PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

ATLAS MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO DO BRASIL

Equações Intensidade-Duração-Frequência

Município: São João do Araguaia

Estação Pluviométrica: Marabá

Código ANA: 00549002

Código INMET: 82562

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: São João do Araguaia - PA

Estação Pluviométrica: Marabá Código: 00549002 (ANA); 82562 (INMET)

PROGRAMA GEOLOGIA DO BRASIL

LEVANTAMENTO DA GEODIVERSIDADE

CARTAS MUNICIPAIS DE SUSCETIBILIDADE A MOVIMENTOS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência de São Paulo

Copyright @ 2015 CPRM - Superintendência Regional de São Paulo

Rua Costa, 55 – Cerqueira César São Paulo - SP - 01.304-010

Telefone: (11) 3775-5101 Fax: (11) 3256-8430 http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias). Município: São João do Araguaia/PA. Estação Pluviométrica: Marabá, Código 00549002 (ANA) e 82562 (INMET). Caluan Rodrigues Capozzoli, Karine Pickbrenner e Eber José de Andrade Pinto – São Paulo: CPRM, 2015.

12p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II – CAPOZZOLI, C.R.; PICKBRENNER, K.; PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Carlos Eduardo de Souza Braga

SECRETÁRIO EXECUTIVO

Márcio Pereira Zimmermann

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Luiz Gonzaga Baião

Jarbas Raimundo de Aldano Matos

Waldir Duarte Costa Filho

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Thales de Queiroz Sampaio

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Eduardo Santa Helena

SUPERINTENDÊNCIA DE SÃO PAULO

José Carlos Garcia Ferreira Superintendente

Vanesca Sartorelli Medeiros Gerente de Hidrologia e Gestão Territorial

Elizete Domingues Salvador Gerente de Geologia e Recursos Minerais

Lauro Gracindo Pizzatto

Gerente de Relações Institucionais e Desenvolvimento

Marcos Evaristo da Silva Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Cássio Roberto da Silva

Divisão de Hidrologia Aplicada

Achiles Eduardo Guerra Castro Monteiro

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenação do Projeto Cartas Municipais de Suscetibilidade

Sandra Fernandes da Silva

Coordenadores Regionais do Projeto Atlas Pluviométrico

Andressa Macêdo Silva de Azambuja-Sureg/BE José Alexandre Moreira Farias-REFO Karine Pickbrenner-Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder - Sureg/PA
Albert Teixeira Cardoso - Sureg/GO
Caluan Rodrigues Capozzoli - Sureg/ SP
Catharina Ramos dos Prazeres Campos - Sureg/BE
Jean Ricardo da Silva do Nascimento - RETE
Luana Késsia Lucas Alves Martins - Sureg/BH

Margarida Regueira da Costa - Sureg/RE Osvalcélio Mercês Furtunato - Sureg/SA

Sistema de Informações Geográficas e Mapa

Ivete Souza do Nascimento-Sureg/BH

Apoio Técnico

Augusto Cezar Gessi Caneppele – Sureg/PA

Betania Rodrigues dos Santos – Sureg/GO

Celina Monteiro – Sureg/BE

Danielle Cutolo – Sureg/SP

Douglas Sanches Soller – Sureg/PA

Edna Alves Balthazar – Sureg/SP

Priscila Nishihara Leo – Sureg/SP

Eliamara Soares Silva – RETE

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida por Cardoso *et al.* (2015) para o município de Marabá/PA, onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Marabá, códigos 00549002 (ANA) e 82562 (INMET), operada pelo INMET. Esta estação está localizada a aproximadamente 40 km da sede do município de São João do Araguaia.

1 - INTRODUÇÃO

A equação definida para o município de Marabá (Cardoso *et al.*, 2015) pode ser utilizada no município de São João do Araguaia/PA.

O município de São João do Araguaia está localizado no leste do Estado do Pará, próximo à divisa com os estados do Maranhão e do Tocantins, distante em torno de 724 km da capital do Estado, Belém. O município está inserido na bacia do Rio Tocantins e faz fronteira com os municípios de Bom Jesus do Tocantins, São Pedro da Água Branca, Esperantina, Araguantins, São Domingos do Araguaia, Brejo Grande do Araguaia e Marabá. São João do Araguaia apresenta uma população de 13.155 habitantes e uma área de 1.280 km² (IBGE, 2010) A sede municipal localiza-se a uma altitude aproximada de 99 metros do nível do mar.

A estação Marabá, códigos 00549002 (ANA) e 82562 (INMET), de acordo com o inventário da ANA, está localizada no município de Marabá, na Latitude 05°21'58"S e Longitude 49°07'31"O. Insere-se na bacia do rio Tocantins, no estado do Tocantins, mais especificamente na sub-bacia 29, próximo à confluência do rio Tocantins com o rio Araguaia. O rio Araguaia banha cinco estados brasileiros, sendo eles Mato Grosso do Sul, Goiás, Mato Grosso, Tocantins e Pará. No município de São João do Araguaia ocorre a confluência com o rio Tocantins. Esta estação pluviométrica encontra-se em atividade desde 1952, sendo operada pelo Instituto Nacional de Meteorologia (INMET). A Figura 01 apresenta a localização do município e da estação.

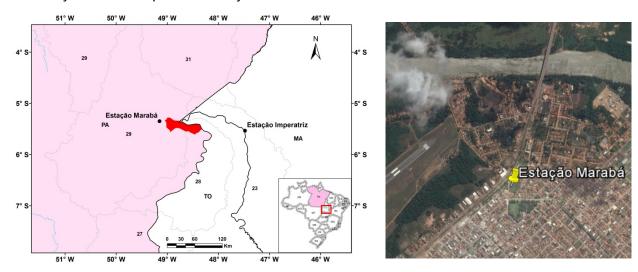


Figura 01 – Localização do Município e da Estação Pluviométrica. (Fonte: Google, 2015)

2 - EQUAÇÃO

Para a elaboração desta equação foram utilizados os dados da Marabá, códigos 00549002 (ANA) e 82562 (INMET). Na definição da equação Intensidade-Duração-Frequência da Estação Marabá foi utilizada a série de precipitações diárias máximas por ano hidrológico apresentada no Anexo I. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

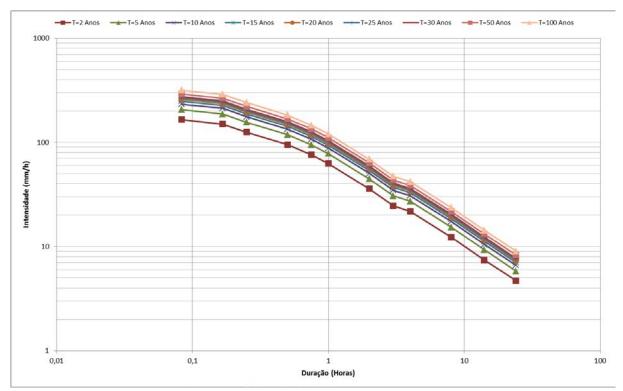


Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso da estação Marabá, os parâmetros da equação foram os seguintes:

a = 2409,3; b = 0,1677; c = 17,5 e d = 0,8713;

$$i = \frac{2409,3T^{0,1677}}{(t+17,5)^{0,8713}} \tag{02}$$

As equações acima são válidas para tempos de retorno de até 100 anos. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h.

Duração da	Tempo de Retorno (anos)											
Chuva	2	5	10	15	20	25	40	50	60	75	90	100
5 Minutos	179,6	209,4	235,2	251,7	264,2	274,3	296,8	308,1	317,6	329,7	340,0	346,0
10 Minutos	150,8	175,8	197,5	211,4	221,8	230,3	249,2	258,7	266,7	276,9	285,4	290,5
15 Minutos	130,3	152,0	170,7	182,7	191,8	199,1	215,4	223,6	230,6	239,4	246,8	251,2
20 Minutos	115,1	134,2	150,7	161,3	169,3	175,7	190,2	197,4	203,5	211,3	217,9	221,7
30 Minutos	93,6	109,2	122,7	131,3	137,8	143,0	154,8	160,7	165,6	172,0	177,3	180,5
45 Minutos	73,7	86,0	96,6	103,4	108,5	112,6	121,8	126,5	130,4	135,4	139,6	142,1
1 Horas	61,1	71,3	80,1	85,7	89,9	93,4	101,0	104,9	108,1	112,3	115,7	117,8
2 Horas	37,1	43,3	48,6	52,0	54,6	56,7	61,3	63,6	65,6	68,1	70,2	71,5
3 Horas	27,1	31,5	35,4	37,9	39,8	41,3	44,7	46,4	47,9	49,7	51,2	52,1
4 Horas	21,5	25,0	28,1	30,1	31,6	32,8	35,5	36,8	38,0	39,4	40,7	41,4
5 Horas	17,9	20,9	23,4	25,1	26,3	27,3	29,6	30,7	31,6	32,9	33,9	34,5
6 Horas	15,4	17,9	20,2	21,6	22,6	23,5	25,4	26,4	27,2	28,3	29,1	29,6
7 Horas	13,5	15,8	17,7	19,0	19,9	20,7	22,4	23,2	23,9	24,8	25,6	26,1
8 Horas	12,1	14,1	15,8	17,0	17,8	18,5	20,0	20,8	21,4	22,2	22,9	23,3
12 Horas	8,6	10,0	11,2	12,0	12,6	13,1	14,2	14,7	15,2	15,8	16,3	16,5
14 Horas	7,5	8,8	9,9	10,6	11,1	11,5	12,4	12,9	13,3	13,8	14,3	14,5
20 Horas	5,5	6,5	7,3	7,8	8,2	8,5	9,2	9,5	9,8	10,2	10,5	10,7
24 Horas	4,7	5,5	6,2	6,6	7,0	7,2	7,8	8,1	8,4	8,7	9,0	9,1

Tabela 02 – Altura de chuva em mm

Duração da	Tempo de Retorno (anos)											
Chuva	2	5	10	15	20	25	40	50	60	75	90	100
5 Minutos	15,0	17,4	19,6	21,0	22,0	22,9	24,7	25,7	26,5	27,5	28,3	28,8
10 Minutos	25,1	29,3	32,9	35,2	37,0	38,4	41,5	43,1	44,4	46,1	47,6	48,4
15 Minutos	32,6	38,0	42,7	45,7	47,9	49,8	53,9	55,9	57,6	59,8	61,7	62,8
20 Minutos	38,4	44,7	50,2	53,8	56,4	58,6	63,4	65,8	67,8	70,4	72,6	73,9
30 Minutos	46,8	54,6	61,3	65,6	68,9	71,5	77,4	80,3	82,8	86,0	88,7	90,2
45 Minutos	55,3	64,5	72,4	77,5	81,4	84,5	91,4	94,9	97,8	101,5	104,7	106,6
1 Horas	61,1	71,3	80,1	85,7	89,9	93,4	101,0	104,9	108,1	112,3	115,7	117,8
2 Horas	74,2	86,5	97,2	104,0	109,1	113,3	122,6	127,3	131,2	136,2	140,5	143,0
3 Horas	81,2	94,6	106,3	113,8	119,4	124,0	134,1	139,3	143,6	149,1	153,7	156,4
4 Horas	85,9	100,2	112,5	120,4	126,4	131,2	141,9	147,4	151,9	157,7	162,6	165,5
5 Horas	89,4	104,3	117,2	125,4	131,6	136,6	147,8	153,5	158,2	164,3	169,4	172,4
6 Horas	92,3	107,6	120,9	129,4	135,8	141,0	152,6	158,4	163,3	169,5	174,8	177,9
7 Horas	94,7	110,4	124,1	132,8	139,3	144,7	156,5	162,5	167,5	173,9	179,3	182,5
8 Horas	96,8	112,8	126,8	135,7	142,4	147,8	159,9	166,0	171,2	177,7	183,2	186,5
12 Horas	103,0	120,1	134,9	144,4	151,6	157,3	170,2	176,7	182,2	189,2	195,0	198,5
14 Horas	105,4	122,9	138,0	147,7	155,1	161,0	174,2	180,8	186,4	193,5	199,5	203,1
20 Horas	110,9	129,4	145,3	155,5	163,2	169,4	183,3	190,3	196,2	203,7	210,0	213,8
24 Horas	113,8	132,7	149,1	159,5	167,4	173,8	188,1	195,2	201,3	209,0	215,5	219,3

3 – EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em São João do Araguaia, foi registrada uma chuva de 168 mm com duração de 8 horas, a qual gerou vários problemas no sistema de drenagem pluvial da cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária à inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{03}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 168 mm dividido por 8 h é igual a 21 mm/h. Substituindo os valores na equação 03 temos:

$$T = \left[\frac{21(480 + 17.5)^{0.8713}}{2409.3} \right]^{1/0.1677} = 53 \ anos$$

O tempo de retorno de 53 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 1,88%, ou

$$P(i \ge 21.0 \ mm/h) = \frac{1}{T}100 = \frac{1}{53}100 = 1.88\%$$

4 – REFERÊNCIAS BIBLIOGRÁFICAS

CARDOSO, A. T.; PICKBRENNER, K.; PINTO, E. J. A. *Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência:* município Marabá/PA. Estação Pluviométrica: Marabá, códigos 00549002(ANA); 82562 (INMET). Goiânia: CPRM, 2015. 12p.

GOOGLE EARTH. Disponível em: http://www.google.com/earth. Acesso em maio de 2015.

IBGE – Instituto Brasileiro de Geografia e Estatística, 2010. Cidades. Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=150750&search=para|sao-joao-do-araguaia. Acesso em julho de 2015.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar., 2013.

ANEXO I
Série de Dados Utilizados – Altura de Chuva diária (mm)
Máximo por Ano Hidrológico (Outubro/Setembro)

AI	AF	Data	Precipitação Máxima Diária (mm)
1974	1975	01/02/74	157,5
1978	1979	16/01/78	140,7
1980	1981	05/03/80	94,0
1981	1982	11/11/81	127,8
1983	1984	09/03/83	58,8
1983	1984	05/11/83	92,0
1986	1987	25/12/86	90,0
1990	1991	07/12/90	150,8
1993	1994	06/03/93	91,0
1993	1994	05/11/93	91,0
1994	1995	26/12/94	72,3
1997	1998	19/01/97	92,3
1998	1999	25/01/98	74,8
1999	2000	26/02/99	115,1
2000	2001	13/02/00	105,7
2001	2002	04/04/01	88,5
2002	2003	06/01/02	79,2
2003	2004	02/04/03	82,6
2004	2005	27/04/04	133,0
2005	2006	29/04/05	75,6
2006	2007	30/03/06	121,3
2007	2008	02/02/07	100,5
2008	2009	16/02/08	75,9
2009	2010	02/05/09	93,0
2009	2010	12/10/09	110,0
2011	2012	12/03/11	114,4
2011	2012	02/11/11	162,8
2013	2014	25/03/13	113,0
2014	2015	20/02/14	96,4

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir das relações IDF estabelecidas por Nascimento et al. (2013) para o município de Imperatriz/MA.

Relação 24h/1dia: 1,13

Relação	Relação	Relação	Relação	Relação	Relação
14h/24h	8h/24h	4h/24h	3h/24h	2h/24h	1h/24h
0,93	0,88	0,78	0,66	0,64	0,56

Relação	Relação	Relação	Relação	Relação
45 min/1h	30 min/1h	15 min/1h	10 min/1h	5 min/1h
0,91	0,76	0,50	0,40	0,22

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília - DF - CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

Superintendência Regional de São Paulo

Rua Costa, 55 - Centro São Paulo - SP - CEP: 01304-010 Tel.: 11 3775-5100 - Fax: 11 3256-8430

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495

www.cprm.gov.br

