ESTUDO GEOQUÍMICO DA CROSTA LATERÍTICA DO DEPÓSITO MORRO DOS SEIS LAGOS (AM).

Lucy TAKEHARA¹; Cláudio G. PORTO²; Margarete Wagner SIMAS³; Rodrigo Guedes BORBA⁴; Francisco Valdir SILVEIRA⁵

- 1 Serviço Geológico do Brasil CPRM, SUREG-PA, lucy.chemale@cprm.gov.br
- 2 Serviço Geológico do Brasil CPRM, ERJ, claudio.porto@cprm.gov.br
- 3 Serviço Geológico do Brasil CPRM, SUREG-PA, margarete.simas@cprm.gov.br
- 4 Serviço Geológico do Brasil CPRM, ERJ, rodrigo.borba@cprm.gov.br
- 5 Serviço Geológico do Brasil CPRM, SEDE, <u>francisco.silveira@cprm.gov.br</u>

Resumo

A crosta laterítica gerada sobre o ferro carbonatito do Morro dos Seis Lagos apresenta variação geoquímica controlada pela percolação de fluidos meteóricos e pela composição do protólito. As faixas de crosta manganesífera são enriquecidas em Ba, Cd, Co, Mo e Cu enquanto que a crosta fragmentada, próxima à superfície, é mais rica em Al, provavelmente incorporado aos óxidos de Fe, além de P, Ga, Zr, Hf, U e Th. Existe também uma associação do Nb com Ti, W e Sn que deve ser herdada da rocha carbonatítica comprovando a litodependência das crostas apesar de intenso retrabalhamento químico que afetou as litologias subjacentes.

Palavras-chave: Morro dos Seis Lagos, geoguímica, crosta laterítica, difração de raios X, MEV.

1. Introdução

As rochas alcalinas de Seis Lagos estão localizadas no noroeste do estado do Amazonas no município de São Gabriel da Cachoeira e estão inseridas no Domínio Imeri que forma o embasamento de idades entre 1,81 a 1,79 Ga (ALMEIDA et al., 2011). O depósito de Morro dos Seis Lagos constitui um dos maiores depósitos de nióbio do mundo, bem como é depósito de ferro, terras raras, manganês, entre outros, descoberto no final da década de 1970 (VIÉGAS FILHO E BONOW, 1976. JUSTO, 1983).

O Morro dos Seis Lagos é uma feição circular sustentada no relêvo por uma espessa crosta laterítica sobre ferro-carbonatito. A formação dessa crosta foi favorecida pelo fluxo intenso de soluções aquosas que provocam intensa mobilização geoquímica. A crosta laterítica é composta principalmente por minerais de ferro, hematita e goethita, que apresentam distribuição relativamente homogênea. A mineralogia subordinada é composta por minerais de: manganês, titânio, terras raras, que apresentam distribuição variável tanto lateralmente quando

em profundidade. Os dados geoquímicos mostram variação em profundidade e indicam comportamento de litodependência entre a crosta laterítica e o seu protólito. O presente trabalho apresentará os resultados preliminares dos dados geoquímicos e mineralógicos realizados, com enfoque na variação geoquímica dos elementos e sua correlação com os minerais encontrados no furo de sondagem SG-01-AM com 250 m de profundidade inteiramente dentro da crosta. A escolha deste furo de sondagem foi por estar inserido na parte central do corpo e cortar somente o perfil laterítico ferruginoso. O objetivo do trabalho é descrever o comportamento geoquímico na porção superior da crosta laterítica.

2. Materiais e Métodos

O presente trabalho utilizou os testemunhos de sondagens do Projeto Seis Lagos que estão armazenados na litoteca da Superintendência Regional de Manaus do Serviço Geológico do Brasil (SUREG-MA – SGB). As amostras foram descritas macroscopicamente e enviadas para a SGS GEOSOL para serem analisadas pelos métodos: IMS95A - elementos menores, XRF75C - elementos maiores e PHY01E - perda ao fogo. Foram foram realizadas análises de difração de raios X, pelo método do pó (rocha total), no Lamin-MA da SUREG-MA/CPRM com Difratômetro modelo X'PERT PRO MPD da PANalytical, anodo de Cu, com 40 kV e 40 mA, varredura de 5 a 70° e passo de 0,02°. As lâminas polidas de alguns intervalos dos testemunhos de sondagens foram confeccionadas para caracterização petrográfica e análises com o microscópio eletrônico de varredura (MEV). Os estudos petrográficos foram realizados em microscópio ótico de luz refletida e transmitida da Olympus. O MEV utilizado foi o FEI QUANTA 450 com as seguintes condições analíticas 20 kV e 10 nA pelos métodos de análises semiquantitativa de espectrometria por dispersão de energia (EDS) e aquisição de imagens de elétrons secundários (ES) e elétrons retroespalhados (ER).

3. Resultados

Os resultados de análises químicas mostram variações que podem ser relacionados com as variações texturais e mineralógicas encontradas ao longo do perfil laterítico amostrado (Figuras 1A e 1B). A figura 1A, apresenta a variação de alguns elementos ao longo do perfil laterítico onde pode-se notar os seguintes aspectos: o Fe e Mn apresentam uma nítida correlação negativa provavelmente dado pelo introdução do Mn que texturalmente se mostrou uma feição tardia dentro da crosta. Segundo CORRÊA (1996) o principal mineral de manganês é a pirolusita, seguida dos minerais do grupo da hollandita. Outros elementos associados ao Mn

são o Ba, Co, Cd, Mo e Cu que fazem uma associação tipicamente supergência dado pela intensa mobilização desses metais (Figura 1A). O teor de Al é baixo, porém cresce na crosta cavernosa fragmentada. Este Al deve estar incorporado aos óxi-hidróxidos de Fe, principalmente goetita, já que não há argila presente nesta crosta. Outros metais que acompanham o enriquecimento de Al é o Ga, Zr, Hf, U, Th, Ta e P. A perda ao fogo (LOI) apresenta teores constantes com valores ligeiramente menores entre 15 a 30 m. Os ETRP apresentam uma tendência a lixiviação nas porções superiores da crosta, enquanto que os ETRL são menos lixiviados. Vale notar no entanto, que o Ce ocorre em altos teores e seus principais minerais são a florencita e a cerianita; o primeiro ocorre principalmente na parte superior do perfil laterítico, enquanto a cerianita ocorre na camada rica em manganês. No entanto é provável que o P esteja também associado aos óxi-hidróxidos de Fe, principalmente na crosta cavernosa fragmentada. Uma importante associação geoquímica identificada nas crostas é a do Ti com Nb, W e Sn que parece ser herdada do protólito. A forma de ocorrência dos minerais pode ser vistas na Figura 1B, onde temos a presença de minerais de titânio e terras raras dentro da matriz ferruginosa.

Os dados de difração de raios X mostram o predomínio de hematita e goethita ao longo de todo o perfil laterítico. Segundo CORRÊA (1996) as diferentes gerações de goethitas indicam movimentos das soluções com Fe no meio aquoso, que contém Al, Ni, Si e P e raramente contém Nb na sua composição. O principal mineral de titânio é o rutilo niobífero; a presença deste tipo de rutilo pode ser confirmada pela correlação boa entre titânio e nióbio.

4. Conclusões

A crosta laterítica que ocorre sobre o carbonatito do Morro dos Seis Lagos apresenta distribuição geoquímica que reflete a migração dos fluidos meteóricos durante toda sua evolução. A mineralogia principal indica processo evolutivo complexo, como indicado pelas diferentes gerações de goethita e minerais secundários supergênicos diversos formados conforme disponibilidade dos elementos presentes na crosta. A associação do Nb com Ti, W e Sn pode ser correlacionada como herança da rocha carbonatítica, mostrando a litodependência das crostas com o protolito, apesar de intenso retrabalhamento químico que afetou as litologias subjacentes.

5. Referências

ALMEIDA, M.A. et al. Folha Serra Imeri NA.20-Y, SA.20-V e V-B. Capitulo 2. Contexto Geológico regional. Projeto Programa Levantamentos Geológicos Básicos do Brasil (PLGB), SUREG-MA, Manaus, p. 7-19, 2011.

CORRÊA, S.L.A. Evolução geoquímica das crostas lateríticas e dos sedimentos sobrepostos na estrutura de Seis Lagos (AM). 1996. Tese, Pós-Graduação em Geologia e Geoquímica, UFPA, Belém, 229p., 1996. JUSTO, L.J.E.C. Projeto Uaupés. CPRM – SUREG-MA, Relatório final de pesquisa, Manaus, 266p., 1983. VIEGAS FILHO, J.R.; BONOW, C.W. Projeto Seis Lagos. CPRM - SUREG-MA, Relatório Final, 212 p., 1976.

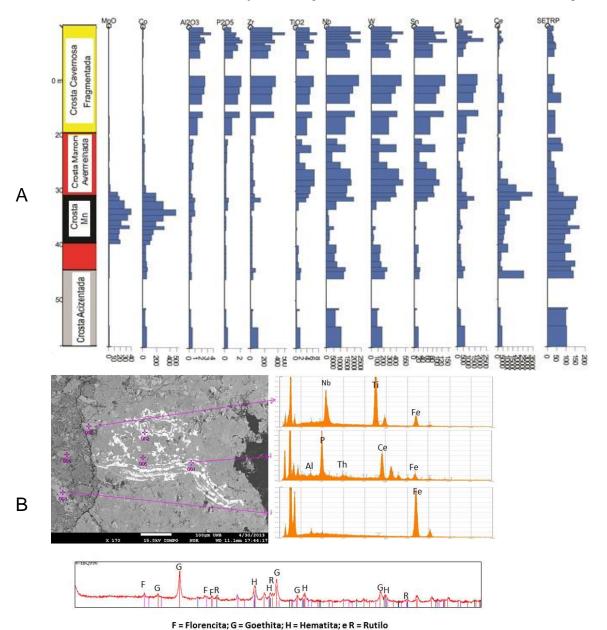


Figura 1. (A) Variação nos teores dos elementos com a profundidade e a descrição resumida das variações texturais do perfil laterítico, eixo X em escala logaritmica. (B) Imagem de BSE da amostra coletada entre os intervalos 2,30 a 2,90 m de profundidade, com os espectros de EDS nos pontos especificados na imagem de BSE e o difratrograma de raios X.