MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE MINAS E METALURGIA CPRM - SERVIÇO GEOLÓGICO DO BRASIL SUPERINTENDÊNCIA REGIONAL DO RECIFE

PROGRAMA DE ÁGUA SUBTERRÂNEA PARA A REGIÃO NORDESTE PROJETO ÁGUA SUBTERRÂNEA NO NORDESTE DO BRASIL - PROASNE

INTERPRETAÇÃO E CORRELAÇÃO GEOLÓGICA-HIDROGEOLÓGICA DOS DADOS GEOFÍSICOS DA ÁREA-PILOTO SAMAMBAIA, MUNICÍPIO DE CUSTÓDIA - PERNAMBUCO

Roberto Gusmão de Oliveira Manoel Júlio da Trindade Gomes Galvão Cristiano de Andrade Amaral Enjôlras de A. Medeiros Lima José Carlos da Silva Antônio Oderson de Souza Filho Waldir Duarte Costa Filho

RECIFE Abril/2003

MINISTÉRIO DE MINAS E ENERGIA - MME

Dilma Vana Roussef Ministra de Estado

Maurício Tiommo Tolmasquin Secretário Executivo

Giles Carricone Azevedo

Secretário de Minas e Metalurgia

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS - CPRM Serviço Geológico do Brasil

Agamenon Sérgio Lucas Dantas Diretor-Presidente

Manoel Barretto da Rocha Neto Diretor de Geologia e Recursos Minerais - DGM

Manoel Barretto da Rocha Neto Diretor de Relações Institucionais e Desenvolvimento - DRI

> José Ribeiro Mendes Diretor de Hidrologia e Gestão Territorial - DHT

Álvaro Rogério Alencar Silva Diretor de Administração e Finanças - DAF

> *Frederico Cláudio Peixinho* Chefe do Departamento de Hidrologia

Fernando Antônio Carneiro Feitosa Chefe da Divisão de Hidrogeologia e Exploração

Luís Marcelo Fontoura Mourão Chefe da Divisão de Geofísica e Sensoriamento Remoto

> *Marcelo Soares Bezerra* Superintendente Regional do Recife

PROJETO ÁGUA SUBTERRÂNEA NO NORDESTE DO BRASIL (PROASNE-BRASIL)

CONVÊNIO BRASIL – CANADÁ Canadian International Development Agency (CIDA) – Agência Brasileira de Cooperação (ABC)

COMITÊ DE DIREÇÃO

Serviço Geológico do Brasil (CPRM) – Umberto Raimundo Costa Geological Survey of Canada (GSC) – Yvon Maurice Universidade Solidária (UNISOL) – Elizabeth Vargas

Coordenação Geral

Coordenador Geral Brasileiro – *Enjôlras de A. Medeiros Lima* Coordenador Geral Canadense – *Yvon Maurice*

Área Geológica

Coordenador Nacional da Área Geológica - Fernando Antônio Carneiro Feitosa

Coordenador Regional do CE – Oderson Souza Coordenador Regional do RN – Walter Eugênio de Medeiros Coordenador Regional de PE – José Carlos da Silva

Área Social

Coordenadora da Área Social e de Gênero Canadense – Sherry Nelligan Coordenadora Nacional da Área Social e de Gênero – Luciana Cibelle Araújo dos Santos

> Coordenadora Regional do CE – Walda Viana Coordenadora Regional do RN/Serrinha – *Fátima Rego* Coordenadora Regional do RN/Caraúbas – *Roberta Medeiros* Coordenadora Regional de PE – *Ana Arcoverde*

ENTIDADES PARCEIRAS EM PERNAMBUCO

Companhia Pernambucana do Meio Ambiente (CPRH) Empresa de Abastecimento e Extensão Rural do Estado de Pernambuco (EBAPE) Fundação Nacional de Saúde (FUNASA) Fundação Joaquim Nabuco (FUNDAJ) Universidade Federal de Pernambuco – Departamento de Serviço Social Universidade Federal de Pernambuco – LABHID Prefeitura Municipal de Custódia - PE

Equipe Técnica

Enjôlras de A. Medeiros Lima **Gerente de Hidrologia e Gestão Territorial**

Ivo Figueirôa Gerente de Relações Institucionais e Desenvolvimento

José Carlos da Silva Supervisor de Hidrogeologia e Exploração

Execução

Geól. Roberto Gusmão de Oliveira Geól. Manoel Júlio da T. G. Galvão Geól. Cristiano de Andrade Amaral Geól. Waldir Duarte Costa Filho Técn. Miner. Armando A. Câmara Filho Técn. Miner. Almir Gomes Freire Editoração Eletrônica Claudio Scheid

Analista de Informações

Dalvanise da Rocha S. Bezerril

Coordenação Editorial Serviço de Edição Regional Luciano Tenório de Macêdo Avenida Sul, 2291 - Afogados - Recife/PE

Oliveira, Roberto Gusmão de Interpretação e correlação geológica-hidrogeológica dos dados geofísicos da Área-Piloto Samambaia, Município de Custódia – Pernambuco / Roberto Gusmão de Oliveira, Manoel Júlio da Trindade Gomes Galvão, Cristiano de Andrade Amaral, Enjôlras de A. Medeiros Lima, José Carlos da Silva, Antônio Oderson de Souza Filho, Waldir Duarte Costa Filho. Recife: CPRM, 2003.

105p. + anexos "Programa de Água Subterrânea para a Região Nordeste - Projeto Água Subterrânea no Nordeste do Brasil - PROASNE"

1. Geofísica 2. Geologia 3. Pernambuco I. Galvão, Manoel Júlio de Trindade Gomes II. Amaral, Cristiano de Andrade III. Lima, Enjôlras de A. Medeiros IV. Silva, José Carlos V. Souza Filho, Antônio Oderson de VI. Costa Filho, Waldir Duarte VII. CPRM - Serviço Geológico do Brasil VIII. Título

CDD 551

Capa: Técnico de Mineração Armando Arruda C. Filho executando medições de resistividade elétrica nas proximidades da Vila de Caiçara, Custódia-PE.

Permitida a reprodução desde que mencionada a fonte

SUMÁRIO

1 - Introdução	6
2 - Localização e Contexto Geológico	7
3 - Levantamento Aerogeofísico	.11
4 - Interpretação dos Dados Aerogeofísicos	13
4.1 - Modelo Digital do Terreno	14
4.2 - Dados de Condutividade Elétrica Aparente	18
4.2.1 - Alinhamentos de Eixos Condutivos	18
4.2.2 - Alinhamentos Produzidos por Interrupções e Flexões de Eixos Condutivos	.18
4.2.3 - Alinhamentos Produzidos por Quebras de Gradientes Condutivos	23
4.3 - Dados de Magnetometria	25
4.3.1 - Interpretação dos Alinhamentos Magnéticos	25
4.31.1 - Alinhamentos de Eixos Magnéticos	25
4.3.1.2 - Alinhamentos Produzidos por Interrupcões e Flexões de Eixos Magnéticos	25
4.3.1.3 - Alinhamentos Produzidos por Quebras de Gradientes Magnéticos	
4.4 - Espectro de Potência Bidimensional dos Dados Aeromagnéticos e as Estimativas da	S
Profundidades dos Topos das Fontes	30
4.4.1 - Separação Regional-Residual	.30
4.4.2 - Interpretação das Componentes Profundas dos Dados de Magnetometria Aérea	.31
4 4 3 - Interpretação das Componentes Rasas dos Dados de Magnetometria Aérea	31
5 - Interpretação Tectônica dos Alinhamentos Geofísicos	34
6 - Levantamento Geofísico Terrestre	41
6 1 - Métodos e Parâmetros	41
6 1 1 - Investigação Elétrica	41
6 1 1 1 - Imagens Elétricas 2D	43
6 1 1 2 - Sondagem Elétrica Vertical	.45
6 1 2 - Investigação Eletromagnética (Geonics EM34)	.44
6.2 - Interpretação e Correlação dos Dados Geofícicos Terrestres	.45
6.2.1 - Socão 1	.47 /Q
6.2.7 = 5eca0.7	.40
6.2.2 - Seção 2	.52
	.00
6.2.5 Sooão 5	.00
	.01
	.04
6.2.7 - Seção 9	.08
	.70
6.2.9 - Seção 11	.12
6.2.10 - Seção 12	.74
6.2.11 - Seçao 13	.76
6.2.12 - Seçao 14	.78
6.2.13 - Seçao 16	.80
6.2.14 - Seçao 17	.82
6.2.15 - Seçao 18	.85
6.2.16 - Seçao 20	.87
6.2.17 - Seção 21	.89
6.2.18 - Seção 22	.91
7 - Alvos Prospectivos	.93
8 - Sugestões para Locação de Poços Tubulares	.94
9 - Conclusões e Recomendações	101
10 - Referências Bibliográficas	103
11 - ANEXOS	105

1 - Introdução

Os métodos geofísicos de eletrorresistividade têm sido aplicados, durante as últimas décadas, na prospecção de água subterrânea em aqüíferos fraturados no Nordeste do Brasil. Diferentes variações dessa modalidade de prospecção foram aplicadas e, na maioria dos casos, proporcionou uma diminuição significativa da taxa de insucessos das perfurações de poços.

Os métodos eletromagnéticos (domínios do tempo ou freqüência) têm sido também aplicados, particularmente o VLF (Very Low Frequency). A rapidez e a facilidade desse tipo de levantamento geofísico, quando existem condições ideais (proximidade das rádio-transmissoras fixas e as frentes de onda preferencialmente ortogonais às estruturas de interesse), permitiu a sua disseminação nos trabalhos de prospecção mineral. No entanto, em locais muito distantes das rádio-transmissoras fixas há dificuldade da recepção do sinal, ficando também dependente a questão da direção do levantamento em relação às frentes de onda originadas pelas rádio-transmissoras, bem como a facilidade do método captar ruídos culturais, limitando, portanto, a aplicação deste procedimento.

Recentemente, a Universidade Federal do Ceará e a CPRM – Serviço Geológico do Brasil iniciaram a aplicação de métodos eletromagnéticos no semi-árido nordestino com o equipamento EM 34-3 da Geonics, o qual é constituído de fonte transmissora própria, apresentando resultados muito promissores na detecção de condutores elétricos rasos em rochas cristalinas com manto de alteração e/ou coberturas pouco espessas.

Com o objetivo de incorporar novas alternativas ao conhecimento acumulado ao longo de décadas de estudo da hidrogeologia das rochas cristalinas do nordeste brasileiro, foi aprovado pela Canadian International Development Agency (CIDA) e pela Agência Brasileira de Cooperação (ABC)/Ministério das Relações Exteriores, em abril de 2000, o Projeto Água Subterrânea no Nordeste do Brasil (PROASNE-Brasil), um projeto multidisciplinar e de multiparceria de transferência de tecnologia, sob a liderança conjunta da CPRM – Serviço Geológico do Brasil e do Geological Survey of Canada (GSC), com vistas a introduzir modernas tecnologias no Nordeste do Brasil que possam desenvolver e melhor administrar os recursos hídricos subterrâneas.

Dessa forma, no que tange à contribuição da Geofísica, foram realizados primeiramente vôos aerogeofísicos de helicóptero sobre três áreas-piloto (Bloco Juá/CE, Bloco Samambaia/PE e Bloco Serrinha/RN) utilizando os métodos eletromagnético (domínio da freqüência), magnético e VLF-EM (LASA, 2001).

Neste trabalho apresentamos os resultados das interpretações e correlações geológicas/hidrogeológicas obtidas com a aplicação dos métodos geofísicos aéreos mencionados para a prospecção em aqüíferos fraturados na Área-Piloto Samambaia, localizada na região central do Estado de Pernambuco. Para essas interpretações foram utilizadas as malhas de dados originais processadas pela equipe técnica do levantamento aerogeofísico e anexadas ao relatório final (LASA, 2001). Essas malhas foram reprocessadas em algumas situações específicas com o objetivo de enfatizar as assinaturas geofísicas e aprimorar os resultados das interpretações qualitativa e quantitativa.

Foram também realizadas seções de geofísica terrestre com o objetivo de detalhar e consistir os dados geofísicos aéreos e localizar pontos favoráveis para a locação de poços tubulares. Neste trabalho essas seções são interpretadas, correlacionadas com os dados aéreos e com os dados geológicos-hidrogeológicos. Os resultados finais permitiram a obtenção de conclusões importantes quanto a aplicação de métodos de levantamentos geofísicos aéreos e terrestres na pesquisa de água subterrânea em rochas cristalinas.

2 - Localização e Contexto Geológico

A Área-Piloto de Samambaia está localizada dentro do perímetro do Alto Vale do Rio Moxotó, no Estado de Pernambuco (Figura 1, Tabela 1). A sua escolha foi definida a partir de um diagnóstico preliminar, em que foram analisados aspectos geológicos, hidrogeológicos, geofísicos e sócio-econômicos de toda a região do Alto Vale do Rio Moxotó.

Vértice	Latitude	Longitude
1	08º 12' 44.91"	37º 45' 55.15"
2	08º 12' 44.09"	37º 41' 33.74"
3	08º 19' 47.30"	37º 41' 32.34"
4	08º 19' 48.14"	37º 45' 53.83"

Tabela 1 - Coordenadas Geográficas do Bloco Samambaia - Pernambuco

Na área de Samambaia ocorre um amplo domínio de rochas pré-cambrianas pertencentes ao Complexo Sertânia (Santos *et al.*, 1999) e ocorrências subordinadas de coberturas cenozóicas. As rochas pré-cambrianas foram subdivididas por Angelim *et al.* (2000) em quatro classes (Figura 2):

OgnMg - Ocorre na porção sudeste. Predominam ortognaisses e migmatitos indiscriminados, exibindo localmente xenólitos de metassedimentos e metamáficas anfibolitizadas.

Ogn - Ocorre na porção central, cruzando a área de sudoeste para nordeste. É representada por augengnaisses, gnaisses bandeados, tonalitos a dioritos, de origem magmática, localmente migmatizados e com xenólitos de metassedimentos.

qt - Destaca-se sob a forma de cristas alinhadas contrastantes com o relevo da área, em forma de *hogbacks*, constituídos por uma alternância de quartzitos micáceos, paragnaisses epidotíferos e micaxistos.

Mx - São as rochas predominantes da porção noroeste da área. Por serem pouco resistentes ao intemperismo formaram uma cobertura eluvial e afloram esporadicamente. São biotita-xistos granatíferos com finos veios de quartzo transpostos.

O cenozóico está representado por coberturas areno-argilosas, tércio-quaternárias (TQc), de origem eluvionar e pelos depósitos aluviais quaternários (Qa), predominantes na porção noroeste da área, ao longo do Riacho Copiti, com espessuras de até 5 m.

As estruturas dúcteis correspondem a foliações e/ou bandamento, observadas principalmente nos augengnaisses, quartzitos e micaxistos. Predomina a direção NE com mergulho forte 70°-80° sempre para noroeste. A tectônica dúctil-frágil se traduz na forma de falhas, fraturas e juntas. As falhas com direções em torno de N-S apresentam movimento transcorrente sinistral evidenciado pelo deslocamento dos quartzitos e se caracterizam pela presença de veios de sílica (quartzo/calcedônia), bastante fraturados, cataclasados e brechados. As falhas com direções em torno de E-W, também deslocam o quartzito e apresentam movimento transcorrente dextral. Segundo Amaral (2001), esse conjunto de rupturas faz parte de um sistema de cisalhamentos com compressão (σ1) NW e distensão (σ3) NE. Assim sendo, as fraturas de direção aproximadamente NW que foram submetidas ao esforço de extensão são fraturas abertas. Foram também individualizados mini-grabens nas regiões de Salgado e a leste e oeste de Samambaia. São feições com bordas abruptas, escarpadas, em forma de "Z" ou "S", preenchidas por aluviões, lembrando pequenos *pull-a-part*, dextrais e sinistrais nas mesmas direções do par cisalhante, sugerindo reativações neotectônicas dos esforços que geraram as falhas.

Os dados hidrogeológicos indicam que a porção a norte da serra das Porteiras apresenta maior favorabilidade. Os poços tubulares perfurados nessa região (Tabela 2) possuem vazões informadas de até 10 m³/h, enquanto na porção sul as vazões são inferiores a 1,5m³/h ou os poços são improdutivos. Medidas de condutividades indicaram valores de resíduo seco variando de 200 mg/l a 8000 mg/l, crescendo de norte para sul.

Figura 1 - Modelo digital do relevo do Nordeste Oriental e batimetria da área oceânica adjacente, com limites dos estados e localização da Área-Piloto Samambaia (fonte dos dados altimétricos e batimétricos: ETOPO). Coordenadas geográficas em graus decimais.

Longitude	Latitude	Cat	Profundidade (metros)	Vazão (m³/h)
640451	9079991	PT-100	20	1,0
640547	9080055	PT-101	22	1,2
639807	9084805	PT-136	48	*
639786	9085787	PT-145	57	0,47
639427	9086450	PT-147	60	*
640722	9090861	PT-173	30	9,0
639279	9086594	PT-436	50	*
638504	9087505	PT-437	50	5,0
638536	9087632	PT-438	50	4,23
640792	9090658	PT-439	40	10,0
638323	9087680	PT-440	50	*
638652	9087336	PT-441	72	0,55
638776	9090346	PT-444	50	1,2

Tabela 2 – Dados informados de poços tubulares da Área-Piloto-Samambaia. As posições em mapa estão na Figura 2.

Interpretação e Correlação Geológica-Hidrogeológica dos Dados Geofísicos da Área-Piloto Samambaia-PE

Figura 2 - Mapa geológico da Área-Piloto Samambaia (Angelim, 2000; Amaral, 2001) com a localização dos poços tubulares (Tabela 2). A coluna estratigráfica e as convenções estão na próxima página.

COLUNA ESTRATIGRÁFICA Aluvião Qa Dique de quartzo dq mx Micaxistos granatíferos com lentes de mármore intercaladas (mm) qtz pgp Quartzitos micáceos com intercalações de paragnaisses e micaxistos (Pgn) Augengnaisses, gnaisses bandeados migmatizados ogn Ortognaisses bandados ognb ogn/mg Ortognaisses e migmatitos indiferenciados contendo lentes de anfibolitos (af) CONVENÇÕES Contato definido ---Contato aproximado ----Fraturas fotointerpretadas Fraturas medidas no campo Falhas transcorrentes sinistrais Falhas transcorrentes dextrais Traços de foliação 80" Foliação com mergulho medido 80. 20. Foliação com mergulho medido e lineação de eixo "B" ____ Foliação com mergulho fotointerpretado +XX+ Sinforme Antiforme com caimento não medido Poço tubular

Legenda do Mapa Geológico

3 - Levantamento Aerogeofísico

O levantamento aerogeofísico foi executado pela LASA - Engenharia e Prospecções (LASA, 2001), de propriedade da empresa *Fugro Airborne Surveys*. Os trabalhos foram realizados no período de 24/04 a 02/05/2001. O levantamento foi executado em uma área de aproximadamente 100 km², com linhas de vôo na direção E-W, espaçadas de 100 m e, linhas de controle na direção N-S, espaçadas de 500 m. Foram levantados 1.279 km de linhas, sendo 1.050 km de linhas de vôo e 221 km de linhas de controle. A aeronave utilizada foi um helicóptero modelo AS-350 B (Esquilo) de fabricação da Helibrás, prefixo PT-HMI. Essa aeronave, operada pela Helisul Táxi Aéreo Ltda., voou a uma velocidade de 100 km/h e foi especialmente adaptada para o levantamento magnético-eletromagnético. Durante o levantamento, a aeronave foi mantida a uma altura constante de 60 m sobre o terreno. Na base de operações, localizada a 5 km a norte da área, foram instaladas as estações de monitoramento do campo magnético terrestre e do sistema GPS.

No levantamento eletromagnético foi utilizado o Sistema Aerodat-DSP-99 de cinco freqüências constituído por dois pares de bobinas verticais, coaxiais, com freqüência de 935 e 4.600 Hz e três pares de bobinas horizontais, coplanares, com freqüência de 800, 4.175 e 33.000 Hz. Os pares de bobinas transmissoras/receptoras ficaram separadas de uma distância de 6,45 m, instaladas em um *bird*, que foi rebocado pelo helicóptero por um cabo de 30 m (Figura 3). A taxa de amostragem de 0,1 s correspondeu a uma leitura a cada 3 m. O sistema foi calibrado no solo por meio de uma bobina padrão externa. Essa calibração foi mantida por uma bobina auxiliar interna (Q-coil) que repetiu o procedimento até três vezes durante cada vôo.

Figura 3 – Esquema simplificado da aquisição de dados eletromagnéticos no domínio da freqüência por meio de helicóptero - HEM (Adaptado de Steensma & Kellet, 2000).

No levantamento magnetométrico foi utilizado um sensor de vapor de césio, Geometrics G-822A, com sensibilidade de 0,001 nT e taxa de amostragem de 0,15 Hz. O sensor foi rebocado na ponta do *bird* a 30 m do helicóptero e foi orientado com base nos valores de inclinação e declinação magnética da área.

No levantamento de VLF foi utilizado o sistema VLF HERTZ TOTEM 2A, operando em duas freqüências simultaneamente, na faixa de 15 a 30 kHz. A antena VLF foi instalada em um *bird* intermediário, rebocado a 15 m do helicóptero e 45 m do terreno, com uma taxa de amostragem de 0,1 s. O sistema foi sintonizado com duas estações (Ortho, Line) situadas em posições favoráveis em relação à área.

A obtenção de dados de VLF no Brasil é geralmente prejudicada pela distância a estações transmissoras, sendo as principais localizadas na América do Norte ou na Europa. O sinal recebido no Brasil é geralmente fraco e, portanto, sujeito a interferências e degradações. Devido a isto os dados VLF não apresentaram qualidade para a interpretação.

O processamento dos dados executado pela LASA consistiu das seguintes etapas:

a) geração de banco de dados;

b) redução dos dados pela aplicação de correções aos dados de posição, de altitude, magnéticos e eletromagnéticos;

c) conversão dos dados eletromagnéticos em condutividade elétrica aparente;

d) gridagem e geração de mapas do modelo digital do terreno, de anomalias magnéticas residuais e da condutividade elétrica aparente;

e) separação e modelagem das anomalias eletromagnéticas.

4 - Interpretação dos Dados Aerogeofísicos

A interpretação dos dados eletromagnetométricos foi conduzida pela análise e correlação geológica dos dados de condutividade elétrica aparente calculados pela equipe técnica da LASA para as três freqüências (33.000 Hz, 4.500 Hz e 900 Hz). Porém, foi dada prioridade para os dados de condutividades elétricas aparentes calculadas a partir da freqüência de 4.500 Hz com bobinas no arranjo coaxial. Essa configuração é representativa para as profundidades médias de investigação, em torno de 60 m, e define com mais clareza os eixos e alinhamentos.

A interpretação dos dados magnetométricos foi conduzida pela análise conjunta e cruzamento das assinaturas dos mapas do campo magnético total residual, do mapa magnético de redução ao pólo e do mapa magnético do sinal analítico. Os dados de VLF não apresentaram qualidade suficiente para a sua utilização nos trabalhos de interpretação.

Durante a interpretação foram realizadas análises comparativas entre os dados geológicos e geofísicos com a ênfase nos pares correlatos: a) unidades geofísicas com características homólogas – unidades e domínios litológicos; b) alinhamentos geofísicos - falhas e zonas de cisalhamento; e c) mudanças de gradientes geofísicos - contatos litológicos e profundidades das fontes. O processo de interpretação foi executado de forma interativa com todas as imagens, considerando o conjunto dos dados, uma vez que cada imagem contém informações específicas e relevantes.

4.1 - Modelo Digital do Terreno

A análise do modelo digital do terreno (Figura 4), em consonância com os dados geológicos e a drenagem proporcionou a divisão da área em três porções morfologicamente distintas (Amaral, 2001). A norte da serra das Porteiras, o relevo apresenta-se plano no domínio dos terraços aluviais do riacho Copití, o qual age como nível de base dessa porção e suavemente ondulado onde dominam as coberturas tércio-quaternárias. Nessas regiões os interflúvios estão extensamente rebaixados com encostas suaves, vales largos e pouco profundos, e declividades menores que 2% (Fotografia 1). A predominância de coberturas areno-argilosas inconsolidadas é um indicativo da desaceleração na taxa de erosão. Com a diminuição no ritmo da erosão linear, as vertentes alargam-se e as declividades diminuem. A área tornou-se uma sucessão de colinas rebaixadas, cobertas por um manto contínuo de detritos intemperizados e quase não há mais afloramentos de rochas nuas. Uma outra morfologia distinta corresponde a serra das Porteiras. Trata-se da forma residual de relevo mais expressiva da área, destacando-se sob a forma de cristas alinhadas contrastantes na paisagem arrasada, constituindo hogbacks (Fotografia 2), com declividade acima de 30%. As rochas que a compõe estão dispostas numa seqüência repetitiva de isoclinais fechadas e transpostas. A terceira unidade distinta de relevo, corresponde à parcela a sul da serra das Porteiras. Tem como nível de base o acude de Poco da Cruz, localizado fora da área. É caracterizada por riachos encaixados, declives pouco acentuados, com exceção do serrote do Piquió, observando-se por vezes pequenas escarpas. Trata-se de um relevo que varia de suavemente ondulado a colinoso e sua esculturação faz-se principalmente pela erosão fluvial. A vaga erosiva remontante se espalha pelo curso principal e seus afluentes. Os leitos da rede hidrográfica tornaram-se local de intensa erosão. Esse fato, aliado a resistência da litologia ao intemperismo, resulta com que as rochas aflorem em abundância (Fotografia 3).

Figura 4 - Modelo Digital do Terreno da Área Piloto-Samambaia (LASA, 2001).

Fotografia 1 - Vale do riacho Copiti ao norte da serra das Porteiras. É largo, com encostas suaves e está preenchido por aluviões.

Fotografia 2 - Cristas de quartzito alinhadas na serra das Porteiras. Elas são contrastantes na paisagem arrasada e constituem *hogbacks*.

Fotografia 3 - Vale do riacho Copiti ao sul da serra das Porteiras. O seu leito desprovido de aluviões, na maior parte do percurso, exibe afloramentos abundantes de ortognaisses.

4.2 - Dados de Condutividade Elétrica Aparente

A análise do mapa de condutividade elétrica aparente (Figura 5) comparada com os dados geológicos demonstra que a sua intensidade está relacionada principalmente com o tipo litológico, o grau de alteração das rochas, o conteúdo de argila das coberturas e a existência de estruturas lineares portadoras de água salobra. Como ferramenta de interpretação estrutural para a identificação de falhas/fraturas, os dados de condutividade funcionam como indicadores indiretos da existência dessas estruturas. Partindo desse princípio, os atributos das assinaturas condutivas lineares foram utilizados como critérios para correlacioná-las com os dados geológicos.

4.2.1 - Alinhamentos de Eixos Condutivos

No mapa de condutividade destacam-se dois domínios principais (Figuras 5 e 6). O primeiro, localizado no quadrante NW da área, caracteriza-se pela presença de eixos alongados na direção NE-SW, com largura variando entre 100 e 200 m, com comprimentos de até 7 km e amplitudes entre 5 e 30 mS/m. Essa direção principal está truncada e flexionada no sentido sinistral, por alinhamentos de eixos discretos, porém importantes. Eles apresentam direções em torno de N-S, com larguras médias de 100 m, comprimentos máximos de 1 km e amplitudes entre 5 e 30 mS/m.

O segundo domínio ocupa o restante da área. O padrão de alinhamentos é semelhante ao primeiro domínio, porém, os eixos condutivos apresentam larguras médias em torno de 100 m e as amplitudes, para os eixos NE-SW e N-S, são inferiores a 10 mS/m. Ao contrário do primeiro domínio, alguns alinhamentos N-S destacam-se por apresentarem comprimentos de até 7 km. Eles são correlacionados com falhas dúctil-frágeis, com sentido de movimento sinistral (Fotografia 4).

O diagrama de roseta dos alinhamentos condutivos pode ser observado na Figura 7. A direção N-S é claramente dominante em relações às outras direções. Nota-se também a ausência de alinhamentos na direção NW-SE. Os alinhamentos de direção NE-SW possuem azimutes que variam em todo o quadrante, com intensidades maiores no intervalo entre 30° e 60° Az.

Nesta área de estudo o tipo litológico e o grau de alteração das rochas são os principais fatores que controlam a intensidade da condutividade elétrica. Dessa forma, os eixos condutivos apresentam maior largura e amplitudes no quadrante NW da área, onde ocorrem rochas paraderivadas, tais como, micaxistos e calcissilicáticas alteradas (Fotografia 5) A alteração dessas rochas para minerais argilosos produz uma contribuição significativa na resposta da condutividade. Os alinhamentos estão bem definidos nos locais onde os esforços tectônicos geraram fissuras, permitindo a penetração de água. Assim, a soma dos efeitos da umidade e da alteração das rochas segundo direções estruturais preferenciais gerou os eixos condutivos. O nível alto de condutividade no quadrante NW é produzido pela proximidade de corpos e estruturas condutivas. No restante da área, os eixos localizados no ambiente de rochas ortoderivadas e sem alterações intempéricas (Fotografia 6), apresentam larguras e intensidades menores, porém com uma trama mais definida, em função do contraste em relação às condutividades muito baixas das rochas hospedeiras.

4.2.2 - Alinhamentos Produzidos por Interrupções e Flexões de Eixos Condutivos

Observa-se que os eixos descritos acima estão freqüentemente truncados e flexionados para E ou W. Esses truncamentos formam alinhamentos na direção E-W e podem estar correlacionados com estruturas tectônicas dúctil-frágeis, embora não apresentem uma relação direta com eixos condutivos (Figura 6). Esse conjunto de alinhamentos desloca os eixos condutivos NE-SW e N-S em sentido dextral. Dados geológicos de detalhe coletados por Amaral (2001) indicam uma boa correlação desses alinhamentos com falhas dextrais de direção E-W (Fotografia 7).

Figura 5 - Mapa da condutividade elétrica aparente sombreada calculada a partir da freqüência de 4.500 Hz - configuração de bobinas coaxiais (LASA, 2001).

Figura 6 - Mapa da condutividade elétrica aparente sombreada calculada a partir da freqüência de 4.500 Hz - configuração de bobinas coaxiais (LASA, 2001), com interpretação dos alinhamentos (traços em branco).

Figura 7 - Diagrama de roseta dos alinhamentos de condutividade.

Fotografia 4 - Falha dúctil-frágil N-S, com movimento sinistral, afetando ortognaisses bandeados.

Fotografia 5 - Alternância de micaxistos e calcissilicáticas alteradas, em uma cava localizada ao norte da serra das Porteiras.

Fotografia 6 - Ortognaisses com fácies migmatíticas e nódulos de magnetita, aflorando como lajedos na região ao sul da serra das Porteiras.

Fotografia 7 - Falha dúctil-frágil E-W, com movimento dextral, afetando ortognaisses.

4.2.3 - Alinhamentos Produzidos por Quebras de Gradientes Condutivos

Mudanças e quebras bruscas de gradientes que definem limites entre unidades com níveis de condutividades elétricas distintas podem representar contatos geológicos por falha ou mudanças litológicas. A principal expressão de contraste e de quebra de gradientes condutivos ocorre entre o domínio do quadrante NW e o restante da área. Isso acontece pelo fato de as rochas do quadrante NW serem de natureza metassedimentar, com uma susceptibilidade maior para alteração intempérica. Essa alteração produz um solo rico em minerais argilosos com ausência de afloramentos de rochas frescas. Ao contrário das rochas ortoderivadas do restante da área, onde dominam afloramentos de lajedos com rochas compactas desprovidas de solos. Contrastes condutivos ocorrem também ao longo das drenagens principais onde são detectadas manchas alongadas de condutividade elétrica com amplitudes de até 40 mS/m correlacionadas com aluviões ricas em depósitos argilosos ou arenosos saturados com água (Fotografia 8).

Fotografia 8 - Cacimba escavada no leito do riacho Santa Rita em aluviões arenosas com água.

4.3 - Dados de Magnetometria

Os dados magnetométricos permitem a cartografia das mudanças litológicas relacionadas com a variação no conteúdo de minerais magnéticos. A utilização do método como uma ferramenta de interesse hidrogeológico tem uma grande potencialidade como indicador indireto de falhas e zonas de cisalhamentos. Partindo do princípio de que as assinaturas lineares são as indicadoras mais favoráveis de estruturas, os seus atributos foram utilizados como critérios para correlacioná-las com os dados geológicos.

4.3.1 - Interpretação dos Alinhamentos Magnéticos

4.31.1 - Alinhamentos de Eixos Magnéticos

A característica bipolar das anomalias magnéticas dificulta a interpretação desses dados em baixas latitudes, sobretudo quanto à localização exata do corpo causador da anomalia. Em função dessa dificuldade foram utilizados na interpretação, além do mapa de campo magnético total residual, os mapas de sinal analítico e de redução ao pólo (LASA, 2001). Dessa forma, os eixos magnéticos foram traçados ao longo das zonas de maior magnetização, as quais correspondem aos negativos (tons mais azulados) no mapa de campo magnético total (Figura 8) e aos positivos (tons mais avermelhados) nos mapas de sinal analítico (Figura 9) e de redução ao pólo (Figura 10).

A interpretação dos dados magnetométricos da Área-Piloto Samambaia revela uma boa correlação com os dados geológicos conhecidos. As rochas paraderivadas do quadrante NW, com susceptibilidades magnéticas baixas, apresentam padrão caracterizado pela ausência de anomalias. Esse padrão suave é perturbado por alinhamentos estreitos e contínuos, representados por zonas de cisalhamentos longitudinais à foliação tectônica de direção NE-SW e por núcleos elípticos alongados, relacionados com rochas magnéticas ortoderivadas, intercaladas na seqüência metassedimentar. No restante da área, onde dominam rochas magnéticas ortoderivadas, observa-se um comportamento complexo, definido por faixas magnéticas alongadas, com alternância de eixos negativos e positivos, compondo anomalias com amplitudes máximas de 150 nT e larguras em torno de 300 m, que se acomodam com a tendência da foliação tectônica principal na direção NE-SW. Esse padrão é produzido pela interação entre zonas de cisalhamentos, ortognaisses migmatizados com nódulos de magnéticas e lentes de rochas anfibolíticas.

O diagrama de roseta dos alinhamentos magnéticos pode ser observado na Figura 11. Nota-se uma dominância de direções no intervalo entre 30º e 70º Az. Essas direções coincidem com a tendência principal da foliação tectônica da área. Da mesma forma que no diagrama de roseta dos alinhamentos de condutividade (Figura 7), também não foram observados alinhamentos magnéticos na direção NW-SE.

4.3.1.2 - Alinhamentos Produzidos por Interrupções e Flexões de Eixos Magnéticos

Na região sul da área destacam-se alinhamentos com direção N-S caracterizados por truncamento e flexões de eixos anômalos na direção NE-SW (Figuras 7, 8 e 9). Observa-se que os alinhamentos estão posicionados em faixas com baixa magnetização que apresentam correlação com falhas sinistrais. Nesse caso, os baixos magnéticos indicariam alteração superficial com perda das propriedades dos minerais magnéticos ou a baixa magnetização dos veios de quartzo que preenchem essas estruturas. Adicionalmente, eles estão correlacionados com fraturas que condicionam o curso principal do riacho Copiti.

Interpretação e Correlação Geológica-Hidrogeológica dos Dados Geofísicos da Área-Piloto Samambaia-PE

Figura 8 - Mapa magnetométrico do campo total residual sombreado (LASA, 2001) com interpretação dos alinhamentos (traços pretos).

Figura 9 - Mapa magnetométrico do sinal analítico sombreado (LASA, 2001) com interpretação dos alinhamentos (traços pretos).

Figura 10 - Mapa magnetométrico reduzido ao pólo sombreado (LASA, 2001) com interpretação dos alinhamentos (traços pretos).

Figura 11 - Diagrama de roseta dos alinhamentos magnéticos.

4.3.1.3 - Alinhamentos Produzidos por Quebras de Gradientes Magnéticos

Limites separando diferentes relevos e texturas magnéticas podem corresponder a falhas nos contatos das rochas com propriedades magnéticas distintas. A comparação dos dados geológicos com os dados magnetométricos indica correlações de unidades magnéticas de relevos movimentados com afloramentos de ortognaisses e migmatitos com intercalações de rochas anfibolíticas (Figuras 2, 7, 8 e 9). No âmbito das unidades com baixa magnetização, que ocorrem no norte da área, afloram xistos, calcissilicáticas e mármores. Nessa região, a intercalação de gnaisses magnéticos na seqüência metassedimentar forma faixas na direção NE-SW. Em alguns trechos dessas faixas, os limites são retilíneos e definem quebras abruptas do padrão magnético, sugerindo a existência de contatos falhados. No centro-sul da área observa-se a presença de um maior contraste magnético entre as rochas, definindo limites retilíneos e bem definidos na direção NE-SW, que podem corresponder a zonas de cisalhamentos. Em alguns casos, o traçado dos eixos magnéticos acompanha a foliação tectônica.

4.4 - Espectro de Potência Bidimensional dos Dados Aeromagnéticos e as Estimativas das Profundidades dos Topos das Fontes

A malha dos dados foi pré-processada no Magmap do Oasis Montaj V. 5.0 com o objetivo de separá-los em suas diferentes componentes, mediante os seguintes procedimentos: a) retirada de uma superfície de tendência do 1º grau; b) introdução de uma expansão de 10%; e c) preenchimento das áreas expandidas com valores extrapolados pelo método da máxima entropia. Em seguida, os dados foram transformados para o domínio do número de onda e foi calculada a média radial do espectro de potência bidimensional com as estimativas das profundidades dos topos das populações estatísticas das fontes magnéticas, mediante o método de Spector & Grant (1970), implementado no Oasis Montaj V. 5.0.

A observação do espectro de potência demonstra que os dados podem ser separados em duas diferentes componentes (Figura 10): fontes magnéticas profundas e fontes magnéticas rasas. O número de onda que corresponde ao limite entre fontes profundas (topos entre 1000 e 200 m) e fontes rasas (topos mais rasos que 200 m) é 1 ciclo/km.

4.4.1 - Separação Regional-Residual

Os dados magnetométricos fornecem uma visão em profundidade que corresponde à terceira dimensão simplificada dos dados geológicos, sendo imprescindível no estudo do prolongamento de estruturas aflorantes ou na detecção de estruturas encobertas. As fontes magnéticas profundas estão associadas com corpos e estruturas geológicas que são importantes para a compreensão do arcabouço tectônico regional. As fontes rasas, identificadas pelas anomalias que resultam como resíduo da retirada da componente profunda, são aquelas que possuem interesse prospectivo nas pesquisas de recursos minerais. Os parâmetros observados no espectro de potência foram utilizados para separar as duas componentes mediante a aplicação do filtro gaussiano de separação regional-residual (Magmap, Oasis Montaj V. 5.0).

Figura 12 – Espectro de potência médio radial dos dados magnetométricos com estimativas das profundidades dos topos das fontes.

4.4.2 - Interpretação das Componentes Profundas dos Dados de Magnetometria Aérea

Os topos das fontes profundas estão 200 m abaixo da superfície e não oferecem interesse prospectivo, já que estão além dos objetivos hidrogeológicos dos aqüíferos fraturados do semi-árido nordestino. Porém, é possível inferir informações que, acrescentadas aos dados geológicos, facilitam a compreensão do arcabouço e da evolução tectônica da área.

A observação do mapa de componentes profundas (200 a 1000 m, Figura 13) identifica três domínios magnetométricos distintos. O primeiro, localizado no sudeste da área, é caracterizado por anomalias alongadas na direção NE-SW, com inflexões para E-W no leste da área. As anomalias bipolares apresentam comprimentos de onda que variam de 700 a 1.500 m e amplitudes de 30 a 100 nT. Essas assinaturas estão correlacionadas com migmatitos, ortognaisses e anfibolitos. O segundo constitui uma faixa de baixa magnetização de direção NE-SW na região central da área, ao longo e em torno dos quartzitos e paragnaisses da serra das Porteiras. Nesse contexto de baixa magnetização, observam-se faixas magnéticas alongadas, provavelmente relacionadas com zonas de maior percolação de fluidos formadores de minerais magnéticos ao longo das zonas de cisalhamentos que produziram o estiramento das estruturas. O terceiro está restrito ao quadrante noroeste da área e é formado por anomalias elípticas alongadas produzidas por ortognaisses intercalados em metassedimentos de baixa magnetização.

A comparação dos alinhamentos com as componentes profundas demonstra que a grande maioria dos alinhamentos continua prevalecendo em profundidade, sobretudo aqueles correlacionados com estruturas dúcteis. Porém, perdem importância as estruturas relacionadas com falhas dúctil-frágeis N-S. Apesar da perda de nitidez da maior parte dessas estruturas, observa-se que a falha N-S do quadrante sudoeste da área mantém uma boa assinatura.

4.4.3 - Interpretação das Componentes Rasas dos Dados de Magnetometria Aérea

Os topos das fontes magnéticas rasas (com profundidade média em torno de 100 m) são de interesse da prospecção hidrogeológica, desde que essas fontes estejam relacionadas com estruturas fraturadas. Nesse caso, são importantes os alinhamentos relacionados com a rotação e truncamento de anomalias que podem indicar a atuação de tectonismo frágil. Alinhamentos de eixos magnéticos produzidos por zonas de cisalhamento dúctil são também importantes quando as estruturas sofreram reativações tectônicas posteriores capazes de gerar fraturas.

A observação do mapa de componentes rasas (Figura 14) identifica dois domínios magnetométricos distintos separados por um limite NE-SW relacionado com as estruturas e mudanças litológicas que ocorrem a norte e a sul da serra das Porteiras. O domínio sul é marcado por um relevo intensamente movimentado, com anomalias estiradas e encurvadas segundo a tendência da foliação tectônica, com comprimentos de onda médios de 400 m e amplitudes em torno de 40 nT. Esse padrão reflete uma grande quantidade de nódulos de minerais magnéticos que ocorrem nos veios e mobilizados pegmatóides encaixados nos migamatitos e ortognaisses. O domínio norte é marcado por um padrão de baixa magnetização produzido por xistos e calcissilicáticas alteradas e definido por anomalias estiradas causadas por lentes de ortognaisses encaixados na seqüência metassedimentar.

Os alinhamentos N-S relacionados com falhas dúctil-frágeis adquirem importância e nitidez na análise das componentes rasas. Esse aspecto reforça o seu potencial como alvo hidrogeológico prospectivo.

Interpretação e Correlação Geológica-Hidrogeológica dos Dados Geofísicos da Área-Piloto Samambaia-PE

Figura 13 - Mapa magnetométrico do campo total filtrado e sombreado para a apresentação das componentes anômalas profundas. Topos das fontes com profundidades entre 200 a 900 m. Os traços pretos representam os alinhamentos interpretados.

Figura 14 - Mapa magnetométrico do campo total filtrado e sombreado para a apresentação das componentes anômalas rasas. Topos das fontes com profundidades menores que 200 m. Os traços pretos representam os alinhamentos interpretados.

5 - Interpretação Tectônica dos Alinhamentos Geofísicos

A comparação entre os alinhamentos de condutividade elétrica aparente e os dados geológicos - estruturais indica que existe uma boa correlação entre estruturas tectônicas e eixos condutivos (Figura 15).

As estruturas dúcteis correspondem a eixos contínuos e alongados, relacionados com foliações e bandamentos de direções predominantes NE-SW e mergulhos fortes (70°-80°). Essas feições tectônicas são observadas nos augengnaisses, quartzitos e micaxistos e se desenvolveram em uma tectônica de cisalhamento sinistral, cuja região de maior esforço e deformação, aparentemente, se concentra ao longo da serra das Porteiras. Esse evento tectônico possivelmente alongou corpos tabulares de micaxistos e calcissilicáticas, cuja alteração por intemperismo gerou os argilominerais parcialmente responsáveis pela assinatura dos eixos condutivos. A maioria dos poços tubulares perfurados nas proximidades desses eixos e estruturas é seco, estão abandonados ou apresentam vazões inferiores a 1,2 m³/h.

Foram identificadas duas direções principais de deformação dúctil-frágil, a N-S e a E-W. Essas estruturas dúctil-frágeis apresentam uma boa correlação com eixos condutivos ou alinhamentos produzidos por truncamentos e rotação de eixos.

A direção N-S, aparentemente, desenvolveu-se em conexão e como um evento tardio de extensão em relação aos cisalhamentos NE-SW. Ela apresenta movimento transcorrente sinistral, evidenciado pelo deslocamento dos quartzitos da serra das Porteiras e dos eixos condutivos NE-SW. No campo, nas proximidades dos eixos condutivos N-S, ocorrem veios de sílica (quartzo/calcedônia), bastante fraturados, cataclasados e brechados (Fotografias 9 e 10). Esse evento é bem marcado regionalmente por falhas e enxames de diques posicionados na direção N-S e desenvolvidos nos eventos finais da Orogênese Brasiliana (Santos, 1999). As fraturas desenvolvidas nos veios de sílica que preencheram essas estruturas foram geradas em eventos tectônicos de extensão ao longo do Fanerozóico. A assinatura condutiva nessa direção possivelmente corresponde ao preenchimento por água salobra nas fissuras. Os poços tubulares com as melhores vazões foram perfurados nas proximidades desses eixos (Figura 15).

A direção E-W, com deslocamento transcorrente dextral, corresponde ao último evento dúctil - frágil da área. Ela desloca os quartzitos da serra das Porteiras e eixos condutivos. Esse evento, apesar de notável na área de estudo, sobretudo por alinhamento de truncamentos, aparentemente não é bem marcado regionalmente e não possui favorabilidade hidrogeológica.

Uma boa correlação dos alinhamentos geofísicos com as feições tectônicas da área pode ser efetuada pela comparação entre os diagramas de roseta desses alinhamentos com os diagramas de roseta das direções das fraturas medidas em afloramentos (Figura 16), das direções das fotolineações (Figura 17) e das direções das drenagens (Figura 18).

Na correlação com as fraturas medidas em afloramentos (Figura 16) observa-se uma boa correlação, de tal forma que, a junção dos alinhamentos condutivos e magnéticos se encaixa com as direções N-S e NE-SW do diagrama de fraturas. Existem porém duas diferenças básicas. Primeira, os alinhamentos magnéticos representam a foliação tectônica, dessa forma as fraturas de direção NE-SW são apenas concordantes com a foliação, sem possuir um relação direta com o sinal magnético; e segunda, não existem alinhamentos geofísicos na direção das fraturas NW-SE.

Na correlação com as fotolineações (Figura 17) a segunda conclusão observada no parágrafo anterior fica claramente explicitada, ou seja, as fotolineações de direção NW-SE não tem resposta nos dados geofísicos. Porém, os dados de campo indicam a existência de uma fraturamento conspícuo nessa direção. Essas fraturas controlam parte das drenagens e permitiram a abertura de boqueirões na serra das Porteiras, como pode ser observado nas Fotografias 11 e 12. Duas possibilidades principais podem ser levantadas para a ausência de assinaturas nos dados geofísicos, ou os parâmetros do levantamento aéreo não foram adequados para sua detecção ou essas fraturas são secas.

Na correlação com as direções de drenagens (Figura 18) fica evidente a importância das direções N-S (falhas dúcteis-frágeis e fraturas) e da direção NE-SW (zonas de cisalhamento dúctil e foliação tectônica) para o controle e encaixe de grande parte da drenagem segundo essas direções.

Figura 15 - Interpretação tectônica dos alinhamentos geofísicos. As convenções geológicas podem ser observadas na legenda anexa na Figura 2.

Fotografia 9 - Veio de quartzo muito fraturado em zona de cisalhamento dúctil-frágil N-S.

Fotografia 10 - Veio de sílica (quartzo. calcedônia), cataclasados, brechados e muito fraturado em zona de cisalhamento dúctil-frágil N-S.

Figura 16 - Correlação dos diagramas de roseta dos alinhamentos condutivos e magnéticos com o diagrama de roseta das fraturas medidas em afloramento.

Figura 17 - Correlação dos diagramas de roseta dos alinhamentos condutivos e magnéticos com o diagrama de roseta das fotolineações interpretadas como juntas, fraturas e falhas.

Diagrama de rosetas de alinhamentos de drenagem

Figura 18 - Correlação dos diagramas de roseta dos alinhamentos condutivos e magnéticos com o diagrama de roseta das drenagens.

Fotografia 11 – Plano de fratura de direção NW-SE que controla o encaixe da drenagem do riacho Copiti em um boqueirão na serra das Porteiras.

Fotografia 12 – Plano de fratura de direção NW-SE que controla o encaixe da drenagem do riacho das Onças em um boqueirão na serra das Porteiras.

6 - Levantamento Geofísico Terrestre

6.1 - Métodos e Parâmetros

Foram empregados três métodos de levantamento: a) imagem de resistividade elétrica aparente 2D pela técnica de construção de pseudo-seções; b) investigação por sondagem elétrica vertical; e c) perfis eletromagnéticos no domínio da freqüência para a obtenção dos valores de condutividade elétrica aparente com o equipamento Geonics EM34.

As seções, na maioria dos casos, foram posicionadas transversais às faixas contínuas de alta condutividade, identificadas no levantamento geofísico aéreo eletromagnético (LASA, 2001). Em alguns casos, a posição da seção objetivou a investigação do subsolo nas proximidades de poços tubulares produtivos e/ou estruturas geológicas aparentemente favoráveis (Figura 19).

6.1.1 - Investigação Elétrica

O método consiste na execução de perfis, em que um transmissor injeta corrente no terreno mediante um par de eletrodos ($A \in B$), fincados na superfície. Simultaneamente um receptor mede a variação do potencial elétrico em um outro par de eletrodos ($M \in N$).

As resistividades elétricas aparentes das rochas (p_a) foram calculadas por meio da expressão:

$p_a = k.dV/i$,

onde i é a corrente elétrica contínua introduzida nos eletrodos de cobre **AB**, dV a diferença do potencial elétrico medido nos eletrodos de cobre **MN** e k uma constante adimensional que correspondente às dimensões geométricas do arranjo utilizado (Figura 20).

Foi utilizado um eletrorresistivímetro fabricado no Laboratório de Eletrônica da Divisão de Geofísica (DIGEOF) da CPRM no Rio de Janeiro. O modelo TD-3 de corrente contínua, alimentação 12 Volts, com eletrodos de cobre; e um receptor com eletrodos não polarizáveis. O sistema foi acoplado com carretéis e fios nº 10 (Fotografia 11).

Fotografia 13 – Equipe de campo na execução de levantamento de resistividade elétrica nas proximidades da Vila de Caiçara.

Figura 19 - Mapa da condutividade elétrica aparente sombreada calculada a partir da freqüência de 4.500 Hz - configuração de bobinas coaxiais (LASA, 2001), com a localização das seções de geofísica terrestre (traços em branco)

Figura 20 - Esquema do quadripolo linear simétrico AMNB com indicação teórica do fluxo de correntes e das superfícies equipotenciais.

6.1.1.1 - Imagens Elétricas 2D

O emprego de técnicas de imagens elétricas 2D é um método eficiente de levantar informações de resistividades elétricas das rochas, com a possibilidade de observar a variação dessas propriedades em uma seção bidimensional. A apresentação dos resultados da investigação elétrica 2D é feita pelo contorno das resistividades aparentes em pseudo-seções. Elas são denominadas assim porque sua escala vertical não representa a verdadeira profundidade de investigação, os valores das resistividades refletem a somatória dos efeitos das diferentes resistividades do subsolo e a forma do contorno depende do arranjo utilizado. Dessa forma, as pseudo-seções dão uma visão aproximada e distorcida. Entre os vários arranjos possíveis, neste trabalho foram empregados os arranjos dipolo-dipolo e Wenner-Schlumberger (Loke, 2000).

a) Arranjo Dipolo-Dipolo

Foram levantadas 18 pseudo-seções (1 a 18), com seis níveis de investigação (n = 1 a 6) e abertura (**a**) variando de 10 a 30 m, somando um total de 8.000 m de seções levantadas (**ANEXOS**).

No arranjo dipolo-dipolo, para cada distância de afastamento **a** entre **AB** e **MN** obtém-se uma profundidade de investigação **n**. Utilizando-se mais de uma distância **na**, a estrutura elétrica do terreno é investigada por meio de seções bidimensionais. As posições dos pontos de investigação na pseudo-seção estão normalmente localizadas na interseção de duas linhas, uma começando no ponto médio entre os pares de dipolos **AB** e **MN**, e a outra formando um ângulo de 45º em relação a horizontal (Figura 21). Porém, isso é apenas convencional e não significa que essa seja a profundidade real de investigação, nem que o fluxo de corrente ou linhas isopotenciais tenha um ângulo de 45º com a horizontal (Loke, 2000).

O arranjo dipolo-dipolo é muito usado em levantamentos de eletrorresistividade e potencial induzido por causa do baixo acoplamento eletromagnético entre o circuito de corrente e o circuito de potencial. A profundidade média de investigação depende dos fatores **n** e **a**. Ele é muito sensível a mudanças horizontais, mas relativamente insensível a mudanças verticais, sendo por isso, um bom método para mapear estruturas verticais. Uma desvantagem é a fraca intensidade do sinal para valores grandes de **n** (Loke, 2000).

b) Arranjo Wenner-Schlumberger

Duas seções que haviam sido levantadas com arranjo dipolo-dipolo (Seções 1 e 17), foram também levantadas com o arranjo Wenner-Schlumberger. O objetivo foi comparar resultados e a capacidade de resolução entre os dois tipos de arranjos. Foram empregados

seis níveis de investigação (n = 1 a 6) e abertura a = 10 m, somando um total de 700 m de seções levantadas (**ANEXOS**).

Esse é um método novo que constitui uma junção entre os arranjos Wenner e Schlumberger (Loke, 2000). O método clássico de Schlumberger foi modificado de forma que ele possa ser usado em sistemas com os eletrodos arranjados com espaçamentos constantes (Figura 22). Nesse caso, deve-se observar que o fator **n** é a razão da distância entre os eletrodos **AM** (ou **NB**) em relação ao espaçamento entre o par de eletrodos de potencial **MN**. As posições dos pontos de investigação na pseudo-seção seguem uma linha vertical a partir do centro do arranjo. Esse arranjo é moderadamente sensível a estruturas verticais e horizontais. Em áreas que se espera ambos os tipos de estruturas, a sua aplicação deverá apresentar resultados que são compromissos entre os arranjos dipolo-dipolo e o Wenner (mais sensível às estruturas horizontais).

Figura 21 – Arranjo de eletrodos, fator geométrico e formato da posição dos dados medidos em uma pseudo-seção com arranjo dipolo-dipolo (adaptado de Loke, 2000).

	WENNER - SCHLUMBERGER A M N B · - na ·
n=1 • • • •	
n = 2 • • •	
n = 3 • •	
n = 4 •	
n = 5	
n = 6	
	Eletrodo • Posição vertical da medida de resistividade aparente

Figura 22 - Arranjo dos eletrodos, fator geométrico e formato da posição dos dados medidos em uma pseudo-seção com arranjo Wenner-Schlumberger (adaptado de Loke, 2000).

6.1.1.2 - Sondagem Elétrica Vertical

O método de investigação por sondagem elétrica vertical foi desenvolvido para o estudo da estrutura elétrica horizontal das rochas, sendo especialmente indicado para as situações em que ocorrem estratificações horizontais. Sua aplicação é mais utilizada em levantamentos de coberturas sedimentares, porém nas rochas cristalinas, onde existem coberturas rasas e manto de alteração, o uso do método é muito útil na definição da espessura e estrutura dessas camadas superiores, bem como, na parametrização de levantamentos de perfis de resistividade elétrica.

Na sondagem elétrica vertical utilizam-se dois tipos de quadripolos: o Schlumberger e o Wenner. Neste trabalho foi empregado o primeiro arranjo, em que a relação de distância entre os eletrodos é **MN < AB/5**.

O levantamento é executado mantendo-se fixo o centro do quadripolo e realizando-se uma série de medições, enquanto a distância **AB** é aumentada e a distância **MN** é mantida fixa. Os valores de resistividades elétricas aparentes obtidas são colocados em um gráfico **log-log**, versus as distâncias **AB/2**. Os resultados quando bem interpretados fornecem a estrutura elétrica das rochas do subsolo.

Foram levantadas 4 curvas de sondagens elétricas para a investigação das aluviões e do manto de intemperismo que ocorrem em algumas das seções (**ANEXOS**). Os resultados foram modelados por meio do RESIX-IP (Interpex Ltd, 1993). Esse programa é interativo e graficamente orientado para a modelagem inversa e direta de dados de sondagem elétrica vertical e polarização induzida, em termos de um modelo de terra em camadas (1D). As curvas teóricas são calculadas usando filtros lineares da maneira como descrita por Davis *et al.* (1980). Os modelos inversos que melhor se ajustam aos dados são obtidos pelo método de mínimos quadrados, usando *rigde regression* (Inman, 1975).

6.1.2 - Investigação Eletromagnética (Geonics EM34)

Foi utilizado um equipamento Geonics EM-34-3 (Fotografia 12) para medidas de condutividades elétricas aparentes com aberturas de 20 e 40 metros e freqüências de 1600 e 400 Hz respectivamente, com bobinas nas configurações horizontal (dipolo vertical) e vertical (dipolo horizontal) (Geonics, 1998), com leituras espaçadas de 20 m (**ANEXOS**).

O método de indução eletromagnética no domínio da freqüência mede um campo magnético secundário que é induzido em condutores elétricos no subsolo por uma fonte primária de energia eletromagnética (Figura 23). A fonte primária emite um sinal em uma freqüência periódica constante e o receptor mede as partes em-fase e em-quadratura (fora de fase) do campo secundário em relação ao primário (Figura 24). A configuração vertical (dipolo horizontal) é mais sensível à influência dos materiais próximos da superfície, enquanto que a configuração horizontal é mais sensível à profundidade de 40% da abertura das bobinas. A vantagem do Geonics EM34 é a possibilidade de operar em baixo número de indução (*low induction number*). Segundo McNeill (1980), isso significa que mudando a freqüência, proporcionalmente muda a resposta da parte em-quadratura (fora de fase), sendo possível determinar a variação da condutividade elétrica com a profundidade. Nessas condições todas as respostas são das partes em-quadratura (fora de fase), que é linearmente proporcional à condutividade elétrica do solo. Dessa forma, o equipamento pode medir diretamente a condutividade. A profundidade teórica de investigação é de 0.75 da separação das bobinas para o dipolo horizontal e de 1,5 da separação das bobinas para o dipolo vertical.

De uma maneira generalizada, para a configuração com as bobinas horizontais, o perfil apresenta um pico negativo máximo e dois pequenos picos positivos nos flancos quando o sistema receptor-transmissor está centralizado sobre o condutor. Isso ocorre pelo fato dessa configuração ser sensível a presença de condutores verticais, tal como fraturas preenchidas com água. Esse pico de condutividade aparente negativo observado sobre um condutor vertical no arranjo com bobinas horizontais (dipolo vertical) é um efeito causado por correntes elétricas circulares induzidas (*eddy curents*) que produzem uma diminuição dos valores de condutividades aparentes lidas no equipamento quando a condutividade verdadeira no condutor está aumentando. No arranjo com bobinas verticais (dipolo horizontal), que é insensível aos corpos verticais, observa-se um pico positivo de condutividade aparente. Para essa última situação, produzida nas proximidades da superfície do solo, é possível especular algumas hipóteses, tal como, aumento da umidade, variações na espessura do manto de alteração, aumento da quantidade de argila ou aumento da salinidade da água.

Além das aplicações clássicas desse sistema no estudo de aqüíferos fraturados sob coberturas ou mantos de alteração pouco espessos, ele tem sido usado nos estudo de intrusões salinas e poluição de aqüíferos

Fotografia 14 – Equipe de campo na execução de levantamento eletromagnético com Geonics EM34 (dipolo horizontal) nas proximidades da lagoa do Farias.

Figura 23 - Modelo generalizado da indução eletromagnética em um condutor elétrico no subsolo. TX é o transmissor e RX é o receptor. Nesse arranjo emprega-se o dipolo vertical com bobinas horizontais (Adaptado de Steensma & Kellet, 2000).

Figura 24 - Resposta eletromagnética típica sobre um condutor vertical no arranjo de bobinas horizontais (HLEM). Hp é campo magnético primário, Hs o campo magnético secundário, RX o receptor e TX o transmissor (Adaptado de McNeill, 1987).

6.2 - Interpretação e Correlação dos Dados Geofísicos Terrestres

A interpretação dos perfis terrestres foi efetuada por meio da comparação e integração das pseudo-seções de resistividade aparente com dados eletromagnéticos Geonics EM34 e dados de condutividades elétricas obtidas no levantamento eletromagnético aéreo (HEM), com informações geológicas estruturais/hidrogeológicas. Das 22 seções levantadas apenas 18 apresentaram condições de interpretação. As seções 6, 7, 15 e 19, por razões de posicionamento e qualidade dos dados não foram analisadas.

Os modelos geológicos foram construídos pela integração dos dados de campo com os dados geofísicos. Nesse contexto teve importância fundamental o uso de um programa de modelagem direta de dados de pseudo-seções de resistividade elétrica desenvolvido por Loke (1999). Esse programa calcula a resistividade aparente de uma pseudo-seção para um arranjo especificado e um determinado modelo 2D utilizando métodos matemáticas de diferenças finitas e elementos finitos.

Na modelagem direta para a geração da pseudo-seção calculada foi utilizado o mesmo espaçamento de eletrodos e o mesmo arranjo (dipolo-dipolo) do levantamento de campo, o que resultou em uma pseudo-seção com as mesmas dimensões. As profundidades teóricas de investigação foram definidas a partir das relações estabelecidas por Edwards (1977).

As resistividades dos modelos foram definidas pela análise dos dados de algumas sondagens elétricas verticais. Para as coberturas aluviais, geralmente argilosas ou arenosas com água salobra foi fixado o valor de 10 Ohm.m; para os condutores verticais finos que simularam as estruturas foi fixado um valor de 100 Ohm.m; e para o embasamento cristalino uma resistividade de 5.000 Ohm.m.

Os modelos foram construídos de forma interativa considerando os dados geológicos conhecidos e todas as informações geofísicas disponíveis. Os parâmetros bem conhecidos foram fixados. Os resultados foram comparados com as pseudo-seções levantadas no campo e modificados em um processo de tentava e erro até que a comparação com os dados reais se mostrasse visualmente satisfatória. A partir desse resultado foram esboçados os modelos geológicos.

Os modelos geofísicos obtidos por esse método estão apresentados nos ANEXOS.

6.2.1 - Seção 1

A seção com 90° de azimute e 480 m de extensão (Figuras 25 e 26) objetivou a interceptação do curso N-S do riacho Santa Rita para a identificação de descontinuidades estruturais que favorecem o encaixe da drenagem e que podem ser a causa dos eixos condutivos de direção N-S identificados no levantamento geofísico aéreo. A área não apresenta afloramentos e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelos riachos Santa Rita e Copiti. Poços amazonas escavados nas aluviões ao lado da seção indicam espessuras superiores a 4 m (Fotografia 8).

No método de eletrorresistividade para a investigação por pseudo-seções foram empregados os arranjos dipolo-dipolo e Wenner-Schlumberger. O primeiro ao longo de toda seção com a = 30 m e o segundo na parte mediana com a = 10 m. No método eletromagnético, o levantamento com EM34 foi executado com espaçamento de 10 m para os cabos de 20 e 40 m, nas configurações de dipolo vertical e dipolo horizontal.

A análise das pseudo-seções indica que os maiores valores de resistividades ocorrem na extremidade oeste e aumentam progressivamente com a profundidade. A área com resistividades aparentes inferiores a 50 Ohm.m, que se estende da parte central para leste, tem a forma de uma concavidade que provavelmente acompanha o aumento da espessura das aluviões saturadas e do manto de alteração. A sondagem elétrica vertical (SEV1) com arranio Schlumberger (Figura 27), efetuada na parte mediana da seção, sugere uma estrutura em camadas para o conjunto aluvião/rocha alterada, em que as resistividades caem gradativamente até a profundidade de 17 m, a qual deverá corresponder ao topo do embasamento cristalino preservado. Nesse contexto, o arranjo Wenner-Schlumberger discrimina claramente quatro condutores que não são observados no arranjo dipolo-dipolo. Essa faixa de baixa resistividade tem uma boa correlação com os perfis de condutividade aparente do levantamento aéreo, onde se observam picos positivos de 130 mS/m para a freqüência de 33 kHz e de 20 mS/m para a freqüência de 4,5 kHz. A continuidade dos sinais para as duas diferentes freqüências sugere também uma continuidade em profundidade dos corpos e/ou estruturas-fontes. Em mapa essa assinatura corresponde a uma interferência de eixos condutivo N-S e NE-SW.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre o canal coaxial e coplanar (Figura 26) sugere uma anomalia condutiva produzida por uma fonte em formato plano-horizontal, coerente com o afloramento de aluviões e com a pseudoseção de eletrorresistividade. Porém não identifica os condutores estreitos delineados pelo arranjo Wenner-Schlumberger. No oeste da seção, para os dois arranjos, é possível interpretar um contato entre rochas com propriedades elétricas distintas, refletidas nos dois diferentes níveis de condutividades observadas no levantamento aéreo.

A consistência entre a resistividade terrestre e a HEM-condutividade (HEM- Helicóptero-Eletromagnético) é corroborada pelos dados de EM34. Os valores de condutividade para os dipolos horizontais acompanham a forma dos perfis de condutividade HEM, com as mesmas tendências e gradientes. Os condutores estreitos identificados no arranjo Wenner-Schlumberger estão correlacionados com os picos negativos dos dipolos verticais, produzidos pelo efeito do fluxo das correntes circulares nos condutores (*eddy currents*). Não existem informações geológicas superficiais que indiquem a natureza geológica desses condutores. Porém, a existência de falhas dúctil-frágeis N-S com assinaturas elétricas condutivas, favorece a correlação geológica e a sua favorabilidade hidrogeológica.

Figura 25 - Seção geofísica 1 com pseudo-seções de resistividade elétrica, perfis de condutividade elétrica Geonics EM34 e HEM e o modelo geológico interpretado. DV – Dipolo Vertical, DH – Dipolo Horizontal, Cdvt – Condutividade elétrica.

Figura 26 - Seção geofísica 1 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfil magnético e perfis dos componentes eletromagnéticos emquadratura. CX – Coaxial, CP – Coplanar, Q – Quadratura.

Figura 27 - Sondagem elétrica vertical levantada no trecho mediano da Seção 1.

6.2.2 - Seção 2

A seção com 265º de azimute e 430 m de extensão (Figura 28) objetivou a interceptação do curso N-S do riacho Copiti para a identificação de descontinuidades estruturais que favorecem o encaixe da drenagem e testar um longo eixo condutivo de direção NE-SW que acompanha a tendência da foliação tectônica. Na área afloram ortognaisses maciços com foliação vertical e fraturas abertas segundo os seus planos. As fraturas N-S ocorrem isoladas sem formar feixes. Nas cavidades topográficas produzidas por alteração diferencial e fissuras tectônicas foram depositados aluviões arenosas e em planos mais elevados que o atual leito ativo da drenagem ocorrem terraços aluviais areno-argilosos mais antigos. No levantamento geofísico foi empregado o método de eletrorresistividade para a investigação por pseudo-seções com o arranjo dipolo-dipolo, a = 10 m.

A análise da pseudo-seção indica que os maiores valores de resistividades ocorrem na extremidade leste onde afloram ortognaisses, diminui na parte mediana onde foram depositadas aluviões e voltam a crescer na extremidade oeste nas proximidades do afloramento de augengnaisses. As resistividades baixas formam faixas subverticais com valores inferiores a 25 Ohm.m, que podem representar condutores relacionados com estruturas preenchidas com água. A sondagem elétrica vertical (SEV2) com arranjo Schlumberger (Figura 29) efetuada na parte mediana da seção, sobre o terraço aluvial mais antigo, sugere um modelo em que o conjunto aluvião/rocha alterada forma uma camada com 5,50 m de espessura com baixa resistividade (10 Ohm.m), acima da qual ocorre um solo um pouco resistivo com 50 cm (500 Ohm.m) e abaixo da qual está o topo do embasamento cristalino (5000 Ohm.m). O terraço está correlacionado na pseudo-seção com uma área de baixa resistividade (< 25 Ohm.m), que continua com a profundidade, aparentemente ao longo de uma estrutura condutiva. A assinatura resistiva central tem uma boa correlação com os dados de HEM-condutividade, onde se observam picos positivos de 28 mS/m para a freqüência de 33 kHz e de 6 mS/m para a freqüência de 4,5 kHz. Essa última, com um gradiente muito suave, porém indicando continuidade em profundidade da fonte geológica causadora da anomalia rasa. Em mapa essa assinatura corresponde a um eixo condutivo NE-SW, correlacionado com a foliação tectônica, zonas de cisalhamento dúcteis e contatos geológicos entre rochas com propriedades magnéticas distintas, como esbocado pela anomalia magnética (pico negativo) na parte leste do perfil.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar sugere uma anomalia condutiva produzida por uma fonte em formato plano-horizontal, coerente com o afloramento de aluviões. Nesse caso, a assinatura aérea estaria refletindo as condutividades mais altas produzidas por minerais de argila e o preenchimento por água dos poros da parte arenosa do terraço aluvial. Por outro lado, o levantamento terrestre indica a possibilidade da existência de condutores correlacionados com o leito ativo do riacho Copiti.

Figura 28 - Seção geofísica 2 com pseudo-seção de resistividade elétrica, perfil de HEMcondutividade, perfil magnético, perfis dos componentes eletromagnéticos emquadratura e o modelo geológico interpretado. CX – Coaxial, CP – Coplanar, Q – Quadratura.

Figura 29 - Sondagem elétrica vertical levantada no trecho mediano da Seção 2.

6.2.3 - Seção 3

A seção com 155º de azimute e 380 m de extensão (Figura 30) objetivou a interceptação do curso de uma drenagem secundária, afluente do riacho Copiti, para a localização de descontinuidades estruturais preenchidas com água e testar um longo eixo condutivo de direção NE-SW que acompanha a tendência da foliação tectônica. Na extremidade NW da seção afloram augengnaisses com foliação vertical e indícios de cisalhamentos. Na extremidade SE afloram ortognaisses bandados com foliações verticais. Na parte mediana, no leito da drenagem, ocorrem colúvios e aluviões. A declividade negativa de pequeno gradiente convergente para o centro da seção acompanha a direção da descontinuidade estrutural. As rochas cristalinas são pouco fraturadas e afloram como pequenos lajedos ou ressaltos na topografia. Na investigação geofísica foi empregado o método de eletrorresistividade para a investigação por pseudo-seções com o arranjo dipolo-dipolo, a = 20 m.

À análise da pseudo-seção demonstra a existência de um núcleo central de baixa resistividade aparente (< 100 Ohm.m) que ocorre sobre as aluviões, ladeado por faixas com resistividades aparentes que atingem 1770 Ohm.m e coincidem com as áreas de afloramento das rochas cristalinas compactas. O formato do conjunto anômalo sugere a existência de um condutor com mergulho para SE. A sondagem elétrica vertical (SEV3) com arranjo Schlumberger (Figura 31) efetuada ao lado do poço tubular 136 (№ de Cadastro do Inventário de Poços Tubulares do Alto Vale do Rio Moxotó), sugere um modelo em que o conjunto aluvião/rocha alterada forma uma camada com 6,30 m de espessura com resistividades baixas (10 Ohm.m), acima da qual ocorre um solo com 70 cm, também com resistividades baixas (60 Ohm.m) e abaixo da qual está o topo do embasamento cristalino com resistividade de 8000 Ohm.m.

A faixa de resistividades aparentes baixas detectadas com o levantamento terrestre tem uma boa correlação com um pico positivo de condutividade elétrica (16 mS/m) na freqüência de 33 kHz, enquanto na freqüência de 4,5 kHz observa-se apenas uma pequena ondulação de 4 mS/m. Em ambas as freqüências o crescimento da condutividade forma um longo eixo de direção NW-SE. Porém, a diminuição intensa do sinal para as freqüências mais baixas, é um indício de que a fonte não tem uma continuidade importante com a profundidade. Adicionalmente, o corpo ou estrutura fonte da anomalia representa um contato entre rochas com propriedades magnéticas distintas, como pode ser observado no perfil magnetométrico. A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar sugere uma anomalia condutiva produzida por uma fonte em formato tabular horizontal fina, coerente com o afloramento de aluviões.

O poço tubular 136 localizado ao lado da seção nunca foi instalado, está abandonado e obstruído. Alguns dados informais indicam que tem água muito salobra e em pequena quantidade. Apesar dos bons indícios geofísicos, essas informações apontam para uma condição hidrogeológica desfavorável.

Figura 30 - Seção geofísica 3 com pseudo-seção de resistividade elétrica, perfil de HEMcondutividade, perfil magnético, perfil dos componentes eletromagnéticos emquadratura e o modelo geológico interpretado. CX – Coaxial, CP – Coplanar, Q – Quadratura.

Figura 31 - Sondagem elétrica vertical levantada no trecho mediano da Seção 3 e ao lado do poço tubular 136.

6.2.4 - Seção 4

A seção com 90° de azimute e 460 m de extensão (Figuras 32 e 33) objetivou a interceptação do curso do riacho Copiti, encaixado em uma zona de fratura de direção NW-SE, muito expressiva na fotografia aérea. Essa estrutura forma um boqueirão na serra das Porteiras que permite a conexão das drenagens do norte, com as drenagens do sul da serra. Na área, além dos quartzitos que modelam a serra de direção NE-SW, ocorrem gnaisses bandados maciços, pouco fraturados. Ao longo do curso da drenagem é possível detectar fraturas NW-SE e N-S, porém de ocorrência discreta sem a formação de feixes. No leito do riacho ocorrem aluviões arenosas saturadas com água.

No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 20 m. No método eletromagnético o levantamento com EM34 foi efetuado com espaçamento de 40 m para os cabos de 20 e 40 m, nas configurações de dipolo vertical e dipolo horizontal. Os dados eletromagnéticos EM34 foram levantados na 1^ª missão de geofísica do PROASNE (Oliveira *et al*, 2000).

A análise da pseudo-seção demonstra a existência de um núcleo central de baixa resistividade aparente (< 50 Ohm.m) correlacionado com as aluviões do riacho Copiti, ladeado por faixas com resistividades que atingem 1780 Ohm.m e coincidem com as áreas de afloramento das rochas cristalinas. O formato do conjunto anômalo sugere a existência de um condutor. A faixa de resistividade baixa detectada com o levantamento terrestre tem uma boa correlação com um pico positivo de condutividade elétrica (65 mS/m) na freqüência de 33 kHz, e de 10 mS/m na freqüência de 4,5 kHz. A observação dos dados topográficos demonstra a coincidência das anomalias com a calha da drenagem.

A consistência entre a resistividade terrestre e a HEM-condutividade (HEM- Helicóptero-Eletromagnético) é corroborada pelos dados de EM34. Os valores de condutividade para os dipolos horizontais acompanham a forma dos perfis de HEM-condutividade, com as mesmas tendências e gradientes. Porém na configuração com dipolo vertical, observam-se três picos sugestivos da existência de condutores, dois próximos do núcleo central de resistividades baixas da pseudo-seção e o outro, mais afastado do centro da calha, coincidente com uma faixa vertical de baixa resistividade. Esse último não possui correlação com picos positivos de HEM-condutividade.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar sugere uma anomalia condutiva produzida por uma combinação de duas fontes, uma tabular horizontal fina e outra um condutor vertical espesso. Esse modelo qualitativo é coerente com aluviões sobrepostos a uma estrutura eletricamente condutiva no embasamento. Porém a interpretação dessas assinaturas geofísicas como um efeito da zona de fratura na qual a drenagem está encaixada, é dificultada pela presença de um longo eixo condutivo de direção NE-SW, que é interceptado pela seção terrestre no trecho em que ela cruza a drenagem. Como a zona de fratura não tem correlação com alinhamentos de eixos condutivos do levantamento aéreo, é difícil separar os efeitos e distinguir qual o mais importante, ou se a zona de fratura tem realmente um sinal geofísico.

Figura 32 - Seção geofísica 4 com pseudo-seção de resistividade elétrica, perfis de Geonics EM34, perfil de HEM-condutividade, perfil topográfico e o modelo geológico interpretado. DV – Dipolo Vertical, DH – dipolo Horizontal.

Figura 33 - Seção geofísica 4 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfil topográfico, perfis dos componentes eletromagnéticos emquadratura e o modelo geológico interpretado. CX – Coaxial, CP – Coplanar, Q – Quadratura.

6.2.5 - Seção 5

A seção com 140º de azimute e 500 m de extensão (Figuras 34 e 35) objetivou investigar um longo eixo condutivo de direção NE-SW que acompanha a tendência da foliação tectônica ao sul dos quartzitos da serra das Porteiras. Esse eixo condutivo é o mesmo que foi interceptado pela seção de geofísica terrestre descrita no item anterior. Na extremidade SE da seção afloram gnaisses bandeados que formam lajedos compactos pouco fraturados e com foliações verticais orientadas na direção NE-SW. No restante da seção, em um terreno aplainado, ocorrem colúvios e aluviões depositadas em uma calha desenvolvida por intemperismo e escavada ao longo da foliação tectônica.

No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 20 m. No método eletromagnético, o levantamento com EM34 foi efetuado com espaçamento de 10 m, apenas com o cabo de 20 m, nas configurações de dipolo vertical e horizontal.

A análise da pseudo-seção demonstra a existência de faixas de resistividade aparente baixas (< 100 Ohm.m) em formas de V, que alternam entre a posição normal e a posição Invertida, contornando núcleos de resistividades altas (> 100 Ohm.m). As faixas em formato de V invertidos são causadas por condutores cuja posição em relação à superfície corresponde ao seu vértice. A análise dessas formas permite identificar dois condutores, nos quais aquele localizado a NW tem um sinal mais intenso. Esses condutores bem caracterizados na pseudo-seção de resistividade, estão claramente definidos nos dados de HEM-condutividade, tanto na posição quanto na intensidade do sinal. Nos dados de HEM observam-se dois picos positivos de 55 e 15 mS/m para a freqüência de 33 kHz, porém na freqüência de 4,5 kHz aparece apenas um pico de 15 mS/m para o condutor mais forte.

A consistência entre a resistividade terrestre e a HEM-condutividade (HEM- Helicóptero Eletromagnético) é corroborada pelos dados de EM34. Os valores de condutividade para os dipolos horizontais acompanham a forma positiva dos perfis de HEM-condutividade, com as mesmas tendências e gradientes e possivelmente indicam aumento da espessura da cobertura ou do manto de alteração. Na configuração com dipolo vertical os condutores causam os picos negativos característicos produzidos pelo sinal de um condutor identificado pelas bobinas em posição horizontal.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar sugere para o condutor localizado a NW um modelo resultante da combinação de duas fontes, uma tabular horizontal fina e outra tabular vertical espessa. Esse modelo qualitativo é coerente com aluviões sobrepostos a uma estrutura eletricamente condutiva.

Apesar das evidências geofísicas para identificação dos condutores, a sua natureza geológica ainda não foi identificada claramente. Além disso, dois poços tubulares existentes nas proximidades e posicionados sobre os eixos de HEM-condutividade, nunca foram instalados, estão abandonados e obstruídos. Esses fatos contribuem de forma negativa para a favorabilidade hidrogeológica do eixo condutivo NE-SW. Uma interpretação possível é que eles correspondam a uma zona de cisalhamento dúctil ao longo da qual o intemperismo, por percolação de água, produziu alteração e desenvolveu calhas na qual se depositaram sedimentos argilo-arenosos. No entanto, esses processos atuando em rochas cristalinas compactas e pouco fraturadas, aparentemente não foram suficientes para gerar capacidade de armazenamento de água subterrânea.

Figura 34 - Seção geofísica 5 com pseudo-seção de resistividade elétrica, perfis de Geonics EM34, perfis de HEM-condutividade e o modelo geológico interpretado.

Figura 35 - Seção geofísica 5 com perfis de Geonics EM34, perfis de HEM-condutividade e perfis dos componentes eletromagnéticos em-quadratura. CX – Coaxial, CP – Coplanar, Q – Quadratura.

6.2.6 - Seção 8

A seção com 165º de azimute e 510 m de extensão (Figuras 36 e 37) objetivou a investigação de um eixo condutivo de direção NE-SW que acompanha a tendência da foliação tectônica ao norte dos quartzitos da serra das Porteiras. O perfil foi levantado em posição transversal a um vale suave ao longo do qual os riachos Copiti e do Defunto estão encaixados. Na extremidade norte do perfil afloram xistos metassedimentares com solos de alteração. No trecho médio ocorrem aluviões e colúvios e na extremidade sul afloram paragnaisses com foliação de baixo ângulo.

No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 30 m. No método eletromagnético o levantamento com EM34 foi efetuado com espaçamento de 10 m, com os cabos de 20 e 40 m, nas configurações de dipolo vertical e horizontal.

A análise da pseudo-seção demonstra a existência de faixas de resistividade aparente baixas (< 60 Ohm.m) em forma de U invertido que contornam núcleos de resistividades mais altas (> 100 Ohm.m). Esse padrão pode caracterizar o efeito de um corpo eletricamente condutivo, cujo sinal no levantamento geofísico aéreo é bem definido por um pico positivo de HEM-condutividade, com intensidade de 25 mS/m na freqüência de 4,5 kHz. A sondagem elétrica vertical (SEV4) com arranjo Schlumberger (Figura 38) efetuada no trecho mediano da pseudo-seção sugere um modelo em que o conjunto aluvião/rocha alterada forma uma camada com 9,60 m de espessura com resistividades baixas (50 Ohm.m), acima da qual ocorre um solo com 60 cm, também com resistividades um pouco mais altas (200 Ohm.m) e abaixo da qual está o topo do embasamento cristalino com resistividade de 6000 Ohm.m.

Nos dados de EM34 foram identificadas duas importantes zonas condutivas caracterizadas por picos positivos no dipolo horizontal e picos negativos no dipolo vertical. O condutor da região central da seção apresenta uma boa correlação com os dados de resistividade terrestre e de HEM-condutividade, porém aquele localizado na extremidade norte da seção não tem resposta nos dados aéreos e a posição em relação à pseudo-seção dipolo-dipolo não permitiu sua identificação.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar indica para a anomalia HEM uma fonte tabular horizontal fina, coerente com um manto de alteração sobre xistos e calcissilicáticas ou aluviões e colúvios condutivos nas proximidades do leito do riacho do Defunto.

A natureza geológica desses condutores ainda está indefinida. O alongamento do eixo condutivo na direção NE-SW sugere a correlação com um corpo ou estrutura geológica que combine as características de extensão e propriedades elétricas condutivas. As possibilidades incluindo elementos geológicos conhecidos na área são: a) corpos tabulares de rochas metassedimentares que se alteraram por intemperismo produzindo minerais de argila; b) zonas de cisalhamento reativadas, com fraturas portadoras de água salobra; ou c) a combinação dessas duas possibilidades indica um modelo em que zonas de cisalhamentos teriam estirado corpos metassedimentares tabulares. Admitindo essas hipóteses como as mais prováveis, os minerais de argila e fraturas preenchidas com água são os elementos que controlam a condutividade elétrica. A forma e a dimensão do eixo são controladas pelo cisalhamento. Sem dúvida a hipótese b é aquela com maior favorabilidade hidrogeológica, porém os dados geológicos conhecidos favorecem a hipótese c.

Figura 36 - Seção geofísica 8 com pseudo-seção de resistividade elétrica, perfis de Geonics EM-34 e o modelo geológico interpretado.

Figura 37 - Seção geofísica 8 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade e dos componentes eletromagnéticos em-quadratura. CX – Coaxial, CP – Coplanar, Q – Quadratura.

Figura 38 - Sondagem elétrica vertical 4 levantada no trecho sul da Seção 8.

6.2.7 - Seção 9

A seção com 170º de azimute e 750 m de extensão (Figura 39) objetivou a investigação de eixos condutivos com direção NE-SW que acompanham a tendência da foliação tectônica ao norte dos quartzitos da serra das Porteiras. O perfil foi levantado na planície aluvial e em posição transversal ao leito ativo do riacho Copiti, no trecho em que, barrado pela serra das Porteiras, ele tem sua calha desviada para NE-SW. Ao longo de toda a seção ocorrem aluviões contendo água que é captada em poços amazonas com profundidades médias de 5 m. Na extremidade norte uma cava permite a exposição de xistos granatíferos alterados (Fotografia 5). No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 30 m.

A análise da pseudo-seção demonstra a existência de dois núcleos de baixas resistividades aparentes (< 100 Ohm.m). Eles ocorrem nas extremidades da seção e possuem uma boa correlação com o aumento da condutividade elétrica observada no levantamento eletromagnético aéreo. As posições desses baixos resistivos coincidem com eixos condutivos de direção NE-SW.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar indica para a anomalia HEM uma fonte tabular horizontal fina, coerente com um manto de alteração sobre xistos e calcissilicáticas ou aluviões e colúvios condutivos, nas proximidades do leito do riacho Copiti.

O modelo de interpretação e as possibilidades geológicas para a natureza dessas assinaturas geofísicas são muito semelhantes com aquelas da seção anterior. O mais provável é que os eixos sejam o resultado do alongamento por cisalhamento de corpos tabulares de xistos e calcissilicáticas. Adicionalmente, observa-se pelos dados topográficos que a calha ativa do riacho Copiti, onde estão depositadas aluviões recentes, está alinhada segundo a direção dos eixos, porém não se superpõe a eles. Como as drenagens, de uma maneira generalizada, acompanham zonas de fraqueza estrutural, a não coincidência entre os eixos condutivos e a calha do riacho representa um fator negativo para a sua favorabilidade hidrogeológica. No modelo geológico interpretado as assinaturas geofísicas correspondem a um aumento da espessura das aluviões/manto de alteração sobre condutores localizados no embasamento.

Figura 39 - Seção geofísica 9 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfil topográfico, perfis dos componentes eletromagnéticos emquadratura e o modelo geológico interpretado. CX – Coaxial, CP

6.2.8 - Seção 10

A seção com 90º de azimute e 960 m de extensão (Figura 40) objetivou a interceptação do curso N-S do riacho Santa Rita para a identificação de descontinuidades estruturais que favorecem o encaixe da drenagem e que podem ser a causa dos eixos condutivos de direção N-S identificados no levantamento geofísico aéreo. A área não apresenta afloramentos de rochas cristalinas e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelos riachos Santa Rita e Copiti. Na extremidade oeste, uma cava permite a exposição de xistos granatíferos alterados (Fotografia 5). No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 30 m.

A análise da pseudo-seção indica que as resistividades aparentes baixas formam faixas subverticais com valores inferiores a 100 Ohm.m, intercalados em núcleos com resistividades de até 300 Ohm.m. As faixas de baixa resistividade podem representar condutores relacionados com estruturas preenchidas com água. Essas assinaturas favoráveis da pseudo-seção de resistividade são bem correlacionadas com picos positivos de HEM-condutividade (55 a 70 mS/m) na freqüência de 33 kHz. Os picos positivos ocorrem dentro de um nível alto de condutividade (45 mS/m) relacionada com as características geológicas da rocha hospedeira constituída por xistos metassedimentares e calcissilicáticas e da cobertura sobrejacente formada por aluviões saturadas com água. Um aspecto negativo é a pequena expressão das fontes na freqüência de 4,5 kHz, em que ocorrem apenas ondulações suaves nas posições das assinaturas identificadas no levantamento terrestre e nas freqüências altas do levantamento aéreo.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar não apresenta assinaturas que identifiquem corpos anômalos. Aparentemente os valores altos da intensidade dessas componentes refletem mais o efeito elétrico condutivo das coberturas e do manto de alteração, sem discriminar condutores do embasamento.

O modelo de interpretação e as possibilidades para a natureza das assinaturas geofísicas são resultantes de informações geológicas que indicam a correlação de eixos condutivos N-S com falhas dúctil-frágeis. A observação do perfil topográfico demonstra que as calhas das drenagens apresentam uma boa correlação com a posição dos condutores interpretados, possivelmente refletindo zonas de fraqueza no substrato. A junção dessas informações favorece a potencialidade hidrogeológica dos eixos condutivos N-S.

Figura 40 - Seção geofísica 10 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfil topográfico, perfis dos componentes eletromagnéticos emquadratura e o modelo geológico interpretado. CX – Coaxial, CP – Coplanar, Q -Quadratura

6.2.9 - Seção 11

A seção com 90° de azimute e 360 m de extensão (Figura 41) objetivou investigar as condições de locação do poço tubular 438 (Nº de Cadastro do Inventário de Poços Tubulares do Alto Vale do Rio Moxotó-CPRM), que é produtivo e apresenta boas vazões. A área não apresenta afloramentos de rochas cristalinas e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelos riachos do Catitu e Copiti. No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 30 m.

A análise da pseudo-seção indica que as resistividades diminuem progressivamente para oeste. A interface entre as resistividades altas (>100 Ohm.m) e as resistividades baixas (< 100 Ohm.m) também se aprofunda progressivamente para oeste, sugerindo um aumento da espessura da fonte de baixa resistividade. Esse comportamento da pseudo-seção tem uma boa correspondência com os dados do levantamento aéreo, onde em ambas as freqüências a condutividade cresce progressivamente para oeste até valores de 190 mS/m para a freqüência de 33 kHz e de 40 mS/m para a freqüência de 4,5 kHz. No mapa de condutividade essa assinatura corresponde a um eixo condutivo de direção N-S, superposto a um eixo de direção NE-SW, justificando os valores altos de condutividade.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar indica para a anomalia HEM uma fonte tabular horizontal fina que aumenta de espessura para oeste, coerente com um manto de alteração sobre xistos e calcissilicáticas ou aluviões e colúvios condutivos.

O conjunto de informações esboçado acima indica que a boa vazão do poço tubular 438 (4 m³/h) é justificada pela sua proximidade de estruturas interferentes e eletricamente condutivas nas direções N-S e NE-SW. Destaca-se também a existência de uma interface superior com resposta geofísica, constituída pelo conjunto aluvião/ manto de intemperismo, que apresenta condições de recargas favoráveis para o aqüífero cristalino.

Figura 41 - Seção geofísica 11 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfis dos componentes eletromagnéticos em-quadratura e o modelo geológico interpretado.

6.2.10 - Seção 12

Esta seção teve os mesmos objetivos de investigação da seção anterior. Porém o seu posicionamento, com 185° de azimute, objetivou investigar em uma orientação transversal ao da seção 11. Além disso, ao longo do mesmo perfil, foram levantadas duas pseudo-seções de resistividade elétrica, uma com a = 30 m e outra com a = 15 m (Figura 42). As condições geológicas são idênticas àquelas descritas para a seção anterior.

Como já era esperado, a pseudo-seção com abertura menor (a = 15 m) funciona como um detalhe da parte superior da pseudo-seção com abertura maior (a = 30 m). Nessa última, além de uma progressiva diminuição da resistividade aparente e aprofundamento da fonte condutiva para norte, notam-se padrões de resistividades, em que baixos circundam altos, sinalizando a presença de condutores. Na pseudo-seção de detalhe observam-se faixas e núcleos de baixa resistividade que identificam com melhor resolução os condutores, um dos quais posicionado próximo ao poço tubular 438.

Nos dados de HEM-condutividade observa-se um importante pico de 170 mS/m para a freqüência de 33 kHz, enquanto na freqüência de 4,5 kHz a condutividade permanece em torno de 20 mS/m. Os dados sugerem a existência de um condutor importante, porém raso, na extremidade norte da seção, com correspondência nos dados da pseudo-seção de resistividade.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar não permite uma boa interpretação para o modelo da fonte, porém a correlação de um pico positivo no canal da diferença coaxial-coplanar com o pico da HEM-condutividade sugere um modelo de fonte vertical fina.

A maior dificuldade para a interpretação geológica das assinaturas geofísicas está na ausência de afloramentos. A resposta de uma interface superior condutiva presente em parte da seção é visível tanto nos dados terrestres, quanto nos dados aéreos. O condutor identificado pela freqüência mais alta nos dados aéreos e localizado na extremidade norte da seção corresponde a um eixo de direção NE-SW, interpretado como uma zona de cisalhamento dúctil que estirou corpos tabulares de xistos e calcissilicáticas. Os condutores identificados apenas no levantamento terrestre podem corresponder a estruturas frágeis. Pela posição da seção, ou são estruturas de direção E-W ou de direção NE-SW. É importante observar no mapa geológico que nessas duas direções foram fotointerpretadas zonas de fraturas. Esses dados acrescentam uma terceira estrutura, além das duas sugeridas na seção anterior, como contribuição à alimentação do poço tubular 438.

Figura 42 - Seção geofísica 12 com pseudo-seções de resistividade elétrica, perfis de HEMcondutividade, perfis dos componentes eletromagnéticos em-quadratura e o modelo geológico interpretado. CX – Coaxial, CP – Coplanar, Q – Quadratura.

6.2.11 - Seção 13

A seção com 270° de azimute e 380 m de extensão (Figura 43) objetivou investigar as condições de locação do poço tubular 439 (Nº de Cadastro do Inventário de Dados de Poços Tubulares do Alto Vale do Rio Mocotó-CPRM), que é produtivo, apresenta boa vazão e foi perfurado nas proximidades de um eixo condutivo de direção N-S. A área não apresenta afloramentos e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelo riacho Copiti, que nesse trecho possui direção N-S. No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 20 m.

A análise da pseudo-seção indica que as resistividades aparentes são geralmente baixas (<150 Ohm.m) e aumentam com a profundidade. A faixa horizontal de baixas resistividades que ocorre ao longo de toda seção é facilmente correlacionada com as aluviões do vale de inundação do riacho Copiti. Indícios da presença de condutores são observados nas distâncias 80, 280 e 380 metros. Esses indícios podem estar parcialmente atenuados pela cobertura condutiva. Os sinais de condutores nas distâncias 80 e 380 metros têm uma boa correlação com picos de HEM-condutividade na freqüência de 33 kHz (60 e 90 mS/m, respectivamente). Na freqüência de 4,5 kHz, são observadas apenas ondulações entre 10 e 20 mS/m. A indicação de condutor na distância 280 metros corresponde à calha do riacho Copiti, porém não apresenta correspondência nos dados aéreos.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar indica para a anomalia HEM uma fonte tabular horizontal fina, coerente com a planície aluvial. O afinamento ou ausência da fonte sobre a calha de drenagem corresponde aos dados de campo, onde são observados sinais de afloramento de rochas cristalinas no leito do riacho.

Como em todos casos em que não afloram rochas cristalinas, a interpretação geológica das assinaturas geofísicas torna-se difícil. Como hipótese, os condutores identificados nos levantamentos aéreos e terrestres podem corresponder a estruturas. Pela interpretação dos dados no contexto da área como um todo, eles são falhas dúctil-frágeis com movimento sinistral. Dessa forma, a boa vazão do poço tubular 439 (10,0 m³/h) é justificada pela existência da estrutura, em combinação com uma boa área de recarga propiciada pelas aluviões.

Figura 43 - Seção geofísica 13 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfis dos componentes eletromagnéticos em-quadratura e o modelo geológico interpretado. CX – Coaxial, CP – Coplanar, Q – Quadratura.

6.2.12 - Seção 14

A seção com 100º de azimute e 380 m de extensão (Figura 44) objetivou a interceptação do curso N-S do riacho do Cipó, para a identificação de descontinuidades estruturais que favorecem o encaixe da drenagem e que podem ser a causa dos eixos condutivos de direção NE-SW identificados no levantamento geofísico aéreo. A área não apresenta afloramentos e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelo riacho. No método de eletrorresistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 20 m.

À análise da pseudo-seção indica que as resistividades aparentes são geralmente baixas (<150 Ohm.m). A principal assinatura são os núcleos de resistividades aparentes mais baixas (50 Ohm.m) da região centro-oeste da seção, com indício de condutores nas distâncias 120, 200 e 330 metros. O trecho correspondente aos dois primeiros tem correlação com um pico de HEM-condutividade de 170 mS/m na freqüência de 33 kHz, em uma região com níveis de condutividade superior a 60 mS/m. Na freqüência de 4,5 kHz são observadas apenas pequenas ondulações em torno de 20 mS/m.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar apresenta apenas valores de intensidades altas refletindo a condutividade das aluviões, sem sinais de assinaturas que justifiquem fontes no embasamento.

Não existem dados hidrogeológicos que permitam uma apreciação da favorabilidade dos condutores identificados no levantamento terrestre. Sua natureza geológica é especulativa, porém a orientação da calha da drenagem do riacho Cipó sugere a presença de estruturas tectônicas.

Figura 44 - Seção geofísica 14 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfis dos componentes eletromagnéticos em-quadratura e o modelo geológico interpretado. CX – Coaxial, CP – Coplanar, Q – Quadratura.

6.2.13 - Seção 16

A seção com 135º de azimute e 250 m de extensão (Figura 45) objetivou a investigação das condições de locação do poço tubular 101 (Nº de Cadastro do Inventário de Dados de Poços Tubulares do Alto Vale do Rio Moxotó-CPRM), produtivo, com profundidade de 20 m e vazão inferior a 1,5 m³/h. Ele foi perfurado nas proximidades de um eixo condutivo de direção N-S que atravessa na extensão longitudinal a Vila de Samambaia e está correlacionado com uma falha dúctil-frágil sinistral. A área não apresenta afloramentos, sendo constituída por uma planície aluvial resultante do acúmulo de sedimentos argilosos e arenosos carreados pelo riacho Copiti, que nesse trecho possui direção N-S. No método de eletro-resistividade para a investigação por pseudo-seção foi empregado o arranjo dipolo-dipolo com a = 10 m.

A análise da pseudo-seção indica que as resistividades aparentes são geralmente baixas (<100 Ohm.m). Os maiores valores de resistividades ocorrem na extremidade noroeste e aumentam progressivamente com a profundidade. A área com resistividades inferiores a 30 Ohm.m, que se estende da parte central para noroeste, tem a forma de uma concavidade que provavelmente acompanha o aumento da espessura e a forma das aluviões e do manto de alteração. Na distância em torno de 80 metros, uma faixa vertical de aproximadamente 30 m de largura, tem continuidade com a profundidade e está relacionada com a falha que passa na Vila de Samambaia. Nos dados de HEM-condutividade observa-se um pico de 160 mS/m para a freqüência de 33 kHz, refletindo as aluviões de composição areno-argilosa que formam o terraço do vale de inundação do riacho Copiti; enquanto na freqüência de 4,5 kHz, a condutividade sobe suavemente de 20 mS/m para 30 mS/m na posição que corresponde à zona de falha.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxiais e coplanares apresenta valores de intensidades altas, com um crescimento maior e indícios de corpos anômalos no canal de diferença coaxial-coplanar, na posição esperada para a estrutura tectônica.

Os dados geofísicos indicam que o poço tubular 101 foi perfurado fora da falha. Portanto, a sua vazão baixa não tem representatividade quanto à potencialidade hidrogelógica da estrutura, bem caracterizada por eixos condutivos N-S e identificada na pseudo-seção de eletrorresistividade.

Condutor (zona de cisalhamento?)

Figura 45 - Seção geofísica 16 com pseudo-seção de resistividade elétrica, perfis de HEMcondutividade, perfil magnético, perfis dos componentes eletromagnéticos emquadratura e o modelo geológico interpretado. CX –Coaxial, CP – Coplanar, Q – Quadratura.

6.2.14 - Seção 17

A seção com 90° de azimute e 220 m de extensão (Figuras 46 e 47) objetivou a investigação de uma falha dúctil-frágil sinistral com direção N-S, na posição em que ela intercepta e desloca os quartzitos de direção NE-SW. Essa falha tem correlação com um longo eixo condutivo N-S. A seção atravessa o trecho central da lagoa do Juá, que tem o formado alongado segundo a direção da falha. Na extremidade oeste da seção afloram quartzitos muitos fraturados, formando cristas topográficas na direção NE-SW. Entre o início e a distância 100 m, ocorrem sedimentos argilosos de pequena espessura. Entre a distância 100 m e o fim da seção afloram ortognaisses cisalhados, com feixes de fraturas na direção NW-SE.

No método de eletro-resistividade para a investigação por pseudo-seções foram empregados os arranjos dipolo-dipolo e Wenner-Schlumberger. Ambos com a = 10 m. No método eletromagnético, o levantamento com EM34 foi executado com espaçamento de 5 m para os cabos de 20 e 40 m, nas configurações de dipolo vertical e dipolo horizontal.

A análise das pseudo-seções indica que os maiores valores de resistividades ocorrem na extremidade leste onde afloram os ortognaisses e diminui no trecho que corresponde à posição esperada para zona de falha, na margem leste da lagoa. No trecho entre as distâncias 80 e 110 metros, em ambas as pseudo-seções, as resistividades baixas (< 50 Ohm.m) se estendem com a profundidade. Nos perfis de condutividade aparente do levantamento aéreo, observam-se picos positivos de 8 mS/m para a freqüência de 33 kHz e de 7 mS/m para a freqüência de 4,5 kHz. A manutenção do sinal para as duas diferentes freqüências sugere também uma continuidade em profundidade da estrutura-fonte que em mapa corresponde a um eixo condutivo N-S. Os valores baixos de condutividade resultam da ausência de manto alteração em uma área com afloramento de rochas resistentes ao intemperismo. Dessa forma, o crescimento da condutividade sobre a estrutura pode apenas ter como fonte a água contida em suas fissuras, reforçando a sua potencialidade hidrogelógica.

As componentes eletromagnéticas em-quadratura e o perfil da diferença entre os canais coaxiais e coplanares, apresenta valores de intensidades médias, com crescimento maior e índicos de corpos anômalos no canal de diferença coaxial-coplanar, na posição esperada para a estrutura tectônica.

A consistência entre a resistividade terrestre e a HEM-condutividade (HEM- Helicóptero-Eletromagnético) é corroborada pelos dados de EM34. Os valores de condutividade para os dipolos horizontais acompanham a forma dos perfis de condutividade HEM, com as mesmas tendências e gradientes. O condutor identificado nas pseudo-seções está correlacionado com o pico negativo mais expressivo do dipolo vertical. Outros picos negativos de menor expressão também podem corresponder a condutores do embasamento.

Não existem dados hidrogeológicos que permitam uma apreciação da favorabilidade dos condutores identificados no levantamento geofísico. Porém a sua natureza geológica é conhecida e por isso, a extensão da estrutura, suas características estruturais e a possibilidade de conexões com fontes de recargas, a tornam potencialmente favorável.

Figura 46 - Seção geofísica 17 com pseudo-seções de resistividade elétrica, perfis de condutividade elétrica Geonics EM34 e HEM e modelo geológico interpretado.

Figura 47 - Seção geofísica 17 com perfis de HEM-condutividade, perfis de condutividade elétrica Geonics EM34 e perfis dos componentes eletromagnéticos em-quadratura. CX –Coaxial, CP – Coplanar, Q – Quadratura.

6.2.15 - Seção 18

A seção com 90º de azimute e 220 m de extensão (Figura 48) objetivou a investigação da continuidade das assinaturas geofísicas identificadas na seção anterior. Ela atravessa a extremidade sul da lagoa do Juá, que tem o formato alongado segundo a direção da falha. Na extremidade oeste da seção afloram quartzitos muito fraturados, formando cristas topográficas na direção NE-SW. Entre o início e a distância 50 m ocorrem sedimentos argilosos de pequena espessura. Entre a distância 50 m e o final da seção afloram ortognaisses cisalhados, com feixes de fraturas na direção NW-SE. O levantamento eletromagnético com EM34 foi executado com espaçamento de 5 m para os cabos de 20 e 40 m, nas configurações de dipolo vertical e dipolo horizontal.

A observação dos perfis de condutividade do levantamento terrestre demonstra a existência de um padrão típico de estrutura geológica condutiva. Um pico positivo no dipolo horizontal e um pico negativo no dipolo vertical. Essa configuração é semelhante a da seção anterior, sugerindo a continuidade do condutor para sul. Nota-se muito bem que os ortognaisses são corpos geológicos de baixa condutividade e sem estruturas condutivas. A combinação da análise dos dados geológicos e geofísicos indica que o contato por falha entre os gnaisses e os quartzitos é o local com potencialidades hidrogeológicas.

Nos perfis de condutividade aparente do levantamento aéreo observam-se picos positivos de 8 mS/m para a freqüência de 33 kHz e de 9 mS/m para a freqüência de 4,5 kHz. Da mesma forma que na seção anterior, a continuidade dos sinais para as duas diferentes freqüências sugere também uma continuidade em profundidade da estrutura-fonte.

Condutor (zona de cisalhamento?)

Figura 48 - Seção geofísica 18 com perfis de condutividade elétrica Geonics EM34, HEMcondutividade e o modelo geológico interpretado.

6.2.16 - Seção 20

A seção com 90º de azimute e 600 m de extensão (Figura 49) objetivou a investigação de uma falha dúctil-frágil sinistral com direção N-S. Ela forma um pequeno ressalto topográfico na margem leste da lagoa do Farias e tem correlação com um longo eixo condutivo N-S. A seção atravessa o trecho central da lagoa do Farias, que tem um formado elíptico. Ao longo da seção afloram ortognaisses maciços e pouco fraturados. Na distância 300 m ocorrem veios de quartzo que preencheram a fissuras desenvolvidas pelos esforços de ruptura produzidos pela falha. Eles apresentam-se muito fraturados como resultado da atuação de esforços de tração que reativaram a estrutura. Na área da lagoa ocorrem sedimentos argilosos. O levantamento eletromagnético com EM34 foi executado com espaçamento de 5 m para os cabos de 20 e 40 m, nas configurações de dipolo vertical e dipolo horizontal.

A observação dos perfis de condutividade do levantamento terrestre demonstra a existência de um padrão típico de estrutura geológica condutiva sobre a lagoa do Farias. Um forte pico positivo no dipolo horizontal e vários picos negativos no dipolo vertical. No restante da seção destacam-se de forma discreta duas outras assinaturas. Uma na distância 300 metros correlacionada com a zona de falha e a outra na extremidade leste da seção sem uma correlação geológica bem definida.

Nos perfis de condutividade aparente do levantamento aéreo, observam-se picos positivos de 45 mS/m para a freqüência de 33 kHz e de 12 mS/m para a freqüência de 4,5 kHz. Da mesma forma que no levantamento terrestre, eles correlacionam-se diretamente com área da lagoa.

As componentes eletromagnéticas em-quadratura e o perfil da diferença entre os canais coaxiais e coplanares, apresentam valores de intensidades médias. O canal da diferença sugere a existência da borda de um corpo condutivo largo sobre a lagoa do Farias.

Nessa seção o aspecto mais importante é o sinal geofísico sobre a lagoa. Aparentemente, as rochas que ocorrem abaixo das argilas da lagoa são as mesmas que afloram regionalmente. No entanto, a presença de uma fina camada de argila não é suficiente para gerar as assinaturas geofísicas observadas. Uma possibilidade é que a lagoa tenha se desenvolvido sobre rochas anfibolíticas encaixadas na seqüência de migmatitos e gnaisses. Dessa forma a ação do intemperismo teria sido mais intensa, com a geração de minerais de argila, que funcionariam como os veículos da condutividade elétrica. Essa hipótese, se verdadeira, eliminaria qualquer favorabilidade hidrogeológica para os dados geofísicos sobre a lagoa.

Alguns condutores localizados fora da lagoa foram interpretados como zonas de falha. Nesse caso, corresponderiam a segmentos da falha N-S que se estendem desde a Vila de Samambaia localizada a o sul. As características geológicas dessas estruturas e suas extensões, além da possibilidade de conexões com fontes de recargas, as tornam potencialmente favoráveis.

Figura 49 - Seção geofísica 20 com perfis de HEM-condutividade, perfis de condutividade elétrica Geonics EM34, perfis dos componentes eletromagnéticos em-quadratura e o modelo geológico interpretado. CX –Coaxial, CP – Coplanar, Q – Quadratura.

6.2.17 - Seção 21

A seção com 160º de azimute e 420 m de extensão (Figura 50) objetivou a investigação de um eixo condutivo de direção NE-SW. Na extremidade sul da seção afloram xistos granatíferos. No restante ocorrem apenas solos de coloração marrom clara. O levantamento eletromagnético com EM34 foi executado com espaçamento de 10 m para o cabo de 20 m, nas configurações de dipolo vertical e dipolo horizontal.

A observação dos perfis de condutividade do levantamento terrestre (EM34) demonstra a existência de um padrão típico de estrutura geológica condutiva no trecho mediano da seção, com um pico positivo no dipolo horizontal e vários picos negativos no dipolo vertical. O pico positivo pode representar um aumento da espessura do manto de intemperismo. Os picos negativos podem representar condutores discretos no embasamento cristalino.

Nos perfis de condutividade aparente do levantamento aéreo observam-se picos positivos de 130 mS/m para a freqüência de 33 kHz e de 30 mS/m para a freqüência de 4,5 kHz. A manutenção do sinal para a freqüência mais baixa indica a continuidade da fonte condutiva com a profundidade e a intensidade sugere a existência de fontes geológicas naturalmente condutivas, além da possibilidade de umidade.

As componentes eletromagnéticas em-quadratura e o perfil da diferença entre os canais coaxiais e coplanares, apresentam valores de intensidades altas. O canal da diferença sugere a existência de um corpo condutivo do tipo tabular horizontal fino, característico de coberturas condutivas.

Em função da ausência de afloramentos, o modelo de interpretação e as possibilidades geológicas para a natureza dessas assinaturas geofísicas são semelhantes às outras seções que investigaram os eixos condutivos NE-SW da região ao norte dos quartzitos da serra das Porteiras. O mais provável é que os eixos sejam o resultado do alongamento por cisalhamento de corpos tabulares de xistos e calcissilicáticas. Esse modelo de interpretação não favorece a potencialidade hidrogeológica dessas assinaturas geofísicas, pois o sinal elétrico pode ter como fonte apenas o produto de alteração das rochas e alguma água nos poros do manto de alteração. Por outro lado, o potencial dos condutores discretos do embasamento cristalino ainda não é conhecido e deve ser investigado.

Figura 50 - Seção geofísica 21 com perfis de HEM-condutividade, perfis de condutividade elétrica Geonics EM34, perfis dos componentes eletromagnéticos em-quadratura e o modelo geológico interpretado. CX –Coaxial, CP – Coplanar, Q – Quadratura.

6.2.18 - Seção 22

A seção com 90º de azimute e 480 m de extensão (Figura 50), localizada a 500 m a norte da Vila de Samambaia, objetivou a investigação do prolongamento de uma falha dúctil-frágil sinistral com direção N-S. Na área afloram ortognaisses de composição granítica, pouco fraturados e muito foliados na direção NE-SW. O solo é pouco desenvolvido, porém não foi possível observar indícios da falha, facilmente visualizada em afloramentos localizados 300 m a sul, na fotografia aérea e no mapa de HEM-condutividade. O levantamento eletromagnético com EM34 foi executado com espaçamento de 10 m para os cabos de 20 e 40 m, nas configurações de dipolo vertical e dipolo horizontal.

Na extremidade W da seção, onde a falha deve estar localizada, observam-se padrões típicos de corpos condutivos no embasamento. Os picos positivos pouco proeminentes do dipolo horizontal são a indicação da pequena espessura do solo e os picos negativos no dipolo vertical marcam as posições dos condutores.

Nos perfis de condutividade aparente do levantamento aéreo, observam-se picos positivos de 16 mS/m para a freqüência de 33 kHz e de 8 mS/m para a freqüência de 4,5 kHz. A manutenção do sinal para a freqüência mais baixa indica a continuidade da fonte condutiva com a profundidade, porém, a pequena intensidade reflete a ausência de minerais de alteração e possivelmente pode ser produzida apenas pela água salobra contida na estrutura.

As componentes eletromagnéticas em-quadratura e o perfil da diferença entre os canais coaxiais e coplanares apresentam valores de intensidades baixas sem indícios da existência de corpos anômalos.

Os dados geofísicos aéreos e terrestres confirmam a existência da estrutura N-S, porém a sua potencialidade hidrogeológica precisa ser testada, sobretudo em áreas onde não ocorrem coberturas que funcionem como fonte de recarga do aqüífero fissural.

Figura 51 - Seção geofísica 22 com perfis de HEM-condutividade, perfis de condutividade elétrica Geonics EM34, perfis dos componentes eletromagnéticos em-quadratura e o modelo geológico interpretado. CX –Coaxial, CP – Coplanar, Q – Quadratura.

7 - Alvos Prospectivos

Os levantamentos geofísicos aéreos fornecem a possibilidade de levantar grandes áreas sem problemas de obstáculos, com grande detalhe, com qualidade técnica, com posicionamento preciso e em um curto intervalo de tempo. Além disso, a possibilidade de visualização bidimensional dos dados facilita a correlação dos dados geológicos, hídrogeológicos e topográficos com os parâmetros físicos das rochas relacionados com os objetivos da prospecção. Porém um dos seus principais méritos é a capacidade de enxergar além da camada superficial das rochas, municiando o geólogo com informações de subsuperfície que só poderiam ser obtidas com a observação direta.

O grande problema da interpretação de dados geofísicos está na sua ambigüidade. Assim, no nosso caso, é muito difícil afirmar com convicção se uma anomalia de condutividade elétrica foi produzida pelo conteúdo de argila nas rochas, pela presença de sulfetos, por corpos de grafita, pela umidade no manto de alteração/aluviões ou pela existência de água em fraturas. Nesse último caso, se soubéssemos que a causa é água, ainda teríamos a dificuldade de definir o seu grau de salinidade.

Algumas informações, a priori, podem nos ajudar a amenizar algumas dessas possíveis ambigüidades. Sabemos, em princípio, que:

1) a água dos aqüíferos em rochas cristalinas do semi-árido está localizada em fraturas e falhas e são geralmente salobras;

2) fraturas e falhas são estruturas lineares;

3) coberturas sedimentares com argila ou muita umidade, tais como aluviões, formam manchas condutivas largas e alongadas ao longo das drenagens;

4) corpos com sulfetos ou grafita podem ser alongados e verticais, tal como uma estrutura, porém apresentariam condutividades muito altas.

Os dados geológicos/hidrogeológicos da Área-Piloto Samambaia podem fornecer informações adicionais para a delimitação mais precisa do alvo prospectivo, considerando que: **1)** na área não foram mapeados corpos com sulfeto ou grafita;

2) os eixos condutivos alongados de direção NE-SW estão correlacionados com zonas de cisalhamentos, foliação tectônica e corpos de calcissilicáticas e micaxistos tectonicamente estirados. Os poços tubulares perfurados na sua vizinhança são improdutivos ou possuem vazões informadas inferiores a 1,5 m³/h;

3) os eixos condutivos de direção N-S estão correlacionados com falhas dúctil-frágeis. Essas falhas em alguns casos apresentam preenchimentos com veios de quartzo muito fraturados. Os poços tubulares com vazões informadas de até 10 m³/h foram perfurados nas suas vizinhanças;

4) não existem indicações hidrogeológicas favoráveis para as falhas dúctil-frágeis E-W;

5) não foram identificadas assinaturas condutivas relacionadas com as fraturas de direção NW-SE.

Com base nas premissas e nos dados acima citados podemos afirmar que os alvos prospectivos são eixos condutivos estreitos e alongados com direção em torno de N-S. Essa afirmação, no entanto, não esgota as possibilidades de serem definidos novos alvos, pelo aprofundamento da pesquisa e do conhecimento da área, sobretudo dos avanços nos conhecimentos hidrogeológicos resultantes da locação e perfuração criteriosa de novos poços.

8 - Sugestões para Locação de Poços Tubulares

As propostas para localização e perfuração de poços tubulares resultaram de um trabalho de integração de dados geológicos, hidrogeológicos e geofísicos. As locações foram debatidas entre os técnicos da equipe que desenvolveram atividades nos diferentes temas de pesquisa. No início foram selecionadas 15 locações, que foram posteriormente reduzidas para 7 (Figuras 52 e 53) por meio de uma análise de prioridades. Desse total, 6 locações possuem suporte de geofísica terrestre através dos métodos de eletrorresistividade (pseudo-seções) e/ou eletromagnético (EM34). Na locação 3 também foram levantados dados de VLF pela UFPE. Em todos os casos os dados geofísicos aéreos nas áreas das locações foram analisados e interpretados. É importante lembrar que essa proposta tem um objetivo eminentemente investigativo e, por isso, em alguns casos, os possíveis resultados negativos produzirão respostas importantes para as conclusões.

Figura 52 - Mapa de condutividade aparente resultante do processamento dos dados levantados por helicóptero para a freqüência de 4.500 Hz (LASA, 2001), com as posições e numerações das locações sugeridas.

Figura 53 - Mapa geológico com as posições e os números das locações sugeridas. A coluna estratigráfica e as convenções estão anexas na Figura 2.

Locação 1

<u>Localidade</u>: Fazenda Nova <u>População</u>: 304 habitantes <u>Coordenadas UTM</u>: 641000E / 9090696N - SAD69 <u>Proprietário do Terreno</u>: Claudinete Ferreira (Custódia) <u>Consumo de água</u>: Poços tubulares e cacimbas escavadas em aluvião <u>Energia Elétrica</u>: Trifásica (200 m)

Características Hidrogeológicas e Geofísicas

A locação está posicionada a leste do poço tubular 439 (Nº de Cadastro do Inventário de Poços Tubulares do Alto Vale do Rio Moxotó-CPRM), que é produtivo, apresenta boa vazão (10,0 m³/h) e foi perfurado nas proximidades de um eixo condutivo de direção N-S. A área não apresenta afloramentos e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelo riacho Copiti, que nesse trecho possui direção N-S.

Dados geofísicos terrestres indicam que no local as resistividades aparentes são geralmente baixas (<150 Ohm.m) e aumentam com a profundidade. Uma faixa horizontal de baixas resistividades é correlacionada com as aluviões do vale de inundação do riacho Copiti. Observam-se indícios da presença de condutores que podem estar parcialmente atenuados pela cobertura condutiva. Os condutores identificados no levantamento terrestre têm uma boa correlação com picos de HEM-condutividade na freqüência de 33 kHz (60 e 90 mS/m, respectivamente). Na freqüência de 4,5 kHz, são observadas apenas ondulações entre 10 e 20 mS/m.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar indica para a anomalia HEM uma fonte tabular horizontal fina, coerente com a planície aluvial. O afinamento ou ausência da fonte sobre a calha de drenagem corresponde aos dados de campo, onde são observados indícios de afloramentos de rochas cristalinas no leito do riacho.

Os condutores identificados nos levantamentos aéreos e terrestres podem corresponder a estruturas. Pela interpretação dos dados, no contexto da área como um todo, eles são falhas dúctil-frágeis sinistrias. Essa condição estrutural é favorecida pela existência de uma boa área de recarga propiciada pelas aluviões.

Locação 2

Localidade: Santo Antônio <u>População</u>: 50 habitantes (raio de 2 km) <u>Coordenadas UTM</u>: 639416E / 9088396N - SAD69 <u>Proprietário do Terreno</u>: Claudinete Ferreira (Custódia) <u>Consumo de água</u>: Cacimbas escavadas no leito dos riachos Copiti e Santa Rita <u>Energia Elétrica</u>: Trifásica (200 m)

Características Hidrogeológicas e Geofísicas

A locação está posicionada no vale de inundação e nas proximidades do leito ativo do riacho Santa Rita. A área não apresenta afloramentos de rochas cristalinas e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelos riachos Santa Rita e Copiti. Poços amazonas escavados nas aluviões ao lado da seção indicam espessuras superiores a 4 m.

Dados geofísicos terrestres identificaram resistividades aparentes baixas que aumentam progressivamente com a profundidade e apresentam a forma de uma concavidade que provavelmente acompanha o aumento da espessura das aluviões saturadas e do manto de alteração. Os dados elétricos sugerem uma estrutura em camadas para o conjunto aluvião/rocha alterada, em que as resistividades caem gradativamente até a profundidade de

17 m, a qual deverá corresponder ao topo do embasamento cristalino preservado, onde as resistividades aumentam significativamente. Foram identificados condutores no embasamento que podem corresponder a estruturas tectônicas preenchidas com água. Nos dados geofísicos aéreos observam-se picos positivos de 130 mS/m para a freqüência de 33 kHz e de 20 mS/m para a freqüência de 4,5 kHz. A continuidade dos sinais para as duas diferentes freqüências sugere também uma continuidade em profundidade dos corpos e/ou estruturas fontes. Em mapa essa assinatura corresponde a um eixo condutivo N-S.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar sugere uma anomalia condutiva produzida por uma fonte em formato plano-horizontal, coerente com a presença de aluviões e com a pseudo-seção de eletrorresistividade. Porém não identifica os condutores estreitos delineados pelos métodos terrestres.

Não existem informações geológicas superficiais que indiquem a natureza geológica dos condutores. Porém a existência de falhas dúctil-frágeis N-S como estruturas com assinaturas elétricas condutivas favorece a correlação geológica e a sua favorabilidade hidrogeológica.

Locação 3

Localidade: Lagoa do Juá <u>População</u>: 500 habitantes em Salgado e Caiçara localizadas a 3 km. <u>Coordenadas UTM</u>: 637609E / 9084427N - SAD69 <u>Proprietário do Terreno</u>: Ulisses Benvindo <u>Consumo de água</u>: não existe localmente <u>Energia Elétrica</u>: Trifásica (200 m)

Características Hidrogeológicas e Geofísicas

A locação está posicionada na lagoa do Juá. Essa lagoa tem a forma alongada segunda a direção de uma falha na direção N-S e está localizada nas proximidades do ponto em que ela intercepta e desloca os quartzitos de direção NE-SW. Essa falha tem correlação com um longo eixo condutivo N-S. Na margem oeste da lagoa afloram quartzitos muitos fraturados, formando cristas topográficas na direção NE-SW. Na margem leste afloram ortognaisses cisalhados com feixes de fraturas na direção NW-SE.

Os dados geofísicos terrestres identificaram resistividades aparentes baixas (< 50 Ohm.m) e assinaturas relacionadas com condutores que se estendem com a profundidade. Nos perfis de condutividade aparente do levantamento aéreo observam-se picos positivos de 8 mS/m para a freqüência de 33 kHz e de 7 mS/m para a freqüência de 4,5 kHz. A manutenção dos sinais para as duas diferentes freqüências sugere também uma continuidade em profundidade da estrutura-fonte, que em mapa corresponde a um eixo condutivo N-S. Os valores baixos de condutividade resultam da ausência de manto de alteração em uma área com afloramento de rochas resistentes ao intemperismo. Dessa forma, o crescimento da condutividade sobre a estrutura deve ter apenas como fonte a água salobra contida em suas fissuras, reforçando a sua potencialidade hidrogelógica.

As componentes eletromagnéticas em-quadratura e o perfil da diferença entre os canais coaxiais e coplanares apresenta valores de intensidades médias, com crescimento maior e indícios de corpos anômalos no canal de diferença coaxial-coplanar na posição esperada para a estrutura tectônica.

Não existem dados hidrogeológicos que permitam uma apreciação da favorabilidade dos condutores identificados no levantamento geofísico. Porém a sua natureza geológica é conhecida e por isso a extensão da estrutura, suas características estruturais e a possibilidade de conexões com fontes de recargas a tornam potencialmente favorável.

Locação 4

<u>Localidade</u>: Samambaia <u>População</u>: 700 habitantes <u>Coordenadas UTM</u>: 640489E / 9080458N - SAD69 <u>Proprietário do Terreno</u>: Paróquia da Igreja de São Sebastião <u>Consumo de água</u>: Poços tubulares e cacimbas escavadas em aluvião <u>Energia Elétrica</u>: Trifásica (no local)

Características Hidrogeológicas e Geofísicas

A locação está posicionada 300 m a norte da vila de Samambaia sobre uma falha dúctilfrágil sinistral com direção N-S. Na área afloram ortognaisses de composição granítica, pouco fraturados e bastante foliados na direção NE-SW. O solo é pouco desenvolvido, porém no local um pequeno vale está preenchido com sedimentos areno-argilosos.

Dados geofísicos terrestres identificaram padrões típicos de corpos condutivos no embasamento. Nos perfis de condutividade aparente do levantamento aéreo, observam-se picos positivos de 16 mS/m para a freqüência de 33 kHz e de 8 mS/m para a freqüência de 4,5 kHz. A manutenção do sinal para a freqüência mais baixa indica a continuidade da fonte condutiva com a profundidade, porém a pequena intensidade, reflete a ausência de minerais de alteração e possivelmente pode ser produzida apenas pela água salobra contida nas estruturas.

As componentes eletromagnéticas em-quadratura e o perfil da diferença entre os canais coaxiais e coplanares, apresentam valores de intensidades baixas sem indícios da existência de corpos anômalos.

Os dados geofísicos aéreos e terrestres confirmam a existência da estrutura N-S, porém a sua potencialidade hidrogeológica precisa ser testada, sobretudo em áreas onde não ocorrem coberturas que funcionem como fonte de recarga do aqüífero fissural.

Locação 5

Localidade: Riacho do Cipó <u>População</u>: 700 habitantes em Samambaia localizada a 2 km. <u>Coordenadas UTM :</u> 642328E / 9080171N - SAD69 <u>Proprietário</u>: Paróquia da Igreja São Sebastião <u>Consumo de água</u>: não existe localmente <u>Energia Elétrica</u>: Trifásica, Samambaia (2km)

Características Hidrogeológicas e Geofísicas

A locação está posicionada nas proximidades do leito ativo de direção N-S do riacho do Cipó. A área não apresenta afloramentos de rochas cristalinas e é constituída por uma planície aluvial resultante do acúmulo de sedimentos arenosos carreados pelo riacho.

Dados geofísicos terrestres identificaram núcleos de resistividades aparentes baixas (50 Ohm.m), com indício da existência de condutores. Nos dados aéreos se observa um pico de HEM-condutividade de 170 mS/m na freqüência de 33 kHz, em uma região com níveis de condutividade superiores a 60 mS/m. Na freqüência de 4,5 kHz são observadas apenas pequenas ondulações em torno de 20 mS/m.

A análise das componentes eletromagnéticas em-quadratura e do efeito da diferença entre os canais coaxial e coplanar apresenta apenas valores de intensidades altas refletindo a condutividade das aluviões, sem indícios de assinaturas que justifiquem fontes no embasamento.

Não existem dados hidrogeológicos que permitam uma apreciação da favorabilidade dos condutores identificados no levantamento terrestre. Sua natureza geológica é especulativa, porém a orientação da calha da drenagem do riacho Cipó sugere a presença de estruturas tectônicas.

Locação 6

Localidade: Lagoa do Farias <u>População</u>: não existe localmente <u>Coordenadas UTM :</u> 641393E / 9084044N - SAD69 <u>Proprietário</u>: não identificado <u>Consumo de água</u>: não existe localmente <u>Energia Elétrica</u>: não existe localmente

Características Hidrogeológicas e Geofísicas

A locação está posicionada na margem leste da lagoa do Farias sobre uma falha dúctilfrágil sinistral. Ela forma um pequeno ressalto topográfico e tem correlação com um longo eixo condutivo N-S. Nas proximidades afloram ortognaisses maciços e pouco fraturados. Na zona de falha ocorrem veios de quartzo que preencheram as fissuras desenvolvidas pelos esforços de ruptura produzidos pela falha. Eles apresentam-se muito fraturados como resultado da atuação de esforços de tração que reativaram a estrutura.

Dados eletromagnéticos terrestres detectaram anomalias discretas relacionadas à falha, em contraste com uma proeminente anomalia associada com a lagoa. Nos perfis de condutividade aparente do levantamento aéreo observam-se picos positivos de 45 mS/m para a freqüência de 33 kHz e de 12 mS/m para a freqüência de 4,5 kHz. Da mesma forma que no levantamento terrestre, eles correlacionam-se diretamente com a área da lagoa.

As componentes eletromagnéticas em-quadratura e o perfil da diferença entre os canais coaxiais e coplanares, apresentam valores de intensidades médias. O canal da diferença sugere a existência na borda de um corpo condutivo largo sobre a lagoa do Farias. Alguns condutores localizados fora da lagoa foram interpretados como zonas de falha. Nesse caso, corresponderiam a segmentos da falha N-S que se estende desde a Vila de Samambaia. As características geológicas dessa estrutura e sua extensão, além da possibilidade de conexões com fontes de recargas, a tornam potencialmente favorável.

Locação 7

Localidade: <u>População</u>: não existe localmente <u>Coordenadas UTM :</u> 636780E / 9079522N - SAD69 <u>Proprietário</u>: não identificado <u>Consumo de água</u>: não existe localmente <u>Energia Elétrica</u>: não existe localmente

Características Hidrogeológicas e Geofísicas

A locação está posicionada sobre uma falha dúctil-frágil sinistral com direção N-S. Ela não tem expressão topográfica e está correlacionada com um longo eixo condutivo de direção N-S. A falha, aparentemente, se desenvolveu em conexão e como um evento tardio de extensão em relação aos cisalhamentos NE-SW. Ela apresenta movimento transcorrente sinistral, evidenciado pelo deslocamento dos quartzitos da serra das Porteiras e dos eixos condutivos NE-SW. No campo, nas proximidades da assinatura geofísica, ocorrem veios de sílica (quartzo/calcedônia), bastante fraturados, cataclasados e brechados. O aumento de condutividade possivelmente corresponde ao preenchimento por água salobra nas fissuras. As características geológicas dessa estrutura e sua extensão, além da possibilidade de conexões com fontes de recargas, a tornam potencialmente favorável.

9 - Conclusões e Recomendações

As análises do conjunto de dados resultantes do levantamento geofísico aéreo integrado com informações geofísicas terrestres, geológicas e hidrogeológicas permitem as seguintes conclusões:

a) a análise do mapa de condutividades elétricas aparentes (HEM) comparadas com os dados geofísicos terrestres e geológicos demonstra que as suas intensidades estão relacionadas principalmente com o tipo litológico, o grau de alteração das rochas, o conteúdo de argila das coberturas e a existência de estruturas lineares portadoras de água salobra;

b) no mapa de condutividades elétricas aparentes (HEM) destacam-se dois domínios principais. O primeiro, localizado no quadrante noroeste da área, caracteriza-se pela presença de eixos alongados na direção NE-SW, com largura variando entre 100 e 200 m, com comprimentos de até 7 km e amplitudes entre 5 e 30 mS/m. O segundo domínio ocupa o restante da área. Neste o padrão de alinhamentos é semelhante ao primeiro domínio, porém os eixos condutivos apresentam larguras médias em torno de 100 m e as amplitudes, para os eixos NE-SW e N-S, são inferiores a 10 mS/m;

c) os alinhamentos estão bem definidos nos locais onde os esforços tectônicos geraram fissuras, permitindo a penetração de água. Assim, a soma dos efeitos da umidade e da alteração das rochas segundo direções estruturais preferenciais produz as assinaturas condutivas;

d) as estruturas dúcteis (foliações, cisalhamentos, bandeamentos) correspondem a eixos contínuos e alongados, relacionados com estruturas de direções predominantes NE-SW e mergulhos fortes (70°-80°). Elas possivelmente alongaram corpos tabulares de micaxistos e calcissilicáticas, cuja alteração por intemperismo gerou os argilominerais parcialmente responsáveis pela assinatura dos eixos condutivos nessa direção. Adicionalmente, apresentam boas respostas nos levantamentos geofísicos terrestres;

e) os eixos condutivos de direção N-S estão correlacionados com falhas dúctil-frágeis;

f) os alinhamentos na direção E-W produzidos por truncamentos de eixos condutivos estão correlacionados com estruturas tectônicas dúctil-frágeis, embora não apresentem uma relação direta com eixos condutivos;

g) as rochas paraderivadas do quadrante NW, com susceptibilidades magnéticas baixas, apresentam padrões magnéticos caracterizados pela ausência de anomalias. No restante da área, onde dominam rochas magnéticas ortoderivadas, observa-se um comportamento complexo, definido por faixas magnéticas alongadas, com alternância de eixos negativos e positivos. Esse padrão é produzido por zonas de cisalhamentos, ortognaisses migmatizados com nódulos de magnetita e lentes de rochas anfibolíticas;

h) na região sul da área destacam-se alinhamentos magnéticos com direção N-S e com comprimentos de até 7 km, caracterizados pelo truncamento e flexões de eixos anômalos na direção NE-SW. Observa-se que os alinhamentos estão posicionados em faixas com baixa magnetização e apresentam correlação com falhas dúctil-frágeis sinistrais;

i) os alinhamentos magnéticos N-S relacionados com falhas dúctil-frágeis adquirem importância e nitidez na análise das componentes rasas. Esse aspecto reforça o seu potencial como alvo hidrogeológico prospectivo.

j) a observação do espectro de potência dos dados magnetométricos demonstra que eles podem ser separados em componentes rasas e componentes profundas. Os topos das fontes causadoras das componentes rasas apresentam uma profundidade máxima de 200 m e os topos das fontes causadoras das componentes profundas variam de 200 a 1000 m de profundidade;

 k) a cronologia de eventos tectônicos sugere que as estruturas NW-SE são as mais antigas e em seguida se formaram as estruturas N-S. As estruturas E-W representam o último evento de falhamento;

 I) não foram identificadas assinaturas condutivas relacionadas com as fraturas de direção NW-SE;

m) os dados de *VLF* não apresentaram qualidade suficiente para serem utilizados nos trabalhos de interpretação e integração geológica;

n) os alvos para prospecção hidrogeológica nos aqüíferos fraturados da Área-Piloto Samambaia são eixos condutivos estreitos e alongados com direções em torno de N-S;

o) a perfuração criteriosa de poços e o avanço da pesquisa poderão ampliar as possibilidades de novos alvos prospectivos.

A análise do conjunto de conclusões apresentadas acima permite sugerir as seguintes recomendações:

a) aprimorar o conhecimento e a correlação geológica de detalhe dos alinhamentos de eixos condutivos;

d) ampliar o conhecimento hidrogeológico por meio do estudo dos poços tubulares existentes;

b) com base no conjunto de informações efetuar a perfuração criteriosa de poços tubulares.

10 - Referências Bibliográficas

AMARAL, C. de A. Contexto morfoestrutural e hidrogeologia da Região de Caiçara-Samambaia (Custódia-PE). In: Encontro Nacional de Perfuradores de Poços, 12, 2001, Olinda / Simpósio de Hidrogeologia do Nordeste, 4, 2001. *Anais*. Olinda: Associação Brasileira de Águas Subterrâneas, 2001. 605p. p.295-302.

ANGELIM, L. A. de A.; AMARAL, C. de A.; GALVÃO, M.J. da T.G. *Geologia da área piloto Caiçara - Samambaia Escala 1:25.000*. Recife: CPRM, 2000. 10p. "Programa de Água Subterrânea para a Região Nordeste. Centro de Pesquisa das Águas Subterrâneas. Projeto Alto Vale do Rio Moxotó - Pernambuco (PROASNE). Cooperação Canadá-Brasil, CPRM-Serviço Geológico do Brasil".

DAVIS, P. A.; GREENHALGH, S. A.; MERRICK, N. P. Resistivity sounding computations with any array using digital filter. *Bull. Aust. Soc. Explor. Geophysics*, n.11, p.54-62, 1980.

EDWARDS, L. S. A modified pseudosection for resistivity and IP. *Geophysics*, v.42, n.5, p. 1020-1036, 1977.

GEONICS LTD EM34-3 & EM34-3XL Operating Instructions. Ontario, 1998.

INMAN, J. R. Resistivity inversion with ridge regression. *Geophysics*, v.40, p.798-817. 1975.

LASA ENGENHARIA E PROSPECÇÕES S/A. . *Projeto Aerogeofísico Água Subterrânea no Nordeste do Brasil, Blocos Juá (CE), Samambaia (PE) e Serrinha (RN). Relatório final do levantamento e processamento dos dados magnetométricos e eletromagnetométricos e seleção das anomalias eletromagnéticas. Texto técnico. Brasília, 2001. 4v. "Cooperação Canadá - Brasil Canadian International Development Agency (CIDA) - Agência Brasileira de Cooperação (ABC) - ABAS - CPRM - GSC - SUDENE - Comunidade Solidária Cooperação Canadá-Brasil"*

LASA ENGENHARIA E PROSPECÇÕES S/A. [CD ROM] Projeto Aerogeofísico Água Subterrânea no Nordeste do Brasil Blocos Juá (CE), Samambaia (PE) e Serrinha (RN). Relatório final. FUGRO. Brasília: LASA Engenharia e Prospecções S. A., 2001. Disponível em: 3 CD "Cooperação Canadá - Brasil Canadian International Development Agency(CIDA) -Agência Brasileira de Cooperação (ABC) - ABAS - CPRM - GSC -SUDENE - Comunidade Solidária"

LOKE, M. H. **RES2DMOD ver. 2.2, Rapid 2D resistivity forward modelling using the finite difference and finite- element methods. Wenner (alpha, beta, gamma), inline & equatorial dipole-dipole, pole-pole, pole-dipole and Wenner- Schlumberger.** Austin, 1999. 22p. Disponível em <<u>www.agiusa.com</u>> Acesso em: set. 2001.

LOKE, M. H. *Electrical imaging surveys for environmental and engineering studies:a practical guide to 2-D and 3-D surveys*. Austin, 2000. 59 p. Disponível em: <<u>www.agiusa.com</u> > Acesso em: set. 2001.

MCNEILL, J. D. *Eletromagnetic terrain conductivity measurement at low induction numbers*. Ontario: GEONICS, 1980. 15p. (Technical Note TN-6) Disponível em: < <u>www.geonics.com</u> > Acesso em: set.2001.

MCNEILL, J. D. Advances in electromagnetic methods for groundwater studies. In: EXPLORATION'87 PROCEEDINGS, 1987, Ontario. *Applications of geophysics and geochemistry*. Canada: Geological Survey, 1987. (Geological Survey Special, 3) p.678-702.

OLIVEIRA, R. G. de; LIMA. E. de A. M., GALVÃO, M. J. da T.G. *Projeto Água Subterrânea no Nordeste do Brasil. 1ª Missão de Geofísica. Relatório de Atividades*. Recife: CPRM, 2000. 29p. "Cooperação Técnica Canadá-Brasil. Alto Vale do Rio Moxotó - Estado de Pernambuco"

SANTOS, E.J. dos; MORAIS, F. de; GALVÃO, M.J. da T.G. *Mapa geológico do Alto Vale do Rio Moxotó. Escala 1:100.000. Projeto Alto Vale do Rio Moxotó*. Recife: CPRM, 1999. inédito.

SANTOS, E.J. dos [CD ROM] Programa Levantamentos Geológicos Básicos do Brasil. Belém do São Francisco. Folha SC.24-X-A. Estados de Pernambuco, Alagoas e Bahia. Escala 1:250.000. Geologia e Metalogênese. CPRM. Projeto de Mapeamento Geológico/Metalogenético Sistemático, Recife: CPRM, 1999. Disponível em 1 CD

SPECTOR, A.; GRANT, F.S. 1970 Statistical models for interpreting aeromagnetic data. *Geophysics*, v.35, n.2, p.293-302, 1979.

STEENSMA, G.; KELLETT, R. *Short course: applications of geophysics in groundwater studies*. Natal: Komex International Ltd.; Geological Survey of Canada, 2000. 52p.

11 - ANEXOS

Dados de eletrorresistividade levantados em pseudo-seções nos arranjos dipolo-dipolo e Wenner-Schlumberger.

Dados eletromagnéticos terrestres levantados com Geonics EM34-3.

Dados das sondagens elétricas verticais.

Modelos geofísicos das pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizadas na construção dos modelos geológicos interpretados.

PSEUDO-SEÇÃO 1 – ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 1 AZIMUTE: 85º ARRANJO: Dipolo-Dipolo (30/30 m)

COORD. INIC.: 639150E / 9088381N COORD. FIM: 639626E / 9088417N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k
1-2	3-4	16	140	565	65	5-6	12-13	0,8	285	31667
	4-5	7,2	150	2261	108	6-7	8-9	16	145	565
	5-6	8,5	430	5655	112		9-10	5,9	220	2261
	6-7	8,3	430	11310	218		10-11	2,8	195	5655
	7-8	2	250	19792	158		11-12	1,7	165	11310
	8-9	1,3	300	31667	137		12-13	2	285	19792
2-3	4-5	17,3	150	565	65		13-14	0,6	96	31667
	5-6	16,6	460	2261	82	7-8	9-10	9	220	565
	6-7	12,9	430	5655	170		10-11	3,1	195	2261
	7-8	2,8	250	11310	127		11-12	1,4	165	5655
	8-9	0,9	145	19792	122		12-13	1,6	280	11310
	9-10	0,6	210	31667	90		13-14	0,5	99	19792
3-4	5-6	42,3	480	565	50		14-15	0,3	92	31667
	6-7	22,5	430	2261	118	8-9	10-11	8,5	200	565
	7-8	4,5	255	5655	100		11-12	2,5	165	2261
	8-9	0,9	145	11310	70		12-13	2,5	275	5655
	9-10	0,8	215	19792	74		13-14	0,7	100	11310
	10-11	0,7	210	31667	105		14-15	0,4	92	19792
4-5	6-7	61	430	565	80		15-16	0,7	170	31667
	7-8	9,3	255	2261	82	9-10	11-12	5	165	565
	8-9	2,2	145	5655	86		12-13	3,5	270	2261
	9-10	1,4	215	11310	74		13-14	0,9	105	5655
	10-11	0,9	210	19792	85		14-15	0,4	90	11310
	11-12	0,6	160	31667	118		15-16	0,9	170	19792
5-6	7-8	27,5	255	565	61		16-17	0,4	145	31667
	8-9	4,3	145	2261	67	10-11	12-13	9,5	260	565
	9-10	2,4	215	5655	63		13-14	1,8	105	2261
	10-11	1,3	195	11310	75		14-15	0,7	90	5655
	11-12	0,9	165	19792	108		15-16	1,4	170	11310

PSEUDO-SEÇÃO 1 - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	0,9	145	19792	123						-
11-12	13-14	5,2	105	565	28						
	14-15	1,7	87	2261	44						
	15-16	2,4	175	5655	76						
	16-17	1,4	145	11310	110						
12-13	14-15	4	85	565	26						
	15-16	4,6	175	2261	59						
	16-17	2	145	5655	78						
13-14	15-16	13	175	565	42						
	16-17	2	76	2261	59						
14-15	16-17	6	76	565	45						

PSEUDO-SEÇÃO 1- DETALHE - ELETRORRESISTIVIDADE Folha 1/4

SEÇÃO: 1 - Detalhe AZIMUTE: 85⁰ ARRANJO: Wenner-Schlum (10/10 m)

COORD. INIC.: 639200E / 9088384N COORD. FIM: 639589E / 9088408N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
6-9	7-8	242	400	63	38	7-18		14	216	1320	86
5-10		51	320	189	30	11-14	12-13	180	200	63	57
4-11		50	400	377	47	10-15		77	264	189	55
3-12		62	525	628	74	9-16		61	352	377	65
2-13		33	420	943	74	8-17		29	250	628	73
1-14		23	290	1320	105	7-18		30	365	943	78
7-10	8-9	192	230	63	53	6-19		24	350	1320	91
6-11		90	280	189	61	14-15	13-14	348	350	63	63
5-12		44	210	377	79	13-16		65	182	189	68
4-13		85	550	628	97	12-17		47	234	377	76
3-14		52	471	943	104	11-18		49	388	628	79
2-15		26	380	1320	90	10-19		26	270	943	91
8-11	9-10	163	230	63	45	9-20		28	356	1320	104
7-12		106	340	189	59	13-16	14-15	471	378	63	79
6-13		66	330	377	75	12-17		178	420	189	80
5-14		35	230	628	96	11-18		39	180	377	82
4-15		39	340	943	108	10-19		40	253	628	99
3-16		32	350	1320	121	9-20		33	270	943	115
9-12	10-11	339	336	63	64	8-21		34	340	1320	132
8-13		116	320	189	69	14-17	15-16	363	210	63	109
7-14		93	400	377	88	13-18		103	275	189	71
6-15		58	330	628	110	12-19		79	353	377	84
5-16		30	235	943	120	11-20		23	140	628	103
4-17		35	340	1320	136	10-21		33	255	943	122
10-13	11-12	220	292	63	47	9-22		44	416	1320	140
9-14		129	446	189	55	15-18	16-17	528	340	63	98
8-15		46	285	377	61	14-19		87	206	189	80
7-16		49	422	628	73	13-20		54	240	377	85
6-17		38	433	943	83	12-21		59	350	628	106
PSEUDO-SEÇÃO 1- DETALHE - ELETRORRESISTIVIDADE Folha 2/4

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
11-22		22	170	943	122	17-25		21	230	628	57
10-23		27	252	1320	141	16-26		21	320	943	62
16-19	17-18	706	320	63	139	15-27		24	444	1320	71
15-20		123	270	189	86	21-24	22-23	174	358	63	31
14-21		50	206	377	92	20-25		45	263	189	32
13-22		47	268	628	110	19-26		23	196	377	44
12-23		49	355	943	130	18-27		26	295	628	55
11-24		23	200	1320	152	17-28		12	168	943	67
17-20	18-19	258	220	63	74	16-29		19	325	1320	77
16-21		83	340	189	46	22-25	23-24	196	420	63	29
15-22		48	368	377	49	21-26		48	308	189	29
14-23		18	208	628	54	20-27		27	290	377	35
13-24		23	340	943	64	19-28		14	185	628	48
12-25		20	357	1320	74	18-29		19	300	943	60
18-21	19-20	422	360	63	74	17-30		8.5	166	1320	66
17-22		74	250	189	56	23-26	24-25	145	440	63	26
16-23		46	330	377	53	22-27		46	385	189	23
15-24		43	446	628	61	21-28		17	230	377	28
14-25		16	210	943	72	20-29		15	253	628	37
13-26		20	333	1320	79	19-30		9	190	943	45
19-22	20-21	48	72	63	42	18-31		14	338	1320	55
18-23		83	340	189	46	24-27	25-26	83	354	63	15
17-24		40	300	377	50	23-28		44	420	189	20
16-25		31	330	628	59	22-29		28	403	377	26
15-26		29	395	943	69	21-30		14	270	628	33
14-27		16	280	1320	75	20-31		14	315	943	42
20-23	21-22	49	90	63	34	19-32		7.2	188	1320	51
19-24		36	215	189	32	25-28	26-27	147	444	63	21
18-25		34	273	377	47	24-29		57	349	189	31

PSEUDO-SEÇÃO 1 – DETALHE - ELETRORRESISTIVIDADE Folha 3/4

АВ	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
25-30		48	420	377	43	29-34		38	350	189	21
24-31		39	444	628	55	28-35		34	420	377	31
23-32		21	289	943	69	27-36		25	380	628	41
22-33		23	374	1320	81	26-37		21	411	943	48
26-29	27-28	91	450	63	13	25-38		19	424	1320	59
25-30		43	448	189	18	31-34	32-33	94	330	63	18
24-31		24	340	377	27	30-35		69	445	189	29
23-32		23	410	628	35	29-36		46	450	377	39
22-33		20	440	943	43	28-37		30	362	628	52
21-34		9	229	1320	53	27-38		26	382	943	64
27-30	28-29	102	440	63	15	26-39		22	382	1320	76
26-31		37	390	189	18	32-35	33-34	138	450	63	19
25-32		31	444	377	26	31-36		52	347	189	28
24-33		19	342	628	35	30-37		45	430	377	39
23-34		20	430	943	44	29-38		35	450	628	49
22-35		17	425	1320	43	28-39		22	330	943	63
28-31	29-30	118	450	63	17	27-40		19	340	1320	74
27-32		56	410	189	26	33-36	34-35	94	345	63	17
26-33		40	445	377	34	32-37		52	430	189	23
25-34		32	450	628	45	31-38		27	350	377	29
24-35		21	346	943	57	30-39		24	392	628	38
23-36		21	400	1320	69	29-40		21	435	943	45
29-32	30-31	81	356	63	14	28-41		15	340	1320	58
28-33		47	445	189	20	34-37	35-36	242	434	63	35
27-34		31	425	377	27	33-38		68	382	189	34
26-35		25	450	628	35	32-39		43	383	377	42
25-36		21	440	943	45	31-40		38	442	628	54
24-37		18	445	1320	53	30-41		30	420	943	67
30-33	31-32	87	346	63	16	35-38	36-37	126	336	63	24

PSEUDO-SEÇÃO 1 -DETALHE - ELETRORRESISTIVIDADE Folha 4/4

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
34-39		65	394	189	31						
33-40		45	430	377	39						
32-41		32	410	628	49						
36-39	37-38	246	381	63	41						
35-40		84	434	189	36						
34-41		57	429	377	50						
37-40	38-39	126	250	63	32						
36-41		76	420	189	34						
38-41	39-40	157	250	63	39						

SEÇÃO 1- PERFIL ELETROMAGNÉTICO - EM34

ESPACAMENTO: 10 metros Dipolo Dipolo Dipolo Dipolo HEM-HEM-Dist Vertical. Vertical Horizont. Х Υ Horizont. Condutiv. Condutiv. Est (m) 20 m 20 m 40 m 40 m UTM-E UTM-N 4.5 kHz 33 kHz (mS/m)(mS/m)(mS/m)(mS/m)(mS/m)(mS/m) 19.1 61,9 18,4 56,7 16,5 17,7 51.5 46,7 17,5 20,5 16,4 42,1 19,5 19,5 15,7 37,6 15,2 34,6 14.7 31.6 14,3 29.4 18,5 15,5 13,9 27,8 7,6 2,4 15,5 13,5 26,3 3,5 13,3 25,8 17,5 13.2 25,4 19,5 13,2 25,6 16,5 13,5 26,5 18,5 13,7 27,4 23,5 14,2 29,9 14,8 32,5 15,5 16,5 40.5 17,4 18,7 52,3 59.8 21,5 68,9 23,2 80,1 24,9 91,4 23.5 7,8 26.4 102.1 17,5 112,9 5,4 29,3 121,5 30,3 127,2 31,3 132,9 16,5 31.6 132,3 131,1 31,8 31,7 127,7 121,2 17.5 30,3 114.8 105,9 28,9 23.5 27,5 96.8 26,1 24,5 79,5 71,2 65,8 21,5 21,2 60,9 20,5 57,1 54,9

PSEUDO-SEÇÃO 2 - ELETRORRESISTIVIDADE Folha 1/4

SEÇÃO: 2 AZIMUTE: 265º ARRANJO: Dipolo-Dipolo (10/10 m)

COORD. INÍCIO: 640187E / 9085043N COORD. FIM: 639801E / 9084989N DATUM: SAD69:

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	1,6	2	189	151	5-6	12-13	0,3	125	10556	25
	4-5	0,8	2.1	754	288	6-7	8-9	21	60	189	65
	5-6	0,3	2.2	1885	257		9-10	17	60	754	209
	6-7	0,4	2.3	3770	655		10-11	2,5	60	1885	78
	7-8	0,5	2.3	6597	2300		11-12	0,7	55	3770	48
	8-9	0,2	2.3	10556	918		12-13	1,1	55	6597	132
2-3	4-5	6,3	100	189	12		13-14	0,7	55	10556	134
	5-6	1,7	100	754	13	7-8	9-10	63,4	140	189	85
	6-7	1,7	100	1885	32		10-11	9	140	754	48
	7-8	1,7	99	3770	65		11-12	2,9	140	1885	39
	8-9	0,6	97	6597	40		12-13	4	140	3770	107
	9-10	0,7	95	10556	77		13-14	3	140	6597	140
3-4	5-6	4,5	85	189	10		14-15	0,9	140	10556	68
	6-7	2,2	90	754	18	8-9	10-11	20	160	189	23
	7-8	2,1	90	1885	44		11-12	2,8	160	754	13
	8-9	1,0	95	3770	40		12-13	3	160	1885	35
	9-10	1,0	95	6597	70		13-14	2,1	160	3770	49
	10-11	0,2	95	10556	22		14-15	0,6	155	6597	25
4-5	6-7	9	135	189	13		15-16	0,3	155	10556	20
	7-8	5,9	135	754	33	9-10	11-12	15,3	63	189	46
	8-9	1,7	135	1885	24		12-13	5,6	63	754	67
	9-10	1,5	135	3770	42		13-14	3,8	63	1885	114
	10-11	0,2	130	6597	10		14-15	1,1	63	3770	66
	11-12	0,1	130	10556	8		15-16	0,7	63	6597	73
5-6	7-8	19,6	120	189	31		16-17	0,6	64	10556	99
	8-9	3,5	120	754	22	10-11	12-13	19	240	189	15
	9-10	3,2	120	1885	50		13-14	9,3	240	754	29
	10-11	0,4	125	3770	12		14-15	2,5	235	1885	20
	11-12	0,2	125	6597	10		15-16	1,4	235	3770	22

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	0,6	230	6597	17	15-16	20-21	0,2	50	3770	15
	17-18	0,5	230	10556	23		21-22	0,2	52	6597	25
11-12	13-14	35,7	270	189	25		22-23	0,1	55	10556	19
	14-15	7,1	270	754	20	16-17	18-19	5,2	75	189	13
	15-16	3,5	270	1885	24		19-20	1,8	70	754	19
	16-17	1,3	275	3770	18		20-21	0,5	70	1885	13
	17-18	1,0	275	6597	24		21-22	0,3	69	3770	16
	19-19	0,4	280	10556	15		22-23	0,2	67	6597	20
12-13	14-15	10,2	79	189	24		23-24	0,3	65	10556	49
	15-16	3,3	75	754	33	17-18	19-20	1,7	15	189	21
	16-17	1,0	72	1885	26		20-21	0,5	15	754	25
	17-18	0,6	70	3770	32		21-22	0,3	37	1885	15
	18-19	0,4	65	6597	41		22-23	0,2	37	3770	20
	19-20	0,2	58	10556	37		23-24	0,4	80	6597	33
13-14	15-16	6,0	46	189	24		24-25	0,7	80	10556	92
	16-17	1,7	49	754	26	18-19	20-21	7,5	69	189	21
	17-18	1,0	53	1885	5		21-22	1,8	69	754	20
	18-19	0,6	55	3770	41		22-23	0,9	69	1885	25
	19-20	0,4	60	6597	44		23-24	1,0	69	3770	55
	20-21	0,2	64	10556	33		24-25	0,4	69	6597	33
14-15	16-17	4,5	64	189	13		25-26	0,2	70	10556	30
	17-18	1,4	55	754	19	19-20	21-22	12,4	135	189	17
	18-19	0,7	54	1885	24		22-23	6,9	135	754	39
	19-20	0,5	52	3770	36		23-24	3,7	135	1885	52
	20-21	0,1	50	6597	13		24-25	1,9	135	3770	53
	21-22	0,3	49	10556	65		25-26	1,2	135	6597	59
15-16	17-18	3,2	45	189	13		26-27	1,2	135	10556	94
	18-19	1,1	47	754	18	20-21	22-23	5,1	85	189	11
	19-20	0,7	47	1885	28		23-24	3,2	85	754	28

PSEUDO-SEÇÃO 2 - ELETRORRESISTIVIDADE Folha 2/4

PSEUDO-SEÇÃO 2 - ELETRORRESISTIVIDADE Folha 3/4

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)		AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
20-21	24-25	1,4	85	1885	31		25-26	28-29	2,8	40	754	53
	25-26	0,9	85	3770	44			29-30	1,9	45	1885	80
	26-27	0,6	85	6597	47			30-31	0,6	45	3770	50
	27-28	0,4	85	10556	124			31-32	0,3	45	6597	44
21-22	23-24	7,6	75	189	19			32-33	0,2	45	10556	47
	24-25	2,2	75	754	22		26-27	28-29	13,9	70	189	38
	25-26	1,3	80	1885	31			29-30	7,3	65	754	85
	26-27	0,9	80	3770	42			30-31	2,1	65	1885	61
	27-28	0,6	80	6597	49			31-32	1,0	65	3770	58
	28-29	0,5	80	10556	66			32-33	0,7	60	6597	77
22-23	24-25	17,8	200	189	17			33-34	0,1	30	10556	35
	25-26	6	195	754	23		27-28	29-30	24	80	189	57
	26-27	4,2	195	1885	41			30-31	5,5	85	754	49
	27-28	2,5	195	3770	48			31-32	2	85	1885	44
	28-29	1,8	195	6597	61			32-33	1,7	85	3770	75
	29-30	1,3	190	10556	72			33-34	1,5	90	6597	110
23-24	25-26	23	140	189	31			34-35	0,6	90	10556	70
	26-27	11,2	140	754	60		28-29	30-31	15,2	65	189	44
	27-28	6,4	140	1885	86			31-32	3,3	60	754	41
	28-29	4,4	140	3770	118			32-33	1,8	60	1885	57
	29-30	3,4	140	6597	160			33-34	1,5	60	3770	94
	30-31	1,2	140	10556	90			34-35	0,8	55	6597	96
24-25	26-27	7,2	50	189	27			35-36	0,5	55	10556	96
	27-28	2,9	50	754	44		29-30	31-32	12,8	55	189	44
	28-29	1,7	50	1885	71			32-33	4,5	60	754	57
	29-30	1,2	45	3770	101			33-34	3	60	1885	94
	30-31	0,4	45	6597	59			34-35	2,1	65	3770	122
	31-32	0,2	45	10556	47] [35-36	1,4	65	6597	142
25-26	27-28	5,9	40	189	28			36-37	0,9	70	10556	136

PSEUDO-SEÇÃO 2 - ELETRORRESISTIVIDADE Folha 4/4

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
30-31	32-33	10,1	45	189	42	34-35	41-42	0,1	11	10556	96
	33-34	4	45	754	67	35-36	37-38	12,2	10	189	231
	34-35	2,2	40	1885	104		38-39	1,7	10	754	128
	35-36	1,3	40	3770	123		39-40	0,6	11	1885	103
	36-37	0,8	40	6597	132		40-41	0,5	11	3770	171
	37-38	0,5	40	10556	132		41-42	0,2	12	6597	110
31-32	33-34	3,4	14	189	46	36-37	38-39	7,5	7	189	202
	34-35	1,6	14	754	86		39-40	0,3	7	754	140
	35-36	0,6	14	1885	81		40-41	0,6	7	1885	162
	36-37	0,8	15	3770	201		41-42	0,3	6	3770	189
	37-38	0,4	15	6597	176	37-38	39-40	3,1	5	189	117
	38-39	0,1	15	10556	70		40-41	1,3	5	754	196
32-33	34-35	6,5	17	189	72		41-42	0,7	5	1885	264
	35-36	2,4	16	754	113	38-39	40-41	2	5	189	75
	36-37	1,7	16	1885	200		41-42	0,6	5	754	90
	37-38	0,9	16	3770	212	39-40	41-42	1,1	3	189	70
	38-39	0,5	15	6597	220						
	39-40	0,1	15	10556	70						
33-34	35-36	8,7	16	189	103						
	36-37	4,6	16	754	217						
	37-38	2,5	17	1885	277						
	38-39	0,9	17	3770	200						
	39-40	0,4	17	6597	155						
	40-41	0,3	18	10556	176						
34-35	36-37	14,1	18	189	148						
	37-38	5,1	18	754	214						
	38-39	1,6	17	1885	177						
	39-40	0,6	17	3770	133						
	40-41	0,3	16	6597	124						

PSEUDO-SEÇÃO 3 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÀO: 3 AZIMUTE: 155º ARRANJO: Dipolo-Dipolo (20/20 m)

COORD. INIC.: 639730E / 9084996N COORD. FIM: 639865E / 9084630N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm m)
1-2	3-4	0,8	5	377	603	5-6	12-13	1,5	74	21112	428
	4-5	6,3	10	1508	950	6-7	8-9	6,0	25	377	90
	5-6	4,7	10	3770	1170		9-10	1,4	26	1508	81
	6-7	1,5	10	7540	1130		10-11	0,7	25	3770	105
	7-8	0,6	10	13195	790		11-12	0,6	24	7540	188
	8-9	0,3	10	21112	633		12-13	0,4	23	13195	229
2-3	4-5	6	9	377	250		13-14	0,2	21	21112	201
	5-6	2,9	9	1508	460	7-8	9-10	3,4	31	377	41
	6-7	06	9	3770	250		10-11	1,4	32	1508	66
	7-8	0,2	9	7540	168		11-12	1,1	33	3770	126
	8-9	0,1	9	13195	147		12-13	0,6	34	7540	133
	9-10	0,1	9	21112	235		13-14	0,4	35	13195	150
3-4	5-6	38	42	377	340		14-15	0,5	35	21112	302
	6-7	8	44	1508	274	8-9	10-11	27,4	250	377	41
	7-8	3,2	45	3770	268		11-12	14,5	250	1508	87
	8-9	1,2	45	7540	201		12-13	8,0	300	3770	100
	9-10	0,6	45	13195	176		13-14	4,8	290	7540	125
	10-11	0,2	45	21112	94		14-15	4,1	285	13195	190
4-5	6-7	66	82	377	303		15-16	1,5	285	21112	111
	7-8	17	81	1508	316	9-10	11-12	96	550	377	66
	8-9	5,5	80	3770	260		12-13	39,2	550	1508	107
	9-10	2,2	79	7540	210		13-14	19,9	550	3770	136
	10-11	1,9	77	13195	325		14-15	15,9	560	7540	214
	11-12	1,9	75	21112	506		15-16	6,0	560	13195	141
5-6	7-8	32,1	66	377	183		16-17	3,3	560	21112	125
	8-9	8,2	68	1508	180	10-11	12-13	47,5	120	377	149
	9-10	3,0	69	3770	164		13-14	17,3	120	1508	217
	10-11	2,3	71	7540	244		14-15	12,6	120	3770	396
	11-12	2,4	74	13195	428		15-16	4,5	120	7540	283

PSEUDO-SEÇÃO 3 - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	2,4	120	13195	264						
	17-18	1,2	115	21112	220						
11-12	13-14	50	140	377	134						
	14-15	29,3	140	1508	316						
	15-16	10	140	3770	269						
	16-17	5	140	7540	269						
	17-18	2,9	140	13195	273						
	19-19	1,3	140	21112	196						
12-13	14-15	142,1	270	377	200						
	15-16	35,9	260	1508	208						
	16-17	14,3	250	3770	215						
	17-18	3,7	220	7540	127						
	18-19	3,1	200	13195	204						
	19-20	3,1	160	21112	409						
13-14	15-16	73,2	140	377	197						
	16-17	22,3	140	1508	240						
	17-18	10,2	145	3770	265						
	18-19	4,3	150	7540	216						
	19-20	5,8	150	13195	510						
14-15	16-17	51,5	140	377	139						
	17-18	18	140	1508	194						
	18-19	7,8	140	3770	210						
	19-20	8,3	140	7540	447						
15-16	17-18	10,2	50	377	77						
	18-19	3,2	50	1508	96						
	19-20	3,3	60	3770	207						
16-17	18-19	8	50	377	60						
	19-20	5,4	50	1508	162						
17-18	19-20	43,8	260	377	63						

PSEUDO-SEÇÃO 4 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 4 AZIMUTE: 90º ARRANJO: Dipolo/Dipolo (20/20 m)

COORD. INIC.: 639012E / 9086655N COORD. FIM: 639477E / 9086729N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	7,5	24	377	118	5-6	12-13	0,4	81	21112	104
	4-5	3,8	24	1508	239	6-7	8-9	27,3	200	377	51
	5-6	1,5	25	3770	226		9-10	9,2	195	1508	71
	6-7	1,0	25	7540	302		10-11	3,1	190	3770	25
	7-8	1,0	25	13195	527		11-12	1,4	190	7540	28
	8-9	0,3	25	21112	253		12-13	1,2	190	13195	83
2-3	4-5	9,5	37	377	97		13-14	1,1	190	21112	122
	5-6	2,6	37	1508	106	7-8	9-10	13,8	50	377	104
	6-7	1,0	37	3770	102		10-11	3,7	49	1508	114
	7-8	1,3	37	7540	265		11-12	1,7	60	3770	107
	8-9	0,5	37	13195	178		12-13	1,5	60	7540	189
	9-10	0,3	37	21112	171		13-14	1,1	65	13195	223
3-4	5-6	5,9	24	377	93		14-15	0,4	69	21112	122
	6-7	1,1	24	1508	69	8-9	10-11	16	160	377	38
	7-8	1,3	24	3770	204		11-12	7,7	295	1508	40
	8-9	0,4	24	7540	126		12-13	5,7	290	3770	74
	9-10	0,2	24	13195	110		13-14	4,2	280	7540	113
	10-11	0,2	25	21112	172		14-15	1,6	280	13195	75
4-5	6-7	7,3	44	377	63		15-16	1,5	270	21112	117
	7-8	5,2	44	1508	178	9-10	11-12	8,3	140	377	22
	8-9	1,5	43	3770	132		12-13	4,8	140	1508	52
	9-10	0,7	43	7540	123		13-14	3,2	145	3770	83
	10-11	0,5	43	13195	153		14-15	1,1	145	7540	57
	11-12	0,1	43	21112	49		15-16	1,0	145	13195	91
5-6	7-8	21,5	80	377	101		16-17	0,4	145	21112	58
	8-9	5,1	80	1508	96	10-11	12-13	7	135	377	20
	9-10	2,4	80	3770	113		13-14	3,6	135	1508	40
	10-11	1,0	80	7540	94		14-15	1,0	135	3770	28
	11-12	0,4	80	13195	66		15-16	1,0	135	7540	56

PSEUDO-SEÇÃO 4 - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	0,5	135	13195	49		20-21	8,1	150	7540	407
	17-18	0,3	135	21112	47		21-22	4,7	160	13195	388
11-12	13-14	12,9	175	377	28		22-23	3,3	170	21112	410
	14-15	2,5	175	1508	22	16-17	18-19	53,3	130	377	154
	15-16	1,8	180	3770	38		19-20	23,8	130	1508	276
	16-17	0,8	180	7540	34		20-21	13,6	140	3770	366
	17-18	0,7	180	13195	51		21-22	6,2	140	7540	334
	19-19	0,5	180	21112	59		22-23	4,7	140	13195	443
12-13	14-15	11,7	210	377	21		23-24	3,1	145	21112	451
	15-16	6,3	210	1508	45	17-18	19-20	111	130	377	322
	16-17	2,4	210	3770	43		20-21	44,5	130	1508	516
	17-18	1,8	210	7540	65		21-22	17	130	3770	493
	18-19	2,2	210	13195	138		22-23	11	135	7540	614
	19-20	1,5	210	21112	151		23-24	7	135	13195	390
13-14	15-16	12,9	95	377	51	18-19	20-21	195	145	377	507
	16-17	3,4	95	1508	54		21-22	47	145	1508	489
	17-18	2,0	95	3770	79		22-23	27	135	3770	754
	18-19	2,2	95	7540	175		23-24	17	140	7540	915
	19-20	1,8	95	13195	250	19-20	21-22	140	130	377	406
	20-21	1,3	100	21112	275		22-23	58	130	1508	673
14-15	16-17	9,3	75	377	47		23-24	32	130	3770	928
	17-18	2,6	75	1508	52	20-21	22-23	54	115	377	177
	18-19	2,4	75	3770	121		23-24	128	115	1508	1678
	19-20	1,7	75	7540	171	21-22	23-24	257	100	377	969
	20-21	1,3	75	13195	229						
	21-22	0,9	75	21112	253						
15-16	16-17	25,2	140	377	68						
	18-19	18,6	145	1508	193						
	19-20	12,4	150	3770	312						

PSEUDO-SEÇÃO 5 - ELETRORRESISTIVIDADE Folha 1/3

SEÇÃO: 5 AZIMUTE: 140º ARRANJO:Dipolo-Dipolo (20/20 m)

COORD. INIC.: 639093E / 9086647N COORD. FIM: 639436E / 9096254N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	7,2	25	377	110	5-6	12-13	0,9	82	21112	232
	4-5	1,6	30	1508	80	6-7	8-9	11,9	255	377	18
	5-6	1,0	30	3770	126		9-10	2,3	255	1508	14
	6-7	0,3	31	7540	73		10-11	3,0	240	3770	47
	7-8	0,1	31	13195	42		11-12	2,5	235	7540	80
	8-9	0,2	31	21112	136		12-13	2,3	230	13195	132
2-3	4-5	9,8	42	377	88		13-14	1,4	225	21112	131
	5-6	4,8	42	1508	172	7-8	9-10	3,9	115	377	13
	6-7	1,1	41	3770	101		10-11	4,2	120	1508	53
	7-8	0,6	39	7540	112		11-12	2,3	120	3770	72
	8-9	0,2	36	13195	73		12-13	2,0	120	7540	126
	9-10	0,2	32	21112	132		13-14	1,2	120	13195	132
3-4	5-6	14,6	40	377	138		14-15	1,2	260	21112	98
	6-7	2,8	40	1508	106	8-9	10-11	18,6	255	377	27
	7-8	1,2	41	3770	110		11-12	6,5	250	1508	39
	8-9	0,5	41	7540	92		12-13	4,0	245	3770	62
	9-10	0,2	42	13195	63		13-14	2,1	240	7540	66
	10-11	0,3	43	21112	147		14-15	1,5	240	13195	82
4-5	6-7	11,4	54	377	80		15-16	0,9	95	21112	200
	7-8	3,1	51	1508	92	9-10	11-12	16,1	165	377	37
	8-9	0,9	48	3770	71		12-13	5,1	170	1508	45
	9-10	0,2	45	7540	34		13-14	2,1	170	3770	47
	10-11	0,6	40	13195	198		14-15	1,2	170	7540	53
	11-12	0,5	38	21112	278		15-16	1,0	175	13195	75
5-6	7-8	7,9	59	377	50		16-17	0,1	190	21112	11
	8-9	2,3	63	1508	55	10-11	12-13	85	220	377	146
	9-10	0,7	66	3770	40		13-14	23,4	220	1508	160
	10-11	0,8	72	7540	84		14-15	12,0	220	3770	206
	11-12	1,1	76	13195	191		15-16	7,1	215	7540	249

PSEUDO-SEÇÃO 5 - ELETRORRESISTIVIDADE Folha 2/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	1,5	210	13195	94	15-16	20-21	3,4	83	7540	308
	17-18	0,4	205	21112	42		21-22	1,3	84	13195	204
11-12	13-14	67,7	125	377	204		22-23	1,0	85	21112	248
	14-15	26,3	125	1508	317	16-17	18-19	16,2	255	377	24
	15-16	14,5	130	3770	420		19-20	8,1	250	1508	48
	16-17	3	135	7540	168		20-21	8,3	250	3770	125
	17-18	0,8	135	13195	78		21-22	1,8	250	7540	54
	19-19	1,0	140	21112	151		22-23	1,2	245	13195	64
12-13	14-15	25,6	45	377	214		23-24	0,3	240	21112	26
	15-16	9,9	44	1508	339	17-18	19-20	49,8	280	377	67
	16-17	1,8	44	3770	154		20-21	30,1	285	1508	159
	17-18	0,5	43	7540	88		21-22	6,1	285	3770	81
	18-19	0,3	40	13195	99		22-23	3,3	285	7540	87
	19-20	0,4	40	21112	211		23-24	0,8	290	13195	36
13-14	15-16	31,9	53	377	227		24-25	1,5	290	21112	109
	16-17	4,5	54	1508	126	18-19	20-21	32	90	377	134
	17-18	0,8	55	3770	55		21-22	4,6	90	1508	77
	18-19	0,9	55	7540	123		22-23	2,3	90	3770	96
	19-20	0,6	55	13195	144		23-24	0,7	91	7540	58
	20-21	1,2	56	21112	452		24-25	0,7	91	13195	101
14-15	16-17	24	110	377	82		25-26	0,6	91	21112	139
	17-18	2,8	110	1508	38	19-20	21-22	7,3	31	377	88
	18-19	2,6	110	3770	89		22-23	2,5	33	1508	114
	19-20	2,7	110	7540	185		23-24	0,7	34	3770	78
	20-21	2,9	110	13195	348		24-25	0,7	35	7540	150
	21-22	1,2	110	21112	230		25-26	0,6	35	13195	226
15-16	16-17	6,6	79	377	31	20-21	22-23	8,3	32	377	98
	18-19	3,7	80	1508	70		23-24	1,5	30	1508	75
	19-20	3,0	81	3770	140		24-25	1,5	30	3770	188

PSEUDO-SEÇÃO 5 - ELETRORRESISTIVIDADE Folha 3/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
20-21	25-26	1,1	30	7540	276						
21-22	23-34	9,5	100	377	36						
	24-25	7,7	100	1508	116						
	25-26	5,6	100	3770	211						
21-23	24-25	57,2	265	377	81						
	25-26	22,5	245	1508	138						
23-24	25-26	133,8	330	377	153						

SEÇÃO 5- PERFIL ELETROMAGNÉTICO - EM34

ESPAÇAMENTO: 10 metros										
Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)	
0	0	-9	68	· · · /	, ,	639093	9086647	52	76	
1	10	-4	6			639100	9086639	5.5	8.4	
2	20	-5	7.6			639106	9086632	5,9	9.3	
3	30	-9	8.6			639113	9086624	6.3	10.4	
4	40	1	11			639119	9086617	6.8	11.5	
5	50	74	84			639126	9086609	72	12.6	
6	60	0	8			639132	9086602	7.7	14	
7	70	-3.5	8			639139	9086594	8.2	16	
8	80	9	7			639146	9086587	8.7	18.5	
9	90	10	10			639152	9086579	9.3	21.6	
10	100	-4.5	16			639159	9086572	9.9	25.7	
11	110	-9	25			639165	9086564	10.6	30.5	
12	120	-22.5	25			639172	9086557	11.3	35.7	
13	130	_9	24.5			639178	9086549	11.9	41 1	
14	140	-3	27			639185	9086542	12.3	46.1	
15	150	-18 5	30			639192	9086534	12,8	51 1	
16	160	-17	40			639198	9086526	13.2	56.2	
17	170	-38	36			639205	9086519	13.1	57.2	
18	180	-32	23			639211	9086511	12.7	55.3	
19	190	10	12			630218	9086504	12,7	51.9	
20	200	15	7			639225	9086496	12,1	45.9	
20	210	5	8			639231	9086489	10.6	37.9	
22	220	9	8			639238	9086481	9.9	30.6	
23	230	3	2.8			639244	9086474	9.2	24.3	
20	240	28	8			639251	9086466	8.6	18.9	
25	250	2,8	3			639257	9086459	8.2	15.6	
26	260	0.4	4			639264	9086451	7.8	12.8	
27	270	-2.6	3.6			639271	9086444	73	10.3	
28	280	2,0	5.2			639277	9086436	69	87	
20	200	2,0 8.4	6			639284	9086429	6.5	8	
30	300	7	8			630204	9086421	6.1	75	
31	310	3.8	13.5			630207	9086413	5.7	7,0	
32	320	-19	18			639303	9086406	53	7,1	
33	330	_11	24			630310	0086308	5 1	7,1	
34	340	10	28			630317	9086391	5	7,4	
35	350	5	26			639323	9086383	49	8.4	
36	360	-5	19			639330	9086376	4,9	9.1	
37	370	1	22			630336	0086368	4,5	9.8	
38	380	17	16			6303/3	0086361	4,9	3,0 10.3	
30	200	15	1/			630340	0086353	,5 5	10,5	
10	<u>⊿00</u>	-4,5 -1	12 5			630326	9000303	10	10,7	
	<u>410</u>	4 _1	16.5			630363	0086338	4 Q	10,9	
12	120	- I 0	18			630360	0086331	ت, ت 1 ۹	10,3	
42	<u>420</u> ⊿20	Q	10			630376	0086333	4,0	10,7	
4/	440	_1 5	10			630383	9086316	ч,0 Д Д	0,4 0.8	
45	450	-16	18			630380	9086308	4 2	9,0 9,1	
	100	10		1	1	000000	0000000	, <i>-</i> _	5,1	

46	460	-6	19,5		639395	9086300	3,9	8,2
47	470	-11	16		639402	9086293	3,7	7,4
48	480	-8,5	8		639409	9086285	3,5	6,7
49	490	7	5		639415	9086278	3,3	6
50	500	-6	2		639422	9086270	3,1	5,4
51	520	-4	2		639428	9086263	3,1	5

ANEXOS – Dados de eletrorresistividade e dados eletromagnéticos Geonics EM34-3

PSEUDO-SEÇÃO 6 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 6 AZIMUTE: 40º ARRANJO: Dipolo-dipolo (30/30 m)

COORD. INIC.: 638723E / 9087995N COORD. FIM: 639218E / 9088394N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	6,4	62	565	58	5-6	12-13	1,1	225	31667	155
	4-5	1,7	62	2261	62	6-7	8-9	18,5	320	565	32
	5-6	1,2	62	5655	109		9-10	8,1	320	2261	57
	6-7	0,7	62	11310	128		10-11	4,8	320	5655	85
	7-8	0,6	62	19792	192		11-12	3,3	320	11310	116
	8-9	0,2	63	31667	100		12-13	2,4	320	19792	148
2-3	4-5	17,8	200	565	50		13-14	1,7	320	31667	168
	5-6	7,6	190	2261	90	7-8	9-10	28	410	565	38
	6-7	3,5	185	5655	107		10-11	12,5	410	2261	69
	7-8	3,1	180	11310	195		11-12	8,2	410	5655	113
	8-9	1,1	170	19792	128		12-13	5,7	410	11310	157
	9-10	0,8	160	31667	158		13-14	4,1	410	19792	198
3-4	5-6	19,3	170	565	64		14-15	1,6	410	31667	124
	9-7	7,1	175	2261	92	8-9	10-11	31,3	660	565	27
	7-8	6,1	180	5655	192		11-12	13,6	660	2261	47
	8-9	2,1	185	11310	128		12-13	8	660	5655	68
	9-10	1,6	190	19792	167		13-14	5,2	660	11310	89
	10-11	1,0	190	31667	167		14-15	2,3	650	19792	70
4-5	6-7	15,3	215	565	40		15-16	1,5	650	31667	73
	7-8	8,8	210	2261	95	9-10	11-12	28,1	430	565	37
	8-9	2,6	205	5655	71		12-13	11,9	430	2261	63
	9-10	1,9	200	11310	107		13-14	6,8	440	5655	87
	10-11	1,2	195	19792	122		14-15	2,9	450	11310	73
	11-12	0,9	185	31667	154		15-16	21	450	19792	92
5-6	7-8	25,1	210	565	68		16-17	1,0	460	31667	69
	8-9	5,7	210	2261	61	10-11	12-13	29,4	360	565	46
	9-10	3,8	215	5655	100		13-14	11,4	360	2261	91
	10-11	2,5	220	11310	129		14-15	3,9	360	5655	61
	11-12	1,9	220	19792	171		15-16	2,3	360	11310	72

PSEUDO-SEÇÃO 6 - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	1,3	360	19792	71						-
	17-18	1,0	350	31667	90						
11-12	13-14	36,5	340	565	61						
	14-15	8,8	340	2261	58						
	15-16	4,3	34	5655	72						
	16-17	2,3	350	11310	74						
	17-18	1,8	350	19792	102						
	19-19	1,2	350	31667	108						
12-13	14-15	29,1	350	565	47						
	15-16	10,9	350	2261	70						
	16-17	4,6	340	5655	76						
	17-18	2,9	330	11310	99						
	18-19	2,6	330	19792	156						
	19-20	1,5	330	31667	144						
13-14	15-16	36,1	420	565	49						
	16-17	12,8	440	2261	66						
	17-18	7	450	5655	88						
	18-19	5,8	450	11310	146						
	19-20	3,5	460	19792	150						
14-15	16-17	25	450	565	31						
	17-18	9,7	420	2261	52						
	18-19	6,4	410	5655	88						
	19-20	3,4	400	11310	96						
15-16	17-18	6,4	105	565	34						
	18-19	3,6	110	2261	74						
	19-20	1,6	110	5655	82						
16-17	18-19	7,0	95	565	42						
	19-20	2	91	2261	50						
17-18	19-20	11,5	135	565	48						

PSEUDO-SEÇÃO 7 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 7 AZIMUTE: 40º ARRANJO: Dipolo-Dipolo (30/30 m)

COORD. INIC.: 638365E / 9087590N COORD FIM: 638592E / 9087798N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k
1-2	3-4	2,0	200	565	6	5-6	12-13	1,2	215	31667
	4-5	1,5	210	2261	16	6-7	8-9	6,1	100	565
	5-6	1,6	210	5655	43		9-10	2,4	100	2261
	6-7	0,6	215	11310	32		10-11	2,4	105	5655
	7-8	0,4	215	19792	37		11-12	1,6	110	11310
	8-9	0,2	215	31667	29		12-13	0,8	110	19792
2-3	4-5	7,9	280	565	16		13-14	0,6	115	31667
	5-6	4,4	280	2261	36	7-8	9-10	5,9	195	565
	6-7	3,5	285	5655	69		10-11	4,0	195	2261
	7-8	1,2	285	11310	48		11-12	2,2	190	5655
	8-9	0,8	290	19792	55		12-13	1,1	190	11310
	9-10	0,4	295	31667	43		13-14	0,6	185	19792
3-4	5-6	5,4	100	565	30		14-15	0,2	180	31667
	6-7	3,1	100	2261	70	8-9	10-11	6,5	130	565
	7-8	0,8	100	5655	45		11-12	2,6	130	2261
	8-9	0,6	100	11310	68		12-13	1,3	130	5655
	9-10	0,4	100	19792	79		13-14	0,7	130	11310
	10-11	0,2	95	31667	67		14-15	0,3	135	19792
4-5	6-7	8,7	140	565	35		15-16	0,2	135	31667
	7-8	2,0	140	2261	32	9-10	11-12	12,1	215	565
	8-9	1,1	140	5655	44		12-13	3,6	200	2261
	9-10	0,5	140	11310	40		13-14	1,8	200	5655
	10-11	0,7	145	19792	95		14-15	0,8	195	11310
	11-12	0,3	145	31667	66		15-16	0,4	195	19792
5-6	7-8	14,4	225	565	36	10-11	12-13	3,4	41	565
	8-9	5,5	225	2261	55		13-14	1,3	41	2261
	9-10	2,8	220	5655	72		14-15	0,5	42	5655
	10-11	2,7	215	11310	142		15-16	0,2	43	11310
	11-12	2,0	215	19792	184	11-12	13-14	5,5	45	565

PSEUDO-SEÇÃO 7 - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
11-12	13-14	5,5	45	565	69						-
	14-15	1,5	45	2261	75						
	15-16	0,8	43	5655	105						
12-13	14-15	13	210	565	35						
	15-16	6	215	2261	63						
13-14	15-16	5,2	90	565	32						

PSEUDO-SEÇÃO 8 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 8 AZIMUTE: 165º ARRANJO: Dipolo-Dipolo (30/30m)

COORD. INIC.: 638505E / 9087277N COORD. FIM: 638654E / 9086824N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm m)
1-2	3-4	6	68	565	50	5-6	12-13	3,3	800	31667	131
	4-5	10,4	170	2261	138	6-7	8-9	17,5	400	565	25
	5-6	4,7	170	5655	156		9-10	6,3	400	2261	36
	6-7	1,4	175	11310	90		10-11	3,2	400	5655	45
	7-8	0,8	180	19792	88		11-12	2,5	400	11310	71
	8-9	0,8	180	31667	141		12-13	1,5	400	19792	74
2-3	4-5	19,5	270	565	41		13-14	0,7	400	31667	55
	5-6	6,4	280	2261	52	7-8	9-10	18,2	400	565	26
	6-7	1,5	285	5655	29		10-11	6,1	400	2261	34
	7-8	0,7	270	11310	29		11-12	4,1	410	5655	57
	8-9	0,7	260	19792	85		12-13	2,1	410	11310	58
	9-10	0,6	260	31667	73		13-14	1,1	410	19792	53
3-4	5-6	76	600	565	71		14-15	1,0	410	31667	77
	6-7	13,5	610	2261	50	8-9	10-11	8,4	135	565	35
	7-8	5,2	630	5655	47		11-12	3,9	135	2261	65
	8-9	3,9	640	11310	69		12-13	1,7	135	5655	71
	9-10	2,9	650	19792	88		13-14	1,0	135	11310	84
	10-11	2,3	660	31667	110		14-15	0,7	130	19792	107
4-5	6-7	43	650	565	37		15-16	0,4	130	31667	97
	7-8	12	650	2261	42	9-10	11-12	18,6	200	565	53
	8-9	7,2	640	5655	64		12-13	6,0	205	2261	66
	9-10	4,8	640	11310	85		13-14	2,5	205	5655	69
	10-11	3,6	630	19792	113		14-15	1,6	205	11310	88
	11-12	3,3	620	31667	169		15-16	1,1	205	19792	106
5-6	7-8	47	800	565	33		16-17	0,5	205	31667	77
	8-9	18	800	2261	51	10-11	12-13	17,8	155	565	65
	9-10	9,3	800	5655	66		13-14	4,9	155	2261	71
	10-11	6	800	11310	85		14-15	2,8	155	5655	102
	11-12	5,3	800	19792	131		15-16	1,6	155	11310	117

PSEUDO-SEÇÃO 8 - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	1617	0,6	155	19792	77						
	17-18	0,2	155	31667	41						
11-12	13-14	9,5	90	565	60						
	14-15	4,4	95	2261	105						
	15-16	2,4	100	5655	136						
	16-17	1,1	100	11310	124						
	17-18	0,6	100	19792	119						
12-13	14-15	20,2	210	565	54						
	15-16	8,0	205	2261	88						
	16-17	2,7	200	5655	76						
	17-18	1,0	200	11310	57						
13-14	15-16	12,3	135	565	51						
	16-17	3,1	135	2261	52						
	17-18	1,0	189	5655	30						
14-15	16-17	3,1	50	565	35						
	17-18	0,9	50	2261	41						
15-16	17-18	1,5	29	5655	29						

SEÇÃO 8- PERFIL ELETROMAGNÉTICO - EM34

ESPAÇAMENTO: 10 metros

Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)
0	0	5.2	19	4	8	638505	9087277	13.1	18.1
1	10	2.8	23.5	1	12	638508	9087268	13.9	21.6
2	20	-8	34	-4	13	638511	9087258	14.7	25.5
3	30	-6	30	-7	18	638514	9087249	15.4	29.7
4	40	10	36	-7	14	638517	9087239	16,2	34,4
5	50	10	36	-9	17	638521	9087230	16,9	39
6	60	-19	40	-5	16	638524	9087220	17,7	43,6
7	70	-12	42	8	18	638527	9087211	18,3	48
8	80	28	42	19	22	638530	9087201	19	52,1
9	90	27	30	27	24	638533	9087192	19,7	56,3
10	100	17	30	25	22	638536	9087182	20,5	60,4
11	110	14	29	16	17	638539	9087173	21,4	64,3
12	120	8	23	23	14	638542	9087163	22,2	68,1
13	130	30	22	15	14	638546	9087154	23,2	71,8
14	140	30	23,5	12	17	638549	9087144	24	75
15	150	18	30	24	18	638552	9087135	24,9	77,8
16	160	34	34	3	24	638555	9087125	25,7	80,7
17	170	25	46	5	25	638558	9087116	26,1	82,5
18	180	6	50	-1,5	27	638561	9087106	26,5	84,3
19	190	-3,4	52	-4	26	638564	9087097	26,6	86
20	200	18	46	-3	25	638567	9087087	26,4	86,9
21	210	23	44	-9	24	638571	9087078	26,1	87,2
22	220	-1	42	5	19	638574	9087068	25,5	85,9
23	230	9	32	6	20	638577	9087059	24,8	83,8
24	240	26	31	10	20	638580	9087049	24	81,2
25	250	14	29	2	18	638583	9087040	23,1	77,1
26	260	-1,4	30	-4	15	638586	9087030	22,1	72,7
27	270	2,6	26	-2	14	638589	9087021	21,1	68,1
28	280	14	24	2,5	13	638592	9087011	20,2	63,5
29	290	13,5	21	7	14,5	638596	9087002	19,3	58,9
30	300	13	20	8	14	638599	9086992	18,6	56,1
31	310	9	19,5	11	13	638602	9086983	18	53,9
32	320	13	19	8	12,5	638605	9086973	17,5	52
33	330	8,5	19	7	13,5	638608	9086964	17,1	50,8
34	340	11	20	3	13	638611	9086954	16,7	49,7
35	350	9	21	-2	12	638614	9086945	16,4	48,7
36	360	0	24	-1	12	638617	9086935	16,1	47,9
37	370	6,2	27	-4	13	638621	9086926	15,8	47,3
38	380	0,5	24	-3	14	638624	9086916	15,7	46,9
39	390	1,8	25	1	12,5	638627	9086907	15,6	46,8
40	400	1,3	22	0	13	638630	9086897	15,5	47,1
41	410	0	21	2	12,5	638633	9086888	15,6	47,5
42	420	1,4	19	1,5	12,5	638636	9086878	15,7	47,6
43	430	7	20,5	1	11,5	638639	9086869	15,8	47
44	440	7	20	1	12	638642	9086859	15,9	45,6
45	450	3	22	-5	12	638646	9086850	16	43,7
46	460	-2	24	-1	12	638649	9086840	15,8	40,3

PSEUDO-SEÇÃO 9 - ELETRORRESISTIVIDADE Folha 1/3

SEÇÃO: 9 AZIMUTE: 170º ARRANJO: Dipolo-Dipolo (30/ 30m)

COORD. INIC.: 638761E / 9087938N COORD. FIM: 638935E / 9087198N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k
1-2	3-4	4,3	74	565	33	5-6	12-13	0,8	160	31667
	4-5	7,8	380	2261	46	6-7	8-9	18,5	255	565
	5-6	4,1	380	5655	61		9-10	8	270	2261
	6-7	2,5	390	11310	72		10-11	4,3	270	5655
	7-8	1,3	390	19792	66		11-12	5	260	11310
	8-9	1,0	390	31667	81		12-13	3,4	255	19792
2-3	4-5	46	690	565	38		13-14	1,9	240	31667
	5-6	16,6	690	2261	54	7-8	9-10	11,3	150	565
	6-7	9,2	680	5655	77		10-11	5,1	160	2261
	7-8	4,5	680	11310	75		11-12	5,5	175	5655
	8-9	2,4	676	19792	71		12-13	4,5	185	11310
	9-10	2	630	31667	100		13-14	2,6	190	19792
3-4	5-6	40,5	750	565	30		14-15	1,5	195	31667
	6-7	13,3	790	2261	38	8-9	10-11	9,4	130	565
	7-8	5,4	800	5655	38		11-12	6,3	125	2261
	8-9	2,6	800	11310	37		12-13	4,4	125	5655
	9-10	2,0	800	19792	49		13-14	2,3	120	11310
	10-11	0,3	800	31667	12		14-15	1,8	120	19792
4-5	6-7	22,7	260	565	49		15-16	0,4	115	31667
	7-8	6,2	260	2261	54	9-10	11-12	67,4	400	565
	8-9	2,2	255	5655	49		12-13	34	40	2261
	9-10	1,5	250	11310	68		13-14	17	400	5655
	10-11	1,0	240	19792	82		14-15	11,8	400	11310
	11-12	1,0	220	31667	144		15-16	4,3	400	19792
5-6	7-8	9,5	130	565	41		16-17	3	400	31667
	8-9	2,6	135	2261	44	10-11	12-13	39,8	165	565
	9-10	1,5	150	5655	57		13-14	12	162	2261
	10-11	0,9	150	11310	68		14-15	7,5	165	5655
	11-12	1,3	155	19792	166		15-16	2,6	165	11310

PSEUDO-SEÇÃO 9 - ELETRORRESISTIVIDADE Folha 2/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	1,9	165	19792	228	15-16	20-21	0,8	130	11310	70
	17-18	1,0	165	31667	192		21-22	0,4	135	19792	59
11-12	13-14	36	120	565	170		22-23	0,3	135	31667	70
	14-15	7,9	120	2261	149	16-17	18-19	23	390	565	33
	15-16	5,7	120	5655	269		19-20	6,5	390	2261	38
	16-17	4,0	120	11310	377		20-21	3,4	390	5655	49
	17-18	2,2	120	19792	363		21-22	2	390	11310	58
	19-19	1,1	120	31667	290		22-23	1,2	390	19792	61
12-13	14-15	10,8	28	565	218		23-24	1,7	390	31667	138
	15-16	2,6	27	2261	217	17-18	19-20	11,2	300	565	21
	16-17	1,6	27	5655	341		20-21	5	320	2261	35
	17-18	0,8	27	11310	341		21-22	2,3	330	5655	39
	18-19	0,5	27	19792	373		22-23	1,5	330	11310	51
	19-20	0,3	27	31667	352		23-24	1,6	340	19792	93
13-14	15-16	4,3	26	565	94		24-25	2,2	350	31667	199
	16-17	2,1	27	2261	176	18-19	20-21	6	150	565	23
	17-18	0,9	28	5655	185		21-22	2,2	150	2261	33
	18-19	0,5	28	11310	202		22-23	1,1	150	5655	41
	19-20	0,4	29	19792	273		23-24	1,0	150	11310	75
	20-21	0,4	29	31667	438		24-25	1,5	150	19792	198
14-15	16-17	6	50	565	68		25-26	0,9	140	31667	204
	17-18	2	48	2261	94	19-20	21-22	5,5	170	565	18
	18-19	1,0	47	5655	120		22-23	2,1	170	2261	28
	19-20	0,5	46	11310	123		23-24	1,8	175	5655	58
	20-21	0,4	45	19792	176		24-25	2,5	180	11310	157
	21-22	0,3	45	31667	211		25-26	1,6	180	19792	176
15-16	16-17	3,8	67	565	32	20-21	22-23	14,1	520	565	15
	18-19	1,5	67	2261	51		23-24	8,8	530	2261	37
	19-20	0,6	68	5655	50		24-25	10,4	530	5655	111

PSEUDO-SEÇÃO 9 - ELETRORRESISTIVIDADE Folha 3/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)		AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
20-21	24-25	6,5	540	11310	136							
21-22	23-24	21	570	565	21							
	24-25	17,6	570	2261	70							
	25-26	9,3	580	5655	91							
22-23	24-25	172	2250	565	43							
	25-26	66	2200	2261	68							
23-24	25-26	10,5	250	565	23							
						_						
						_						
						_						
						_						

PSEUDO-SEÇÃO 10 - ELETRORRESISTIVIDADE Folha 1/3

SEÇÃO: 10 AZIMUTE: 85º ARRANJO: Dipolo-Dipolo (30/30 m)

COORD. INIC.: 638854E / 9088061N COORD. FIM: 639744E / 9088144N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	5	56	565	50	5-6	12-13	0,9	140	31667	204
	4-5	2,2	58	2261	86	6-7	8-9	8	160	565	28
	5-6	1,7	59	5655	163		9-10	4,8	155	2261	71
	6-7	1,0	60	11310	188		10-11	3	155	5655	109
	7-8	0,3	61	19792	95		11-12	1,5	150	11310	113
	8-9	0,5	62	31667	255		12-13	1,0	145	19792	136
2-3	4-5	9	100	565	51		13-14	0,4	125	31667	101
	5-6	5	100	2261	113	7-8	9-10	6	135	565	25
	6-7	1,9	100	5655	107		10-11	3	140	2261	48
	7-8	0,7	100	11310	79		11-12	1,3	145	5655	51
	8-9	0,4	100	19792	79		12-13	0,8	145	11310	62
	9-10	0,3	95	31667	100		13-14	0,4	150	19792	53
3-4	5-6	26	220	565	67		14-15	0,3	155	31667	61
	6-7	7,3	225	2261	73	8-9	10-11	16,4	225	565	41
	7-8	2	230	5655	49		11-12	4,8	220	2261	49
	8-9	1,3	240	11310	61		12-13	2,7	215	5655	71
	9-10	1,3	240	19792	107		13-14	1,4	210	11310	75
	10-11	1	250	31667	127		14-15	0,9	200	19792	89
4-5	6-7	14,2	135	565	59		15-16	0,5	190	31667	83
	7-8	2,5	135	2261	42	9-10	11-12	9,6	130	565	42
	8-9	1,7	135	5655	71		12-13	4,3	135	2261	72
	9-10	1,4	130	11310	122		13-14	1,9	140	5655	77
	10-11	1,0	130	19792	152		14-15	1,0	140	11310	81
	11-12	0,6	125	31667	152		15-16	1,0	150	19792	132
5-6	7-8	8	130	565	35		16-17	0,9	160	31667	178
	8-9	4,4	135	2261	74	10-11	12-13	23	250	565	52
	9-10	3,3	135	5655	138		13-14	7,2	240	2261	68
	10-11	2	135	11310	168		14-15	3,9	230	5655	96
	11-12	1,4	140	19792	198		15-16	2,4	210	11310	129

PSEUDO-SEÇÃO 10 - ELETRORRESISTIVIDADE Folha 2/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	1,3	195	19792	132	15-16	20-21	1,5	130	11310	130
	17-18	1,2	175	31667	217		21-22	0,7	130	19792	106
11-12	13-14	11,5	200	565	33		22-23	1,0	550	31667	58
	14-15	5	205	2261	55	16-17	18-19	50	540	565	52
	15-16	2,8	210	5655	75		19-20	19	540	2261	80
	16-17	1,7	215	11310	89		20-21	10	530	5655	107
	17-18	1,4	215	19792	129		21-22	5	530	11310	107
	19-19	1,0	220	31667	144		22-23	2,2	530	19792	82
12-13	14-15	16	260	565	35		23-24	1,4	520	31667	85
	15-16	6,8	255	2261	60	17-18	19-20	64	530	565	68
	16-17	3,5	250	5655	79		20-21	24	540	2261	100
	17-18	2,5	245	11310	115		21-22	10	550	5655	103
	18-19	1,3	240	19792	107		22-23	5	550	11310	103
	19-20	0,9	235	31667	121		23-24	3	550	19792	108
13-14	15-16	15	220	565	38		24-25	3,5	560	31667	198
	16-17	6	225	2261	60	18-19	20-21	62	720	565	48
	17-18	3,4	225	5655	85		21-22	16	700	2261	52
	18-19	1,8	230	11310	89		22-23	6,8	670	5655	57
	19-20	1,2	230	19792	103		23-24	3,6	640	11310	64
	20-21	0,8	230	31667	110		24-25	3,6	610	19792	117
14-15	16-17	18,5	165	565	63		25-26	3,4	550	31667	196
	17-18	7	160	2261	99	19-20	21-22	44	510	565	49
	18-19	3	160	5655	106		22-23	14	530	2261	60
	19-20	1,7	150	11310	128		23-24	6	540	5655	62
	20-21	0,8	145	19792	109		24-25	5,7	550	11310	117
	21-22	0,5	135	31667	117		25-26	5,7	560	19792	201
15-16	17-18	14	125	565	63		26-27	2,2	580	31667	120
	18-19	4,7	125	2261	85	20-21	22-23	28	330	565	48
	19-20	2,4	125	5655	109		23-24	8	330	2261	55

SEÇÃO 10 - ELETRORRESISTIVIDADE Folha 3/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
20-21	24-25	6	320	5655	106	25-26	29-30	12,5	240	5655	295
	25-26	5,3	310	11310	193		30-31	6,2	240	11310	292
	26-27	1,7	300	19792	112	26-27	28-29	16,4	165	565	56
	27-28	1,3	300	31667	137		29-30	8,5	160	2261	120
21-22	23-24	13,8	240	565	32		30-31	3,5	155	5655	128
	24-25	8	235	2261	77	27-28	29-30	15,8	105	565	85
	25-26	5,8	235	5655	140		30-31	4,9	110	2261	100
	26-27	1,9	235	11310	91	28-29	30-31	12,4	140	565	50
	27-28	1,5	235	19792	126						
	28-29	1,0	235	31667	135						
22-23	24-25	12,1	155	565	44						
	25-26	6,8	155	2261	99						
	26-27	1,9	155	5655	73						
	27-28	1,4	155	11310	102						
	28-29	0,8	155	19792	102						
	29-30	0,6	150	31667	127						
23-24	25-26	11	90	565	69						
	26-27	2,1	90	2261	53						
	27-28	1,4	90	5655	88						
	28-29	0,7	90	11310	88						
	29-30	0,7	90	19792	154						
	30-31	0,5	90	31667	176						
24-25	26-27	22,1	170	565	74						
	27-28	9,2	170	2261	122						
	28-29	3,7	170	5655	123						
	29-30	3,4	165	11310	233						
	30-31	1,8	165	19792	216						
25-26	27-28	52	230	565	129						
	28-29	16	235	2261	153						

PSEUDO-SEÇÃO 11 - ELETRORRESISTIVIDADE Folha 1/1

SEÇÃO: 11 AZIMUTE: 90º ARRANJO: Dipolo-Dipolo (30/30 m)

COORD. INIC.: 638397E / 9087637N COORD FIM: 638757E / 9087621N DATUM: SAD69

ρа

(Ohm.

m)

k

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)
1-2	3-4	14,5	450	565	18	5-6	12-13	3	650
	4-5	5,6	450	2261	28	6-7	8-9	10	150
	5-6	3	460	5655	37		9-10	3	150
	6-7	2,5	460	11310	61		10-11	2,5	150
	7-8	2	470	19792	84		11-12	1,6	150
	8-9	1	470	31667	67		12-13	1	150
2-3	4-5	29	750	565	22	7-8	9-10	10	145
	5-6	11	740	2261	34		10-11	6	150
	6-7	6,8	740	5655	52		11-12	3	150
	7-8	5,5	740	11310	84		12-13	1,8	150
	8-9	3,2	740	19792	86	8-9	10-11	17	165
	9-10	2,2	670	31667	104		11-12	7	165
3-4	5-6	21	460	565	26		12-13	3,3	165
	6-7	10	500	2261	45	9-10	11-12	27,1	195
	7-8	7	510	5655	78		12-13	9,8	220
	8-9	4	510	11310	89	10-11	12-13	25	120
	9-10	2,4	510	19792	93				
	10-11	2,2	510	31667	137				
4-5	6-7	34	700	565	27				
	7-8	20	700	2261	65				
	8-9	8,8	700	5655	71				
	9-10	5	690	11310	82				
	10-11	4,4	690	19792	126				
	11-12	2,7	670	31667	128				
5-6	7-8	39	640	565	34				
	8-9	14	640	2261	49				
	9-10	7	640	5655	62				
	10-11	6	640	11310	106				
	11-12	4	640	19792	124				

PSEUDO-SEÇÃO 12A - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 12A AZIMUTE: 185º ARRANJO: Dipolo-Dipolo (30/30 m)

COORD. INIC.: 638567E / 9087868N COORD FIM: 638529E / 9087320N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	2,7	67	565	23	5-6	12-13	0,3	160	31667	59
	4-5	1,0	74	2261	31	6-7	8-9	13,3	235	565	32
	5-6	0,6	76	5655	45		9-10	3,1	235	2261	30
	6-7	0,3	80	11310	42		10-11	2,1	235	5655	51
	7-8	0,4	83	19792	95		11-12	1,3	235	11310	63
	8-9	0,1	86	31667	37		12-13	1,1	235	19792	93
2-3	4-5	1,8	60	565	17		13-14	0,8	230	31667	110
	5-6	0,7	59	2261	27	7-8	9-10	2,7	53	565	29
	6-7	0,3	57	5655	30		10-11	1,4	53	2261	60
	7-8	0,1	55	11310	20		11-12	0,8	53	5655	85
	8-9	0,2	53	19792	75		12-13	1,2	105	11310	129
	9-10	0,1	49	31667	64		13-14	0,8	110	19792	144
3-4	5-6	2,4	39	565	35		14-15	0,7	110	31667	202
	6-7	0,6	40	2261	34	8-9	10-11	8,1	140	565	33
	7-8	0,5	40	5655	71		11-12	3,5	140	2261	57
	8-9	0,3	41	11310	83		12-13	2,3	140	5655	93
	9-10	0,2	42	19792	94		13-14	1,4	140	11310	113
	10-11	0,2	43	31667	147		14-15	1,1	140	19792	156
4-5	6-7	5,6	150	565	22		15-16	0,5	140	31667	113
	7-8	1,4	59	2261	54	9-10	11-12	6,8	165	565	23
	8-9	0,8	58	5655	78		12-13	3,4	165	2261	47
	9-10	0,2	57	11310	40		13-14	1,8	165	5655	62
	10-11	0,4	56	19792	141		14-15	1,4	165	11310	96
	11-12	0,1	54	31667	58		15-16	0,7	165	19792	84
5-6	7-8	7,4	155	565	27		16-17	0,3	160	31667	59
	8-9	2,8	155	2261	41	10-11	12-13	7,0	110	565	36
	9-10	1,0	155	5655	36		13-14	2,5	110	2261	51
	10-11	0,8	155	11310	58		14-15	1,7	110	5655	87
	11-12	0,6	155	19792	77		15-16	0,8	110	11310	82

PSEUDO-SEÇÃO 12A - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	0,4	110	11310	72						
	17-18	0,2	110	19792	58						
11-12	13-14	9,6	94	565	58						
	14-15	4,6	96	2261	108						
	15-16	2,0	96	5655	118						
	16-17	1,1	97	11310	128						
	17-18	0,7	97	19792	143						
	18-19	0,8	97	31667	261						
12-13	14-15	15,2	110	565	78						
	15-16	5,3	110	2261	109						
	16-17	2,3	105	5655	124						
	17-18	1,3	105	11310	140						
	18-19	1,7	105	19792	320						
13-14	15-16	9,6	90	565	60						
	16-17	3,3	91	2261	82						
	17-18	2,1	93	5655	128						
	18-19	2,0	94	11310	241						
14-15	16-17	9,1	100	565	52						
	17-18	3,8	100	2261	86						
	18-19	3,5	100	5655	198						
15-16	17-18	8,0	110	565	41						
	18-19	3,2	110	2261	107						
16-17	18-19	11,1	125	565	50						

PSEUDO-SEÇÃO 12B - ELETRORRESISTIVIDADE Folha 1/4

SEÇÃO: 12B AZIMUTE: 185º ARRANJO: Dipolo-Dipolo (15/15m)

COORD. INIC. : 638567E / 9087868N COORD. FIM: 638529E / 9087320N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)		AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	6,5	160	283	11		5-6	12-13	2,7	700	15834	61
	4-5	2,9	185	1131	18		6-7	8-9	28,6	470	283	17
	5-6	1,1	83	2827	37			9-10	17,3	630	1131	31
	6-7	0,6	78	5655	43			10-11	6,5	590	2827	31
	7-8	1,0	240	9896	41			11-12	3,5	660	5655	30
	8-9	2	560	15834	57			12-13	3,2	700	9896	45
2-3	4-5	5,1	180	283	8			13-14	2	510	15834	62
	5-6	1,4	84	1131	19		7-8	9-10	41	640	283	18
	6-7	0,3	78	2827	11			10-11	11,2	590	1131	23
	7-8	1	250	5655	23			11-12	5,1	660	2827	22
	8-9	1,3	550	9896	23			12-13	4,5	690	5655	37
	9-10	1,4	610	15834	36			13-14	3,5	510	9896	68
3-4	5-6	3,7	85	283	12			14-15	1,8	450	15834	63
	6-7	1	77	1131	15		8-9	10-11	25	480	283	15
	7-8	1,3	250	2827	15			11-12	8,6	660	1131	15
	8-9	1,9	540	5655	20			12-13	6,6	680	2827	27
	9-10	1,7	620	9896	27			13-14	4,8	520	5655	52
	10-11	0,9	600	15834	24			14-15	2,3	440	9896	52
4-5	6-7	3,4	77	283	12			15-16	2,1	420	15834	79
	7-8	3,2	250	1131	14		9-10	11-12	20	660	283	9
	8-9	4	540	2827	21			12-13	11	680	1131	18
	9-10	3,1	620	5655	28			13-14	7	520	2827	38
	10-11	1,4	600	9896	23			14-15	2,7	440	5655	35
	11-12	0,6	660	15834	14			15-16	2,8	420	9896	66
5-6	7-8	17,3	250	283	20			16-17	1,6	570	15834	44
	8-9	15	530	1131	32		10-11	12-13	24	650	283	10
	9-10	10,6	630	2827	48			13-14	10	520	1131	22
	10-11	4,5	590	5655	43]		14-15	3,4	440	2827	22
	11-12	2,6	660	9896	39			15-16	2,9	430	5655	38

PSEUDO-SEÇÃO 12B - ELETRORRESISTIVIDADE Folha 2/4

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	1,5	570	9896	26	15-16	20-21	2,4	220	5655	62
	17-18	1,2	680	15834	28		21-22	2,2	370	9896	59
11-12	13-14	36,2	520	283	20		22-23	3,8	500	15834	120
	14-15	7,9	440	1131	20	16-17	18-19	12,4	340	283	10
	15-16	5,3	430	2827	35		19-20	5,9	320	1131	21
	16-17	2,2	570	5655	22		20-21	1,9	220	2827	24
	17-18	1,8	680	9896	26		21-22	1,8	370	5655	27
	19-19	0,6	340	15834	28		22-23	2,5	500	9896	49
12-13	14-15	26,3	410	283	18		23-24	1,6	410	15834	62
	15-16	13	430	1131	34	17-18	19-20	15,2	320	283	13
	16-17	5	560	2827	25		20-21	3,7	220	1131	19
	17-18	3,5	650	5655	29		21-22	2,8	370	2827	21
	18-19	1,1	340	9896	32		22-23	3,7	500	5655	42
	19-20	0,9	320	15834	45		23-24	2,2	410	9896	43
13-14	15-16	50,4	430	283	33		24-25	1,3	350	15834	59
	16-17	14,2	560	1131	29	18-19	20-21	9,7	220	283	12
	17-18	8,4	680	2827	35		21-22	5,3	370	1131	16
	18-19	2,7	340	5655	45		22-23	5,7	500	2827	32
	19-20	2,1	320	9896	65		23-24	3,2	420	5655	43
	20-21	0,8	220	15834	58		24-25	1,8	350	9896	51
14-15	16-17	33,8	550	283	17		25-26	1,9	480	15834	63
	17-18	13,8	680	1131	23	19-20	21-22	16,7	370	283	12
	18-19	3,4	340	2827	28		22-23	12,6	500	1131	28
	19-20	2,8	320	5655	49		23-24	6,5	420	2827	44
	20-21	0,9	220	9896	40		24-25	3	350	5655	48
	21-22	1,1	370	15834	47		25-26	3	480	9896	62
15-16	17-18	49	680	283	20		26-27	1,4	300	15834	74
	18-19	9,4	340	1131	31	20-21	22-23	33	500	283	18
	19-20	6,2	320	2827	54		23-24	12,2	420	1131	44

PSEUDO-SEÇÃO 12B - ELETRORRESISTIVIDADE Folha 3/4

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
20-21	24-25	4,5	340	2827	37	25-26	28-29	26	480	1131	61
	25-26	4,1	490	5655	47		29-30	6,9	270	2827	72
	26-27	1,6	300	9896	53		30-31	2,5	180	5655	79
	27-28	1,3	225	15834	72		31-32	2	205	9896	97
21-22	23-24	43	420	283	29		32-33	0,8	170	15834	75
	24-25	11,2	340	1131	37	26-27	28-29	6,7	470	283	40
	25-26	8,8	490	2827	51		29-30	12,2	270	1131	51
	26-27	3,5	300	5655	66		30-31	3,7	175	2827	60
	27-28	2,4	280	9896	85		31-32	2,9	205	5655	80
	28-29	3,4	490	15834	110		32-33	1,2	170	9896	70
22-23	24-25	41	330	283	35		33-34	0,8	165	15834	77
	25-26	23,7	490	1131	55	27-28	29-30	34	270	283	36
	26-27	8,2	300	2827	77		30-31	6,8	170	1131	45
	27-28	5,4	280	5655	109		31-32	4,7	205	2827	65
	28-29	7	430	9896	143		32-33	1,7	170	5655	57
	29-30	2,1	270	15834	123		33-34	1	165	9896	60
23-24	25-26	83	490	283	48		34-35	1	110	15834	144
	26-27	15,4	295	1131	59	28-29	30-31	17,6	160	283	31
	27-28	9,3	285	2827	92		31-32	8,8	210	1131	47
	28-29	11,3	490	5655	130		32-33	2,8	165	2827	48
	29-30	3,6	270	9896	133		33-34	1,7	165	5655	58
	30-31	1,4	180	15834	123		34-35	1,4	110	9896	126
24-25	26-27	32	265	283	34		35-36	1,6	160	15834	158
	27-28	14,3	285	1131	57	29-30	31-32	21	210	283	28
	28-29	15,7	490	2827	91		32-33	4	160	1131	28
	29-30	4,5	270	5655	94		33-34	2,2	165	2827	38
	30-31	1,8	180	9896	99		34-35	1,7	110	5655	87
	31-32	1,5	205	15834	116		35-36	1,7	165	9896	102
25-26	27-28	36	285	283	36		36-37	1,5	140	15834	170
PSEUDO-SEÇÃO 12B - ELETRORRESISTIVIDADE Folha 4/4

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
30-31	32-33	10,5	160	283	19						
	33-34	3,8	170	1131	25						
	34-35	2,4	105	2827	65						
	35-36	2,4	170	5655	80						
	36-37	1,5	140	9896	106						
31-32	33-34	9	170	283	15						
	34-35	4,1	105	1131	44						
	35-36	3,9	175	2827	63						
	36-37	2,3	135	5655	96						
32-33	34-35	7	105	283	18						
	3536	5,1	180	1131	32						
	36-37	2,3	135	2827	48						
33-34	35-36	16,7	180	283	26						
	36-37	5,3	135	1131	44						
34-35	36-37	27	135	283	57						

PSEUDO-SEÇÃO 13 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 13 AZIMUTE: 270º ARRANJO: Dipolo-Dipolo (20/20 m)

COORD. INIC.: 641068E / 9090699N COORD. FIM: 640674E / 9090668N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	23,8	150	377	60	5-6	12-13	0,4	155	21112	54
	4-5	4,4	150	1508	44	6-7	8-9	25	215	377	43
	5-6	1,4	150	3770	35		9-10	5,5	210	1508	39
	6-7	1,2	150	7540	60		10-11	2,7	195	3770	52
	7-8	0,9	155	13195	77		11-12	1,5	180	7540	63
	8-9	1,0	260	21112	81		12-13	0,9	175	13195	68
2-3	4-5	127	470	377	102		13-14	0,8	165	21112	102
	5-6	8,6	460	1508	28	7-8	9-10	13,4	175	377	29
	6-7	6,6	460	3770	54		10-11	4,8	200	1508	36
	7-8	3,9	450	7540	65		11-12	2,6	205	3770	48
	8-9	4,5	450	13195	131		12-13	1,8	215	7540	63
	9-10	2,7	440	21112	130		13-14	1,2	220	13195	72
3-4	5-6	9,0	210	377	16		14-15	0,3	235	21112	27
	6-7	4,2	220	1508	29	8-9	10-11	3,7	47	377	30
	7-8	2,4	230	3770	39		11-12	1,3	46	1508	43
	8-9	1,5	240	7540	47		12-13	0,8	45	3770	67
	9-10	2,8	250	13195	148		13-14	0,5	43	7540	88
	10-11	0,8	250	21112	66		14-15	0,3	41	13195	96
4-5	6-7	13,6	220	377	23		15-16	0,1	40	21112	53
	7-8	4,1	215	1508	29	9-10	11-12	2,5	37	377	25
	8-9	3,0	210	3770	54		12-13	1,0	38	1508	40
	9-10	2,3	200	7540	87		13-14	0,4	40	3770	38
	10-11	1,0	195	13195	68		14-15	0,2	40	7540	38
	11-12	0,6	190	21112	67		15-16	0,1	41	13195	32
5-6	7-8	10,7	135	377	30		16-17	0,1	42	21112	50
	8-9	3,0	145	1508	31	10-11	12-13	7,8	97	377	30
	9-10	1,2	145	3770	31		13-14	2,0	94	1508	32
	10-11	0,8	150	7540	40		14-15	0,7	92	3770	28
	11-12	0,5	150	13195	44		15-16	0,7	91	7540	58

PSEUDO-SEÇÃO 13 - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	0,4	89	13195	59	15-16	20-21	1,4	270	7540	39
	17-18	0,2	87	21112	49		20-21	0,6	280	13195	28
11-12	13-14	3,7	60	377	23	16-17	18-19	11,3	195	377	22
	14-15	1,5	115	1508	20		19-20	4,1	190	1508	33
	15-16	0,9	120	3770	28		20-21	1,8	185	3770	37
	16-17	0,7	120	7540	44		21-22	1,2	180	7540	50
	17-18	0,3	120	13195	33	17-18	19-20	14,6	195	377	28
	19-19	0,3	120	21112	53		20-21	4,7	210	1508	34
12-13	14-15	19	250	377	29		21-22	1,7	220	3770	29
	15-16	5,9	250	1508	36	18-19	20-21	10,4	160	377	24
	16-17	3,0	250	3770	45		21-22	2,5	145	1508	26
	17-18	2,1	250	7540	63	19-20	21-22	5,8	120	377	18
	18-19	0,4	245	13195	22						
	19-20	0,9	240	21112	79						
13-14	15-16	30	490	377	23						
	16-17	9,8	500	1508	30						
	17-18	5,1	500	3770	38						
	18-19	3,5	500	7540	53						
	19-20	2,4	500	13195	63						
	20-21	1,5	500	21112	63						
14-15	16-17	37	960	377	14						
	17-18	12,8	900	1508	22						
	18-19	6,7	870	3770	29						
	19-20	4,2	860	7540	37						
	20-21	2,1	830	13195	33						
	21-22	1,2	800	21112	32						
15-16	17-18	11,6	260	377	17						
	18-19	4,4	260	1508	26						
	19-20	2,4	270	3770	34						

PSEUDO-SEÇÃO 14 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 14 AZIMUTE: 100º ARRANJO: Dipolo-Dipolo (20/20 m)

COORD. INIC.: 642619E / 9080188N COORD. FIM: 642608E / 9080128N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	6	130	377	17	5-6	12-13	0,8	265	21112	64
	4-5	2	140	1508	22	6-7	8-9	14	330	377	16
	5-6	2,1	155	3770	51		9-10	3,9	330	1508	18
	6-7	1,6	160	7540	75		10-11	3,7	320	3770	44
	7-8	0,7	165	13195	56		11-12	3,1	310	7540	75
	8-9	1,0	165	21112	128		12-13	1,8	310	13195	77
2-3	4-5	5,0	120	377	16		13-14	1,4	310	21112	95
	5-6	2,7	120	1508	34	7-8	9-10	16	450	377	13
	6-7	2,2	120	3770	69		10-11	6,2	460	1508	20
	7-8	0,4	115	7540	26		11-12	4,3	460	3770	35
	8-9	0,3	110	13195	36		12-13	2,5	460	7540	41
	9-10	0,3	105	21112	60		13-14	2,1	460	13195	60
3-4	5-6	4,8	78	377	23		14-15	1,3	470	21112	58
	6-7	2,9	79	1508	55	8-9	10-11	10,6	280	377	14
	7-8	0,7	81	3770	33		11-12	4,3	270	1508	24
	8-9	0,4	84	7540	36		12-13	2,	265	3770	28
	9-10	0,4	86	13195	61		13-14	1,4	250	7540	42
	10-11	0,6	90	21112	141		14-15	0,8	230	13195	46
4-5	6-7	7,6	130	377	22		15-16	0,5	210	21112	50
	7-8	1,2	130	1508	14	9-10	11-12	16	230	377	26
	8-9	0,4	125	3770	12		12-13	5,1	230	1508	33
	9-10	0,4	125	7540	24		13-14	3,5	235	3770	56
	10-11	0,3	120	13195	33		14-15	1,5	235	7540	48
	11-12	0,3	115	21112	55		15-16	1,5	230	13195	86
5-6	7-8	12,2	250	377	18		16-17	0,8	248	21112	68
	8-9	2,7	255	1508	16	10-11	12-13	17,8	210	377	32
	9-10	2,2	260	3770	32		13-14	8	205	1508	59
	10-11	1,6	260	7540	46		14-15	2,9	200	3770	54
	11-12	1,4	265	13195	70		15-16	2,1	200	7540	79

PSEUDO-SEÇÃO 14- ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	0,9	190	13195	63						
	17-18	0,5	185	21112	57						
11-12	13-14	12,7	84	377	57						
	14-15	3,8	86	1508	67						
	15-16	2,6	90	3770	109						
	16-17	1,1	92	7540	90						
	17-18	0,4	95	13195	56						
	19-19	0,4	96	21112	88						
12-13	14-15	12,9	120	377	40						
	15-16	5,9	115	1508	77						
	16-17	1,9	115	3770	62						
	17-18	0,8	110	7540	55						
	18-19	0,4	110	13195	48						
	19-20	0,3	105	21112	60						
13-14	15-16	23	115	377	75						
	16-17	5,5	115	1508	72						
	17-18	1,9	115	3770	62						
	18-19	0,9	115	7540	59						
	19-20	0,6	115	13195	69						
14-15	16-17	26,4	160	377	62						
	17-18	5,7	160	1508	54						
	18-19	2,2	160	3770	52						
	19-20	1,2	155	7540	58						
15-16	17-18	34	250	377	51						
	18-19	9,7	255	1508	57						
	19-20	5,3	260	3770	77						
16-17	18-19	53	550	377	36						
	19-20	18,1	510	1508	54						
17-18	19-20	45,6	500	377	34						

PSEUDO-SEÇÃO 15 - ELETRORRESISTIVIDADE Folha 1/3

SEÇÃO: 15 AZIMUTE: 90º ARRANJO: Dipolo-Dipolo (10/10 m)

COORD. INIC.: 640461E / 9090018N COORD. FIM: 640708E / 9090017N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	4,8	64	189	14	5-6	12-13	2,2	600	10556	39
	4-5	1,7	63	754	20	6-7	8-9	12,8	300	189	8
	5-6	1,2	63	1885	36		9-10	9,6	300	754	24
	6-7	0,6	63	3770	36		10-11	3,4	300	1885	21
	7-8	0,4	63	6597	42		11-12	2,8	300	3770	35
	8-9	0,3	62	10556	51		12-13	1,9	300	6597	42
2-3	4-5	4,1	61	189	13		13-14	1,0	300	10556	35
	5-6	1,6	61	754	20	7-8	9-10	56	300	189	35
	6-7	0,7	61	1885	22		10-11	6,1	300	754	15
	7-8	0,4	61	3770	25		11-12	5,8	300	1885	36
	8-9	0,2	61	6597	22		12-13	4,1	300	3770	52
	9-10	0,4	61	10556	69		13-14	2,0	300	6597	44
3-4	5-6	24,4	195	189	24		14-15	0,6	300	10556	21
	6-7	7	195	754	27	8-9	10-11	20	700	189	5
	7-8	3	200	1885	28		11-12	9,7	700	754	10
	8-9	1,0	200	3770	19		12-13	7,5	700	1885	20
	9-10	2,1	210	6597	66		13-14	3,4	700	3770	18
	10-11	1,0	215	10556	49		14-15	2,2	700	6597	21
4-5	6-7	34	450	189	14		15-16	1,6	700	10556	24
	7-8	9,6	430	754	17	9-10	11-12	16,1	145	189	21
	8-9	2,1	430	1885	9		12-13	8,5	145	754	44
	9-10	6,9	430	3770	60		13-14	3,4	150	1885	43
	10-11	1,4	420	6597	22		14-15	2	150	3770	50
	11-12	2,2	410	10556	57		15-16	1,3	150	6597	57
5-6	7-8	54	600	189	17		16-17	0,5	155	10556	34
	8-9	7	600	754	9	10-11	12-13	34,6	190	189	34
	9-10	12,4	600	1885	39		13-14	7	190	754	28
	10-11	4,4	600	3770	28		14-15	3,7	190	1885	37
	11-12	6	600	6597	67		15-16	2	190	3770	40

PSEUDO-SEÇÃO 15 - ELETRORRESISTIVIDADE Folha 2/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	1,2	190	6597	42	15-16	20-21	0,4	22	3770	69
	17-18	0,9	190	10556	50		21-22	0,1	22	6597	30
11-12	13-14	11,1	54	189	39		22-23	0,1	22	10556	48
	14-15	4	55	754	55	16-17	18-19	120	510	189	44
	15-16	1,7	55	1885	58		19-20	18,8	510	754	28
	16-17	0,9	55	3770	62		20-21	12,8	510	1885	47
	17-18	0,8	56	6597	94		21-22	6,7	500	3770	51
	19-19	0,5	56	10556	94		22-23	5,4	500	6597	71
12-13	14-15	14	31	189	85		23-24	0,1	51	10556	21
	15-16	3,2	30	754	80	17-18	19-20	131,3	660	189	38
	16-17	1,4	29	1885	91		20-21	56,2	660	754	64
	17-18	1,0	28	3770	135		21-22	21,6	6660	1885	62
	18-19	0,5	27	6597	122		22-23	15,3	660	3770	87
	19-20	0,1	27	10556	39		23-24	6,1	670	6597	60
13-14	15-16	5,8	19	189	58		24-25	4,1	680	10556	64
	16-17	1,6	20	754	60	18-19	20-21	131	490	189	50
	17-18	0,7	20	1885	66		21-22	33,8	490	754	52
	18-19	0,5	20	3770	94		22-23	18,9	480	1885	74
	19-20	0,1	20	6597	33		23-24	6,3	480	3770	49
	20-21	0,4	21	10556	201		24-25	11,4	1200	6597	63
14-15	16-17	3,7	18	189	39		25-26	14,1	1500	10556	99
	17-18	1,5	17	754	67	19-20	21-22	126	480	189	50
	18-19	0,7	17	1885	77		22-23	37,7	500	754	57
	19-20	0,3	17	3770	67		23-24	8,8	500	1885	33
	20-21	0,1	17	6597	39		24-25	5	510	3770	37
	21-22	0,3	17	10556	186		25-26	4,7	520	6597	60
15-16	17-18	5,3	21	189	48	20-21	22-23	233	500	189	88
	18-19	1,8	21	754	65		23-24	32,6	500	754	49
	19-20	0,4	22	1885	34		24-25	13,4	490	1885	52

PSEUDO-SEÇÃO 15 - ELETRORRESISTIVIDADE Folha 3/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
20-21	25-26	9,7	480	3770	76						
21-22	23-24	64,7	220	189	56						
	24-25	16,3	225	754	55						
	25-26	8,8	230	1885	72						
22-23	24-25	125	265	189	89						
	25-26	38,4	255	754	113						
23-24	25-26	87	78	189	211						

PSEUDO-SEÇÃO 16 - ELETRORRESISTIVIDADE Folha 1/3

SEÇÃO: 16 AZIMUTE: 90º ARRANJO: Dipolo-Dipolo (10/10m)

COORD. INIC.: 640400E / 9080200N COORD. FIM: 640586E / 9080053N DATUM: SAD69

> ρa (Ohm. m)

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k
1-2	3-4	20	200	189	20	5-6	12-13	1,5	620	10556
	4-5	6	190	754	24	6-7	8-9	19	360	189
	5-6	2,5	190	1885	25		9-10	9	360	754
	6-7	1,3	190	3770	26		10-11	4	350	1885
	7-8	1,3	190	6597	45		11-12	2	340	3770
	8-9	0,6	185	10556	34		12-13	1,0	340	6597
2-3	4-5	33	380	189	16		13-14	0,7	280	10556
	5-6	9	380	754	18	7-8	9-10	48	680	189
	6-7	5	380	1885	25		10-11	15	690	754
	7-8	3	370	3770	31		11-12	7	700	1885
	8-9	1,7	370	6597	30		12-13	4	710	3770
	9-10	1,3	360	10556	38		13-14	2,5	720	6597
3-4	5-6	41	510	189	15		14-15	2	720	10556
	6-7	13	530	754	18	8-9	10-11	25	460	189
	7-8	7	530	1885	25		11-12	8	460	754
	8-9	4	550	3770	27		12-13	4	460	1885
	9-10	3	570	6597	35		13-14	2	460	3770
	10-11	1,7	590	10556	30		14-15	2	450	6597
4-5	6-7	52	740	189	13		15-16	1,6	450	10556
	7-8	17	740	754	17	9-10	11-12	27	460	189
	8-9	7	740	1885	18		12-13	9	460	754
	9-10	6	730	3770	31		13-14	4	460	1885
	10-11	3	730	6597	27		14-15	3	460	3770
	11-12	2	720	10556	29		15-16	3	460	6597
5-6	7-8	39	570	189	13		16-17	2,4	460	10556
	8-9	10	600	754	13	10-11	12-13	69	1500	189
	9-10	7	610	1885	22		13-14	24	1500	754
	10-11	4	610	3770	25		14-15	15	1450	1885
	11-12	2,2	620	6597	23		15-16	11	1450	3770

PSEUDO-SEÇÃO 16 - ELETRORRESISTIVIDADE Folha 2/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	9	1400	6597	42	15-16	20-21	11	670	3770	62
	17-18	6	1350	10556	47		21-22	7	670	6597	69
11-12	13-14	75	1400	189	10		22-23	4	670	10556	63
	14-15	28	1450	754	15	16-17	18-19	108	630	189	32
	15-16	17	1450	1885	22		19-20	43	630	754	51
	16-17	14	1450	3770	36		20-21	21	620	1885	64
	17-18	10	1500	6597	44		21-22	12	610	3770	74
	19-19	4	1200	10556	35		22-23	7	610	6597	76
12-13	14-15	130	2100	189	12		23-24	6	600	10556	105
	15-16	53	2100	754	19	17-18	19-20	117	760	189	29
	16-17	37	2100	1885	33		20-21	43	770	754	42
	17-18	23	2100	3770	41		21-22	22	780	1885	53
	18-19	12	2100	6597	38		22-23	12	780	3770	58
	19-20	10	2100	10556	50		23-24	9	790	6597	75
13-14	15-16	160	2000	189	15		24-25	6	800	10556	79
	16-17	75	2000	754	28	18-19	20-21	54	570	189	18
	17-18	39	2000	1885	37		21-22	20	570	754	26
	18-19	18	2000	3770	34		22-23	10	560	1885	34
	19-20	14	2000	6597	46		23-24	6	550	3770	41
	20-21	9	2000	10556	48		24-25	4	550	6597	48
14-15	16-17	165	1150	189	27	19-20	21-22	30	300	189	19
	17-18	59	1150	754	39		22-23	10	300	754	25
	18-19	23	1150	1885	38		23-24	6	310	1885	37
	19-20	16	1150	3770	52		24-25	4	310	3770	49
	20-21	10	1150	6597	57	20-21	22-23	6	76	189	15
	21-22	6	1150	10556	55		23-24	2.3	75	754	23
15-16	17-18	120	650	189	35		24-25	1.2	75	1885	30
	18-19	31	650	754	36	21-22	23-24	5	75	189	13
	19-20	19	650	1885	54		24-25	2	75	754	20

PSEUDO-SEÇÃO 16 - ELETRORRESISTIVIDADE Folha 3/3

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
22-23	24-25	18	240	189	14						

PSEUDO-SEÇÃO 17 - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 17 AZIMUTE: 90° ARRANJO: Dipolo-Dipolo (10/10m)

COORD. INIC.: 637612E / 9084586N COORD. FIM: 637832E / 9084603N DATUM: SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1-2	3-4	15	82	189	34	5-6	12-13	2,3	610	10556	40
	4-5	4,7	81	754	44	6-7	8-9	79	663	189	22
	5-6	2	81	1885	47		9-10	39	665	754	44
	6-7	1,4	80	3770	66		10-11	8,8	672	1885	25
	7-8	0,7	80	6597	58		11-12	6,7	671	3770	38
	8-9	0,8	80	10556	106		12-13	3,3	674	6597	32
2-3	4-5	21,3	76	189	53		13-14	4	679	10556	62
	5-6	3,9	55	754	53	7-8	9-10	106	742	189	27
	6-7	1,6	55	1885	55		10-11	33	741	754	34
	7-8	1,0	55	3770	69		11-12	12	740	1885	31
	8-9	0,9	55	6597	108		12-13	4,6	730	3770	24
	9-10	0,8	56	10556	151		13-14	2,7	725	6597	25
3-4	5-6	12	65	189	35		14-15	1,9	732	10556	27
	6-7	2,8	50	754	42	8-9	10-11	73	606	189	23
	7-8	1,3	50	1885	49		11-12	22	603	754	28
	8-9	1,0	50	3770	75		12-13	8,4	606	1885	26
	9-10	0,6	50	6597	79		13-14	7,6	607	3770	47
	10-11	0,5	50	10556	106		14-15	6,4	605	6597	70
4-5	6-7	81	595	189	26		15-16	6,4	606	10556	111
	7-8	26	602	754	33	9-10	11-12	82	606	189	25
	8-9	17	602	1885	53		12-13	22	605	754	27
	9-10	14	601	3770	88		13-14	17	605	1885	53
	10-11	5,4	602	6597	59		14-15	12	602	3770	75
	11-12	2,8	602	10556	49		15-16	8	606	6597	87
5-6	7-8	72	617	189	22		16-17	7,5	610	10556	130
	8-9	33	618	754	40	10-11	12-13	66	640	189	19
	9-10	24	620	1885	73		13-14	35	640	754	41
	10-11	11	617	3770	67		14-15	21	640	1885	62
	11-12	4	620	6597	43		15-16	16	642	3770	94

PSEUDO-SEÇÃO 17 - ELETRORRESISTIVIDADE Folha 1/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
10-11	16-17	14	635	6597	145	16-17	18-19	37	110	189	63
	17-18	1,2	645	10556	20		19-20	154	107	754	1085
11-12	13-14	79	670	189	22		20-21	4.5	101	1885	84
	14-15	36	670	754	90	17-18	19-20	5	63	189	15
	15-16	22	670	1885	62		20-21	76	64	754	895
	16-17	12	670	3770	67	18-19	20-21	60	18	189	627
	17-18	1,9	675	6597	19						
	19-19	0,4	672	10556	6						
12-13	14-15	160	610	189	49						
	15-16	65	613	754	80						
	16-17	34	612	1885	105						
	17-18	16	610	3770	99						
	18-19	0,8	610	6597	9						
	19-20	10	610	10556	173						
13-14	15-16	217	350	189	149						
	16-17	98	350	754	211						
	17-18	16	354	1885	85						
	18-19	2,8	354	3770	30						
	19-20	36	354	6597	671						
	20-21	2,7	351	10556	81						
14-15	16-17	217	191	189	214						
	17-18	82	194	754	319						
	18-19	1,4	194	1885	14						
	19-20	55	193	3770	1559						
	20-21	61	193	6597	2085						
15-16	17-18	212	168	189	201						
	18-19	16	170	754	71						
	19-20	30	170	1885	333						
	20-21	96	170	3770	2129						

PSEUDO-SEÇÃO 17A - ELETRORRESISTIVIDADE Folha 1/2

SEÇÃO: 17 AZIMUTE: 90º ARRANJO: Wenner-Schlum (10/10m)

COORD. INIC.: 637612E / 9084586N COORD. FIM: 637832E / 9084603N DATUM; SAD69

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)		AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm m)
1-4	2-3	116	101	63	73		6-13	9-10	140	402	377	131
2-5	3-4	386	412	63	59		5-14		45	165	628	171
1-6		54	106	189	96		4-15		78	351	943	210
3-6	4-5	492	570	63	54		3-16		15	87	1320	228
2-7		247	480	189	97		9-12	10-11	214	326	63	41
1-8		38	107	377	133		8-13		147	420	189	66
47	5-6	267	410	63	41		7-14		42	171	377	93
3-8		206	536	189	72		6-15		51	268	628	120
2-9		118	440	377	101		5-16		16	108	943	140
1-10		22	106	628	130		4-17		46	38	1320	160
5-8	6-7	276	453	63	38		10-13	11-12	51	58	63	55
4-9		125	370	189	64		9-14		95	200	189	90
3-10		124	519	377	90		8-15		84	265	377	120
2-11		79	406	628	122		7-16		25	108	628	145
1-12		18	105	943	162		6-17		7.9	41	943	182
6-9	7-8	346	490	63	44		5-18		1.9	12	1320	209
5-10		177	433	189	77		11-14	12-13	368	162	63	143
4-11		104	346	377	113		10-15		45	34	189	250
3-12		121	465	628	163		9-16		117	131	377	337
2-13		39	180	943	204		817		37	52	628	447
1-14		19	100	1320	251		7-18		6.8	13	943	493
7-10	8-9	277	465	63	38		6-19		9	22	1320	540
6-11		219	445	189	93		12-15	13-14	373	102	63	231
5-12		150	388	377	73		11-16		202	94	189	406
4-13		122	395	628	194		10-17		61	37	377	621
3-14		24	130	943	247		9-18		46	40	628	722
2-15		72	340	1320	280		8-19		18	20	943	849
8-11	9-10	405	587	63	43		7-20		21	41	1320	676
7-12		266	574	189	88]	13-16	14-15	343	65	63	332

PSEUDO-SEÇÃO 17A - ELETRORRESISTIVIDADE Folha 2/2

AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)	AB	MN	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
14-17	14-15	73	25	189	552						
13-18		10	5	377	754						
12-19		23	14	628	1032						
11-20		28	33	943	800						
10-21		11	18	1320	807						
14-17	15-16	361	67	63	340						
13-18		40	8	189	945						
12-19		82	23	377	1344						
11-20		62	33	628	1180						
10-21		26	18	943	1362						
15-18	16-17	58	10	63	365						
14-19		65	22	189	558						
13-20		69	50	377	520						
12-21		23	26	628	556						
16-19	17-18	208	22	63	596						
15-20		163	53	189	581						
14-21		47	28	377	633						
17-20	18-19	171	26	63	414						
16-21		93	25	189	703						
18-21	19-20	160	6	63	1050						

SEÇÃO 17- PERFIL ELETROMAGNÉTICO - EM34

ESPAÇAMENTO: 5 metros

		Dipolo	Dipolo	Dipolo	Dipolo			HEM-	HEM-
Fet	Dist	Vertical.	Horizontal	Vertical	Horizontal	Х	Y	Condutiv.	Condutiv.
230	(m)	20 m	20 m	40 m	40 m	UTM-E	UTM-N	4,5 kHz	33 kHz
		(mS/m)	(mS/m)	(mS/m)	(mS/m)			(mS/m)	(mS/m)
0	0	1,3	12,5	-2	6	637612	9084586	6,6	5,3
1	5	-3	14	4	6,5	637617	9084586	6,7	5,5
2	10	2	15	-5	7	637622	9084587	6,8	5,7
3	15	2	17	-5	8	637627	9084587	6,8	5,9
4	20	2	19,5	-7	10	637632	9084588	6,9	6,1
5	25	2,2	23	-7	10,5	637637	9084588	6,9	6,4
6	30	-1,6	24	-10	11,5	637642	9084588	7	6,7
7	35	-7,4	26	0	11	637647	9084589	7	6,9
8	40	-3,5	26	-5	11	637652	9084589	7	7,2
9	45	-3	27	-5	11	637657	9084589	7	7,3
10	50	3	25,5	-2	12	637662	9084590	7	7,5
11	55	11	26	-1	13	637667	9084590	7	7,7
12	60	10	25	-2	12,5	637672	9084591	7	8
13	65	13	23	-6	12	637677	9084591	7	8,1
14	70	7	23,5	-12	11	637682	9084591	7	8
15	75	-3,4	23	-13	8	637687	9084592	7	7,9
16	80	-14	20	-12	7	637692	9084592	7,1	7,8
17	85	-15	16	-10	6	637697	9084593	7,1	7,7
18	90	-11	14	-9	5	637702	9084593	7	7,5
19	95	-10	11	-7	4	637707	9084593	7	7,1
20	100	-4,5	7,4	-4	3,6	637712	9084594	6,9	6,6
21	105	-5	5,2	0	3	637717	9084594	6,9	6,2
22	110	-1	4,2	2	3	637722	9084594	6,8	5,7
23	115	-3	3,4	2	2	637727	9084595	6,7	5,2
24	120	-4	2,4	3	2	637732	9084595	6,4	4,8
25	125	0	2	3	2	637737	9084596	6,2	4,4
26	130	0,5	1,8	3	2	637742	9084596	5,9	4
27	135	1	2,2	2	2	637747	9084596	5,7	3,6
28	140	4,2	2	2	2	637752	9084597	5,4	3,2
29	145	2,5	2	-2	2	637757	9084597	5	3
30	150	0	2	-2,5	1,5	637762	9084598	4,7	2,8
31	155	-4,5	1,5	0	1	637767	9084598	4,3	2,6
32	160	-2,6	1	1	1	637772	9084598	4	2,4
33	165	-1	0,6	0	1	637777	9084599	3,7	2,2
34	170	0,5	0,8	1	0,5	637781	9084599	3,5	2
35	175	2	0,8	0	0,5	637786	9084599	3,3	1,9
36	180	2	1	0	1	637791	9084600	3,1	1,8
37	185	1,4	1,4	1	1	637796	9084600	2,9	1,6
38	190	0,5	1,6	-2	1	637801	9084601	2,8	1,5
39	195	-1,4	2,2	-4	0,5	637806	9084601	2,8	1,4
40	200	-4,4	2	-4	0,5	637811	9084601	2,8	1,3
41	205	-5,5	1	-4	0	637816	9084602	2,7	1,2

42	210	-4,5	0,8	-3	0	637821	9084602	2,7	1,1
43	215	-2	0,4	*	*	637826	9084603	2,7	1

ESPAÇAMENTO: 5 metros AZIMUTE: 90º										
Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)	
0	0	-5	15	-7	4	637582	9084413	8,4	8	
1	5	-2,8	18	-10	6	637587	9084413	8,5	7,8	
2	10	-2,8	18	-10	7	637592	9084413	8,7	7,6	
3	15	-11	18	-10	7	637597	9084413	8,8	7,5	
4	20	-9	19	-10	7	637602	9084413	8,9	7,2	
5	25	-4,2	19	-11	7	637607	9084414	8,9	6,9	
6	30	-2	17	-10	7	637612	9084414	8,9	6,7	
7	35	-1,6	15	-7	6	637617	9084414	8,9	6,4	
8	40	-1,6	12	-6	5	637622	9084414	8,9	6,1	
9	45	-4	9	-3	3,5	637627	9084414	8,8	5,8	
10	50	-3,8	6	0	3	637632	9084414	8,5	5,5	
11	55	1	3,7	2	2	637637	9084414	8,3	5,2	
12	60	6	3,3	2	2	637642	9084414	8,1	4,9	
13	65	7	3	3	2	637647	9084414	7,9	4,6	
14	70	7	2,4	0	2	637652	9084414	7,6	4,3	
15	75	3,5	2,5	-2	1	637657	9084415	7,3	4,2	
16	80	-2,8	2	0	1	637662	9084415	7	4	
17	85	-4	1	-2	0,5	637667	9084415	6,7	3,8	
18	90	-3,6	1	-1	0	637672	9084415	6,3	3,6	
19	95	-2,2	1,2	0,5	1	637677	9084415	6	3,4	
20	100	1,2	0,8	0	0	637682	9084415	5,7	3,3	
21	105	1,2	0,4	0	0,5	637687	9084415	5,4	3,1	
22	110	1	0,4	1	1	637692	9084415	5,1	3	
23	115	0,6	0	1,5	0	637697	9084415	4,8	2,8	
24	120	0	0,2	1	1	637702	9084415	4,5	2,7	
25	125	0,4	0	1,5	0	637707	9084416	4,2	2,6	
26	130	0,8	0,4	0	0	637712	9084416	3,9	2,4	
27	135	0,5	0,2	1	0	637717	9084416	3,6	2,3	
28	140	0,4	0,4	0,5	1	637722	9084416	3,3	2,2	
29	145	0	0,4	1	0,5	637727	9084416	3	2,1	
30	150	-1	1	0	0,5	637732	9084416	2,9	2	
31	155	-1	1	1,5	1	637737	9084416	2,8	2	
32	160	0	1	0	0	637742	9084416	2,7	1,9	
33	165	-0,4	1	0	0	637747	9084416	2,5	1,8	
34	170	-0,4	1	0	1	637752	9084416	2,4	1,7	
35	175	1	1	1	0,5	637757	9084417	2,4	1,7	
36	180	0,5	1	1	0,5	637762	9084417	2,4	1,6	
37	185	0,5	0,8	0	0,5	637767	9084417	2,3	1,6	
38	190	-0,5	1,2	0	1,5	637772	9084417	2,3	1,6	
39	195	-1,4	1	0	1	637777	9084417	*	*	
40	200	-1	1,8	0	1	637782	9084417	*	*	
41	205	-1,6	2,2	-1,5	1	637787	9084417	*	*	

SEÇÃO 18- PERFIL ELETROMAGNÉTICO - EM34

42	210	-1,6	2,4	-1,5	1	637792	9084417	*	*
43	215	-1,6	3,4	-1,5	0,5	637797	9084417	*	*
44	220	-3,2	3,2	*	*	637802	9084417	*	*

	ESPA	\ÇAMENT	O: 5 metro	os A	ZIMUTE:	7 0 °			
Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)
0	0	5,6	3,8			636636	9079523	8,6	5,9
1	5	4,8	4			636641	9079525	8,7	5,9
2	10	5,2	4,6			636645	9079526	8,8	5,9
3	15	3,6	4,8			636650	9079528	8,9	5,9
4	20	2	4,8			636655	9079530	9	6
5	25	2,8	5,4			636660	9079531	9,1	6
6	30	3,6	6,2			636664	9079533	9,3	6,1
7	35	5	6,6			636669	9079534	9,4	6,1
8	40	4,8	6,8			636674	9079536	9,5	6,2
9	45	3,2	6,6			636679	9079538	9,5	6,3
10	50	3,8	7			636683	9079539	9,5	6,4
11	55	4,6	7,8			636688	9079541	9,5	6,5
12	60	5,6	8,2			636693	9079543	9,5	6,6
13	65	3,6	8,2			636697	9079544	9,4	6,8
14	70	3	8			636702	9079546	9,4	7
15	75	7	8,4			636707	9079547	9,4	7,2
16	80	9	7,8			636712	9079549	9,4	7,5
17	85	12	7,8			636716	9079551	9,4	7,8
18	90	14	7,6			636721	9079552	9,4	8,1
19	95	12	8			636726	9079554	9,5	8,4
20	100	12	9,2			636731	9079556	9,5	8,9
21	105	8	10			636735	9079557	9,6	9,4
22	110	5	11			636740	9079559	9,7	9,8
23	115	3,8	12,5			636745	9079560	9,7	10,3
24	120	5,4	12			636749	9079562	9,8	10,8
25	125	8,6	12			636754	9079564	9,9	11,3
26	130	8,8	11			636759	9079565	9,9	11,8
27	135	11	9			636764	9079567	9,9	12,3
28	140	5,5	7,4			636768	9079569	9,9	12,8
29	145	3,5	7,2			636773	9079570	10	13,3
30	150	4,4	7,5			636778	9079572	10	13,7
31	155	13	8,5			636783	9079573	9,9	14,1
32	160	19	10			636787	9079575	9,9	14,4
33	165	14	12			636792	9079577	9,9	14,8
34	170	9,6	13			030797	9079578	9,9	15,2
35	1/5	8	14			030801	9079580	9,8	15,4
30	180	10	18			636806	9079582	9,7	15,5
<i>31</i> 20	100	0,0 24	24			626946	9070595	9,0	15,0
<u>ა</u> შ	190	21	21			010000	9070590	9,4	15,7
39	190	20	∠ŏ 27			03002U	9070590	3,3	15,7
40	200	20	21			030020	9070500	9,Z	15,8
41	205	20	26,5			030830	9079590	8,9	15,6

SEÇÃO 19- PERFIL ELETROMAGNÉTICO - EM34

42	210	18	24		636835	9079591	8,7	15,5
43	215	20	23		636839	9079593	8,5	15,4
44	220	17	24		636844	9079595	8,2	15,2
45	225	15	24		636849	9079596	8	15,1

	ESPAÇAMENTO: 5 metros AZIMUTE: 90º											
Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)			
0	0	12	28	-1,5	24	641140	9084032	6,2	24,1			
1	5	15	27	2,5	22	641145	9084032	6,3	24,9			
2	10	18	26	7,2	24	641150	9084033	6,4	25,6			
3	15	24	27	4,2	23	641155	9084033	6,5	26,6			
4	20	18	29	5	22	641160	9084033	6,7	27,6			
5	25	18	30	6,2	20	641165	9084033	6,8	28,6			
6	30	11	31	9	20	641170	9084034	6,9	29,5			
7	35	10	32	11	23	641175	9084034	7	30,5			
8	40	24	38	9	23	641180	9084034	7,2	31,3			
9	45	26	42	4	25	641185	9084035	7,3	32,2			
10	50	28	42	9	26	641190	9084035	7,5	33			
11	55	20	44	11	27	641195	9084035	7,6	33,8			
12	60	6,3	47	12	27	641200	9084036	7,8	34,7			
13	65	18	50	6,8	28	641205	9084036	7,9	35,1			
14	70	17	54	-5,2	29	641210	9084036	8	35,6			
15	75	22	56	-4	30	641215	9084036	8,2	36			
16	80	8	58	0	30	641220	9084037	8,3	36,5			
17	85	8	58	3	32	641225	9084037	8,4	36,9			
18	90	23	60	0,4	34	641230	9084037	8,5	37			
19	95	18	63	-2,4	32	641235	9084038	8,5	37,1			
20	100	30	64	2,8	36	641240	9084038	8,6	37,2			
21	105	28	64	4,6	38	641245	9084038	8,7	37,2			
22	110	30	64	10	38	641250	9084038	8,8	37,3			
23	115	23	64	4,2	38	641255	9084039	8,8	37,4			
24	120	15	66	3,2	38	641260	9084039	8,9	37,4			
25	125	8	66	0,5	36	641265	9084039	8,9	37,5			
26	130	6,5	68	1	35	641270	9084040	9	37,5			
27	135	13	64	-2,5	34	641275	9084040	9	37,6			
28	140	10	62	0	32	641280	9084040	9	37,8			
29	145	17,5	60	3,5	33	641285	9084041	9	38,1			
30	150	24	56	3,2	34	641290	9084041	9	38,4			
31	155	30	54	4,5	35	641295	9084041	9	38,7			
32	160	25	54	1,6	35	641300	9084041	9	39			
33	165	15	56	4	33	641305	9084042	9	39,5			
34	170	12	56	0	32	641310	9084042	9	40			
35	175	12	48	-2,5	30	641315	9084042	9	40,5			
36	180	7,3	52	-1,5	30	641320	9084043	9	41			
<i>31</i>	185	5,6	52	2,4	3U 20	041325	9084043	9	41,5			
38	190	14	48	6	30	641330	9084043	9,1	41,6			
39	195	28	38 44	/	3U 20	041335	9084043	9,2	41,7			
40	200	28	44	9	33	641340	9084044	9,4	41,8			
41	205	27	40	10	32	641345	9084044	9,5	41,9			

SEÇÃO 20- PERFIL ELETROMAGNÉTICO - EM34

Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)
42	210	25	38	14	30	641350	9084044	9.6	42
43	215	17	36	14.5	29	641355	9084045	9.8	41.1
44	220	17	36	13	26	641360	9084045	9.9	40.1
45	225	24	34	9	24	641365	9084045	10.1	39.2
46	230	22	30	10	24	641370	9084046	10.3	38.2
47	235	21	27	9	22	641375	9084046	10.5	37.3
48	240	23	25	9	20	641380	9084046	10,5	35,6
49	245	17	21	5	17	641385	9084046	10,5	34
50	250	15	20	5	16	641390	9084047	10,6	32,3
51	255	11	17	1,8	15	641395	9084047	10,6	30,6
52	260	6,4	16	3	15	641400	9084047	10,6	28,9
53	265	6,8	16	2,5	13	641405	9084048	10,4	27,2
54	270	6,8	16	3,2	13	641410	9084048	10,2	25,6
55	275	9,2	16	0	12	641415	9084048	10	23,9
56	280	10	17	-1,5	12	641420	9084048	9,8	22,2
57	285	5	17,5	-1,5	11	641425	9084049	9,5	20,6
58	290	2,6	17	1	11	641429	9084049	9,2	19,1
59	295	1,6	15,5	1	11	641434	9084049	8,8	17,7
60	300	5,4	16	1,5	11	641439	9084050	8,4	16,3
61	305	7,4	16	3	10	641444	9084050	8,1	14,9
62	310	10	14,5	4	10	641449	9084050	7,7	13,5
63	315	10	12	4	9	641454	9084051	7,3	12,4
64	320	7	11	2,8	7,5	641459	9084051	6,9	11,4
65	325	7	10	1,4	7	641464	9084051	6,5	10,4
66	330	2,2	8	1	5,4	641469	9084051	6,2	9,4
67	335	1,4	6,6	0,8	5,5	641474	9084052	5,8	8,4
68	340	0,8	5,8	2	5	641479	9084052	5,5	7,8
69	345	0	5,5	2,4	5	641484	9084052	5,2	7,3
70	350	2,4	4,6	2,6	5	641489	9084053	4,9	6,7
71	355	3,6	5,6	4,5	4,2	641494	9084053	4,6	6,2
72	360	4,4	5,2	4,8	4	641499	9084053	4,3	5,7
73	365	5,5	4,3	5,2	3	641504	9084054	4	5,4
74	370	3,6	3,4	5,8	5	641509	9084054	3,8	5,2
75	375	4	3,2	6,2	3,5	641514	9084054	3,6	4,9
76	380	3,8	4,5	5	3,5	641519	9084054	3,5	4,7
//	385	3,6	3,4	5	4	641524	9084055	3,3	4,5
78	390	4	4	4	3	641529	9084055	3,2	4,4
79	395	3	4	2,5	3	641534	9084055	3,1	4,3
00	400	1,0	4,ð	3	ა,ວ ⊿	641539	9004050	<u>১</u>	4,2
01	400	1,4 2.6	4 5		4	6/15/44	9004050 0094056	2,9 2 9	4, I 1
02 92	410	2,0	5 5 6	0	4 25	6/1554	0024050	2,0 2 Q	4 1
03 Q/	410	ט, ו ס	5,0	0	3,5 A	6/1550	0021057	2,0 2 Q	4
85	420	2	5,0	1	5	6/156/	008/057	2,0 2.8	4
88	420	30	6.8	1	35	641560	9004057	2,0	4
87	435	4	6.6	2	4	641574	9084058	2,0	4

	Dict	Dipolo	Dipolo	Dipolo	Dipolo	v	v	HEM-	HEM-
Est	(m)	20 m	20 m	40 m	40 m	UTM-E	T UTM-N	4.5 kHz	33 kHz
	()	(mS/m)	(mS/m)	(mS/m)	(mS/m)			(mS/m)	(mS/m)
88	440	3	6,2	2	5	641579	9084058	2,9	4
89	445	3,2	6	3	4	641584	9084058	3	4,1
90	450	4	6	3,5	4,5	641589	9084059	3,1	4,1
91	455	5,4	5	4	5	641594	9084059	3,2	4,2
92	460	6,4	5,5	4	5	641599	9084059	3,3	4,2
93	465	8,6	5,8	4	5	641604	9084059	3,5	4,4
94	470	9	6,6	3	7	641609	9084060	3,6	4,5
95	475	5	8	2	8	641614	9084060	3,7	4,7
96	480	2	9,5	1	7	641619	9084060	3,8	4,8
97	485	-3,5	12	0	6	641624	9084061	4	5
98	490	-3	13	-0,5	6	641629	9084061	4	5,2
95	495	-1	14	-2	7	641634	9084061	4,1	5,3
100	500	2,4	14,5	-3	8	641639	9084061	4,1	5,5
101	505	6,2	15	-3	8,5	641644	9084062	4,2	5,7
102	510	7,2	14	-5	7,5	641649	9084062	4,2	5,9
103	515	3,6	12,5	-4	6,5	641654	9084062	4,2	6
104	520	-3,5	11	-3	6	641659	9084063	4,2	6,1
105	525	-3,5	10	-2	6	641664	9084063	4,1	6,2
106	530	-1	10	-3	6	641669	9084063	4,1	6,3
107	535	3,8	10,5	-3	5	641674	9084064	4,1	6,4
108	540	3,2	9	0	5	641679	9084064	4	6,5
109	545	1	7,6	2,5	5	641684	9084064	3,9	6,5
110	550	1,8	6,6	5	5	641689	9084064	3,8	6,6
111	555	2	5,6	6	5	641694	9084065	3,7	6,6
112	560	3,2	5	5	3	641699	9084065	3,7	6,7
113	565	5	4,2	5	3	641704	9084065	3,6	6,8
114	570	4,2	3	6	3	641709	9084066	3,5	6,9
115	575	4,2	2,4	7	3	641714	9084066	*	*
116	580	4	1,8	6	2	641719	9084066	*	*

E	SPA	ÇAMENTO	D: 10 metr	'OS	AZIMUTE: 160º				
Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)
0	0	-3	14			638670	9088463	7,9	21,5
1	10	-8	16			638674	9088454	8,3	23,9
2	20	2	20			638679	9088445	8,9	26,4
3	30	6	20			638683	9088436	9,5	28,9
4	40	0,2	20			638687	9088427	10,2	31,3
5	50	0,2	17,5			638691	9088418	10,9	33,4
6	60	7,6	18			638696	9088409	11,7	35,5
7	70	12	18,5			638700	9088400	12,4	37,4
8	80	10	20			638704	9088391	13,3	39,4
9	90	3	20			638709	9088382	14,2	41,6
10	100	5	22			638713	9088373	15,2	44
11	110	12	22			638717	9088364	16,3	46,7
12	120	8	27			638721	9088355	17,5	50,1
13	130	6	30			638726	9088346	18,8	54,3
14	140	-11	32			638730	9088336	20,3	60,2
15	150	-6	34			638734	9088327	21,9	67,1
16	160	9	34			638739	9088318	23,5	74,8
17	170	8	30			638743	9088309	25	83,3
18	180	23	36			638747	9088300	26,5	92,5
19	190	15	44			638751	9088291	27,5	101,4
20	200	12	50			638756	9088282	28,3	109,7
21	210	30	64			638760	9088273	28,9	117
22	220	6	68			638764	9088264	29,2	122,4
23	230	-1	66			638769	9088255	29,3	126,9
24	240	13	48			638773	9088246	29,2	130
25	250	18,5	42			638777	9088237	28,9	131,3
26	260	16	37			638781	9088228	28,6	131,3
27	270	4	32			638786	9088219	28,3	129,9
28	280	18	32			638790	9088210	27,8	127,6
29	290	20	32			638794	9088201	27,2	124,8
30	300	13,5	34			638798	9088192	26,4	117,3
31	310	11	38			638803	9088183	25,2	107,5
32	320	24	42			638807	9088174	23,9	97
33	330	3	42			638811	9088165	22,3	86,2
34	340	-5	38			638816	9088156	20,6	75,8
35	350	-9	25			638820	9088147	18,9	66
36	360	1	18,5			638824	9088138	17,1	56,9
37	370	12	11,5			638828	9088129	15,7	48,8
38	380	0	10			638833	9088120	14,8	42,9
39	390	5	6			638837	9088111	14,1	38,7
40	400	8	5			638841	9088102	*	*
41	410	12	6			638845	9088093	*	*

SEÇÃO 21- PERFIL ELETROMAGNÉTICO - EM34

E	ESPAÇAMENTO: 10 metros AZIMUTE: 90º								
Est	Dist (m)	Dipolo Vertical. 20 m (mS/m)	Dipolo Horizont. 20 m (mS/m)	Dipolo Vertical 40 m (mS/m)	Dipolo Horizont. 40 m (mS/m)	X UTM-E	Y UTM-N	HEM- Condutiv. 4,5 kHz (mS/m)	HEM- Condutiv. 33 kHz (mS/m)
0	0	2	3	4	8,5	641019	9080835	4,4	9,9
1	10	5	3,5	5	3	641009	9080835	4,5	9,6
2	20	5	2,5	6,2	3	640999	9080835	4,6	9,3
3	30	4	3	5,5	3	640989	9080834	4,6	8,9
4	40	3	4	4	2,5	640979	9080834	4,6	8,5
5	50	2	5	0,5	3,4	640969	9080834	4,6	8,2
6	60	1	6,5	-1,5	3,6	640959	9080834	4,7	7,8
7	70	1	6	-2	3,8	640949	9080834	4,7	7,5
8	80	3,5	6,5	-2	4	640939	9080834	4,6	7,3
9	90	4	6	2	4,2	640929	9080833	4,5	7,2
10	100	7	5	3	4,4	640919	9080833	4,4	7,2
11	110	3,5	5	3,5	5,2	640909	9080833	4,1	7,3
12	120	0	7	2	5	640899	9080833	3,9	7,3
13	130	2,5	8	1,5	4,8	640889	9080833	3,8	7,6
14	140	1	8,5	-7	5,6	640879	9080832	3,7	7,8
15	150	2	9	-3	5,6	640869	9080832	3,6	8
16	160	4	7,5	0	6	640859	9080832	3,6	8,2
17	170	3	7	3	6	640849	9080832	3,6	8,5
18	180	6	7	4	6	640839	9080832	3,7	8,7
19	190	7,5	7	0	5	640829	9080832	3,8	8,8
20	200	0	7	0	5	640819	9080831	3,9	8,9
21	210	1	9	-3	4	640809	9080831	4	9
22	220	4	8	-3	4	640799	9080831	4,1	9,1
23	230	3,5	7	3	5	640789	9080831	4,1	9,2
24	240	4	6,5	3,5	5	640779	9080831	4	9,3
25	250	3	5,5	4	5	640769	9080830	4	9,4
26	260	3,5	5,5	0	4,5	640759	9080830	4	9,6
27	270	-2	5	0	4	640749	9080830	4	9,7
28	280	-3	6	1	3,2	640739	9080830	4,4	10
29	290	4	7	-4	3,5	640729	9080830	4,8	10,3
30	300	-4	6	-4	4	640719	9080830	5,4	10,8
31	310	-6	5	-3	4	640709	9080829	6,1	11,4
32	320	6	/	-4	4	640699	9080829	6,8	12,1
33	330	12	6	9	6	640689	9080829	7,3	13,2
34	340	12	6	4	5	640679	9080829	7,9	14,2
35	350	-4	6	0	5	640669	9080829	8,2	15
36	360	-9	8	-2	5	640659	9080828	8,4	15,7
3/	3/0	14	12	-8 -	5	040649	9080828	ŏ,5	10,3
38	380	-1,5	10	5		640639	9080828	8,4	16,1
39	390	1	11	2	0 7	040629	9080828	ठ,उ ०.४	15,8
40	400	5,5	10	-۲ *	/	640619	9080828	8,1	15
41	410	2,5	9	*	*	640609	9080828	7,9	13,8

SEÇÃO 22- PERFIL ELETROMAGNÉTICO - EM34

42	420	3,5	8	*	*	640599	9080827	7,7	12,6
43	430	5	7	*	*	640589	9080827	7,2	11,1

POSIÇÃO: 639382E / 9088402N AZIMUTE: 75º

AB/2 (m)	MN/2 (m)	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1.5	0.5	950	21	7	316
2	0.5	450	30	12.5	188
2.5	0.5	350	37	19.6	185
3	0.5	550	73	28.3	213
4	0.5	188	63	50.3	150
5	0.5	80	55	78.5	114
6	0.5	40	40	113	113
8	0.5	56	87	201	130
10	0.5	47	110	314	135
12	0.5	28	130	452	100
15	0.5	14	120	707	80
20	0.5	12	185	1257	80
25	0.5	3	70	1364	60
30	0.5	20	520	2287	90
40	0.5	26	870	5027	150
50	0.5	8	340	7080	166
70	0.5	8	540	15393	230
100	0.5	3	400	31416	236

POSIÇÃO: 639764E / 9084956N AZIMUTE: 90º

AB/2 (m)	MN/2 (m)	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1.5	0.5	790	37	7	150
2	0.5	120	27	12.5	55
2.5	0.5	43	32	19.6	26
3	0.5	17	32	28.3	15
4	0.5	6	25	50.3	12
5	0.5	6	34	78.5	14
6	0.5	5	38	113	15
8	0.5	3	41	201	15
10	0.5	16	270	314	19
12	0.5	1.0	20	452	23
15	0.5	1.0	22	707	32
20	0.5	4	170	1257	30
25	0.5	4	200	1364	28
30	0.5	15	900	2287	38
40	0.5	3	355	5027	60
50	0.5	0.5	36	7080	100

POSIÇÃO: 639805E / 9084807N AZIMUTE: 90º

AB/2 (m)	MN/2 (m)	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1.5	0.5	164	19	7	60
2	0.5	95	32	12.5	37
2.5	0.5	45	32	19.6	28
3	0.5	25	30	28.3	24
4	0.5	14	34	50.3	21
5	0.5	10	42	78.5	19
6	0.5	12	65	113	21
8	0.5	6	55	201	22
10	0.5	7	80	314	27
12	0.5	3	30	452	45
15	0.5	2	27	707	52
20	0.5	3	65	1257	58
25	0.5	9.5	90	1364	53
30	0.5	0.8	25	2287	72
40	0.5	6.0	230	5027	131
50	0.5	1.2	65	7080	130

POSIÇÃO: 638552E / 9087010N AZIMUTE: 335º

AB/2 (m)	MN/2 (m)	ΔV (mV)	l (mA)	k	ρa (Ohm. m)
1.5	0.5	919	75	7	86
2	0.5	549	95	12.5	73
2.5	0.5	124	45	19.6	54
3	0.5	130	65	28.3	56
4	0.5	63	60	50.3	53
5	0.5	38	55	78.5	54
6	0.5	36	75	113	54
8	0.5	21	70	201	60
10	0.5	21	100	314	66
12	0.5	25	150	452	75
15	0.5	17	140	707	86
20	0.5	13	150	1257	108
25	0.5	10	140	1364	97
30	0.5	11	200	2287	126
40	0.5	5	120	5027	210
50	0.5	3	80	7080	265

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 1.

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 3

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 5

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 9

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 12A

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 13

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 14

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 16

Modelo geofísico da pseudo-seção de eletrorresistividade, arranjo dipolo-dipolo, utilizado na construção do modelo geológico da Seção 17

Companhia de Pesquisa de Recursos Minerais

Sede

SGAN Quadra 603 - Conjunto "J" - Parte A - 1º andar CEP: 70830-030 - Brasília - DF Telefones: (061)312-5252 - (061)223-5253 (PABX) Fax: (061)225-3985

Escritório Rio de Janeiro Av. Pasteur, 404 - Urca - CEP: 22292.040 Rio de Janeiro - RJ Telefones: (021)295-5337 - (021)295-0032 (PABX) Fax: (021)295-6347

Diretoria de Geologia e Recursos Minerais Telefone: (021)295-6196 Fax: (021)295-6196 E-Mail: umberto@cristal.cprm.gov.br

Departamento de Recursos Minerais Telefone: (021)295-5446] E-Mail: mafa@cristal.cprm.gov.br

Diretoria de Relações Institucionais e Desenvolvimento Telefone: (021)295-5837 Fax: (021)295-5947 E-mail: pdias@cristal.cprm.gov.br

Divisão de Documentação Técnica Telefones: (021)295-5997 Fax: (021)295-5897 E-Mail: seus@cristal.cprm.gov.br

Superintendência Regional de Belém Av. Dr. Freitas, 3645 - Marco - CEP: 66095-110 Belém - PA Telefones: (091)226-0016 - (091)246-8577 (PABX) Fax: (091)246-4020 E-Mail: cprmbe@cprmbe.gov.br

Superintendência Regional de Belo Horizonte Av. Brasil, 1731 - Funcionários - CEP: 30140-002 Belo Horizonte - MG Telefones: (031)261-3037 - (031)261-5977 (PABX) Fax: (031)261-5585 E-Mail: cprmbh@estaminas.com.br

Superintendência Regional de Goiânia Rua 148, 485 - Setor Marista - CEP: 74170-110 Goiânia - GO Telefones: (062)281-1342 - (062)281-1522 (PABX) Fax: (062)281-1709 E-mail: cprmgo@zaz.com.br Superintendência Regional de Manaus Av. André Araújo, 2160 - Aleixo CEP: 69065-001 - Manaus - AM Telefones: (092)663-5533 - (092)663-5640 (PABX) Fax: (092)663-5531 E-Mail: suregma@internext.com.br

Superintendência Regional de Porto Alegre Rua Banco da Província, 105 - Santa Teresa CEP: 90840-030 - Porto Alegre - RS Telefones: (051)3233-4643 - (051)3233-7311(PABX) Fax: (051)3233-7772 E-Mail: cprm_pa@portoweb.com.br

Superintendência Regional do Recife Av. Sul, 2291 - Afogados - CEP: 50770-011 Recife - PE Telefone: (081) 3428-0623 (PABX) Fax: (081) 3428-1511 E-Mail: cprm@fisepe.pe.gov.br

Superintendência Regional de Salvador Av. Ulisses Guimarães, 2862 Centro Administrativo da Bahia - CEP: 41213.000 Salvador - BA Telefones: (071)230-0025 - (071)230-9977 (PABX) Fax: (071)371-4005 E-Mail: cprmsa@ bahianet.com.br

Superintendência Regional de São Paulo Rua Barata Ribeiro, 357 - Bela Vista - CEP:01308-000 São Paulo - SP Telefones: (011)256-6955 E-Mail: cprmsp@uninet.com.br

Residência de Fortaleza Av. Santos Dumont, 7700 - 4º andar - Papicu CEP: 60150-163 - Fortaleza - CE Telefones: (085)265-1726 - (085)265-1288 (PABX) Fax: (085)265-2212 E-Mail: refort@secrel.com.br

Residência de Porto Velho Av. Lauro Sodré, 2561 - Bairro Tanques CEP: 78904-300 - Porto Velho - RO Telefones: (069)223-3165 - (069)223-3544 (PABX) Fax: (069)221-5435 E-Mail:cprmrepo@enter-net.com.br

Residência de Teresina Rua Goiás,312 - Sul - CEP: 64001-570 - Teresina - PI Telefones: (086)222-6963 - (086)222-4153 (PABX) Fax: (086)222-6651 E-Mail: cprmrest@enter-net.com.br

CPRM - SERVIÇO GEOLÓGICO DO BRASIL http://www.cprm.gov.br