o})

f33629_UC1_FLOW = let

f33629_UC1_START =
SKIP;
f33629_UC1_1M
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f33629_UC1_1M =
action33629_UC1_1M ->
response33629_UC1_1M ->
SKIP;
f33629_UC1_2M

f33629_UC1_2M =
action33629_UC1_2M ->
response33629_UC1_2M ->
SKIP

within f33629_UC1_START

f33629_UC1 = f33629_UC1_FLOW

-- 33629_UC2

-- types

-- constants

-- memory

-- input values
channel in_33629_UC2_1M_x : Set(t33629_contact)
channel in_33629_UC2_1A_x : Set(t33629_contact)
channel in_33629_UC2_1B_x : Set(t33629_contact)
channel in_33629_UC2_1C_x : Set(t33629_contact)
channel in_33629_UC2_1D_x : Set(t33629_contact)
channel in_33629_UC2_1E_x : Set(t33629_contact)

a33629_UC2in = {|in_33629_UC2_1M_x, in_33629_UC2_1A_x,
in_33629_UC2_1B_x, in_33629_UC2_1C_x,
in_33629_UC2_1D_x, in_33629_UC2_1E_x|}

-- output values
channel out1_33629_UC2_1A : Number
channel out1_33629_UC2_1C : Number
channel out1_33629_UC2_1E : Number

a33629_UC2out = {|out1_33629_UC2_1A, out1_33629_UC2_1C,
out1_33629_UC2_1E|}

-- channels
channel action33629_UC2_1M, response33629_UC2_1M,
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action33629_UC2_2M, response33629_UC2_2M,
action33629_UC2_1A, response33629_UC2_1A,
action33629_UC2_1B, response33629_UC2_1B,
action33629_UC2_1C, response33629_UC2_1C,
action33629_UC2_1D, response33629_UC2_1D,
action33629_UC2_1E, response33629_UC2_1E

--uc alphabets
a33629_UC2i = Union({action33629_UC2_1M, action33629_UC2_2M,

action33629_UC2_1A, action33629_UC2_1B,
action33629_UC2_1C, action33629_UC2_1D,
action33629_UC2_1E, a33629_UC2in})

a33629_UC2o = Union({response33629_UC2_1M, response33629_UC2_2M,
response33629_UC2_1A, response33629_UC2_1B,
response33629_UC2_1C, response33629_UC2_1D,
response33629_UC2_1E, a33629_UC2out})

a33629_UC2 = Union({a33629_UC2i, a33629_UC2o})

f33629_UC2_FLOW(f33629_UC2_Interruption1, f33629_UC2_Interruption2,
f33629_UC2_Interruption3, f33629_UC2_Interruption4,
f33629_UC2_Interruption5, f33629_UC2_Interruption6)
= let

f33629_UC2_START =
f33629_UC1;
SKIP;
f33629_UC2_1M [] f33629_UC2_1A [] f33629_UC2_1E [] f33629_UC2_1D
[] f33629_UC2_1C [] f33629_UC2_1B

f33629_UC2_1M =
in_33629_UC2_1M_x?x : {v | v<-Set(f33629_all_contacts),

(not empty(v))} ->
card(x) <= f33629_MAX_SELECTION &
action33629_UC2_1M ->
response33629_UC2_1M ->
set!f33629_selected!t33629_1.x -> mem_update ->
SKIP;
(f33629_UC2_Interruption1 [] SKIP);
f33629_UC2_2M

f33629_UC2_2M =
action33629_UC2_2M ->
response33629_UC2_2M ->
SKIP

f33629_UC2_1A =
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in_33629_UC2_1A_x?x : { v | v<-Set(f33629_all_contacts),
(not empty(v)) } ->

card(x) > f33629_max_selection &
action33629_UC2_1A ->
response33629_UC2_1A ->
out1_33629_UC2_1A!(card(x) - f33629_max_selection) ->
SKIP;
(f33629_UC2_Interruption2 [] SKIP);
f33629_UC2_START

f33629_UC2_1B =
in_33629_UC2_1B_x?x : { v | v<-Set(f33629_UFPE_group),

(not empty(v)) } ->
card(x) <= f33629_max_selection &
action33629_UC2_1B ->
response33629_UC2_1B ->
set!f33629_selected!t33629_1.x -> mem_update ->
SKIP;
(f33629_UC2_Interruption3 [] SKIP);
f33629_UC2_2M

f33629_UC2_1C =
in_33629_UC2_1C_x?x : { v | v<-Set(f33629_UFPE_group),

(not empty(v)) } ->
card(x) > f33629_max_selection &
action33629_UC2_1C ->
response33629_UC2_1C ->
out1_33629_UC2_1C!(card(x) - f33629_max_selection) ->
SKIP;
(f33629_UC2_Interruption4 [] SKIP);
f33629_UC2_START

f33629_UC2_1D =
in_33629_UC2_1D_x?x : { v | v<-Set(f33629_JohnSmith_info),

(not empty(v)) } ->
card(x) <= f33629_max_selection &
action33629_UC2_1D ->
response33629_UC2_1D ->
set!f33629_selected!t33629_1.x -> mem_update ->
SKIP;
(f33629_UC2_Interruption5 [] SKIP);
f33629_UC2_2M

f33629_UC2_1E =
in_33629_UC2_1E_x?x : { v | v<-Set(f33629_JohnSmith_info),

(not empty(v)) } ->
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card(x) > f33629_max_selection &
action33629_UC2_1E ->
response33629_UC2_1E ->
out1_33629_UC2_1E!(card(x) - f33629_max_selection) ->
SKIP;
(f33629_UC2_Interruption6 [] SKIP);
f33629_UC2_START

within f33629_UC2_START

f33629_UC2(f33629_UC2_Interruption1, f33629_UC2_Interruption2,
f33629_UC2_Interruption3, f33629_UC2_Interruption4,
f33629_UC2_Interruption5, f33629_UC2_Interruption6) =

f33629_UC2_FLOW(f33629_UC2_Interruption1, f33629_UC2_Interruption2,
f33629_UC2_Interruption3, f33629_UC2_Interruption4,
f33629_UC2_Interruption5, f33629_UC2_Interruption6)

-- 33629_UC3

-- types
datatype t33629_UC3_mode = selection_mode | call_mode

-- constants

-- memory
b33629_UC3_MEM = {
(f33629_UC3_current_mode,t33629_3.(selection_mode))
}

a33629_UC3_MEM = alphaMem(b33629_UC3_MEM)

f33629_UC3_MEMORY = dupGet( Memory(b33629_UC3_MEM) )

-- input values

-- output values
channel out1_33629_UC3_1M : t33629_interaction

a33629_UC3out = {|out1_33629_UC3_1M|}

-- channels
channel action33629_UC3_1M, response33629_UC3_1M,

action33629_UC3_2M, response33629_UC3_2M

--uc alphabets
a33629_UC3i = Union({action33629_UC3_1M, action33629_UC3_2M})
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a33629_UC3o = Union({response33629_UC3_1M, response33629_UC3_2M,
a33629_UC3out})

a33629_UC3 = Union({a33629_UC3i, a33629_UC3o})

f33629_UC3_Ext_33629_UC2_Interruption1 =
true & f33629_UC3

f33629_UC3_Ext_33629_UC2_Interruption2 =
true & f33629_UC3

f33629_UC3_Ext_33629_UC2_Interruption3 =
true & f33629_UC3

f33629_UC3_Ext_33629_UC2_Interruption4 =
true & f33629_UC3

f33629_UC3_Ext_33629_UC2_Interruption5 =
true & f33629_UC3

f33629_UC3_Ext_33629_UC2_Interruption6 =
true & f33629_UC3

f33629_UC3_FLOW = let

f33629_UC3_START =
SKIP;
f33629_UC3_1M

f33629_UC3_1M =
action33629_UC3_1M ->
response33629_UC3_1M ->
out1_33629_UC3_1M!(dialog_call) ->
set!f33629_UC3_current_mode!t33629_3.(call_mode) ->
mem_update ->
SKIP;
f33629_UC3_2M

f33629_UC3_2M =
action33629_UC3_2M ->
response33629_UC3_2M ->
set!f33629_UC3_current_mode!t33629_3.(selection_mode) ->
mem_update ->
SKIP

within f33629_UC3_START
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f33629_UC3 =
(
FEND(f33629_UC3_FLOW)
[|union(a33629_UC3_MEM,{success})|]

MEND(f33629_UC3_MEMORY)
) \ union(a33629_UC3_MEM,{success})

-- 33629_UC4

-- types

-- constants

-- memory

-- input values

-- output values
channel out1_33629_UC4_1M : t33629_interaction

a33629_UC4out = {|out1_33629_UC4_1M|}

-- channels
channel action33629_UC4_1M, response33629_UC4_1M

--uc alphabets
a33629_UC4i = Union({action33629_UC4_1M})
a33629_UC4o = Union({response33629_UC4_1M, a33629_UC4out})
a33629_UC4 = Union({a33629_UC4i, a33629_UC4o})

f33629_UC4_Ext_33629_UC2_Interruption1 =
true & f33629_UC4

f33629_UC4_Ext_33629_UC2_Interruption2 =
true & f33629_UC4

f33629_UC4_Ext_33629_UC2_Interruption3 =
true & f33629_UC4

f33629_UC4_Ext_33629_UC2_Interruption4 =
true & f33629_UC4

f33629_UC4_Ext_33629_UC2_Interruption5 =
true & f33629_UC4

f33629_UC4_Ext_33629_UC2_Interruption6 =
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true & f33629_UC4

f33629_UC4_FLOW = let

f33629_UC4_START =
SKIP;
f33629_UC4_1M

f33629_UC4_1M =
action33629_UC4_1M ->
response33629_UC4_1M ->
out1_33629_UC4_1M!(SMS_notification) ->
SKIP

within f33629_UC4_START

f33629_UC4 = f33629_UC4_FLOW

-- 33629_UC5

-- types

-- constants

-- memory

-- input values

-- output values

-- channels
channel action33629_UC5_1M, response33629_UC5_1M

--uc alphabets
a33629_UC5i = Union({action33629_UC5_1M})
a33629_UC5o = Union({response33629_UC5_1M})
a33629_UC5 = Union({a33629_UC5i, a33629_UC5o})

f33629_UC5_Ext_33629_UC2_Interruption1 =
true & f33629_UC5

f33629_UC5_Ext_33629_UC2_Interruption2 =
true & f33629_UC5

f33629_UC5_Ext_33629_UC2_Interruption3 =
true & f33629_UC5
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f33629_UC5_Ext_33629_UC2_Interruption4 =
true & f33629_UC5

f33629_UC5_Ext_33629_UC2_Interruption5 =
true & f33629_UC5

f33629_UC5_Ext_33629_UC2_Interruption6 =
true & f33629_UC5

f33629_UC5_FLOW = let

f33629_UC5_START =
SKIP;
f33629_UC5_1M

f33629_UC5_1M =
action33629_UC5_1M ->
response33629_UC5_1M ->
SKIP

within f33629_UC5_START

f33629_UC5 = f33629_UC5_FLOW

-- 33629_UC6

-- types

-- constants

-- memory

-- input values

-- output values

-- channels
channel action33629_UC6_1M, response33629_UC6_1M,

action33629_UC6_2M, response33629_UC6_2M

--uc alphabets
a33629_UC6i = Union({action33629_UC6_1M, action33629_UC6_2M})
a33629_UC6o = Union({response33629_UC6_1M, response33629_UC6_2M})
a33629_UC6 = Union({a33629_UC6i, a33629_UC6o})
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f33629_UC6_FLOW = let

f33629_UC6_START =
SKIP;
f33629_UC6_1M

f33629_UC6_1M =
action33629_UC6_1M ->
response33629_UC6_1M ->
SKIP;
f33629_UC6_2M

f33629_UC6_2M =
action33629_UC6_2M ->
response33629_UC6_2M ->
SKIP

within f33629_UC6_START

f33629_UC6 = f33629_UC6_FLOW

-- 33629_UC7

-- types
datatype t33629_UC7_address_type = number | email

-- constants

-- memory
b33629_UC7_MEM = {
(f33629_UC7_current_type,t33629_2.(number))
}

a33629_UC7_MEM = alphaMem(b33629_UC7_MEM)

f33629_UC7_MEMORY = dupGet( Memory(b33629_UC7_MEM) )

-- input values
channel in_33629_UC7_1M_sourceType : t33629_UC7_address_type

a33629_UC7in = {|in_33629_UC7_1M_sourceType|}

-- output values

-- channels
channel action33629_UC7_1M, response33629_UC7_1M,
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action33629_UC7_2M, response33629_UC7_2M,
action33629_UC7_1A, response33629_UC7_1A

--uc alphabets
a33629_UC7i = Union({action33629_UC7_1M, action33629_UC7_2M,

action33629_UC7_1A, a33629_UC7in})
a33629_UC7o = Union({response33629_UC7_1M, response33629_UC7_2M,

response33629_UC7_1A})
a33629_UC7 = Union({a33629_UC7i, a33629_UC7o})

f33629_UC7_FLOW = let

f33629_UC7_START =
SKIP;
f33629_UC7_1M

f33629_UC7_1M =
in_33629_UC7_1M_sourceType?sourceType : { v | v <-{(number),

(email)}} ->
action33629_UC7_1M ->
response33629_UC7_1M ->
SKIP;
f33629_UC7_2M [] f33629_UC7_1A

f33629_UC7_2M =
get!f33629_UC7_current_type.t33629_2?current_type ->
current_type == (number) &
action33629_UC7_2M ->
response33629_UC7_2M ->
SKIP

f33629_UC7_1A =
get!f33629_UC7_current_type.t33629_2?current_type ->
current_type == (email) &
action33629_UC7_1A ->
response33629_UC7_1A ->
SKIP

within f33629_UC7_START

f33629_UC7 =
(
FEND(f33629_UC7_FLOW)
[|union(a33629_UC7_MEM,{success})|]

MEND(f33629_UC7_MEMORY)
) \ union(a33629_UC7_MEM,{success})
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-- 33629 behaviour
aget2_33629 = Union({alphaGet2(b33629_MEM),

alphaGet2(b33629_UC3_MEM),
alphaGet2(b33629_UC7_MEM)})

a33629 = Union({a33629_UC1, a33629_UC2, a33629_UC3, a33629_UC4,
a33629_UC5, a33629_UC6, a33629_UC7})

f33629 =
(
FEND(f33629_UC3 [] f33629_UC4 [] f33629_UC5 [] f33629_UC6 []
f33629_UC7 [] f33629_UC2(f33629_UC3_Ext_33629_UC2_Interruption1 []
f33629_UC4_Ext_33629_UC2_Interruption1 []
f33629_UC5_Ext_33629_UC2_Interruption1,
f33629_UC3_Ext_33629_UC2_Interruption2 []
f33629_UC4_Ext_33629_UC2_Interruption2 []
f33629_UC5_Ext_33629_UC2_Interruption2,
f33629_UC3_Ext_33629_UC2_Interruption3 []
f33629_UC4_Ext_33629_UC2_Interruption3 []
f33629_UC5_Ext_33629_UC2_Interruption3,
f33629_UC3_Ext_33629_UC2_Interruption4 []
f33629_UC4_Ext_33629_UC2_Interruption4 []
f33629_UC5_Ext_33629_UC2_Interruption4,
f33629_UC3_Ext_33629_UC2_Interruption5 []
f33629_UC4_Ext_33629_UC2_Interruption5 []
f33629_UC5_Ext_33629_UC2_Interruption5,
f33629_UC3_Ext_33629_UC2_Interruption6 []
f33629_UC4_Ext_33629_UC2_Interruption6 []
f33629_UC5_Ext_33629_UC2_Interruption6))
[|union(a33629_MEM,{success})|]

MEND(f33629_MEMORY)
) \ union(a33629_MEM,{success})

-- system
aget2 = Union({aget2_33629})
acontrol = union(aget2,{mem_update})
aS = Union({a33629,acontrol})

S = f33629

System = S

assert S :[ deterministic [F] ]
assert S :[ deadlockfree [F] ]
assert S :[ livelockfree [FD] ]
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