PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

ATLAS MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO DE DO BRASIL

Equações Intensidade-Duração-Frequência

Município: São Sebastião do Alto

Estação Pluviométrica: Visconde de Imbé

Código ANA: 02242017

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: São Sebastião do Alto - RJ

Estação Pluviométrica: Visconde de Imbé

Código: 02242017

PORTO ALEGRE 2016

PROGRAMA GEOLOGIA DO BRASIL

LEVANTAMENTO DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Porto Alegre

Copyright @ 2016 CPRM - Superintendência Regional de Porto Alegre Rua Banco da Província, 105 – Santa Tereza Porto Alegre - RS - 90.840-030

Telefone: 0(xx)(51) 3406-7300 Fax: 0(xx)(51) 3233-7772

http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias). Município: São Sebastião do Alto. Estação Pluviométrica: Visconde de Imbé, Código 02242027. Karine Pickbrenner e Eber José de Andrade Pinto – Porto Alegre: CPRM, 2016. 12p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II – PICKBRENNER, K. e PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil e É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Fernando Bezerra Coelho Filho

SECRETÁRIO EXECUTIVO

Luiz Eduardo Barata

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Demetrius Ferreira e Cruz

Jarbas Raimundo de Aldano Matos

Janaina Gomes Pires da Silva

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Stênio Petrovich Pereira

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Nelson Victor Le Cocq D'Oliveira

SUPERINTENDÊNCIA REGIONAL DE PORTO ALEGRE

José Leonardo Silva Andriotti Superintendente

Marcos Alexandre de Freitas Gerente de Hidrologia e Gestão Territorial

João Angelo Toniolo Gerente de Geologia e Recursos Minerais

Ana Claudia Viero
Gerente de Relações Institucionais e Desenvolvimento

Alexandre Goulart Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Jorge Pimentel

Divisão de Hidrologia Aplicada

Adriana Dantas Medeiros

Achiles Monteiro (In memorian)

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenação do Projeto Cartas Municipais de Suscetibilidade

Marlon Colombo Hoelzel

Coordenadores Regionais do Projeto Atlas Pluviométrico

José Alexandre Moreira Farias - REFO Karine Pickbrenner - Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder-Sureg/PA

Albert Teixeira Cardoso – Sureg/GO

Caluan Rodrigues Capozzoli – Sureg/SP

Catharina Ramos dos Prazeres Campos – Sureg/BE

Jean Ricardo da Silvado Nascimento - RETE

Luana Késsia Lucas Alves Martins – Sureg/BH

Osvalcélio Mercês Furtunato – Sureg/SA

Sistema de Informações Geográficas e Mapa

Ivete Souza do Nascimento - Sureg/BH

Apoio Técnico

Augusto Cezar Gessi Caneppele – Sureg/PA

Betânia Rodrigues dos Santos– Sureg/GO

Celina Monteiro – Sureg/BE

Danielle Cutolo - Sureg/SP

Douglas Sanches Soller – Sureg/PA

Edna Alves Balthazar - Sureg/SP

Eliamara Soares Silva– RETE

Priscila Nishihara Leo - Sureg/SP

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida por Furtunato *et al.* (2016) para o município de Trajano de Moraes/RJ, onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Visconde de Imbé, código 02242027, localizada a 12 km da sede municipal de São Sebastião do Alto/RJ.

1 - INTRODUÇÃO

A equação definida por Furtunato *et al.* (2016) para o município de Trajano de Moraes é indicada para ser utilizada no município de São Sebastião do Alto.

O município de São Sebastião do Alto está localizado no estado do Rio de Janeiro e situa-se na Latitude 21°57'30" S e Longitude 42°07'60" W. Apresenta área aproximada de 397,898 km² (IBGE, 2010) e a sede localiza-se a uma altitude aproximada de 574 metros. Sua população, segundo o senso de 2010 do IBGE, é de 8.895 habitantes.

A estação Visconde de Imbé, código 02242017, está localizada na Latitude 22°04'04"S e Longitude 42°09'36"W e se insere na sub-bacia 58, sub-bacia do rio Paraíba do Sul. Esta estação pluviométrica encontra-se em atividade desde 1965, sendo atualmente operada pelo Serviço Geológico do Brasil (SGB/CPRM). Os dados para definição da equação IDF foram obtidos a partir dos dados diários de precipitação coletados em pluviômetro modelo padrão DNAEE.

A Figura 01 apresenta a localização do município e da estação.

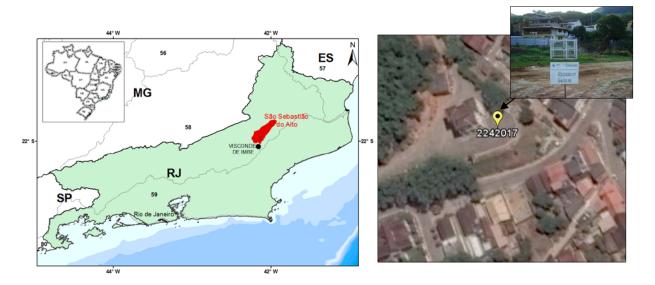


Figura 01 – Localização do Município e da Estação Pluviométrica (Fonte: Google, 2016)

2 - EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Visconde de Imbé, código 02242017, foi utilizada a série de precipitações diárias máximas por ano hidrológico (outubro a setembro) apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com as relações IDF estabelecidas por Pfafstetter (1982) para o município de Santa Maria Madalena. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

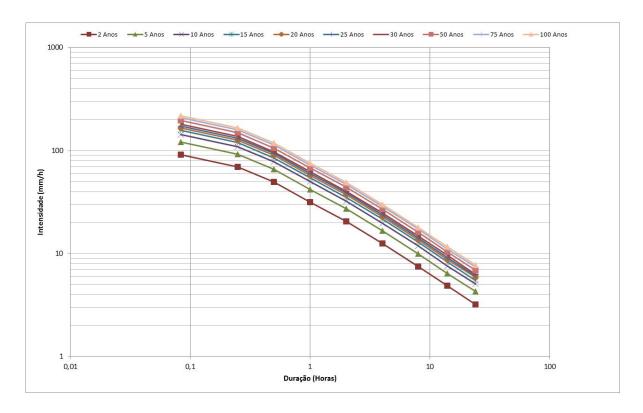


Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \{ [(aLn(T) + b).Ln(t + (\delta/60))] + cLn(T) + d \}/t$$
 (01)

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (horas)

 a, b, c, d, δ são parâmetros da equação

No caso de Trajano de Moraes, para durações de 5 minutos a 1 hora, os parâmetros da equação são os seguintes:

$$a = 3,9517 ; b = 8,343 ; c = 11,2123 ; d = 23,677 e \delta = 2$$

$$i = \{ [(3,9517Ln(T) + 8,343). Ln(t + (2/60))] + 11,2123Ln(T) + 23,677 \}/t$$
 (02)

Para durações superiores a 1 hora até 24 horas, os parâmetros da equação são os seguintes:

$$a = 5,4795 ; b = 11,5253 ; c = 9,9179 ; d = 20,9327 e \delta = 18$$

$$i = \{ [(5,4795Ln(T) + 11,5253).Ln(t + (18/60))] + 9,9179Ln(T) + 20,9327 \}/t (03)$$

As equações acima são válidas para tempos de retorno de até 100 anos. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h.

Duração		Tempo de Retorno, T (anos)										
da Chuva	2	5	10	15	20	25	40	50	60	75	90	100
5 Minutos	91,7	121,6	144,3	157,5	166,9	174,2	189,5	196,8	202,8	210,1	216,0	219,5
10 Minutos	81,7	108,4	128,5	140,3	148,7	155,2	168,9	175,4	180,7	187,2	192,5	195,6
15 Minutos	69,9	92,7	110,0	120,1	127,3	132,8	144,5	150,1	154,6	160,2	164,7	167,4
20 Minutos	61,0	80,9	96,0	104,8	111,1	115,9	126,1	131,0	134,9	139,8	143,8	146,0
30 Minutos	49,0	65,0	77,1	84,1	89,2	93,1	101,3	105,2	108,3	112,2	115,4	117,3
45 Minutos	38,3	50,8	60,3	65,9	69,8	72,8	79,3	82,3	84,8	87,8	90,3	91,8
1 HORA	31,8	42,2	50,1	54,7	57,9	60,5	65,8	68,3	70,4	72,9	75,0	76,2
2 HORAS	20,3	26,9	31,9	34,9	37,0	38,6	42,0	43,6	44,9	46,5	47,8	48,6
3 HORAS	15,4	20,4	24,2	26,4	28,0	29,2	31,8	33,0	34,0	35,3	36,3	36,8
4 HORAS	12,5	16,6	19,7	21,6	22,8	23,8	26,0	27,0	27,8	28,8	29,6	30,1
5 HORAS	10,7	14,2	16,8	18,4	19,4	20,3	22,1	22,9	23,6	24,5	25,2	25,6
6 HORAS	9,3	12,4	14,7	16,1	17,0	17,8	19,3	20,1	20,7	21,4	22,0	22,4
7 HORAS	8,3	11,0	13,1	14,3	15,2	15,8	17,2	17,9	18,4	19,1	19,6	20,0
8 HORAS	7,5	10,0	11,9	12,9	13,7	14,3	15,6	16,2	16,7	17,3	17,8	18,0
12 HORAS	5,5	7,3	8,7	9,5	10,1	10,5	11,4	11,9	12,2	12,7	13,0	13,2
14 HORAS	4,9	6,5	7,7	8,4	8,9	9,3	10,1	10,5	10,8	11,2	11,6	11,7
20 HORAS	3,7	4,9	5,8	6,4	6,7	7,0	7,7	7,9	8,2	8,5	8,7	8,9
24 HORAS	3,2	4,2	5,0	5,5	5,8	6,1	6,6	6,9	7,1	7,3	7,5	7,7

Tabela 02 – Altura de chuva em mm

Duração		Tempo de Retorno, T (anos)										
da Chuva	2	5	10	15	20	25	40	50	60	75	90	100
5 Minutos	7,6	10,1	12,0	13,1	13,9	14,5	15,8	16,4	16,9	17,5	18,0	18,3
10 Minutos	13,6	18,1	21,4	23,4	24,8	25,9	28,1	29,2	30,1	31,2	32,1	32,6
15 Minutos	17,5	23,2	27,5	30,0	31,8	33,2	36,1	37,5	38,7	40,0	41,2	41,8
20 Minutos	20,3	27,0	32,0	34,9	37,0	38,6	42,0	43,7	45,0	46,6	47,9	48,7
30 Minutos	24,5	32,5	38,5	42,1	44,6	46,5	50,6	52,6	54,2	56,1	57,7	58,6
45 Minutos	28,7	38,1	45,2	49,4	52,3	54,6	59,4	61,7	63,6	65,9	67,8	68,8
1 HORA	31,8	42,2	50,1	54,7	57,9	60,5	65,8	68,3	70,4	72,9	75,0	76,2
2 HORAS	40,6	53,8	63,9	69,7	73,9	77,1	84,0	87,2	89,8	93,1	95,7	97,2
3 HORAS	46,1	61,2	72,6	79,3	84,0	87,7	95,4	99,1	102,1	105,8	108,8	110,5
4 HORAS	50,2	66,6	79,0	86,2	91,4	95,4	103,8	107,8	111,1	115,1	118,3	120,2
5 HORAS	53,4	70,8	84,0	91,8	97,2	101,5	110,4	114,7	118,2	122,4	125,9	127,9
6 HORAS	56,0	74,3	88,2	96,3	102,1	106,5	115,9	120,4	124,0	128,5	132,2	134,3
7 HORAS	58,3	77,3	91,8	100,2	106,2	110,8	120,6	125,3	129,0	133,7	137,5	139,7
8 HORAS	60,2	79,9	94,9	103,6	109,8	114,6	124,7	129,5	133,4	138,2	142,1	144,4
12 HORAS	66,3	88,0	104,4	114,0	120,8	126,0	137,2	142,5	146,8	152,0	156,4	158,9
14 HORAS	68,6	91,0	108,0	117,9	125,0	130,4	142,0	147,4	151,9	157,3	161,8	164,4
20 HORAS	73,9	98,1	116,5	127,2	134,8	140,7	153,1	159,0	163,8	169,7	174,5	177,3
24 HORAS	76,7	101,8	120,8	131,9	139,8	145,9	158,8	164,9	169,9	176,0	181,0	183,9

3 – EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, no município de Trajano de Moraes, foi registrada uma Chuva de 85 mm com duração de 2 horas. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = exp\left[\frac{it - bLn(t) - d}{aLn(t) + c}\right] \tag{04}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 85 mm dividido por 2 h é igual a 42,5 mm/h. Substituindo os valores na equação 04 temos:

$$T = exp \left[\frac{42,5 \times 2 - 11,5253Ln(2) - 20,9327}{5,4795Ln(2) + 9,9179} \right] = 43,0 \ anos$$

O tempo de retorno de 43,0 anos corresponde a uma probabilidade de 2,33% que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou

$$P(i \ge 42.5mm/h) = \frac{1}{T}100 = \frac{1}{43.0}100 = 2.33\%$$

4 – REFERÊNCIAS BIBLIOGRÁFICAS

FURTUNATO, O. M.; PICKBRENNER, K.; PINTO, E. J. A. A. Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência. Município: Trajano de Moraes/RJ. Estação pluviométrica Visconde de Imbé, código 02242017. Salvador, BA: CPRM, 2016. 12p.

GOOGLE EARTH. Disponível em: http://www.google.com/earth. Acesso em abril de 2016.

IBGE – Instituto Brasileiro de Geografia e Estatística, 2010. Cidades. Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?codmun=330530. Acesso em 13 de maio de 2016.

PFAFSTETTER, O. Chuvas Intensas no Brasil. 2ª ed. DNOS, 1982.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar., 2013.

ANEXO I Série de Dados Utilizados – Altura de Chuva diária (mm) Máximo por Ano Hidrológico (Outubro/Setembro)

			Precipitação				Precipitação
Al	AF	Data	Máxima	ΑI	AF	Data	Máxima
			Diária (mm)				Diária (mm)
1965	1966	14/01/1966	60,2	1990	1991	15/01/1991	61,1
1966	1967	01/01/1967	75,2	1991	1992	05/01/1992	63,3
1967	1968	24/02/1968	64,6	1992	1993	12/12/1992	95,3
1968	1969	21/02/1969	100,2	1993	1994	25/10/1993	65,9
1969	1970	08/12/1969	59,0	1994	1995	25/09/1995	76,0
1970	1971	28/02/1971	55,4	1995	1996	06/12/1995	45,6
1971	1972	24/02/1972	121,4	1996	1997	21/11/1996	69,8
1972	1973	06/11/1972	87,4	1997	1998	07/02/1998	49,1
1973	1974	22/12/1973	106,4	1998	1999	11/03/1999	46,4
1974	1975	02/01/1975	66,2	1999	2000	24/12/1999	55,3
1975	1976	18/10/1975	66,2	2000	2001	08/02/2001	50,8
1976	1977	20/01/1977	114,3	2001	2002	26/12/2001	46,9
1977	1978	15/02/1978	71,3	2002	2003	17/01/2003	99,8
1978	1979	15/02/1979	84,2	2003	2004	20/11/2003	65,6
1979	1980	02/01/1980	121,4	2004	2005	19/01/2005	79,9
1980	1981	02/12/1980	62,6	2005	2006	24/02/2006	52,2
1981	1982	10/11/1981	76,2	2006	2007	04/01/2007	95,7
1982	1983	20/03/1983	73,6	2007	2008	25/02/2008	73,3
1983	1984	06/03/1984	126	2008	2009	28/01/2009	66,8
1984	1985	22/11/1984	90,2	2009	2010	19/12/2009	70,3
1985	1986	14/02/1986	72,2	2010	2011	01/03/2011	65,6
1986	1987	11/03/1987	113,3	2011	2012	02/01/2012	98,2
1987	1988	19/02/1988	57,3	2012	2013	13/11/2012	114,5
1988	1989	02/01/1989	56,1	2013	2014	24/12/2013	53,5
1989	1990	21/12/1989	70,3	2014	2015	14/12/2014	76,8

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir das relações IDF estabelecidas por Pfafstetter (1982) para o município de Santa Maria Madalena/RJ.

Relação 24h/1dia: 1,13

Relação 14h/24h	Relação 8h/24h	Relação 4h/24h	Relação 2h/24h	Relação 1h/24h
0,88	0,78	0,65	0,53	0,41

Relação	Relação	Relação		
30 min/1h	15 min/1h	5 min/1h		
0,78	0,55	0,24		

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília - DF - CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

Superintendência Regional de Porto Alegre

Rua Banco da Província, 105 - Santa Teresa Porto Alegre - RS - CEP: 90840-030 Tel.: 51 3406-7300 - Fax: 51 3233-7772

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495

www.cprm.gov.br

