PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

ATLAS MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO DE DO BRASIL

Equações Intensidade-Duração-Frequência

Município: Conchas

Estação Pluviográfica: Pereira Código ANA: 02347006 Código DAEE-SP: E4-010R Estação Pluviométrica: Conchas Código ANA: 02348003 Código DAEE-SP: E5-001

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Município: Conchas - SP

Estação Pluviográfica: Pereiras Códigos 02347006(ANA) e E4-010R (DAEE)

Estação Pluviométrica: Conchas Códigos 02348003(ANA) e E5-001 (DAEE)

> PORTO ALEGRE 2016

PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Porto Alegre

Copyright @ 2016 CPRM - Superintendência Regional de Porto Alegre

Rua Banco da Província, 105 – Santa Tereza

Porto Alegre - RS - 90.840-030 Telefone: 0(xx)(51) 3406-7300 Fax: 0(xx)(51) 3233-7772

http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência. (Desagregação de Precipitações Diárias). Município: Conchas/SP. Estação Pluviográfica: Pereiras, Códigos 02347006(ANA) e E4-010R(DAEE) e Estação Pluviométrica: Conchas, 02348003(ANA) e E5-001(DAEE). Adriana Burin Weschenfelder; Karine Pickbrenner e Eber José de Andrade Pinto – Porto Alegre: CPRM, 2016.

19p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II - WESCHENFELDER,

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil

É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Fernando Bezerra Coelho Filho

SECRETÁRIO EXECUTIVO

Paulo Pedrosa

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Eduardo Carvalho Nepomuceno Alencar

Telton Elber Correa

Janaina Gomes Pires da Silva

DIRETORIA EXECUTIVA

Diretor-Presidente

Eduardo Jorge Ledsham

Diretor de Hidrologia e Gestão Territorial

Stênio Petrovich Pereira

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Nelson Victor Le Cocq D'Oliveira

SUPERINTENDÊNCIA REGIONAL DE PORTO ALEGRE

José Leonardo Silva Andriotti Superintendente

Marcos Alexandre de Freitas Gerente de Hidrologia e Gestão Territorial

João Angelo Toniolo Gerente de Geologia e Recursos Minerais

Ana Claudia Viero
Gerente de Relações Institucionais e Desenvolvimento

Alexandre Goulart Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Jorge Pimentel

Divisão de Hidrologia Aplicada

Adriana Dantas Medeiros

Achiles Monteiro (In memorian)

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenação do Projeto Cartas Municipais de Suscetibilidade

Marlon Colombo Hoelzel

Coordenadores Regionais do Projeto Atlas Pluviométrico

José Alexandre Moreira Farias - REFO Karine Pickbrenner - Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder-Sureg/PA

Albert Teixeira Cardoso - Sureg/GO

Caluan Rodrigues Capozzoli - Sureg/SP

Catharina Ramos dos Prazeres Campos – Sureg/BE

Jean Ricardo da Silvado Nascimento - RETE

Luana Késsia Lucas Alves Martins – Sureg/BH

Osvalcélio Mercês Furtunato - Sureg/AS

Sistema de Informações Geográficas e Mapa

Ivete Souza do Nascimento- Sureg/BH

Apoio Técnico

Augusto Cezar Gessi Caneppele - Sureg/PA

Betânia Rodrigues dos Santos-Sureg/GO

Celina Monteiro - Sureg/BE

Danielle Cutolo - Sureg/SP

Douglas Sanches Soller – Sureg/PA

Edna Alves Balthazar - Sureg/SP

Eliamara Soares Silva-RETE

Priscila Nishihara Leo - Sureg/SP

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Conchas. Foram elaboradas duas IDFs, sendo que a primeira (IDF1), foi elaborada com dados de uma estação pluviográfica e subsidiou parâmetros a serem utilizados na segunda (IDF2), elaborada com séries de uma estação pluviométrica. A IDF1 foi desenvolvida com dados contínuos de precipitação, utilizando os registros da estação pluviográfica de Pereiras, códigos 02347006(ANA) e E4-010R (DAEE); na elaboração da IDF2 aplicou-se a metodologia de desagregação, com os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica de Conchas, códigos 02348003(ANA) e E5-001(DAEE).

A estação Pereiras (pluviográfica) distancia-se da sede municipal de Conchas em 7,4 km e a estação Conchas (pluviométrica), localiza-se a aproximadamente 1,7 km da sede do mesmo município.

1 - INTRODUÇÃO

A equação definida (IDF2) pode ser utilizada no município de Conchas.

O município de Conchas está localizado no estado de São Paulo na mesorregião de Bauru. O município, que faz divisa com os municípios de Anhembi, Piracicaba, Laranjal Paulista, Pereiras, Porangaba e Bofete, possui área de 466 Km² e sua sede localiza-se a uma altitude de 503 metros. Sua população, segundo o censo de 2010 do IBGE, é de 16.288 habitantes.

A estação pluviográfica de Pereiras, códigos 02347006 (ANA) e E4-010R (DAEE) em atividade desde 1956, está localizada no município de Pereiras, na Latitude 23°04'00" S e Longitude 47°58'00" W, inserindo-se na sub-bacia 62 dos rios Paraná, Tiete e outros, mais especificamente na sub-bacia do rio Tiete (médio Tiete).

A estação pluviométrica de Conchas, códigos 02348003 (ANA) e E5-001(DAEE) localiza-se no município de Conchas, na Latitude 23°00'00" S e Longitude 48°00'00" W aproximadamente a 1,7 km da sede. Esta estação encontra-se em atividade desde 1956.

Para a elaboração da IDF do município de Conchas, procedeu-se a um estudo preliminar com os registros contínuos da estação pluviográfica de Pereiras, operada pelo DAEE (Departamento de Águas e Energia Elétrica de São Paulo). Este estudo subsidiou a geração de uma IDF (IDF1) e permitiu o cálculo das relações entre alturas de precipitação de diferentes durações, usadas para a desagregação da série de máximos anuais levantados de registros diários da estação pluviométrica de Conchas, também operada pelo DAEE.

Os dados para definição da equação IDF 1 foram obtidos a partir dos registros de um pluviógrafo, no período de 1974 até 1993, e os dados para definição da IDF 2 foram obtidos a partir dos dados diários de precipitação no período de 1957 a 2014, coletados em um pluviômetro.

A Figura 01 apresenta a localização do município e das estações pluviométrica e pluviográfica.

Figura 01 – Localização do Município e das Estações Pluviométrica e Pluviográfica

2 – EQUAÇÃO

2.1 - IDF1: REGISTROS CONTÍNUOS DE PRECIPITAÇÃO

A metodologia para definição da equação utilizando os dados pluviográficos está descrita em detalhes em Pinto (2013).

Na definição da equação Intensidade-Duração-Frequência da estação Pereiras, códigos 02347006(ANA) e E4-010R (DAEE) foram utilizadas séries de duração parcial e os dados utilizados constam do Anexo I. A distribuição de frequência ajustada aos dados foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L.

A Figura 02 apresenta as curvas ajustadas utilizando os dados pluviográficos.

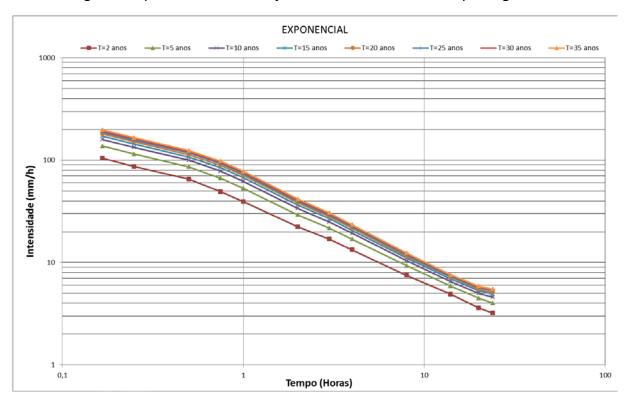


Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Pereiras os parâmetros da equação são os seguintes:

10min ≤ t < 2h

a = 12720,5; b = 0,1844; c = 35,0 e d = 1,2822;

$$i = \frac{12720,5T^{0,1844}}{(t+35,0)^{1,2822}} \tag{02}$$

 $2h \le t \le 24h$

a = 1122,6; b = 0,1613; c = 0; d = 0,8214

$$i = \frac{1122,6T^{0,1613}}{(t)^{0,8214}} \tag{03}$$

Estas equações são válidas para tempo de retorno até 35 anos e durações de 10 minutos a 24 horas. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 - Intensidade da chuva em mm/h.

Duração			Tempo	de Ret	orno, T	(anos)		
da Chuva	2	5	10	15	20	25	30	35
10 Minutos	109,7	129,9	147,6	159,1	167,8	174,8	180,8	186,0
15 Minutos	95,9	113,5	129,0	139,0	146,6	152,7	157,9	162,5
20 Minutos	84,8	100,4	114,1	123,0	129,7	135,1	139,8	143,8
30 Minutos	68,5	81,1	92,1	99,3	104,7	109,1	112,8	116,1
45 Minutos	52,5	62,1	70,6	76,1	80,2	83,6	86,4	88,9
1 HORA	42,1	49,8	56,6	61,0	64,4	67,1	69,4	71,3
2 HORAS	24,6	28,5	31,9	34,0	35,7	37,0	38,1	39,0
3 HORAS	17,6	20,4	22,9	24,4	25,6	26,5	27,3	28,0
4 HORAS	13,9	16,1	18,0	19,3	20,2	20,9	21,5	22,1
5 HORAS	11,6	13,4	15,0	16,0	16,8	17,4	17,9	18,4
6 HORAS	10,0	11,6	12,9	13,8	14,5	15,0	15,4	15,8
7 HORAS	8,8	10,2	11,4	12,2	12,7	13,2	13,6	13,9
8 HORAS	7,9	9,1	10,2	10,9	11,4	11,8	12,2	12,5
12 HORAS	5,6	6,5	7,3	7,8	8,2	8,5	8,7	9,0
14 HORAS	5,0	5,8	6,4	6,9	7,2	7,5	7,7	7,9
20 HORAS	3,7	4,3	4,8	5,1	5,4	5,6	5,7	5,9
24 HORAS	3,2	3,7	4,1	4,4	4,6	4,8	4,9	5,1

Tabela 02 – Altura de chuva em mm

Duração			Tempo	de Ret	orno, T	(anos)		
da Chuva	2	5	10	15	20	25	30	35
10 Minutos	18,3	21,7	24,6	26,5	28,0	29,1	30,1	31,0
15 Minutos	24,0	28,4	32,2	34,7	36,6	38,2	39,5	40,6
20 Minutos	28,3	33,5	38,0	41,0	43,2	45,0	46,6	47,9
30 Minutos	34,2	40,5	46,1	49,6	52,3	54,5	56,4	58,0
45 Minutos	39,3	46,6	52,9	57,1	60,2	62,7	64,8	66,7
1 HORA	42,1	49,8	56,6	61,0	64,4	67,1	69,4	71,3
2 HORAS	49,2	57,0	63,8	68,1	71,3	73,9	76,2	78,1
3 HORAS	52,9	61,3	68,6	73,2	76,7	79,5	81,9	83,9
4 HORAS	55,7	64,6	72,2	77,1	80,7	83,7	86,2	88,4
5 HORAS	57,9	67,2	75,1	80,2	84,0	87,1	89,7	91,9
6 HORAS	59,9	69,4	77,6	82,9	86,8	90,0	92,7	95,0
7 HORAS	61,5	71,3	79,8	85,2	89,2	92,5	95,2	97,6
8 HORAS	63,0	73,1	81,7	87,2	91,4	94,7	97,5	100,0
12 HORAS	67,8	78,5	87,8	93,8	98,2	101,8	104,9	107,5
14 HORAS	69,6	80,7	90,3	96,4	101,0	104,7	107,8	110,5
20 HORAS	74,2	86,1	96,2	102,7	107,6	111,6	114,9	117,8
24 HORAS	76,7	88,9	99,4	106,1	111,2	115,3	118,7	121,7

2.2 – IDF2: DESAGREGAÇÃO DE DADOS DIARIOS OBSERVADOS DE PRECIPITAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013).

Na definição da equação Intensidade-Duração-Frequência da estação Conchas, códigos 02348003(ANA) e E5-001 (DAEE) foi utilizada a série de precipitações diárias máximas por ano hidrológico (01/Out a 30/Set), apresentada no Anexo II. A distribuição de frequência ajustada aos dados diários foi a Gumbel, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com a IDF1, para a estação pluviográfica Pereira, códigos 02347006(ANA) e E4-010R (DAEE). As relações entre as alturas de chuvas de diferentes durações constam do Anexo III.

A Figura 03 apresenta as curvas ajustadas.

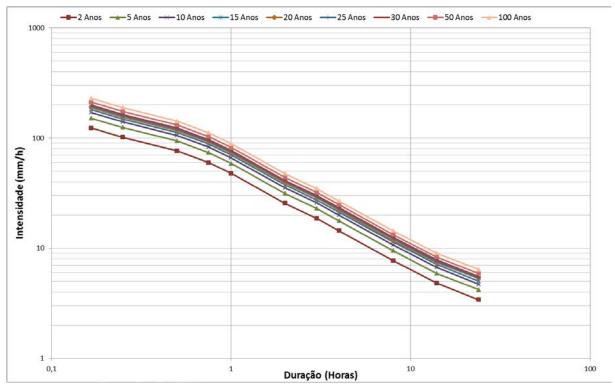


Figura 03 – Curvas intensidade-duração-frequência

As equações adotadas para representar a família de curvas da Figura 03 são do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{04}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Conchas os parâmetros da equação os seguintes:

5min ≤ t < 2h

a = 13612,6; b =0,1521; c =35,0; d =1,2556

$$i = \frac{13612,6T^{0,1521}}{(t+35,0)^{1,2556}} \tag{05}$$

 $2h \le t \le 24h$

a = 1337,1; b =0,1514; c =0; d =0,8373

$$i = \frac{1337,17^{0,1514}}{(t)^{0,8373}} \tag{06}$$

A equação acima é válida para tempos de retorno até 100 anos e durações de 10 minutos até 24 horas. A Tabela 03 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 04 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 03 – Intensidade da chuva em mm/h.

Duração					•	Tempo d	le Retorn	o, T (and	s)				
da Chuva	2	5	10	15	20	25	30	40	50	60	75	90	100
10 Minutos	127,0	146,0	162,3	172,6	180,3	186,5	191,8	200,4	207,3	213,1	220,5	226,7	230,3
15 Minutos	111,3	127,9	142,2	151,2	158,0	163,4	168,0	175,5	181,6	186,7	193,2	198,6	201,8
20 Minutos	98,7	113,5	126,1	134,2	140,2	145,0	149,1	155,7	161,1	165,7	171,4	176,2	179,0
30 Minutos	80,1	92,0	102,3	108,8	113,6	117,6	120,9	126,3	130,6	134,3	138,9	142,9	145,2
45 Minutos	61,7	70,9	78,8	83,8	87,6	90,6	93,1	97,3	100,7	103,5	107,1	110,1	111,8
1 HORA	49,7	57,2	63,5	67,5	70,6	73,0	75,1	78,4	81,1	83,4	86,3	88,7	90,1
2 HORAS	27,0	31,0	34,4	36,6	38,2	39,5	40,6	42,4	43,9	45,1	46,7	48,0	48,8
3 HORAS	19,2	22,1	24,5	26,1	27,2	28,1	28,9	30,2	31,3	32,1	33,2	34,2	34,7
4 HORAS	15,1	17,3	19,3	20,5	21,4	22,1	22,7	23,8	24,6	25,3	26,1	26,9	27,3
5 HORAS	12,5	14,4	16,0	17,0	17,7	18,4	18,9	19,7	20,4	21,0	21,7	22,3	22,6
6 HORAS	10,7	12,3	13,7	14,6	15,2	15,8	16,2	16,9	17,5	18,0	18,6	19,1	19,4
7 HORAS	9,4	10,9	12,1	12,8	13,4	13,8	14,2	14,9	15,4	15,8	16,4	16,8	17,1
8 HORAS	8,4	9,7	10,8	11,5	12,0	12,4	12,7	13,3	13,8	14,1	14,6	15,0	15,3
12 HORAS	6,0	6,9	7,7	8,2	8,5	8,8	9,1	9,5	9,8	10,1	10,4	10,7	10,9
14 HORAS	5,3	6,1	6,7	7,2	7,5	7,8	8,0	8,3	8,6	8,8	9,2	9,4	9,6
20 HORAS	3,9	4,5	5,0	5,3	5,6	5,7	5,9	6,2	6,4	6,6	6,8	7,0	7,1
24 HORAS	3,4	3,9	4,3	4,6	4,8	4,9	5,1	5,3	5,5	5,6	5,8	6,0	6,1

Tabela 04 - Altura de chuva em mm

Duração						Tempo d	de Retori	no <i>, T</i> (an	os)				
da Chuva	2	5	10	15	20	25	30	40	50	60	75	90	100
10 Minutos	21,2	24,3	27,0	28,8	30,1	31,1	32,0	33,4	34,5	35,5	36,7	37,8	38,4
15 Minutos	27,8	32,0	35,5	37,8	39,5	40,9	42,0	43,9	45,4	46,7	48,3	49,6	50,4
20 Minutos	32,9	37,8	42,0	44,7	46,7	48,3	49,7	51,9	53,7	55,2	57,1	58,7	59,7
30 Minutos	40,0	46,0	51,1	54,4	56,8	58,8	60,4	63,1	65,3	67,2	69,5	71,4	72,6
45 Minutos	46,3	53,2	59,1	62,9	65,7	67,9	69,8	73,0	75,5	77,6	80,3	82,6	83,9
1 HORA	49,7	57,2	63,5	67,5	70,6	73,0	75,1	78,4	81,1	83,4	86,3	88,7	90,1
2 HORAS	53,9	62,0	68,8	73,2	76,4	79,1	81,3	84,9	87,8	90,3	93,4	96,0	97,5
3 HORAS	57,6	66,2	73,5	78,2	81,6	84,4	86,8	90,7	93,8	96,4	99,7	102,5	104,2
4 HORAS	60,4	69,4	77,0	81,9	85,6	88,5	91,0	95,0	98,3	101,0	104,5	107,4	109,2
5 HORAS	62,6	71,9	79,9	84,9	88,7	91,8	94,3	98,5	101,9	104,8	108,4	111,4	113,2
6 HORAS	64,5	74,1	82,3	87,5	91,4	94,5	97,2	101,5	105,0	107,9	111,6	114,8	116,6
7 HORAS	66,1	76,0	84,4	89,7	93,7	96,9	99,6	104,1	107,7	110,7	114,5	117,7	119,6
8 HORAS	67,6	77,6	86,2	91,7	95,8	99,1	101,8	106,4	110,0	113,1	117,0	120,3	122,2
12 HORAS	72,2	82,9	92,1	97,9	102,3	105,8	108,8	113,6	117,5	120,8	125,0	128,5	130,5
14 HORAS	74,0	85,0	94,4	100,4	104,9	108,5	111,5	116,5	120,5	123,9	128,1	131,7	133,8
20 HORAS	78,4	90,1	100,1	106,4	111,2	115,0	118,2	123,5	127,7	131,3	135,8	139,6	141,8
24 HORAS	80,8	92,8	103,1	109,6	114,5	118,4	121,8	127,2	131,6	135,2	139,9	143,8	146,1

3 – EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Conchas, foi registrada uma Chuva de 80 mm com duração de 45 minutos, a qual gerou vários problemas no sistema de drenagem pluvial no município de Conchas. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 04. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{07}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 80 mm dividido por 0,75 h é igual a 106,7 mm/h. Substituindo os valores na equação 06 temos:

$$T = \left[\frac{106,7(45+35)^{1,2556}}{13612,6} \right]^{1/0,1521} = 73,4 \ anos$$

O tempo de retorno de 73,4 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 1,4%, ou

$$P(i \ge 106,7 \ mm/h) = \frac{1}{T}100 = \frac{1}{73.4}100 = 1,4\%$$

4 – REFERÊNCIAS BIBLIOGRÁFICAS

IBGE - Instituto Brasileiro de Geografia e Estatística, 2010. Disponível em: http://www.censo2010.ibge.gov.br/sinopse/index.php. Acesso em 10 de agosto de 2016.

PINTO, E. J. A. Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico. CPRM. Belo Horizonte. Mar, 2013.

ANEXO I Série de Dados Utilizados por Duração – Altura de Chuva (mm)

DATA	10 MIN	DATA	15 MIN	DATA	30 MIN	DATA	45 MIN	DATA	1 HORA	DATA	2 HORAS
09/02/1975	12,9	19/02/1975	30,8	19/02/1975	50,9	19/02/1975	59,8	25/10/1974	29,8	25/10/1974	33,7
19/02/1975	21,2	17/01/1977	34,8	20/03/1976	24,5	20/03/1976	26,9	30/12/1974	29,0	29/10/1974	36,1
27/01/1976	13,9	07/03/1977	16,2	17/01/1977	45,6	17/01/1977	50,9	17/01/1977	53,3	19/02/1975	71,2
17/01/1977	29,7	20/12/1977	25,4	04/11/1977	24,6	04/11/1977	29,6	04/11/1977	31,6	17/01/1977	54,6
20/12/1977	17,6	08/03/1978	24,9	20/12/1977	45,2	20/12/1977	52,1	20/12/1977	55,5	03/12/1977	34
08/03/1978	22,4	15/12/1978	18,8	08/03/1978	29,7	08/03/1978	31,3	08/03/1978	31,9	20/12/1977	65,9
15/12/1978	15,3	16/02/1980	16,8	15/12/1978	25,3	15/12/1978	26,6	24/02/1980	59,0	08/03/1978	34,2
24/02/1980	18,5	24/02/1980	25,7	24/02/1980	35,8	24/02/1980	49,2	10/11/1981	57,4	19/01/1980	33,5
13/03/1980	16,1	13/03/1980	18,1	10/11/1981	40,0	10/11/1981	52,2	12/03/1982	58,4	17/03/1981	40,1
16/03/1980	18,9	16/03/1980	19,6	07/02/1982	24,1	12/03/1982	43,5	27/06/1982	33,0	10/11/1981	57,7
16/04/1981	13,1	16/04/1981	16,4	12/03/1982	31,3	27/06/1982	29,3	30/08/1982	29,9	24/01/1982	35,8
10/11/1981	20,0	10/11/1981	26,0	21/10/1982	35,2	30/08/1982	27,6	21/10/1982	37,4	27/06/1982	41,4
12/03/1982	13,2	12/03/1982	16,7	03/12/1982	35,4	21/10/1982	35,9	03/12/1982	45,4	21/10/1982	39,2
21/10/1982	26,5	21/10/1982	30,1	17/12/1982	32,5	03/12/1982	41,6	17/12/1982	42,5	03/12/1982	48,4
03/12/1982	19,6	03/12/1982	24,6	06/02/1983	25,2	17/12/1982	40,0	09/03/1983	45,9	17/12/1982	47,1
17/12/1982	15,3	17/12/1982	20,4	09/03/1983	35,7	09/03/1983	41,3	22/04/1983	38,5	09/03/1983	59,6
06/02/1983	15,5	06/02/1983	17,0	22/04/1983	27,0	22/04/1983	33,9	03/12/1983	29,9	22/04/1983	51,1
09/03/1983	16,9	09/03/1983	18,8	12/06/1983	24,1	03/12/1983	27,9	18/12/1983	28,9	22/01/1984	41,8
12/06/1983	14,0	12/06/1983	17,4	18/12/1983	27,7	18/12/1983	28,3	27/01/1984	40,9	27/01/1984	44,0
18/12/1983	13,2	18/12/1983	19,1	27/01/1984	29,8	27/01/1984	37,6	16/10/1992	29,3	11/01/1993	37,9
29/01/1992	19,8	29/01/1992	28,2	29/01/1992	46,6	11/01/1993	26,9	11/01/1993	30,5	26/03/1993	49,3
26/03/1993	13,6	26/03/1993	16,6	26/03/1993	29,0	26/03/1993	30,3	26/03/1993	39,2	01/04/1993	36,0

DATA	3 HORAS	DATA	4 HORAS	DATA	8 HORAS	DATA	14 HORAS	DATA	24 HORAS
19/02/1975	71,3	19/02/1975	71,3	13/01/1975	48,1	19/02/1975	71,3	19/02/1975	71,3
17/01/1977	54,8	17/01/1977	55,0	19/02/1975	71,3	03/01/1976	56,0	06/06/1976	67,1
19/01/1977	43,0	19/01/1977	45,0	17/01/1977	57,4	06/06/1976	65,4	10/10/1976	67,6
03/12/1977	42,6	03/12/1977	47,5	03/12/1977	52,0	10/10/1976	67,3	17/01/1977	68,9
20/12/1977	67,7	20/12/1977	71,9	20/12/1977	73,8	17/01/1977	68,6	03/12/1977	62,2
17/03/1981	42,0	17/05/1978	45,1	17/05/1978	57,2	20/12/1977	76,3	20/12/1977	79,7
10/11/1981	57,7	17/03/1981	42,9	24/02/1980	86,9	17/05/1978	57,4	09/06/1978	61,6
24/01/1982	43,2	10/11/1981	57,8	16/03/1981	48,0	24/02/1980	87,0	24/02/1980	87,0
27/06/1982	43,4	24/01/1982	45,1	07/06/1981	67,0	07/06/1981	71,8	16/03/1981	61,0
21/10/1982	39,5	27/06/1982	43,5	10/11/1981	58,2	10/11/1981	58,2	07/06/1981	72,5
15/11/1982	42,3	15/11/1982	50,1	15/11/1982	55,4	23/01/1982	61,3	23/01/1982	64,9
03/12/1982	52,4	03/12/1982	53,4	03/12/1982	54,6	12/03/1982	93,4	12/03/1982	93,4
17/12/1982	56,3	17/12/1982	61,8	17/12/1982	63,4	15/11/1982	56,3	16/12/1982	78,7
16/01/1983	38,2	16/01/1983	41,0	09/03/1983	66,0	16/12/1982	63,8	16/01/1983	63,3
09/03/1983	65,8	09/03/1983	66,0	22/04/1983	63,9	16/01/1983	62,5	01/02/1983	121,7
22/04/1983	55,5	22/04/1983	62,2	31/05/1983	58,0	09/03/1983	66,0	09/03/1983	66,0
22/01/1984	47,9	31/05/1983	41,3	07/06/1983	52,5	22/04/1983	63,9	22/04/1983	63,9
27/01/1984	47,2	22/01/1984	48,6	22/01/1984	48,7	31/05/1983	83,5	31/05/1983	113,6
29/01/1992	81,9	27/01/1984	55,4	27/01/1984	58,5	07/06/1983	72,0	06/06/1983	95,2
11/01/1993	44,2	29/01/1992	83,7	29/01/1992	88,6	27/01/1984	70,1	27/01/1984	76,4
26/03/1993	49,8	11/01/1993	47,1	11/01/1993	58,5	29/01/1992	88,6	29/01/1992	88,6
01/04/1993	39,4	26/03/1993	49,8	26/03/1993	49,8	11/01/1993	72,0	11/01/1993	72,6

ANEXO II Série de Dados Utilizados – Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Out a 31/Set)

AI	AF	Data	Precipitação Máxima Diária (mm)
1957	1958	24/01/58	91,8
1958	1959	27/10/58	65,0
1959	1960	26/11/59	74,0
1960	1961	18/12/60	70,9
1961	1962	14/03/62	92,7
1963	1964	29/01/64	110,5
1964	1965	01/12/64	77,7
1965	1966	02/10/65	50,7
1967	1968	13/01/68	73,6
1968	1969	30/06/69	43,5
1969	1970	22/02/70	87,9
1970	1971	01/01/71	104,5
1971	1972	20/02/72	65,8
1972	1973	04/10/72	72,8
1973	1974	02/01/74	63,1
1974	1975	29/10/74	78,5
1975	1976	30/11/75	86,0
1976	1977	19/01/77	66,1
1977	1978	03/12/77	68,7
1978	1979	11/11/78	58,9
1979	1980	24/02/80	75,3
1980	1981	06/06/81	55,3
1981	1982	23/01/82	92,0
1982	1983	16/12/82	78,5
1983	1984	25/01/84	80,0
1984	1985	11/03/85	72,0
1985	1986	05/03/86	47,9
1986	1987	25/01/87	61,8
1987	1988	17/03/88	77,3
1988	1989	06/01/89	63,2
1989	1990	10/03/90	93,4
1990	1991	26/03/91	73,4
1991	1992	02/03/92	48,9
1992	1993	04/11/92	120,1
1993	1994	03/10/93	65,9
1994	1995	06/12/94	48,6
1995	1996	13/12/95	72,5
1996	1997	05/06/97	66,2

1997	1998	14/02/98	110,4
1998	1999	10/12/98	107,0
1999	2000	27/01/00	77,2
2000	2001	10/03/01	74,7
2001	2002	13/01/02	95,0
2002	2003	13/01/03	108,8
2003	2004	26/01/04	93,0
2006	2007	07/01/07	92,5
2007	2008	25/10/07	57,0
2008	2009	26/12/08	64,0
2009	2010	30/12/09	79,9
2010	2011	12/01/11	83,0
2011	2012	15/10/11	62,5
2012	2013	14/01/13	77,0
2013	2014	31/12/13	42,0

ANEXO III

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd1/Pd2) Tempos de Retorno de 2 a 35 anos

	Relação	Relação	Relação	Relação
	10 min/15 min	15 min/30 min	30 min/45 min	45 min/1h
Máxima	0,80	0,67	0,88	0,94
Mínima	0,80	0,67	0,84	0,94
Média	0,80	0,67	0,85	0,94
Mediana	0,80	0,67	0,85	0,94

	Relação	Relação	Relação	Relação	Relação
	1h/2h	2h/3h	3h/4h	4h/8h	8h/14h
Máxima	0,93	0,91	0,98	0,94	0,93
Mínima	0,88	0,88	0,95	0,89	0,87
Média	0,92	0,91	0,97	0,93	0,91
Mediana	0,93	0,91	0,97	0,94	0,92

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd/P1hora) Tempos de Retorno de 2 a 35 anos

	Relação	Relação	Relação	Relação
	10 min/1h	15 min/1h	30 min/1h	45 min/1h
Máxima	0,44	0,55	0,83	0,94
Mínima	0,42	0,53	0,80	0,94
Média	0,43	0,54	0,81	0,94
Mediana	0,43	0,53	0,80	0,94

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd/P24horas) Tempos de Retorno de 2 a 35 anos

	Relação	Relação	Relação	Relação	Relação	Relação
	1h/24h	2h/24h	3h/24h	4h/24h	8h/24h	14h/24h
Máxima	0,59	0,63	0,69	0,71	0,78	0,89
Mínima	0,51	0,58	0,66	0,69	0,75	0,80
Média	0,57	0,62	0,68	0,70	0,76	0,83
Mediana	0,58	0,62	0,68	0,70	0,75	0,82

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília - DF - CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

Superintendência Regional de Porto Alegre

Rua Banco da Província, 105 - Santa Teresa Porto Alegre - RS - CEP: 90840-030 Tel.: 51 3406-7300 - Fax: 51 3233-7772

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495

www.cprm.gov.br

