Ministério de Minas e Energia

CPRM – Serviço Geológico do Brasil

"CARTAS DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÕES"

GEOFÍSICA

(Itatiba)

Autores: Jairo J. C. Andrade; Sergio R. E. Carvalho; Luiz G. R. Pinto

São Paulo, 30 de Outubro de 2018

Sumário

INTRODUÇÃO	. 3
MÉDOTOS E MATERIAIS	. 3
Métodos Elétricos	. 3
Sondagem Elétrica Vertical	. 4
Caminhamento Elétrico	. 5
Equipamentos Utilizados	. 6
AQUISIÇÃO DOS DADOS	. 7
PROCESSAMENTO DOS DADOS	10
Sondagem Elétrica Vertical	10
Caminhamento Elétrico	11
INTERPRETAÇÃO	14
Sondagem Elétrica Vertical	14
Caminhamento Elétrico	15
REFERÊNCIAS	19
APÊNDICE	20

INTRODUÇÃO

No projeto "Cartas de Suscetibilidade a Movimentos Gravitacionais de Massa e Inundações" foi realizada campanha de geofísica terrestre, levantamento elétrico, objetivando estimar a espessura do solo, profundidade do topo do cristalino rochoso e mapear feições e estruturas geológicas de interesse.

O levantamento se deu na região que abrange a cidade de Itatiba entre os dias 17 e 19 de setembro de 2018, com equipe composta por um geofísico, um técnico de geociências e um auxiliar de campo.

MÉDOTOS E MATERIAIS

Métodos Elétricos

Os métodos elétricos utilizam correntes contínuas ou alternadas de baixa frequência para investigar as propriedades elétricas da subsuperfície. Nesse trabalho foram usados os métodos de resistividade a fim de estudar descontinuidades horizontais e verticais nas propriedades elétricas do solo e associá-las aos objetivos do projeto. Nos métodos de resistividade, correntes elétricas geradas artificialmente são introduzidas no solo e as diferenças de potencial resultantes são medidas na superfície.

A resistividade elétrica é uma das propriedades físicas mais variáveis. A maior parte dos minerais formadores das rochas é isolante e a corrente elétrica é conduzida através de uma rocha principalmente pela presença de íons nas águas dos poros. Assim, o aumento da porosidade e do conteúdo de sais são os principais fatores que diminuem resistividade de rochas. Secundariamente, a presença de argilo-minerais, minerais sulfetados e granulação grosseira.

A resistividade elétrica é determinada pela seguinte equação:

$$\rho = K.\frac{\Delta V}{I} \tag{1}$$

Onde (I) é a corrente elétrica introduzida no solo, (ΔV) é a diferença de potencial medida e (K) é um fator geométrico que depende das técnicas e

arranjos utilizados nos levantamentos. As técnicas de campo utilizadas foram a Sondagem Elétrica Vertical (SEV) e o Caminhamento Elétrico (CE).

Sondagem Elétrica Vertical

A técnica da SEV consiste numa sucessão de medidas de um parâmetro geoelétrico efetuadas a partir da superfície do terreno. São injetadas correntes (I) no solo através de dois eletrodos nos pontos A e B, e é medida a diferença de potencial (Δ V) entre os outros dois eletrodos nos pontos M e N (Figura 1).

Figura 1 - Técnica da sondagem elétrica vertical (SEV).

Uma vez que se conhece as distâncias \overline{AM} e \overline{AN} , pode-se medir a corrente (I) injetada e a diferença de potencial (ΔV), e calcular a resistividade aparente (ρ_a) com a seguinte equação:

$$\rho_a = \pi . \frac{\overline{AM} . \overline{AN}}{\overline{MN}} . \frac{\Delta V}{I}$$
(2)

O arranjo utilizado foi o Schlumberger em que os eletrodos (AB) são afastados do centro do arranjo a cada leitura, investigando cada vez mais profundo, e os eletrodos (MN) se mantém fixos. As leituras deste arranjo estão menos sujeitas as variações laterais no parâmetro físico medido, irregularidades na superfície topográfica e ruídos produzidos por fontes artificiais (Braga, 2016).

Caminhamento Elétrico

A técnica do CE se baseia na análise e interpretação de um parâmetro geoelétrico, obtido com base em medidas efetuadas na superfície do terreno, com espaçamento constante entre os eletrodos AMNB. Por meio desta técnica, investigam-se, ao longo de linhas, as variações laterais do parâmetro físico a uma ou mais profundidades determinadas; com isso, a direção da linha de investigação permanece fixa e o centro do arranjo AMNB varia com o seu desenvolvimento. Para o desenvolvimento desta técnica, podem ser usados vários tipos de arranjos de desenvolvimento, como Schulumberger, Wenner, gradiente, dipolo-dipolo, polo-dipolo etc.

O Arranjo utilizado foi o dipolo-dipolo em que os eletrodos de corrente (AB) e de potencial (MN) são alinhados em uma mesma direção com espaçamento constante (Figura 2). Neste levantamento foram utilizados simultaneamente 10 dipolos de recepção (MN) disposto ao longo do sentido de aquisição de dados (cada dipolo corresponde a um nível de investigação).

Figura 2 - Esquema do CE, arranjo dipolo-dipolo.

Deste modo é possível calcular a resistividade aparente (ρ_a) com a seguinte equação:

$$\rho_a = 2\pi \, GX. \frac{\Delta V}{I}$$

Com

$$G = \frac{1}{\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}}$$
(3)

Em que: (X) é o espaçamento dos dipolos (AB) e (MN) adotado; (n) é o nível de investigação correspondente (Braga, 2016).

Equipamentos Utilizados

No levantamento foi utilizado o resistivímetro Syscal Pro (Figura 3), que possui 10 canais de leitura integrados. Para a SEV estavam disponíveis quatro rolos de cabos sendo dois de 100m e dois de 350m. Para o CE estavam disponíveis dois conjuntos de cabos com abertura máxima, entre cada canal, de 5 e 20m com 10 canais de medidas cada, permitindo leituras automáticas em todos os eletrodos. Os equipamentos auxiliares foram: uma bateria de 12 V; eletrodos metálicos para injeção de corrente elétrica e medição do potencial elétrico; cabos para conexões entre equipamento e eletrodos; marretas para fixação dos eletrodos e trenas para marcar as posições dos eletrodos.

Figura 3 - Syscal Pro.

As coordenadas foram registradas com o GPS portátil Garmin 62sc, admitindo-se um precisão máxima horizontal de 5 m e vertical de 10 m. Essas são também as precisões dos produtos geofísicos gerados.

AQUISIÇÃO DOS DADOS

Na região foram realizados 2 CEs e 4 SEVs. Os CEs foram realizados objetivando estimar a extensão de aluvião nas áreas de interesse e as SEVs visavam estimar a espessuras das camadas litológicas e profundidade do topo do embasamento.

O primeiro CE, Linha 1, foi realizado sobre toda a superfície da drenagem e uma de suas margens, mas foi necessário a interrupção do levantamento por razões climáticas, chuva forte, não sendo possível realizar o levantamento na sua margem oposta (Figura 4). A SEV 1 foi realizada sobre a Linha 1.

Figura 4 - Linha 1 e SEV 1. A e B identificam, respectivamente, início e fim do CE. Ponto A: (X=46°53'14.15"O; Y= 22°57'6.84"S), Ponto B: (X= 46°53'17.90"O; Y= 22°57'15.40"S) e SEV 1: (X= 46°53'14.40"O; Y= 22°57'7.10"S).

Devido à dificuldade com autorização para realização dos levantamentos em propriedades privadas o segundo CE, Linha 2, foi realizado seccionando uma drenagem não programada previamente (Figura 5). A SEV 4 foi realizada sobre a Linha 2.

Figura 5 - Linha 2 e SEV 4. A e B identificam, respectivamente, início e fim do CE. Ponto A: (X= 46°47'29.80"O; Y= 22°56'57.30"S), Ponto B: (X= 46°47'34.30"O; Y= 22°57'2.16"S) e SEV 4: (X= 46°47'32.40"O; Y= 22°56'59.40"S).

A existência de aluviões nessas áreas é inferida através de interpretações preliminares em imagens de satélite.

As SEVs: 2 (Figura 6) e 3 (Figura 7) objetivaram identificar a espessura do solo e profundidade do topo do embasamento.

Figura 6 - Localização da SEV 2. (X= 46°52'22.50"O; Y= 23° 0'36.70"S).

Figura 7 - Localização da SEV 3. (X= 46°53'55.70"O; Y= 22°58'43.50"S).

PROCESSAMENTO DOS DADOS

Sondagem Elétrica Vertical

Para o processamento dos dados da SEV foram utilizados os Softwares Prosys II; versão 03.11.02. desenvolvido por IRIS Instruments e o WinSev; versão 6.3 desenvolvido por W-GeoSoft. O método de inversão utilizado foi automático, realizando mínimas intervenções manuais, apenas quando o ajuste cria modelos muito complexos com várias camadas.

A inversão da SEV 1 (Figura 8) resultou num modelo de 4 camadas geoelétricas.

Figura 8 - Modelo de camadas Geoelétricas da SEV 1.

Os modelos geoelétricos de camadas das SEVs 2, 3 e 4, e as tabelas de dados encontram-se no apêndice.

Caminhamento Elétrico

Para o processamento dos dados dos CEs foram utilizados os Softwares Prosys II; versão 03.11.02. desenvolvido por IRIS Instruments e o Res2dinv; ver. 3.4; 2D Resistivity and IP Inversion. (desenvolvido por Geotomo Software Malaysia). O método de inversão utilizado foi o robusto e foi utilizado o modelo de discretização com refinamento (Modelo com células com metade do espaçamento).

Estudos preliminares foram realizados para verificar qual espaçamento entre os eletrodos se adequaria melhor ao objetivo do levantamento e verificouse que o espaçamento de 5m obteve os melhores resultados.

Figura 9 - Seção inversa da Linha 1.

As Pseudo-Seções medida, calculada e Seção Invertida dos CEs encontram-se no apêndice.

INTERPRETAÇÃO

Sondagem Elétrica Vertical

As SEVs apresentam camadas geoelétricas que podem ser interpretadas (Telford et al., 1990) conforme as tabelas abaixo:

Tabela 1 - Interpretação da SEV 1.

RES (Ω.m)	Espessura (m)	Litologia Associada
510	0,36	Solo arenoso (Horizonte A)
2467	3,6	Solo arenoso
555	57	Solo arenoso saturado
1069		Cristalino rochoso (embasamento)

Tabela 2 - Interpretação da SEV 2.

RES (Ω.m)	Espessura (m)	Litologia Associada
358	0,32	Solo arenoso (Horizonte A)
2161	6,5	Solo arenoso
216	78	Solo arenoso saturado
4619		Cristalino rochoso (embasamento)

Tabela 3 - Interpretação da SEV 3.

RES (Ω.m)	Espessura (m)	Litologia Associada
63	0,28	Solo areno-argiloso (Horizonte A)
1873	5,5	Solo arenoso
443	69	Solo arenoso saturado
3856		Cristalino rochoso (embasamento)

Tabela 4 - Interpretação da SEV 4.

RES (Ω.m)	Espessura (m)	Litologia Associada
190	0,29	Solo areno-argiloso (Horizonte A)
255	3,2	Aluvião
137	20	Solo arenoso saturado
740		Cristalino rochoso (embasamento)

Caminhamento Elétrico

Os CEs tinham por objetivo mapear a extensão do aluvião nas áreas de interesse. Os aluviões são constituídos por materiais erodidos, retrabalhados, transportados pelo curso d'água e depositados em seus leitos e margens. São também depositados nos fundos e nas margens de lagoas e lagos, sempre associados a ambientes fluviais (Vaz, 1996)

Os contrastes de resistividade nas margens das drenagens não evidenciaram com clareza a extensão dos aluviões e no leito não houve contraste de resistividade devido a condição de saturação. Nas interpretações tomou-se por opção a sugestão destas extensões, inferidas por pequenas variações de resistividade. É necessário confirmação posterior, por meio de trado, para refinar a interpretação.

Devido a dificuldades operacionais o CE investigou, na Linha 1, apenas uma das margens da drenagem e sugere que o aluvião possui aproximadamente 45m de extensão (Figura 12). Existem duas descontinuidades laterais que podem estar associadas a estruturas geológicas, principalmente a que secciona o perfil entre as posições 95 e 115m. Na Figura 4 podemos observar uma tendência linear, paralela à linha amarela tracejada, que corta o perfil nesta posição.

A interpretação da Linha 2 (Figura 13) sugere extensão de aluvião de aproximadamente 45m a direita da drenagem que encontra-se entre as posições 60 e 70m. A esquerda da drenagem não foi possível verificar variação significativa de resistividade. A SEV 4, localizada na posição de 100, evidencia a camada que pode estar associada ao aluvião e confirma que a variação de resistividade entre ela e o solo é muito sutil.

O perfil apresenta uma descontinuidade lateral na posição 160 que pode estar associada a uma falha geológica. O desnível entre o topo rochoso a partir da posição 160 e do topo rochoso na SEV 4 reforçam a possibilidade de falha.

Os valores de resistividade elevados sobre a drenagem é decorrente de ação antrópica, rochas foram usadas na base de sustentação da ponte sobre córrego (Figura 11).

Figura 11 - Caminhamento elétrico sobre ponte. Contorno amarelo sobre posições dos eletrodos.

REFERÊNCIAS

BRAGA, A.C.O., **Geofísica Aplicada: Métodos Geoelétricos em Hidrigeologia.** São Paulo: Oficina de Textos, 2016, 159p.

TELFORD, W.M., GELDART, L.P. & SHERIFF, R.A., **Applied geophysics** 2nd ed. New York: Cambridge University Press, 1990.

VAZ, L. F. Classificação genética dos solos e dos horizontes de alteração de rochas em regiões tropicais. In: Rev. Solos e Rochas, v. 19, n. 2, ABMS/ABGE, São Paulo, SP, 1996. p. 117 - 136.

APÊNDICE

Field data and calculated values

MN/2	AB/2	DeltaV	I	К	Resistivity
[m]	[m]	[mV]	[mA]	[-]	[ohm∙m]
.1	.4	729.6	3	2.36	574
.1	.6	32031	269	5.5	655
.2	.6	30747.4	120	2.51	643
.1	.8	32098.5	376	9.9	845
.2	.8	31280.8	173	4.71	852
.2	1	31593.5	226	7.54	1054
.2	1.2	32261.2	285	11	1245
.2	1.6	32586.7	445	19.79	1449
.2	2	32578.1	624	31.1	1624
.2	2.5	32822	884	48.77	1811
.2	3	32788.1	1199	70.37	1924
.2	4	32977.8	2176	125	1894
.2	5	23233.1	2641	196	1724
.2	6	15125	2711	282	1573
1	6	33351.2	1201	54.98	1527
.2	8	8447.7	3045	502	1393
1	8	33132	2428	98.96	1350
1	10	23366.6	2951	156	1235
1	12	13458	2674	225	1132
1	16	8784.2	3479	401	1012
4	16	33707.7	2897	94.25	1097
1	20	4447.8	3263	627	855
4	20	19792.8	3258	151	917
4	30	7531.7	3570	347	732
4	40	3317.9	3411	622	605
4	50	2315.3	3868	975	584
4	60	1570.4	4010	1407	551
10	60	3939.8	3976	550	545
4	80	1067.5	4625	2507	579
10	80	2644.2	4612	990	568
10	100	1849.7	4388	1555	655
10	120	744.2	2313	2246	723
10	150	883.3	3991	3519	779

Figura 14 - Dados da SEV 1.

Location X = 46°52'22.50"O Y = 23° 0'36.70"S Z = 769 Azim = 0

Model Resistivity	Thickness	Depth	Altitude
[ohm·m]	[m]	[m]	[m]
358	.32		769
2161	6.5	.32	768.7
216	78	6.8	762.2
4619		85	684

Figura 15 - Modelo de camadas Geoelétricas da SEV 2.

Field data and calculated values

MN/2	AB/2	DeltaV	I	Κ	Resistivity
[m]	[m]	[mV]	[mA]	[-]	[ohm∙m]
.1	.4	31606.9	178	2.36	419
.1	.6	32471.5	329	5.5	543
.2	.6	31340.9	131	2.51	601
.1	.8	32516.7	544	9.9	592
.2	.8	32232.7	226	4.71	672
.2	1	32561.2	309	7.54	795
.2	1.2	32545.5	392	11	913
.2	1.6	32992.1	583	19.79	1120
.2	2	32997.7	806	31.1	1273
.2	2.5	33333.1	1154	48.77	1409
.2	3	29315.6	1391	70.37	1483
.2	4	9861.2	753	125	1637
.2	5	13582.2	1565	196	1701
.2	6	8578.4	1371	282	1764
1	6	33090.2	941	54.98	1933
.2	8	3780.6	1136	502	1671
1	8	20843.4	1147	98.96	1798
1	10	11794.8	1173	156	1569
1	12	8478.5	1508	225	1265
1	16	6610.8	2759	401	961
4	16	31093.3	2717	94.25	1079
1	20	4148.1	3733	627	697
4	20	19230.5	3738	151	777
4	30	4079.2	3029	347	467
4	40	1276.3	2262	622	351
4	50	1176.4	4077	975	281
4	60	608.5	3368	1407	254
10	60	1726.1	3392	550	280
4	80	347.7	3652	2507	239
10	80	966.1	3679	990	260
10	100	787.4	4422	1555	277
10	120	521.5	3639	2246	322
10	150	595.2	5213	3519	402

Figura 16 - Dados da SEV 2.

Resistivity	Thickness	Depth	Altitude
[ohm·m]	[m]	[m]	[m]
63	.28		762
1873	5.5	.28	761.7
443	69	5.8	756.2
3856		75	687
3856		75	68

Figura 17 - Modelo de camadas Geoelétricas da SEV 3.

Field data and calculated values

MN/2	AB/2	DeltaV	I	κ	Resistivity
[m]	[m]	[mV]	[mA]	[-]	[ohm∙m]
.1	.4	150228.6	4796	2.36	73.9
.1	.6	116845.5	4777	5.5	135
.2	.6	150228.6	5077	2.51	74.3
.1	.8	85153.5	4742	9.9	178
.2	.8	150228.6	4733	4.71	149
.2	1	150228.6	5377	7.54	211
.2	1.2	111972.8	4214	11	292
.2	1.6	73009.7	3801	19.79	380
.2	2	48764.5	3474	31.1	437
.2	2.5	31518.7	3058	48.77	503
.2	3	27548.6	3571	70.37	543
.2	4	19296.1	4023	125	600
.2	5	14332.2	3928	196	715
.2	6	11437.5	3974	282	812
1	6	54058.9	4004	54.98	742
.2	8	6509	3461	502	944
1	8	30227.3	3483	98.96	859
1	10	24550.5	4152	156	922
1	12	18309.1	4574	225	901
1	16	9647.6	4383	401	883
4	16	49873.7	4391	94.25	1071
1	20	5986.5	4745	627	791
4	20	30352.7	4758	151	963
4	30	10084.2	4453	347	786
4	40	3602.7	3687	622	608
4	50	1525.9	2857	975	521
4	60	1041.2	2902	1407	505
10	60	3020.9	2966	550	560
4	80	1045.2	4806	2507	545
10	80	2948.4	4827	990	605
10	100	2152.4	5158	1555	649
10	120	1812	5825	2246	699
10	150	938.6	3924	3519	842

Figura 18 - Dados da SEV 3.

Location	X = 46°47'32.40"O	Y =	22°56'59.40"S	Z = 783	Azim = 0

Model Resistivity	Thickness	Depth	Altitude
[ohm·m]	[m]	[m]	[m]
190	.29		783
255	3.2	.29	782.7
137	20	3.5	779.5
740		24	759

Figura 19 - Modelo de camadas Geoelétricas da SEV 4.

Field data and calculated values

MN/2	AB/2	DeltaV	I	κ	Resistivity
[m]	[m]	[mV]	[mA]	[-]	[ohm ·m] ¯
.2	.8	150228.6	3564	4.71	199
.2	1	121898.6	3944	7.54	233
.2	1.2	93885	4239	11	244
.2	1.6	57556	4386	19.79	260
.2	2	34138.4	4081	31.1	260
.2	2.5	22480.9	4291	48.77	256
.2	3	13581.8	3890	70.37	246
.2	4	7249.7	3902	125	232
.2	5	4478.2	3953	196	222
.2	6	2784.5	3930	282	200
1	6	16338.8	3939	54.98	200
.2	8	1622	4303	502	189
1	8	9394.2	4309	98.96	189
1	10	5945	4442	156	183
1	12	4139.7	4732	225	173
1	16	2088.9	4278	401	172
4	16	9525.7	4294	94.25	173
1	20	1182.4	3856	627	169
4	20	5206.9	3864	151	168
4	30	2483.4	4030	347	177
4	40	1463.6	3582	622	210
4	50	1403.5	4713	975	240
4	60	846.1	3546	1407	277
10	60	1994.2	3532	550	276
4	80	888.7	5502	2507	335
10	80	2079.4	5478	990	335
10	100	1280.1	5028	1555	353

Figura 20 - Dados da SEV 4.

Figura 21 – Pseudo-Seção medida, calculada e Seção Invertida da Linha 1.

