

REPÚBLICA FEDERATIVA DO BRASIL

MINISTÉRIO DE MINAS E ENERGIA – MME SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL - SGM

CPRM – SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GEOLOGIA DO BRASIL (PGB)

PROJETO AEROGEOFÍSICO RIO MARIA

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

VOLUME I

TEXTO TÉCNICO

2015 PROSPECTORS AEROLEVANTAMENTOS E SISTEMAS LTDA.

REPÚBLICA FEDERATIVA DO BRASIL

MINISTÉRIO DE MINAS E ENERGIA - MME

Edison Lobão Ministro

Márcio Pereira Zimmermann Secretário Executivo

Cláudio Scliar Secretário de Geologia, Mineração e Transformação Mineral

CPRM - SERVIÇO GEOLÓGICO DO BRASIL

Manoel Barreto da Rocha Neto Diretor-Presidente

Roberto Ventura Santos Diretor de Geologia e Recursos Minerais – DGM

Antônio Carlos Bacelar Nunes Diretor de Relações Institucionais e Desenvolvimento – DRI

Thales de Queiros Sampaio Diretor de Hidrologia e Gestão Territorial – DHT

Eduardo Santa Helena da Silva Diretor de Administração e Finanças – DAF

Reginaldo Alves dos Santos Departamento de Geologia – DEGEO

Maria Laura Vereza de Azevedo Divisão de Geofísica – DIGEOF

> Ludwig Zellner Assistente – DGM

João Batista Freitas de Andrade Coordenador – DIGEOF

SUPERINTENDÊNCIA DE BELÉM

Manfredo Ximenes Ponte Superintendente

Lúcia Travassos Rosa Costa Gerência de Geologia e Recursos Minerais

FISCALIZAÇÃO DA AQUISIÇÃO DE DADOS

Adolfo Barbosa Diego Gomes

Ederson Ribeiro Frederico Ricardo Higo Nunes Iago Sousa

REVISÃO E COMPATIBILIZAÇÃO GERAL DOS RESULTADOS OBTIDOS

Alexandre Lisboa Lago Iago Sousa

APRESENTAÇÃO

O conhecimento geológico/geofísico do território brasileiro é instrumento indispensável para o planejamento e a implementação das políticas públicas voltadas para o desenvolvimento sustentável dos recursos minerais, petrolíferos e hídricos subterrâneos do país e, simultaneamente, fonte do imprescindível conhecimento do meio físico para execução de estudos de zoneamento ecológico-econômico e de gestão ambiental do território nacional.

Esse produto é mais uma ação do **Programa Geologia do Brasil – PGB**, que vem desenvolver trabalhos em todas as regiões geográficas do país e cujo objetivo é proporcionar o incremento do conhecimento geológico e hidrogeológico do território brasileiro, como parte do **Programa de Acelereção do Crescimento – PAC**.

É com essa premissa que a Secretaria de Geologia, Mineração e Transformação Mineral do Ministério de Minas e Energia, através da Divisão de Geosífica — DIGEOF do Serviço Geológico do Brasil — CPRM, tem grata satisfação de disponibilizar à comunidade técnico-científica, aos empresários do setor mineral e à sociedade em geral o **Projeto Aerogeofísico Rio Maria**.

O desenvolvimento deste produto abrangeu uma área de 57.603 Km² no sudeste do Estado do Pará e noroeste do Estado do Tocantins. Os trabalhos nessa área foram realizados através do recobrimento de 118.201 km de pefis de alta resolução e forma realizados com os métodos magnetométrico e gamaespectrométrico, com linhas de voo e de controle espaçadas de 500 m e 10.000 m, respectivamente, orientadas nas direções N-S e E-W.

ROBERTO VENTURA SANTOS Diretor de Geologia e Recursos Minerais

RESUMO

No início do ano de 2004 o Governo Federal definiu, através do *Plano Plurianual* 2004/2007 (*PPA 2004-2007*), as políticas públicas setoriais dos seus diversos Ministérios por meio dos Programas e respectivas Ações que foram mantidas e ampliadas nos *Planos Plurianuais 2008/2011 e 2012/2015*.

No âmbito do Ministério de Minas e Energia e sua Secretaria de Geologia, Mineração e Transformação Mineral (SGM/MME), compete a CPRM — Serviço Geológico do Brasil o planejamento e a execução do *Programa Geologia do Brasil (PGB)*, tendo como uma de suas ações a de levantamentos geofísicos.

Dentro do *Programa de Aceleração do Crescimento – PAC 2012*, a CPRM, em 18 de Dezembro de 2013, celebrou com a Prospectors Aerolevantamentos e Sistemas Ltda. o contrato nº 066/PR/13 para executar os serviços de aquisição e processamento de dados aeromagnetométricos e aerogamaespectrométricos do *Projeto Aerogeofísico Rio Maria*, localizado no sudeste do Estado do Pará e noroeste do Estado do Tocantins, na região Norte do Brasil.

Para a etapa de aquisição de dados foram utilizadas as aeronaves Cessna Gran Caravan de prefixos PP-AGP e PR-MCY e a aeronave Embraer EMB 820C de prefixo PT-EPY da Prospectors Aerolevantamentos e Sistemas Ltda., as quais realizaram o projeto no período de 24/01/2014 a 09/11/2014 totalizando 118.201 km de perfis.

Como base de operação para a etapa de aquisição de dados foram utilizadas as cidade de Redenção e Marabá, no estado do Pará e Araguaína no estado do Tocantins. Foram usados magnetômetros Aeromaster e KroumVS Instruments, modelo KMAG 4, e gamaespectrômetro da Pico Envirotec, modelo GRS 410, de 512 canais espectrais, e Exploranium, modelo GR820, de 256 canais espectrais, sistema de navegação GPS com receptor de 12 canais da marca Javad, modelo Marant GGD e da marca Techgeo, modelo GTR-G2.

Para o recobrimento do projeto foram utilizadas aproximadamente 608 horas de voo, que resultaram no levantamento efetivo de 118.201 km de perfis aprovados pela fiscalização da CPRM em uma área de cerca de 57.603 Km². O processamento de dados e a elaboração do Relatório Final foram realizados entre os meses de Janeiro a Março de 2015.

Os produtos finais do *Projeto Aerogeofísico Rio Maria* estão sendo apresentados sob a forma de Relatório Final (4 exemplares), que consiste em texto técnico (Volume I) e Anexos (Volumes II a XV), os quais incluem os seguintes temas apresentados sob a forma de mapas coloridos nas escalas 1:100.000 e 1:250.000, segundo o corte cartográfico ao milionésimo e na escala 1:500.000 em folha única:

☑ Escala 1:100.000: Mapas de Contorno do Campo Magnético Total reduzido do IGRF (Campo Total, Primeira Derivada Vertical e Sinal Analítico), de Contorno Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio e

Tório) e das Razões eU/eTh, eU/K e eTh/K, juntamente com os mapas de Traço de Voo.

☑ Escala 1:250.000: Mapas de Contorno do Campo Magnético Total reduzido do IGRF (Campo Total, Primeira Derivada Vertical e Sinal Analítico), de Contorno Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio e Tório) e das Razões eU/eTh, eU/K e eTh/K.

Escala 1:500.000 (Folha Única): Mapas de Pseudo-Iluminação do Campo Magnético Total Reduzido do IGRF (Campo Total, Primeira Derivada Vertical e Sinal Analítico) e Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio e Tório, Razões eU/eTh, eU/K e eTh/K e Distribuição Ternária de Potássio, Urânio e Tório) e Mapa de Pseudo-Iluminação do Modelo Digital do Terreno.

Completando os produtos finais, estão sendo também entregues os arquivos digitais referentes aos metadados, os arquivos XYZ (perfis) e em malhas (*grids*), estes últimos no tamanho de 125 x 125 m, ambos no formato *GEOSOFT* e *GeoTIFF*, como também arquivos digitais de todos os mapas do projeto nas citadas escalas e o arquivo do texto, figuras e tabelas do Volume I do Relatório Final do projeto em formato PDF, todos os arquivos gravados em DVD-ROM e CD-ROM.

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

PROJETO AEROGEOFÍSICO RIO MARIA

ÍNDICE DOS VOLUMES

VOLUME I TEXTO TÉCNICO E ANEXOS

VOLUME II ANEXOS – ESCALA 1:100.000

• Vol. II.1: MAPA DE CONTORNO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 1 a 10)

• Vol. II.2: MAPA DE CONTORNO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 11 a 19)

VOLUME III ANEXOS – ESCALA 1:100.000

• Vol. III.1: MAPA DE CONTORNO DA 1ª. DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 1 a 10)

• Vol. III.2: MAPA DE CONTORNO DA 1ª. DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 11 a 19)

VOLUME IV ANEXOS – ESCALA 1:100.000

• Vol. IV.1: MAPA DE CONTORNO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 1 a 10)

• Vol. IV.2: MAPA DE CONTORNO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folhas 11 a 19)

VOLUME V ANEXOS – ESCALA 1:100.000

 Vol. V.1: MAPA DE CONTORNO RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL.

(Folhas 1 a 10)

• Vol. V.2: MAPA DE CONTORNO RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL.

(Folhas 11 a 19)

VOLUME VI ANEXOS – ESCALA 1:100.000

• Vol. VI.1: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO.

(Folhas 1 a 10)

 Vol. VI.2: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO.

(Folhas 11 a 19)

VOLUME VII ANEXOS – ESCALA 1:100.000

 Vol. VII.1: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO.

(Folhas 1 a 10)

 Vol. VII.2: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO.

(Folhas 11 a 19)

VOLUME VIII ANEXOS – ESCALA 1:100.000

• Vol. VIII.1: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO.

(Folhas 1 a 10)

• Vol. VIII.2: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO.

(Folhas 11 a 19)

VOLUME IX ANEXOS – ESCALA 1:100.000

- Vol. IX.1: MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO.
 (Folhas 1 a 10)
- Vol. IX.2: MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO. (Folhas 11 a 19)

VOLUME X ANEXOS – ESCALA 1:100.000

 Vol. X.1: MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO.

(Folhas 1 a 10)

 Vol. X.2: MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO.

(Folhas 11 a 19)

VOLUME XI ANEXOS – ESCALA 1:100.000

 Vol. XI.1: MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO.

(Folhas 1 a 10)

 Vol. XI.2: MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO.

(Folhas 11 a 19)

VOLUME XII ANEXOS – ESCALA 1:250.000

• Vol. XII.1: MAPA DE CONTORNO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha I a VI)

 Vol. XII.2: MAPA DE CONTORNO DA 1ª. DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha I a VI)

• Vol. XII.3: MAPA DE CONTORNO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha I a VI)

VOLUME XIII ANEXOS – 1:250.000

• Vol. XIII.1: MAPA DE CONTORNO RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL.

(Folha I a VI)

• Vol. XIII.2: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO.

(Folha I a VI)

• Vol. XIII.3: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO.

(Folha I a VI)

• Vol. XIII.4: MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO.

(Folha I a VI)

VOLUME XIV ANEXOS – 1:250.000

 Vol. XIV.1: MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO.

(Folha I a VI)

 Vol. XIV.2: MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO.

(Folha I a VI)

 Vol. XIV.3: MAPA RADIOMÉTRICA DA RAZÃO TÓRIO/POTÁSSIO.

(Folha I a VI)

VOLUME XV ANEXOS – ESCALA 1:500.000

 MAPA DE PSEUDO-ILUMINAÇÃO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha única)

 MAPA DE PSEUDO-ILUMINAÇÃO DA 1ª. DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha única)

• MAPA DE PSEUDO-ILUMINAÇÃO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF).

(Folha única)

• MAPA RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL.

(Folha única)

- MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO.
 (Folha única)
- MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO.
 (Folha única)
- MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO.
 (Folha única)
- MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO. (Folha única)
- MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO.

(Folha única)

MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO.

(Folha única)

• MAPA DE PSEUDO-ILUMINAÇÃO DO MODELO DIGITAL DO TERRENO.

(Folha única)

• MAPA RADIOMÉTRICO DA DISTRIBUIÇÃO TERNÁRIA DE POTÁSSIO, URÂNIO E TÓRIO.

(Folha única)

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

PROJETO AEROGEOFÍSICO RIO MARIA

VOLUME I – TEXTO TÉCNICO

SUMÁRIO

1. INTRODUÇÃO	1
2. AQUISIÇÃO DE DADOS	5
2.1. Características do Levantamento	5
2.2. Equipamentos Utilizados	5
2.2.1. Aeronave	6
2.2.2. Aeromagnetômetros	6
2.2.3. Aerogamaespectrômetros	6
2.2.4. Sistema de Aquisição de Dados	7
2.2.5. Sistema de vídeo	8
2.2.6. Altímetros	8
2.2.7. Sistema de Navegação e Posicionamento	9
2.2.8. Magnetômetro Terrestre	9
2.3. Planejamento e Mobilização	10
2.3.1. Elaboração do Plano de voo	10
2.3.2. Estatísticas das Operações	12
2.3.3. Mapa do Projeto de Voo	13
2.3.4. Testes dos Equipamentos	14
2.3.5. Cálculo da Resolução dos Cristais Detectores (downward e upward)	17
2.3.6. Calibração dos Detectores <i>Downward Looking</i>	18
2.3.7. Calibração dos Detectores <i>Upward Looking</i>	20
2.4. Compilação dos dados	20
2.5. Equipo Tácnica	21

3. PROCESSAMENTO DE DADOS21
3.1. Fluxo de Processamento
3.1.1. Preparação do Banco de Dados do Levantamento
3.1.2. Processamento dos Dados Magnetométricos
3.1.2.1. Correção do Erro de Paralaxe
3.1.2.2. Remoção da Variação Magnética Diurna23
3.1.2.3. Nivelamento dos Perfis
3.1.2.4. Micronivelamento dos Perfis23
3.1.2.5. Remoção do IGRF
3.1.3. Processamento dos Dados Gamaespectrométricos
3.1.3.1. Correção do Tempo Morto24
3.1.3.2. Aplicação de Filtragem
3.1.3.3. Correlação do Erro de Paralaxe25
3.1.3.4. Cálculo da Altura Efetiva (h _c) de Voo25
3.1.3.5. Remoção do <i>Background</i> da Aeronave e Cósmico
3.1.3.6. Remoção do <i>Background</i> do Radônio
3.1.3.7. Estimativa dos Coeficientes <i>Skyshine</i> (a ₁ e a ₂)
3.1.3.8. Correção do Efeito <i>Compton</i>
3.1.3.9. Correção Altimétrica (Coeficiente de Atenuação Atmosférica)
3.1.3.10. Conversão para Concentração de Elementos
3.1.4. Determinação das Razões eU/eTh, eU/K e eTh/K29
3.2. Interpolação e Contorno29
3.3. Arquivo Final de Dados29
3.4. Equipe Envolvida no Processamento dos Dados30
4. CRONOGRAMA GERAL DAS OPERAÇÕES31
5. PRODUTOS FINAIS32
5.1. Mapas de Contorno do Campo Magnético Total, da 1ª Derivada Vertical e do Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)
5.2. Manas Radiométricos dos Canais de Potássio. Urânio. Tório e Contagem total

5.3. Mapa Radiométrico Ternário	36
5.4. Mapas das Razões Radiométricas eU/eTh, eU/K e eTh/K	36
5.5. Mapa de Pseudo-Iluminação do Modelo Digital do Terreno	37
5.6. Mapa de Traço de Linhas de Voo	37
5.7. Relatório Final	37
5.8. Arquivos Digitais Finais	37
5.9. Arquivos Poligonais	40
5.10. Produtos Originais	40
6. PARTICIPAÇÃO DA CPRM – SERVIÇO GEOLÓGICO DO BRASIL	47
7. REFERÊNCIAS BIBLIOGRÁFICAS	47

ÍNDICE DOS ANEXOS

ANEXO I – Resumo do Processo de Calibração dos Gamaespectrômetros

- **Anexo I-a -** Resultado dos Testes da resolução dos Cristais Detectores (*downward e upward*).
- **Anexo I-b** Resultado do Teste dos Coeficientes de Espalhamento *Compton*.
- **Anexo I-c -** Determinação dos *Backgrounds* da Aeronave e Cósmico.
- Anexo I-d Determinação das Constantes de Calibração do Radônio.
- **Anexo I-e -** Calibração Dinâmica Resultados dos Testes.
- **Anexo I-f -** Atenuação Atmosférica Resultados dos Testes.

ANEXO II – Testes Contratuais

- Anexo II-a Teste de Altímetros
- Anexo II-b Compensação Magnética
- **Anexo II-c -** Teste de Paralaxe
- Anexo II-d Teste de Repetibilidade Radioativa
- **ANEXO III** Quadros Sinópticos das Operações de Campo
- ANEXO IV Conteúdo do CD-ROM e dos DVDs-ROM
- **ANEXO V** Formato de Gravação dos Dados do Projeto
- ANEXO VI Listagem das Linhas Aprovadas e Utilizadas no Processamento

ÍNDICE DAS FIGURAS

Figura 1 – Localização da Área do Projeto Aerogeofísico	1
Figura 2 – Vértices do projeto e área de atuação da aeronave.	2
Figura 3 – Aeronave Cessna Gran Caravan – PP-AGP	3
Figura 4 – Aeronave Cessna Gran Caravan – PR-MCY	4
Figura 5 – Aeronave Embraer EMB 820C - PT-EPY	4
Figura 6 – Exemplo de Registro de Magnetômetro de Base	9
Figura 7 – Mapa das linhas de voo.	11
Figura 8 – Gráfico da Estatística das Operações da aeronave PP-AGP	12
Figura 9 – Gráfico da Estatística das Operações da aeronave PR-MCY	13
Figura 10 – Gráfico da Estatística das Operações da aeronave PT-EPY	13
Figura 11 – Movimentos de Roll, Pitch e Yaw.	15
Figura 12 – Fluxograma do processamento de dados.	31
Figura 13 – Cronograma Geral das Operações.	32
Figura 14 – Articulação das folhas na escala 1:100.000.	34
Figura 15 – Articulação das folhas na escala 1:250.000.	35
Figura 16 – Mapa pseudo-iluminado do campo magnético total (reduzido do IGRF)	41
Figura 17 – Mapa do sinal analítico do campo magnético total (reduzido do IGRF)	42
Figura 18 – Mapa Radiométrico da Taxa de Exposição do canal de Contagem Total	43
Figura 19 – Mapa Radiométrico Ternário (K-U-Th).	44
Figura 20 – Mapa Radiométrico da razão Tório / Potássio	45
Figura 21 – Mapa pseudo-iluminado do Modelo Digital do Terreno.	46

ÍNDICE DAS TABELAS

Tabela 1 – Coordenadas Geográficas do Projeto	3
Tabela 2 – Equipamentos Utilizados	5
Tabela 3 – Faixas Energéticas do Gamaespectrômetro e os Canais Correspondentes	7
Tabela 4 – Quilometragem Produzida e Área Levantada.	10
Tabela 5 – Estatística das Operações.	12
Tabela 6 – Divisão das Linhas por Aeronave.	14
Tabela 7 – Concentração dos Tanques de Calibração Transportáveis	18
Tabela 8 – Coeficientes de Espalhamento Compton	18
Tabela 9 – Constantes de Calibração do Radônio	26
Tabela 10 – Coeficientes de <i>Skyshine</i>	27
Tabela 11 – Coeficiente de Atenuação Atmosférica	28
Tabela 12 – Coeficientes de Sensibilidade.	28
Tabela 13 – Valores Mínimos para Cálculo das Razões Radiométricas	29
Tabela 14 – Características da Apresentação dos Mapas Aerogeofísicos	33
Tabela 15 – Características dos intervalos de contorno dos mapas aerogeofísicos	33
Tabela 16 – Banco de dados <i>Geosoft</i> (GDB) – Magnetometria	38
Tabela 17 – Banco de dados Geosoft (GDB) – Gamaespectrometria	39
Tabela 18 – Banco de dados <i>Geosoft</i> (GDB) – Gamaespectrometria 256 canais	39
Tabela 19 – Arquivo de Cruzamento XYZ – Magnetometria	40

1. INTRODUÇÃO

A área do levantamento aerogeofísico Rio Maria está localizada no sudeste do Estado do Pará e noroeste do Estado do Tocantins, na região Norte do Brasil, conforme mostra a Figura 1.

Figura 1 – Localização da Área do Projeto Aerogeofísico.

O levantamento aerogeofísico Rio Maria constou do recobrimento de 118.201 km de perfis aeromagnetométricos e aerogamaespectrométricos de alta resolução, com linhas de voo e de controle espaçadas de 0,5 km e 10 km e orientadas nas direções N-S e E-W respectivamente.

A Figura 2 e a Tabela 1 apresentam as coordenadas geográficas que definem o polígono que envolve a área pesquisada. A altura de voo foi fixada em 100 m sobre o terreno, admitindo-se variações de mais ou menos 15 m.

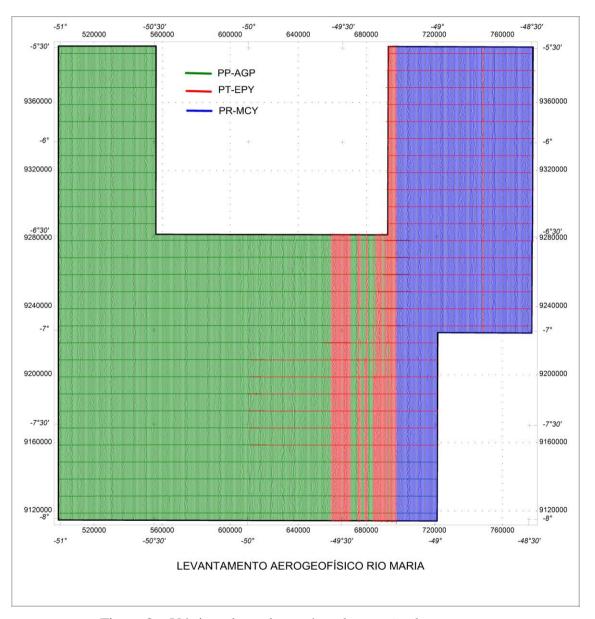


Figura 2 – Vértices do projeto e área de atuação da aeronave.

Tabela 1 – Coordenadas Geográficas do Projeto.

Vértice	Latitude	Longitude
1	-05°30'	-51°00'
2	-05°30'	-50°30'
3	-06°30'	-50°30'
4	-06°30'	-49°15'
5	-05°30'	-49°15'
6	-05°30'	-48°30'
7	-07°00'	-48°30'
8	-07°00'	-49°00'
9	-08°00'	-51°00'
10	-08°00'	-49°00'

Foram utilizadas para a execução deste projeto, as aeronaves Cessna Gran Caraven de prefixos PP-AGP (Figura 3), PR-MCY (Figura 4) e a aeronave Embraer EMB 820C de prefixo PT-EPY (Figura 5), da Prospectors Aerolevantamentos e Sistemas Ltda. A aeronave PP-AGP realizou seus trabalhos durante o período de 29/07/2014 a 09/11/2014 adquirindo 72.640,66 km de linhas de voo, utilizando como base de operações a cidade de Redenção no estado do Pará. A aeronave PR-MCY realizou seus trabalhos durante o período de 18/05/2014 a 14/07/2014 adquirindo 33.163,84 km de linhas de voo, utilizando como base de operações as cidades de Marabá no estado do Pará e Araguaína no estado do Tocantins. A aeronave PT-EPY realizou seus trabalhos durante o período de 03/07/2014 a 24/08/2014 adquirindo 12.396,50 km de linhas de voo, utilizando como base de operações as cidades de Redenção no estado do Pará e Araguaína no estado do Tocantins.

Figura 3 – Aeronave Cessna Gran Caravan – PP-AGP

Figura 4 – Aeronave Cessna Gran Caravan – PR-MCY.

Figura 5 – Aeronave Embraer EMB 820C - PT-EPY.

A metodologia para a aquisição dos dados seguiu a sistemática descrita adiante. Ao longo dos perfis foram realizadas dez leituras de aeromagnetômetro e uma leitura do gamaespectrômetro por segundo, posicionadas com sistema de observação de satélites GPS, de precisão melhor do que 10 m. Uma estação fixa para controle da variação diurna do campo magnético terrestre foi instalada, na base de operações utilizada durante o levantamento, no aeroporto municipal.

As calibrações dos sistemas detectores aerogamaespectrométricos foram realizadas em duas etapas: a primeira, estática, com emprego de fontes padronizadas (tanques de calibração transportáveis ou *transportable calibration pads* para o *background*, potássio, urânio e tório), foram conduzidas no aeroporto de Ubatuba, São Paulo para as aeronaves PP-AGP, PR-MCY e PT-EPY. A calibração dinâmica foi executada na região de Maricá-RJ, sobre a pista de calibração dinâmica (*dynamic calibration range* – DCR) que resultou de levantamento terrestre.

O processamento dos dados foi desenvolvido no escritório sede da Prospectors Aerolevantamentos e Sistemas Ltda. no Rio de Janeiro-RJ e envolveu a aplicação de rotinas do sistema *Oasis Montaj* versão 6.4.1 (GEOSOFT, 2005), utilizado para a compilação das informações coletadas e apresentação dos resultados na forma de mapas nas escalas 1:100.000, 1:250.000 e 1:500.000, arquivos de banco de dados e *grids*.

2. AQUISIÇÃO DE DADOS

2.1. Características do Levantamento

Os parâmetros que nortearam a execução do levantamento são descritos, resumidamente, a seguir:

• Direção das linhas de voo: N-S

• Espaçamento entre as linhas de voo: 0,5 km

• Direção das linhas de controle: E-W

• Espaçamento entre as linhas de controle: 10 km

• Intervalo entre medições geofísicas consecutivas: 0,1 s (magnetômetro) e 1,0 s (gamaespectrômetro)

• Altura média de voo: 100 m

• Velocidade aproximada de voo: 270 km/h

2.2. Equipamentos Utilizados

A Tabela 2 apresenta os equipamentos utilizados pelas aeronaves durante a execução do projeto.

Tabela 2 – Equipamentos Utilizados.

Prefixo da aeronave	PP-AGP	PR-MCY	PT-EPY
Modelo da aeronave	Gran Caravan 208B	Gran Caravan	EMB 820C Navajo
Fabricante da aeronave	Cessna	Cessna	Embraer
Tipo de Sensor	Scintrex CS-3	Scintrex CS-3	Scintrex CS-3
Aeromagnetômetro	Aeromaster	KroumVS Instruments- KMAG 4	KroumVS Instruments- KMAG 4
Gamaespectrômetro	Pico Envirotec - GRS 410	Exploraniun - GR820	Pico Envirotec - GRS 410
Volume dos Cristais Dectores de Iodeto de Sódio	2.560 pol ³ <i>down</i> e 512 pol ³ <i>up</i>	2.560 pol ³ <i>down</i> e 512 pol ³ <i>up</i>	2.560 pol ³ <i>down</i> e 512 pol ³ <i>up</i>
Sistema de navegação "Real time"	Lotsman	Microsurvey	Lotsman
Sistema de Aquisição GPS - "Real time"	Javad	GTR-G2 GENERIC	Javad - Marant GGD
Câmera de Vídeo	INTELBRAS VM 300	Seykon	Sony VHC
Radar Altímetro	King Radio Corporation KRA10A/KI250/KA131	Terra TRA 2000	King Radio Corporation KRA10A/KI250/KA131
Altímetro Barométrico	Motorola – MPX 4115	Honeywell- PPT0020AWN2VA-C	Motorola – MPX 4115
Magnetômetro Terrestre a Vapor de Césio	GEM GSM-19	GEM GSM-19	GEM GSM-19
Sistema de Aquisição	Aeromaster – VN2001	Microsurvey - 2011	Aeromaster – VN2001

2.2.1. Aeronave

O levantamento foi efetuado pelas aeronaves modelos Embraer EMB 820C Navajo (PT-EPY) e Cessna Gran Caravan (PR-MCY e PP-AGP). O EMB 820C Navajo é uma aeronave de asa baixa equipada com dois motores Lycoming – Textron , de 350 HP e possui autonomia de aproximadamente 6h, opera à velocidade média de 270 km/h. Ambas aeronaves Gran Caravan são aeronaves de asa alta equipadas com um motor Pratt & Withney PT6-114A de 600SHP, operam à uma velocidade média de 270 km/h e possuem autonomia de aproximadamente 6h.

2.2.2. Aeromagnetômetros

Sistema aeromagnético acoplado a um sensor de vapor de césio montado na cauda (tipo *Stinger*) das aeronaves, conforme especificado abaixo. O sinal é recebido através de um pré-amplificador, localizado na base do cone de cauda da aeronave, e enviado ao sistema de aquisição e compensação aeromagnética contido no sistema de aquisição de dados das aeronaves.

Sensor: Scintrex CS-3

Resolução: 0,001 nT

Faixa: 20.000 – 100.000 nT

Montagem: Stinger

As leituras do magnetômetro na aeronave de prefixo PP-AGP, foram realizadas a cada 0,01 segundo (100 Hz), o que equivale, para a velocidade de 265 km/h da aeronave, a aproximadamente 0,736 m no terreno.

As leituras do magnetômetro nas aeronaves de prefixo PT-EPY e PR-MCY, foram realizadas a cada 0,1 segundo (10 Hz), o que equivale, para a velocidade de 265 km/h da aeronave, a aproximadamente 7,36 m no terreno.

2.2.3. Aerogamaespectrômetros

Foram utilizados os gamaespectrômetro Pico Envirotec, modelo GRS410, de 512 canais, nas aeronaves PP-AGP e PT-EPY e os gamaespectrômetros Exploranium, modelo GR820, de 256 canais espectrais na aeronave PR-MCY. O espectro de cada um dos cristais detectores nesses sistemas é analisado individualmente para determinação precisa dos fotopicos de potássio, urânio e tório. Uma correção linear baseada na detecção do pico de Césio (137Cs – 662 KeV) é aplicada individualmente a cada cristal, mantendo o espectro permanentemente alinhado. A radiação gama detectada pelos conjuntos é somada e as leituras reduzidas às saídas dos canais espectrais, separando os conjuntos de cristais voltados para baixo (downward looking) e para cima (upward looking).

A correspondência entre as janelas dos gamaespectômetros e as respectivas faixas de energia é mostrada na Tabela 3, a seguir:

Tabela 3 – Faixas Energéticas do Gamaespectrômetro e os Canais Correspondentes.

Canal	Faixa de Energia		(GRD-110)		PR-MCY (GR820)	
Radiométrico	(IVI	ev)	Canais Correspondentes		Canais Correspondentes	
Contagem Total	0,41	2,81	73	482	34	233
Potássio	1,37	1,57	236	270	115	131
Urânio	1,66	1,86	285	319	139	155
Tório	2,41	2,81	414	482	202	233
Cósmico	3,00	∞	512	-	256	-

As leituras do gamaespectrômetro são realizadas a cada segundo, representando medições a intervalos de amostragem de aproximadamente 73,6 m no terreno.

Os sistemas detectores voltado para baixo (downward looking) e para cima (upward looking) são constituídos por três conjuntos (caixas) de cristais de iodeto de sódio dopado com Tálio (NaI[Tl]), que juntos possuem 12 cristais. Os sistemas GRS410 e GR820 possuem 12 cristais de 4,2 L (256 pol³), totalizando 42 L (2560 pol³) de cristais voltados para baixo e totalizando 8,4 L (512 pol³) de cristais voltados para cima.

2.2.4. Sistema de Aquisição de Dados

Os computadores do sistema de aquisição de dados Aeromaster, modelo VN2001 para aeronaves PP-AGP e PT-EPY, e Microsurvey para a aeronave PR-MCY, são as principais unidades do sistemas de aquisição instalados a bordo das aeronaves. Todos os dados adquiridos são armazenados no disco rígido e posteriormente transferidos para discos rígidos externos, para efeito de backup e transferência dos dados para o computador de processamento.

O formato de gravação relativo aos dados de campo comporta as seguintes informações:

Taxa de Amostragem (Hz)	Parâmetro	Unidade
1	Fiducial	S
1	Número da Linha	*
10	Magnetômetro compensado	nT
10	Magnetômetro bruto	nT
10	Componente X fluxgate	mV
10	Componente Y fluxgate	mV
10	Componente Z fluxgate	mV
10	Radar altímetro	μV
10	Temperatura	μV
10	Barômetro	μV
10	Temperatura	°C
10	Altura do Voo	m
10	Altitude Barométrica	m
1	Horário UTC (GPS)	s
1	Latitude (GPS)	Graus decimais
1	Longitude (GPS)	Graus decimais

1	Qualidade da correção GPS	*
1	Número de satélites	*
1	Horizontal Dilution of precision	*
1	Altitude (GPS) Código de erro do	m
1	gamaespectrômetro	*
1	N/ Liter D	*
1	Número de detectores <i>Down</i>	

Taxa de Amostragem (Hz)	Parâmetro	Unidade	
1	Número de detectores Up	*	
1	Sample Time	ms	
1	Live Time	ms	
1	Radiação cósmica	cps	
1	Resolução do sistema	*	
1	Contagem Total	cps	
1	Potássio	cps	
1	Urânio	cps	
1	Tório	cps	
1	Urânio <i>Up</i>	cps	
1	256 canais Down	cps	
1	256 canais <i>Up</i>	cps	

2.2.5. Sistema de vídeo

As aeronaves utilizam sistemas de vídeo digital, com uma câmera de vídeo, verticalmente instalada na parte inferior da aeronave. O registro de vídeo apresenta marcas temporais e espaciais na imagem gerada. Cada imagem apresenta um registro temporal, contando os segundos do dia, através do uso do tempo GPS. A referência espacial é formada pelas coordenadas geográficas de longitude e latitude, referida ao sistema GPS (Elipsóide WGS84), também em sincronia com os dados geofísicos e o GPS. Um monitor de 9 polegadas permanece disponível na cabine para visualização das imagens obtidas pela câmera e anotações do operador de bordo quanto a possíveis fontes de interferência nos dados geofísicos.

2.2.6. Altímetros

A altura de voo da aeronave foi monitorada através dos altímetros de radar e dos barômetros de precisão incluídos no sistema aerogeofísico. O radar altímetro utilizado pelas aeronaves PP-AGP e PT-EPY é o Honeywell, modelo KRA10A/KI250/KA131 e apresenta precisão de 5 a 7% e alcance de 2500 pés. A aeronave PR-MCY utiliza o radar altímetro Terra TRA 2000, com precisão de 5 a 7% e alcance de 2500 pés.

As aeronaves PP-AGP e PT-EPY possuem barômetros eletrônicos modelo Motorola MPX 4115 e a aeronave PR-MCY possui barômetro eletrônico modelo Honeywell-PPT0020AWN2VA-C. Os barômetros são transdutores de pressão que registram a altitude de voo em relação ao nível do mar. O barômetro tem saída digital e é ligado ao

sistema de aquisição de dados proporcionando até cem medidas por segundo da pressão atmosférica, com precisão de ±1,5% da medida.

2.2.7. Sistema de Navegação e Posicionamento

A navegação das aeronaves PP-AGP, PT-EPY e PR-MCY foram realizadas com os sistemas Lotsman e Microsurvey, utilizando a aquisição Javad Marant GGD e GTR-G2 Generic, estes garantem a precisão do posicionamento das medidas realizadas assim como a trajetória da aeronave. Sinais de posição foram registrados com frequência de no mínimo 5 vezes por segundo.

As coordenadas GPS (latitude/longitude) são armazenadas nos *Pen Drive* dos sistemas de aquisição de dados e transferidas ao escritório de campo. As aeronaves estão equipadas com sistemas de correção em tempo real (DGPS *real time*), cujas coordenadas são transferidas ao escritório de campo já corrigido.

2.2.8. Magnetômetro Terrestre

Para controle diário das variações do campo magnético terrestre foi utilizado um magnetômetro portátil, GEM, modelo GSM-19, com resolução de 0,1 nT e envoltória de ruídos em nível equivalente. As leituras do campo magnético total foram realizadas a cada 3 segundos e armazenadas na memória do próprio equipamento.

Os magnetômetros foram instalados em local de gradiente magnético suave, livre de objetos móveis e de interferência cultural, no aeroporto municipal da cidade utilizada como base para o projeto.

Ao término de cada jornada de produção, os arquivos contendo os dados da variação diurna eram transferidos aos computadores instalados nas bases de campo para uso no pré-processamento. A Figura 6 mostra um exemplo do registro do magnetômetro.

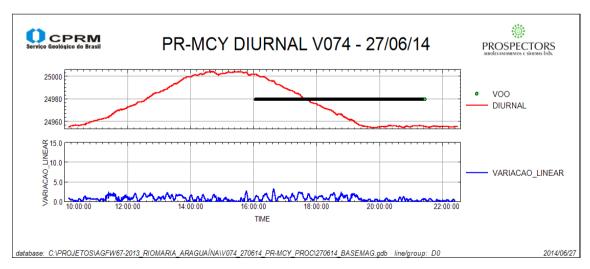


Figura 6 – Exemplo de Registro de Magnetômetro de Base.

2.3. Planejamento e Mobilização

Nesta fase foram estabelecidas as diretrizes básicas para a execução de todas as etapas envolvidas na operação, quais sejam:

- Seleção das bases de operações, instaladas nas cidades de Redenção, Marabá e Araguaína;
- Obtenção da autorização do aerolevantamento junto ao Ministério da Defesa;
- Preparação do plano de voo e obtenção dos materiais necessários ao levantamento;
- Ajuste dos equipamentos às especificações contratuais;
- Realização dos testes pré-levantamento previstos contratualmente.

O levantamento recebeu do Ministério da Defesa a autorização nº 011/2014 para as aeronaves PP-AGP, PR-MCYe PT-EPY.

2.3.1. Elaboração do Plano de voo

Para a cobertura completa da área relativa ao projeto, foram programadas 557 linhas de voo e 39 linhas de controle, totalizando 118.201 km de perfis geofísicos, conforme a Tabela 4 a seguir. A Figura 7 apresenta o arranjo das linhas distribuídas sobre a poligonal envoltória da área.

Tabela 4 – Quilometragem Produzida e Área Levantada.

Prefixo da Aeronave	Área (km²)	Total de linhas de Voo (km)	Total de linhas de Controle (km)	Total de linhas de Voo+Controle (km)
PP-AGP	33.589,9	69.895,0	3.490,0	73.385,0
PR-MCY	16.448,8	32.409,5	-	32.409,5
PT-EPY	7.564,3	10.211,5	2.195,0	12.406,5
Totais:	57.603	112.516	5.685	118.201

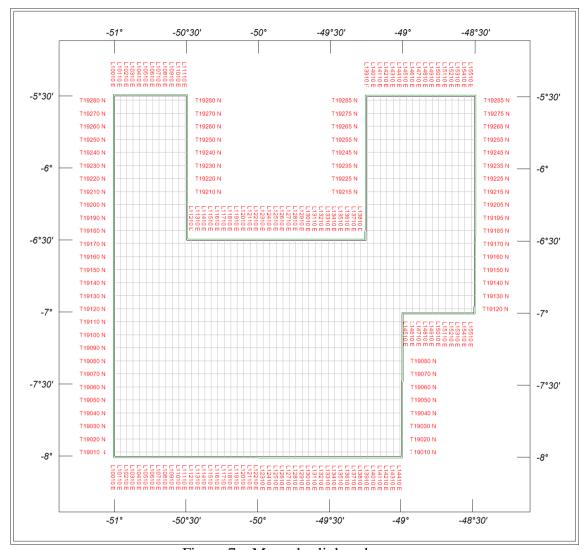


Figura 7 – Mapa das linhas de voo.

2.3.2. Estatísticas das Operações

O projeto foi executado entre 24/01/2014 a 09/11/2014. A aeronave PP-AGP efetuou seus trabalhos entre 29/07/2014 a 09/11/2014 totalizando 104 dias, a aeronave PR-MCY completou sua parte com 58 dias entre os dias 18/05/2014 a 14/07/2014 e a aeronave PT-EPY completou sua parte com 55 dias entre os dias 03/07/2014 a 25/08/2014. Foram gastas cerca de 608,88 horas de voo para aquisição de dados e testes. A Tabela 5 e os gráficos das Figuras 8,9 e 10, a seguir, mostram as estatísticas obtidas durante a fase de aquisição dos dados. Para a execução do levantamento, a aeronave PP-AGP, utilizou 363,36 horas de voo de produção, a aeronave PR-MCY utilizou 169,98 horas de voo de produção e a aeronave PT-EPY utilizou 75,64 horas de voo de produção.

Tabela 5 – Estatística das Operações.

		Aeronave					
		PP-AGP		PR-MCY		PT-EPY	
Item	Indicadores do Levantamento	Nº Dias	%	Nº Dias	%	Nº Dias	%
1	Produção	63	60,6	25	43,1	20	36,4
2	Meteorologia	6	5,8	6	10,3	0	0,0
3	Manutenção de Aeronave	24	23,1	12	20,7	16	29,1
4	Tempestade Magnética	0	0,0	0	0,0	0	0,0
5	Falha de Equipamento	0	0,0	2	3,4	4	7,3
6	Testes Contratuais	4	3,8	5	8,6	3	5,4
7	Outros	7	6,7	8	13,9	12	21,8
	Total:	104*	100,00	58*	100,00	55*	100,00

^{*} número de dias despendido pela aeronave

Figura 8 – Gráfico da Estatística das Operações da aeronave PP-AGP.

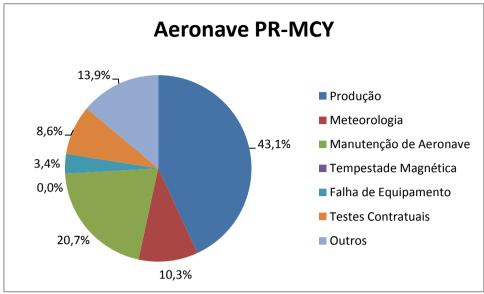


Figura 9 – Gráfico da Estatística das Operações da aeronave PR-MCY.

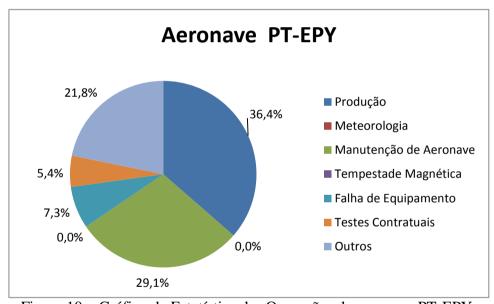


Figura 10 – Gráfico da Estatística das Operações da aeronave PT-EPY.

2.3.3. Mapa do Projeto de Voo

O mapa do projeto de voo foi obtido analiticamente, sendo determinadas, por cálculo, as coordenadas UTM do início e fim de cada linha de voo e de controle, considerando-se os espaçamentos de 0,5 km para as linhas de voo e 10 km para as linhas de controle.

As coordenadas dos limites da área, assim como dos extremos dos perfis, foram projetadas no sistema WGS-84.

A divisão das linhas por aeronave na área do projeto é mostrada na Tabela 6 a seguir.

Tabela 6 – Divisão das Linhas por Aeronave.

Prefixo da aeronave	Linhas de voo	Linhas de controle
		19010 – 19040
		19180
		19190
		19200
	10010 - 13190	19210
PP-AGP	13440 - 13510	19220
rr-AUr	13560 - 13590	19230
	13640 – 13690	19240
		19250
		19260
		19270
		19280
PR-MCY	13970 – 15570	-
		19185
		19195
	13200 - 13430	19205
	13520	19215
	13620 - 13630	19225
PT-EPY	13710	19235
	13740 – 13810	19245
	13840 – 13870	19255
	13890 – 13960	19265
		19275
		19285
	13530 – 13550	
	13600 – 13610	
PP-AGP e PT-EPY	13700	19050 – 19170
II AOI CII-LII	13720 – 13730	17030 - 17170
	13820 – 13830	
	13880	

2.3.4. Testes dos Equipamentos

a) Teste Altimétrico

Teste conduzido antes do início das operações para calibração do radar altímetro a bordo da aeronave. Neste teste, a aeronave realiza passagens consecutivas sobre uma base de altitude conhecida, voando em alturas entre 200 e 800 pés, tendo como referência as leituras fornecidas pelo barômetro nas passagens sobre a pista. Antes da decolagem o piloto ajusta a indicação da pressão barométrica na cabine da aeronave para aferição do barômetro. Os resultados dos testes encontram-se no Anexo II-a.

b) Compensação Magnética Dinâmica

A base da compensação é a eliminação do ruído induzido pelo movimento da aeronave nas medições do campo magnético terrestre realizado a bordo. Este ruído é proveniente da complexa assinatura magnética tridimensional da plataforma que, com a mudança de atitude em relação ao vetor campo magnético terrestre, altera a intensidade deste. O ruído é proveniente das magnetizações permanentes, induzidas e dos efeitos da corrente de *Eddy* da plataforma, acrescidos dos efeitos de orientação do sensor propriamente.

O procedimento de compensação consiste na determinação de quatro conjuntos de coeficientes, cada qual determinado para uma das direções de voo no levantamento.

Os efeitos produzidos em cada uma das direções de voo são medidos pelos magnetômetros Geometrics G822A, instalados no *stinger* da aeronave e usados para medir o acoplamento dos três eixos com o *background* do campo magnético na região. Os sensores Geometrics G822A são muitos sensíveis às mudanças de atitude sendo usados para monitorar acuradamente os efeitos decorrentes de tais mudanças.

A resposta de freqüência e amostragem do módulo utilizado para medir os sinais do Geometrics G822A é equivalente ao do módulo de processamento do sensor de vapor de césio do magnetômetro da aeronave, havendo portanto, perfeita sincronia dos eventos nos dois sistemas.

As séries de movimentos, envolvendo as manobras do tipo *Roll*, *Pitch* e *Yaw* (Figura 11) são conduzidas para cada uma das direções de voo do levantamento, com o objetivo de variar o acoplamento Geometrics G822A/vetor campo, e acumular medições ao longo das diferentes manobras e direções. Estes dados são então processados com técnicas de regressão para determinar um conjunto de coeficientes de compensação do sistema.

Quando o algoritmo de compensação é inicializado com os novos coeficientes introduzidos, seja em tempo real ou via pós-processamento, resultam nos dados magnéticos compensados.

Figura 11 – Movimentos de Roll, Pitch e Yaw.

O sistema RMS DAARC500 possui em sua programação, um *software* especialmente desenvolvido para efetuar os cálculos da compensação magnética *on line*, ou seja, os sistemas recebem os dados enviados pelo magnetômetro *fluxgate* durante as manobras de *Roll*, *Pitch* e *Yaw*, armazenam a equação com melhor solução de compensação aplicando estes coeficientes obtidos em X, Y e Z ao valor do campo magnético bruto produzindo, então, o campo magnético compensado, livre dos efeitos de "manobras" que venham a interferir na medida do campo magnético.

c) Determinação dos Coeficientes de Compensação Magnética

As manobras de compensação são conduzidas à altitude de 10.000 pés, em uma área de gradiente magnético suave. Os movimentos *Roll*, *Pitch* e *Yaw* regulam segundo ângulos de 10° a 12° e duração de 30 segundos cada. Cada conjunto de manobras obedece à diferentes direções dos perfis do projeto, assim como ângulos intermediários da ordem

de 15° em torno daquela direção, de modo que sejam efetuados pelo menos três conjuntos de manobras para cada rumo.

Para avaliação da qualidade da compensação magnética da aeronave foram realizados testes do tipo Manobras, antes do início das operações e após cada manutenção efetuada na parte elétrica das aeronaves. O desempenho do sistema aeromagnético, determinado pela soma das amplitudes pico a pico dos doze resultados obtidos, podem ser consultados no Anexo II-b.

d) Teste de Paralaxe

O processamento dos dados brutos do magnetômetro de césio pelo sistema de aquisição da aeronave, introduz um retardamento de tempo nos dados magnéticos compensados. Uma linha especial de calibração é executada para gravar as informações necessárias para quantificar este intervalo de tempo para que os dados possam ser re-sincronizados.

O processo de calibração consiste em voar uma mesma linha em sentidos opostos cobrindo, idealmente, uma série de anomalias magnéticas bem características e distintas. Em consequência, o fator de defasagem é determinado pela análise da separação espacial. A componente que normalmente influência no comportamento do erro paralaxe, é a posição da antena do receptor GPS.

Quando o erro paralaxe é introduzido pelo sistema de aquisição de dados, uma vez que alguns instrumentos necessitam de um tempo para armazenar os sinais na forma digital, ocorre então atrasos entre o tempo da amostragem e o tempo da gravação propriamente dito, resultando num valor do paralaxe com sinal oposto ao produzido pela diferença de posição entre a antena GPS e o sensor magnetométrico.

Os dados magnetométricos desta linha voada em sentidos inversos, são representados em formas de perfis empilhados. O eixo horizontal dos perfis plotados refere-se às coordenadas geográficas mostrando, assim, a correlação das anomalias corrigidas independentemente do sentido voado. A calibração resultou em um fator de defasagem de 0,20 para a aeronave PP-AGP, de 0,16 para a aeronave PR-MCYe 0,10 para a aeronave PT-EPY utilizadas nesse projeto. Os resultados dos testes são apresentados no Anexo II-c.

e) Controle de desempenho do sistema

Com vistas a controlar o comportamento do desempenho do sistema gamaespectrométrico dos cristais voltados para baixo, testes com amostras de mão de urânio e tório eram realizados antes do início e após os voos operacionais. O equipamento aeroembarcado Radiation Solutions RS-500 com resolução de 1024 canais, possui estabilização com isótopos naturais e ganho automático dos picos. Não são necessários testes de amostras para configuração do sistema ou para validação de performance do mesmo.

f) Teste de Repetibilidade Radioativa

Estes testes foram realizados diariamente com a finalidade de verificar a repetibilidade e a consistência das medições dos equipamentos geofísicos, tendo sido registrado na forma digital e analógica. Consistem na perfilagem sobre um mesmo segmento de linha, no início e no fim de cada voo, com a extensão mínima de 5 km, ao longo das pistas de pouso dos aeroportos utilizados para as operações, na altura do levantamento (100 m). Para efeito de avaliação, foram comparados os perfis magnetométricos e radiométricos entre os testes iniciais e finais de cada voo.

Os valores médios em cps, obtidos em cada canal radiométrico, estão relacionados no Anexo II-d para a aeronaves PP-AGP, PR-MCYe PT-EPY.

2.3.5. Cálculo da Resolução dos Cristais Detectores (downward e upward)

A resolução é a medida da precisão da energia dos raios gama registrados pelo gamaespectrômetro, a qual é representada pelo cálculo matemático em relação a um elemento radioativo de referência.

Para os atuais gamaespectrômetros auto-estabilizados, costuma-se usar o espectro do tório (²⁰⁸Tl) para calcular a resolução dos "cristais detectores voltados para baixo" (*downward looking*), tanto para os cristais individuais (256 pol³) quanto para os "pacotes" ou "caixas" de 1024 pol³ cada, bem como espectro do césio (¹³⁷Cs) para calcular a resolução dos "cristais detectores voltados para cima" (*upward looking*), tanto para cristais individuais (256 pol³) quanto para o "pacote" ou "caixa" de 512 pol³ no caso deste projeto.

O procedimento para medir a resolução consiste em determinar as amplitudes a partir do fotopico do tório ou do césio, respectivamente. A largura do pico (medida como número de canais) na metade da amplitude máxima pode ser determinada. Esta largura é definida como *full width at half maximum* ou FWHM. A resolução é calculada (GRASTY & MINTY, 1995) como a seguir:

R(%) = 100 x FWHM (canais) / canal do fotopico

A resolução também pode ser obtida a partir dos referidos elementos, porém utilizando o cálculo a partir das faixas de energia do espectro em vez do número de canais, conforme a equação a seguir (IAEA, 2003):

R(%) = 100 x FWHM (energia) / energia do fotopico

O monitoramento da resolução do cristal e do tubo fotomultiplicador é o melhor procedimento para se manter o controle de qualidade e detectar qualquer tipo de deteriorização do sistema gamaespectométrico. Os valores de resolução obtidos para os 3 pacotes de cristais detectores *downward looking* (2.560 pol³) ficaram abaixo de 7% e para os cristais detectores *upward looking* (512 pol³) ficaram abaixo de 12%, sendo, portanto estes testes aprovados. Os resultados dos testes de resolução encontram-se no Anexo I-a.

2.3.6. Calibração dos Detectores Downward Looking

Foram realizados testes gamaespectrométricos específicos objetivando a calibração dos sistemas detectores da aeronave. As aeronaves PP-AGP, PR-MCYe PT-EPY foram calibradas, respectivamente, em dezembro de 2013, março de 2014 e maio de 2014. Essas calibrações obedeceram a duas etapas distintas.

• <u>Calibração estática</u> – Realizada no Aeroporto de Ubatuba (PP-AGP, PR-MCYe PT-EPY) em São Paulo. Após a determinação e aprovação dos cálculos da resolução dos cristais detectores *down* e *up* são realizados os testes que visam à determinação dos coeficientes de espalhamento *Compton* do sistema detector. Para tal, quatro tanques de calibração transportáveis, constituídos por blocos de concreto com resposta radiométrica para os elementos potássio (⁴⁰K), urânio (²³⁸U), tório (²³²Th) e *background* são empregados. As concentrações dos tanques de calibração transportáveis utilizados em Ubatuba de propriedade da Universidade de São Paulo – USP, estão indicadas na Tabela 7:

Tabela 7 –	Concentração o	dos Tanques d	de Calibração	Transportáveis.

	Tanques de Ubatúba				
Fonte Padrão	K (%)	eU (ppm)	eTh (ppm)		
Background	$0,70 \pm 0,00$	$2,00 \pm 0,20$	$8,80 \pm 0,30$		
Potássio	$6,40 \pm 0,20$	$0,10 \pm 0,10$	$1,40 \pm 0,20$		
Urânio	$0,90 \pm 0,10$	$60,50 \pm 0,60$	$26,50 \pm 0,40$		
Tório	$0,80 \pm 0,00$	$9,80 \pm 0,50$	$142,82 \pm 0,00$		

Para a determinação dos coeficientes de espalhamento *Compton*, a aeronave foi estacionada sobre os tanques de calibração transportáveis que foram seqüencialmente posicionados sob cada pacote detector, permanecendo por 10 minutos para acumulação de dados na seguinte ordem: *background*, Th, U, K e *background*. Os dados acumulados foram processados pelo programa PADWIN, fornecidos pelo fabricante dos tanques calibradores (Exploratium), resultando nos valores dos coeficientes *Compton* para cada pacote de detectores de 1.024 pol³, 512 pol³ e para o total de 2.560 pol³. Os valores encontrados para os coeficientes de espalhamento *Compton* estão resumidos na Tabela 8. O Anexo I-b, no final deste relatório, apresenta os resultados dessas calibrações.

Tabela 8 – Coeficientes de Espalhamento *Compton*.

Aeronave	Data	α	β	γ	a	b	g
PP-AGP	11/13/2013	0,2950 ± 0,0075	0,3594 ± 0,0095	0,7466 ± 0,0246	0,0638 ± 0,0080	0,0005 ± 0,0058	0,0029 ± 0,0053
PR-MCY	21/03/2014	0,2682 ± 0,0075	0,4004 ± 0,0088	0,7718 ± 0,0230	0,0818 ± 0,0072	0,0115 ± 0,0053	0,0113 ± 0,0050
PT_EPY	25/05/2014	0,2547 ± 0,0070	0,3800 ± 0,0071	0,7511 ± 0,0227	0,0622 ± 0,0070	0,0047 ± 0,0048	0,0103 ± 0,0044

• <u>Calibração Dinâmica</u> – Realizada com vistas à determinação dos *backgrounds* da aeronave e cósmico (*cosmic flight*), e identificação dos coeficientes de sensibilidade do detector, com o levantamento de um perfil situado em zona radiometricamente conhecida (*dynamic calibration range - DCR*) na altura nominal do levantamento (100 m), bem como as várias alturas com vistas à correção altimétrica. Os referidos testes são comentados a seguir:

a) Voo Cósmico (Cosmic Flight)

A partir da fórmula da IAEA, 1991, tem-se:

N = a + bC, onde:

N é a contagem (em cps) em determinada janela;

a é o background (em cps) da aeronave em determinada janela;

b é a razão entre a contagem em determinada janela e a contagem no canal do cósmico;

C é a contagem na janela cósmica.

O voo cósmico envolveu o recobrimento de perfis sobre o mar, em área distante da costa cerca de pelo menos 20 km, voando nas altitudes de 4500, 5500, 6500, 7500, 8500, 9500, 10500, 11500 e 12500 pés, com duração de 15 minutos cada.

A apresentação dos resultados na forma de tabelas e gráficos encontra-se no Anexo I-c, no final deste relatório.

b) Pista de Calibração Dinâmica (Dynamic Calibration Range – DCR)

Este teste envolve uma série de passagens consecutivas sobre a pista de calibração dinâmica definida pela CPRM em Maricá-RJ (CPRM, 1999), com passagens sucessivas nas alturas de 200, 330, 400, 500, 600, 700, e 800 pés e duas passagens adicionais a 330 pés, correspondentes à altura padrão do levantamento (100 m). Na seqüência dos perfis também são realizadas passagens sobre o Oceano Atlântico na mesma altura de voo observada sobre a pista de calibração dinâmica, com vistas à determinação do *background*.

A calibração dinâmica tem por finalidade a correlação entre as medições feitas em terra (com intervalos de 50 m entre as estações, com emprego de gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, com as leituras registradas pelo sistema detector da aeronave na altura de 100 m (cerca de 330 pés), permitindo a conversão das contagens obtidas a bordo (em cps) para concentrações de potássio, urânio, tório e contagem total no solo. A sensibilidade do sistema gamaespectrométrico é definida como a razão entre a média dos valores aéreos, medidos na altura nominal do levantamento (100 m), em cps, para os canais de contagem total, K, U, e Th, e a média dos valores das estações terrestres (em concentração) para os canais de contagem total, K, eU e eTh (Anexo I-e).

As passagens em várias alturas permitem ainda a determinação dos coeficientes de atenuação atmosférica (µ) do sistema detector da aeronave, os quais são utilizados para a correção altimétrica (Anexo I-f).

2.3.7. Calibração dos Detectores Upward Looking

A calibração dos detectores aerogamaespectrométricos voltados para cima, tem por finalidade estabelecer a relação entre as contagens observadas nos canais de contagem total, potássio, urânio e tório, medidas nos detectores normais da aeronave, com aquelas registradas pelo detector *upward*, resultantes da presença de radônio disperso no ar. Tal relação é expressa por um conjunto de coeficientes obtidos a partir de dados de voos realizados sobre a água, ou uma altura elevada, onde não exista qualquer influência de radiações provenientes do solo. Para tanto, foram utilizados os dados dos testes *high level* ou *background*, onde são registrados perfis diários na altura de 2.500 pés (Anexo I-d).

Outro procedimento associado ao processo de calibração do detector *upward looking* envolve a determinação dos coeficientes *skyshine*. Como tal determinação não prevê a realização de testes específicos, o método está descrito apenas no Capítulo 3.

2.4. Compilação dos dados

Ao término de cada jornada de produção, as informações coletadas eram submetidas ao processamento preliminar consistindo no seguinte:

- a) Transferência das leituras do magnetômetro terrestre para o computador de campo para o processamento da variação diurna de acordo com o gradiente fixado no contrato, qual seja: 15 nT/5 min;
- b) Leituras dos arquivos dos voos das aeronaves e transferências dos dados coletados para o computador de campo, para fins de verificação da qualidade da gravação e análise dos perfis coletados, no que se refere a desvios na altura de voo, envoltória de ruídos e desvios de navegação, estabelecidos respectivamente, em: 15 m para mais ou para menos, 0,2 nT e 100 m em relação a linha teórica;
- c) Geração das plotagens dos traços das linhas de voo e controle, corrigidos diferencialmente, em superposição ao plano de voo para identificação dos possíveis trechos desviados em mais de 20% do espaçamento teórico (100 m) por mais de 1000 m;
- d) Verificação da qualidade da gravação, em vídeo, do trajeto percorrido pela aeronave.

Para o controle da produção, acompanhamento dos trabalhos, plotagem, listagem de dados, compilação dos registros e demais controles os chefes de equipe possuem um conjunto de equipamentos de processamento de dados, consistindo em:

- Microcomputadores Notebook Intel 15;
- Impressora Multifuncional;
- HD Externo;
- Celular.

2.5. Equipe Técnica

Participaram da equipe na fase de aquisição de dados os seguintes profissionais:

-			
Álvaro Augusto Pereira			
Luis Otávio de C. Simões			
Waldyr Pereira Lua	Chefe de equipe		
Adriana Bello	1		
Suze Guimaraes			
Fernando Lessa			
Artem Ivashchenko	1		
Divanir Conego Jr.	Garfielas		
Renata Sicotti Maas	Geofisico		
Dante Pires de Souza			
Emerson Alves da Silva			
Bruno Jonathan Neves Almeida			
Jhuan Pompei Usó	1		
Antonio das Neves Alves	7		
Alessandro do Espirito Santo Guerra			
Fernando Gonçalves Costa Amorim	Operador de Equipamento		
Claudinei Teodoro dos Santos			
Ézio de Oliveira Ferreira			
Raimundo Bezerra Freire Neto			
Marcelo Rates Quaranta			
Francisco da Chagas Goes Justo			
Jyun Tanobe			
André de Almeida Queiroz			
Luiz Adolfo Batista Pinheiro	7		
Ricardo de Miranda Frias	Piloto		
Luis Carlos Jacome de Moura	1		
André Alvim Monteiro			
Ney Marcos Pereira Frossard	1		
Serafim Cunha Barreiros	1		
Delbanor da Silva Coelho			
Carlos André Cavalcante Diogo			
Clayton do Prado Monteiro	Managina		
Leony dos Santos Silva	Mecanico		
Joas dos Santos Anselmo Jr.	7		
Alexandre Francisco Andrade Mota	Támica Estimates		
Antônio Cezar da Fonseca	Técnico Equipamentos		

3. PROCESSAMENTO DE DADOS

3.1. Fluxo de Processamento

No processamento de dados do projeto foi empregado o *software OASIS MONTAJ* versão 6.4.1, do sistema *GEOSOFT*, além das rotinas de pré-processamento proprietárias, que permitem a explotação do dado binário coletado em voo para formato

ASCII XYZ *GEOSOFT*. A Figura 10 no final do capítulo, mostra o fluxograma de processamento utilizado para o levantamento.

3.1.1. Preparação do Banco de Dados do Levantamento

Os dados brutos gravados em formato binário da aeronave, são convertidos diretamente para bancos de dados no formato de GDB's compatíveis com o *OASIS MONTAJ*, onde estão agrupadas informações de posicionamento corrigidas e todos os demais canais de informação registrados a bordo da aeronave, quais sejam: intensidade total do campo magnético, valores dos canais radiométricos, altura e altitude de voo, temperatura, etc.

Preparado o banco de dados do tipo .XYZ, onde Z corresponde a cada uma das variáveis medidas a bordo da aeronave e XY as coordenadas UTM do ponto em que a medida foi tomada, o processamento é então iniciado com as correções dos dados magnetométricos e radiométricos propriamente.

3.1.2. Processamento dos Dados Magnetométricos

3.1.2.1. Correção do Erro de Paralaxe

O processamento dos dados brutos do magnetômetro de bombeamento ótico pelo sistema de aquisição da aeronave, introduz um retardamento de tempo nos dados magnetométricos compensados, bem como a posição da antena receptora do GPS em relação à posição do sensor magnetométrico, causam uma defasagem entre o valor de posicionamento (X e Y) e o valor do campo que está sendo mostrado num mesmo intervalo de tempo. Sendo assim, uma correlação denominada de Paralaxe ou Correlação de *Lag* deve ser aplicada. Uma linha especial de calibração foi voada para gravar as informações necessárias para qualificar este intervalo de tempo, para que os dados pudessem ser re-sincronizados.

O erro de paralaxe corresponde à defasagem nos tempo de medição do magnetômetro e altímetros com o sistema de posicionamento. Assim, o erro de paralaxe é determinado a partir de uma linha voada em sentidos opostos sobre uma mesma feição magnética anômala reconhecida no terreno. A correção a ser aplicada corresponde ao valor deslocado do tempo de amostragem, de modo a que as duas feições se tornem coincidentes.

A equação utilizada é a seguinte:

 $\mathbf{Fc}_{(\mathbf{t0})} = \mathbf{Fc}_{(\mathbf{t0} \pm \mathbf{Ip})}$, onde:

Fc = Valor do Campo Magnético Total corrigido do erro de paralaxe,

 $\mathbf{t} \mathbf{0} = \text{Tempo de Amostragem},$

Ip = Valor do Intervalo de Tempo a ser deslocado no banco de dados.

Deve-se observar que não se adiciona nenhum valor ao Campo Magnético e sim desloca-se os valores em relação ao tempo em que foram mostrados os pontos, ou seja, o valor do Campo Magnético após a correção do Paralaxe sofre apenas um reposicionamento temporal dentro do banco de dados.

A correção aplicada a todas as amostras coletadas pelas aeronaves, correspondeu a 0,30 segundos para a aeronave PP-AGP, PR-MCY e PT-EPY. Estas diferenças significativas

são devidas às diferenças encontradas nos sistemas de aquisição. Os resultados dos testes para determinação encontram-se no Anexo II-c, no final deste relatório.

3.1.2.2. Remoção da Variação Magnética Diurna

Os valores obtidos pelo magnetômetro monitor foram inicialmente subtraídos das leituras do campo magnético realizadas a bordo da aeronave, tendo como variável comum a hora de amostragem, fixada com precisão de décimos de segundo. As diferenças encontradas, positivas ou negativas, foram, então, somadas algebricamente ao nível base, definido em 24.978,69 nT. Os valores resultantes correspondem à intensidade total do campo magnético corrigido da variação diurna.

3.1.2.3. Nivelamento dos Perfis

A aplicação do nivelamento através do *software OASIS MONTAJ* versão 6.4.1, do sistema *GEOSOFT* consiste, basicamente, no ajuste das linhas de controle com base na média das diferenças (ou diferença de 1ª ordem) com as linhas de voo. Este procedimento assume que tais diferenças estão distribuídas de forma aleatória, de forma que um *trend* de no máximo 1ª ordem define o desnível entre as linhas de voo e controle.

O procedimento compreende duas etapas distintas, conforme a seguir:

- 1° As linhas de controle são niveladas por aplicação de valores que reduzam as diferenças com as linhas de voo a valores mínimos. Este procedimento assume que existem cruzamentos suficientes para modelar adequadamente as diferenças de nível entre as linhas de controle.
- 2° Após o nivelamento das linhas de controle, todas as linhas de voo são ajustadas às linhas de controle, de forma que os valores do campo magnético encontrados nos seus cruzamentos sejam equivalentes.

Nesta fase é criada uma Tabela de Interseções que contém as diferenças entre as linhas de controle niveladas e a linhas de voo nos pontos de cruzamento.

Tal procedimento é conduzido pelo comando *XLEVEL.GX*. Estes valores são armazenados no banco de dados e utilizados no cálculo das correções a serem aplicadas às linhas de voo. Os cruzamentos onde o gradiente magnético excedeu a 2 nT/fiducial (0,025 nT/m) foram descartados pelo programa. Com base neste gradiente, o programa ainda analisou as interseções quanto à sua aplicabilidade, atribuindo peso mais baixo quanto mais alto fosse o gradiente. Deste modo, uma interseção situada em zona de forte gradiente magnético teve pouca ou nenhuma influência no nivelamento.

O *OASIS MONTAJ* permitiu ainda o exame visual da Tabela de Interseções, possibilitando sua edição manual quando necessário. Por exemplo, a linha nivelada pode ser comparada à sua versão obtida em diferentes estágios do processo.

3.1.2.4. Micronivelamento dos Perfis

Os dados do levantamento foram ainda micronivelados para eliminação de qualquer resíduo de "desnivelamento" que tenha permanecido nos dados. O processo envolveu a geração de dois *grids* auxiliares, resultantes da aplicação de filtros passa-alta tipo *Butterworth* (comprimento de onda da ordem de 4 vezes o espaçamento das linhas de

voo) e cosseno direcional atuando na direção das linhas de voo e perpendicularmente a elas, seguindo-se, então, a criação de um *grid* final decorrugado, que resultará do somatório dos *grid* produzidos em etapas distintas. Este último, subtraído de um *grid* normal irá, por sua vez expressar o erro de nivelamento a ser subtraído aos dados prénivelados conforme o procedimento inicial acima.

3.1.2.5. Remoção do IGRF

A remoção do Campo Geomagnético Internacional de Referência (IGRF) obedeceu à rotina incluída no Sistema *OASIS MONTAJ* que consiste, basicamente, na definição da superfície de tendência que expressa o comportamento de campo geomagnético internacional na área do projeto.

Esta superfície foi definida com base no valor do IGRF, tendo sido considerada a altitude de 338 m, referidos ao ano de 2010 e atualizados para a data média de 18/08/2014 (2014,630).

O campo magnético total corrigido para cada um dos pontos amostrados foi obtido pela subtração ao campo total micronivelado, do valor do IGRF calculado para o ponto. Os valores resultantes são os valores anômalos do campo (campo magnético total reduzido do IGRF).

3.1.3. Processamento dos Dados Gamaespectrométricos

O processamento dos dados gamaespectrométricos obedeceu aos procedimentos recomendados na Seção 4 do Relatório Técnico, Número de Série 323, da Agência Internacional de Energia Atômica, intitulado *Airborne Gamma Ray Spectrometer Surveying*. Foi empregada a rotina contida no sistema de processamento radiométrico *OASIS-RPS* da *GEOSOFT*.

3.1.3.1. Correção do Tempo Morto

A correção do "tempo morto" consiste na divisão das contagens dos canais radiométricos pelo valor do *live time* registrado pelo aparelho, normalizando, assim, os valores brutos dos canais da contagem total, potássio, urânio, tório e urânio *upward* para contagem por segundo.

3.1.3.2. Aplicação de Filtragem

Este processo se aplica somente aos dados afetados por variações de alta frequência, quais sejam: dados do radar altímetro, do canal de radiação cósmica e do canal de urânio *up*, utilizando no cálculo da influência do radônio nas medições realizadas.

Dependendo do comportamento dos dados, são aplicados dois tipos de filtragem:

- Filtragem não linear, que permite a remoção de *spikes* nos dados e a compensação de variações abruptas do radar altímetro;
- Filtragem do tipo passa-baixa, que reduz o erro estatístico nos dados da radiação cósmica, suaviza o comportamento do radônio. Opcionalmente, é aplicado aos

demais canais radiométricos com objetivos específicos, como o cálculo das razões radiométricas.

3.1.3.3. Correlação do Erro de Paralaxe

O erro de paralaxe não foi observado nos dados radiométricos, não sendo, assim, necessário sua aplicação.

3.1.3.4. Cálculo da Altura Efetiva (h_c) de Voo

A altura de voo foi ajustada com base na temperatura e pressão ambientais, utilizando-se da fórmula (IAEA, 2003):

$$h_c = h (273,15/T+273,15) \times (P/1013,25)$$
, sendo:

h – altura de voo medida pelo radar altímetro em metros,

T – temperatura do ar medida em °C,

P – pressão atmosférica em milibar.

A pressão atmosférica é obtida a partir da altitude medida pelo altímetro barométrico.

3.1.3.5. Remoção do Background da Aeronave e Cósmico

O *background* é obtido através do somatório das contribuições do *background* da aeronave e da radiação cósmica em cada uma das janelas do gamaespectrômetro.

O cálculo das contribuições da aeronave e da radiação cósmica é conduzido através da fórmula (IAEA, 1991):

$$N = a + bC$$
, onde:

N – somatório das duas contribuições (em cps),

a – background da aeronave em cada janela do gamaespectrômetro,

C – canal de radiação cósmica,

b – razão entre a contagem em determinada janela e a contagem no canal do cósmico.

Os coeficientes aplicados aos dados foram aqueles definidos pelo voo cósmico pelo mar, em área distante da costa, cujos gráficos estão indicados no Anexo I-c.

3.1.3.6. Remoção do Background do Radônio

O efeito do *background* do radônio, por sua vez, é determinado a partir das medições realizadas na janela do urânio pelo detector *upward looking*. A expressão que define a parcela de radônio influindo no canal do urânio é a seguinte (IAEA, 1991):

$$U_r = (u - a_1U - a_2Th) + (a_2b_t - b_u) / (a_u - a_1 - a_2a_t)$$
, onde:

U_r – background do radônio medido no canal downward do urânio,

u – contagem medida no canal *upward* do urânio,

U – contagem medida no canal downward do urânio,

Th – contagem medida no canal *downward* do tório,

 a_1 , a_2 , a_u , a_t , b_u , b_t – coeficientes de proporcionalidade, sendo que b_u e b_t são zerados e a_1 e a_2 os coeficientes *skyshine*.

As contagens relativas ao urânio, tório e urânio *up* devem ser corrigidas previamente dos efeitos de *background*s da aeronave e cósmico.

A relação entre as contagens atribuídas ao radônio observadas na janela do urânio, com as demais janelas de canais *downward*, detectadas nos cristais voltados para baixo, pode ser determinada através de regressão linear aplicada sobre um conjunto de dados que reflita as variações decorrentes da presença de radônio nos dados.

O procedimento de cálculo dos coeficientes que expressam a relação entre os detectores (*upward* e *downward*) utiliza as seguintes fórmulas (IAEA, 1991):

$$\begin{split} &U_r=a_uU_u+b_u\,,\\ &K_r=a_kU_r+b_k\,,\\ &T_r=a_tU_r+b_t\,,\\ &TC_r=a_{tc}U_r+b_{tc},\,\text{onde:} \end{split}$$

 $\mathbf{u_r}$ é a componente do radônio no urânio up, $\mathbf{U_r}$, $\mathbf{K_r}$, $\mathbf{T_c}$ e $\mathbf{TC_r}$ são as contribuições do radônio nas demais janelas associadas ao detector *downward*. Se os componentes dos *backgrounds* da aeronave e cósmico são perfeitamente removidos, as constantes "b's" ($\mathbf{b_u}$, $\mathbf{b_k}$, $\mathbf{b_t}$ e $\mathbf{b_{tc}}$) devem ser zeradas (IAEA, 1991)

No cálculo dos coeficientes \mathbf{a}_{tc} , \mathbf{a}_{k} , \mathbf{a}_{u} e \mathbf{a}_{t} (Tabela 9) foram utilizados os valores calculados a partir dos testes de *high level*. Os gráficos que correspondem a estes cálculos, encontram-se no Anexo I-d.

Canal	Coeficiente	PP-AGP	PR-MCY	PT_EPY
Contagem Total	\mathbf{a}_{tc}	16,064	13,808	15,302
Potássio	$\mathbf{a_k}$	0,8845	0,7617	0,8255
Urânio <i>up</i>	$\mathbf{a}_{\mathbf{u}}$	0,2149	0,1245	0,1594
Tório	$\mathbf{a_t}$	0,1089	0,1081	0,0843

Tabela 9 – Constantes de Calibração do Radônio.

3.1.3.7. Estimativa dos Coeficientes Skyshine (a₁ e a₂)

Estes coeficientes relacionam a contribuição das radiações de urânio e tório provenientes do terreno, que influenciam as contagens do urânio no detector *upward*. Admitindo-se que tais contribuições variem linearmente com as contagens destas mesmas radiações nas janelas de urânio e tório, nos detectores voltados para baixo, a estimativa destes coeficientes emprega a expressão geral (GRASTY & MINTY, 1995):

$$\mathbf{u}_{g} = \mathbf{a}_{1}\mathbf{U}_{g} + \mathbf{a}_{2}\mathbf{T}_{g}$$
, onde:

u_g – contribuição do solo na janela do urânio *up*;

 U_g – contribuição do solo na janela do urânio down;

T_g – contribuição do solo na janela do tório down;

a₁ **e a**₂ – constantes de calibração requeridas.

A partir de uma série de valores de ug, Ug e Tg os fatores de calibração a₁ e a₂ podem ser determinados pelo método dos mínimos quadrados. Isso pode ser feito resolvendo as duas equações simultâneas abaixo:

$$a_1 \sum (U_g)^2 + a_2 \sum U_g T_g = \sum u_g U_g$$
$$a_1 \sum U_\sigma T_\sigma + a_2 \sum (U_\sigma)^2 = \sum u_\sigma T_\sigma$$

Este processo foi efetuado automaticamente utilizando todos os dados do levantamento.

Os valores obtidos no levantamento em pauta estão demonstrados na Tabela 10 abaixo.

Tabela 10 – Coeficientes de Skyshine.

Coeficiente	PP-AGP	PR-MCY	PT-EPY
$\mathbf{a_1}$	0,06044	0,04550	0,07008
\mathbf{a}_2	0,04119	0,03526	0,04320

3.1.3.8. Correção do Efeito Compton

É aplicada com objetivo principal de eliminar a influência das radiações atribuídas aos canais de mais alta energia que penetram nos canais de baixa energia, quais sejam: contribuições do tório no urânio e no potássio, assim como a contribuição do urânio no potássio. Nos sistemas de alta resolução, em uso atualmente, são também consideradas as influências de radiações de baixa energia nas janelas de energia mais alta, resultando, desta forma, nos seis coeficientes abaixo:

α – radiações de tório no urânio,

 β – radiações de tório no potássio,

γ – radiações de urânio no potássio,

a – radiações de urânio no tório,

b – radiações de potássio no tório,

g – radiações de potássio no urânio.

Os valores adotados para correção do efeito *Compton* são os descritos na Tabela 8 — Coeficientes de Espalhamento *Compton*, apresentada no item 2.3.6. Maior detalhamento deste teste está presente no Anexo I-b.

3.1.3.9. Correção Altimétrica (Coeficiente de Atenuação Atmosférica)

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100 m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte, pode ser expressa matematicamente, de forma aproximada, pela fórmula (IAEA, 1991):

$$N_{\rm H} = N_0 \cdot e^{-\mu H}$$
 (1), onde:

N_H é a radiação a distância H da fonte,

 N_0 é a radiação na superfície do terreno (H=0),

μ é o coeficiente de atenuação atmosférica.

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$Ln(N_H) = -\mu H + Ln(N_0)$$

que é a equação de uma reta de coeficiente angular - μ e o coeficiente linear Ln (N_0). Na determinação dos coeficientes de atenuação atmosférica (µ) para cada um dos canais radiométricos foram utilizados os valores apresentados na Tabela 11, obtidos durante os testes realizados em Maricá-RJ. Os gráficos apresentando a correlação logarítmica entre as contagens e a altura de voo encontram-se no Anexo I-f.

μ em m⁻¹ PP-AGP PR-MCY PT-EPY Canal Radiométrico (16/12/2013)(28/03/2014)(15/05/2014)

-0,0076

-0,0092

-0.0068

-0,0077

-0,0069

-0,0075

-0,0061

-0,0071

Tabela 11 – Coeficiente de Atenuação Atmosférica.

-0,0073

-0,0079

-0,0067

-0,0071

3.1.3.10. Conversão para Concentração de Elementos

As sensibilidades dos detectores das aeronaves para as janelas do potássio, urânio e tório foram determinadas com base nas razões entre as medições efetuadas a bordo (N) e em terra (C), com aplicação da expressão:

$$S = N/C$$
, onde:

S corresponde à sensibilidade para cada janela,

Contagem Total

Potássio

Urânio

Tório

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100 m) e situada no trecho de interesse das estações terrestres utilizadas,

C é a média das concentrações para cada canal das estações terrestres de interesse.

A Tabela 12 a seguir, corresponde à sensibilidade dos detectores analisados (volume total de 42 litros e dimensões de 10 cm x 10 cm x 40 cm cada), tomando por base a altura de voo de 100 m sobre o terreno.

Tabela 12 – Coeficientes de Sensibilidade.

	Sensibilidade		
Canal Radiométrico			PT-EPY (15/05/2014)
Contagem Total	89,40 cps/μR/h CT	264,42 cps/μR/h CT	205,70 cps/μR/h CT
Potássio	51,84 cps / %K	76,86 cps / %K	57,62 cps / %K
Urânio	7,19 cps / ppm eU	13,70 cps / ppm eU	15,18 cps / ppm eU
Tório	2,45 cps /ppm eTh	4,88 cps /ppm eTh	4,23 cps /ppm eTh

Para calcular a taxa de exposição (*Exposure Rate*) do canal de contagem total (em μR/h) utiliza-se a fórmula abaixo (IAEA, 1991):

E = 1,505K + 0,653eU + 0,287eTh, onde:

K, eU e **eTh** correspondem às concentrações aparentes destes elementos definidas em terra, quando do levantamento da pista de calibração dinâmica. Os valores das concentrações determinados para o canal de contagem total foi 11,65 μR/h para a aeronave PR-MCY, 12,14 μR/h para a PT-EPY e 23,91 μR/h para a aeronave PP-AGP.

Os gráficos comparativos dos perfis coletados durante a calibração dinâmica, após a conversão da amostragem para concentração aparente, acompanham o texto descritivo do procedimento de calibração apresentado no Anexo I-e.

3.1.4. Determinação das Razões eU/eTh, eU/K e eTh/K

As razões foram calculadas a partir dos valores radiométricos corrigidos, conforme descritos no item 3.1.3. deste capítulo. Para a eliminação de indeterminações, ou incorreções devidas a valores anormalmente abaixo, foi convencionada a fixação dos valores mínimos de K, U e Th em 10% da média destes canais na área de levantamento e aplicado também um filtro passa-baixa de 10 amostras. A Tabela 13 a seguir, resume os valores utilizados.

Tabela 13 – Valores Mínimos para Cálculo das Razões Radiométricas.

Canal Radiométrico	Valor Mínimo
K (%)	0,096
eU (ppm)	0,209
eTh (ppm)	0,939

3.2. Interpolação e Contorno

Para a geração dos *grids*, foram utilizadas as rotinas do *Oasis Montaj* de *minimum curvature* (*RANGRID*) e bi-directional *line gridding* (*BIGRID*). Nos dados radiométricos utilizou-se a mínima curvatura e nos magnetométricos a gridagem bidirecional. Os programas *BIGRID* e *RANGRID* interpolam dados em perfis paralelos com linhas orientadas, usando mínima curvatura (*RANGRID*) e *spline* bicúbico (*BIGRID*) para interpolação de amostras nos pontos do *grid*.

Os mapas de contorno foram elaborados a partir de *grid* regulares, interpolados em malha quadrada, com dimensões de 125 m x 125 m, o que equivale a um quarto do espaçamento entre as linhas de voo.

3.3. Arquivo Final de Dados

Os arquivos finais dos perfis do levantamento foram gravados em DVD-ROM, em arquivos ASCII, no formato XYZ e em banco de dados no formato GDB (*GEOSOFT*), contendo as seguintes informações:

Dados magnetométricos brutos e reduzidos da variação diurna,

- Dados magnetométricos nivelados, reduzidos do IGRF e micronivelados,
- Dados radiométricos brutos e corrigidos e respectivas razões,
- Altura e Altitude do voo,
- Posicionamento GPS: Coordenadas UTM, Latitude, Longitude e elevação GPS.

Todos os dados dos cruzamentos entre linhas de voo e linhas de controle, arquivos digitais em malha quadrada e de plotagem dos mapas apresentados, bem como o presente relatório em formato PDF (*Adobe Acrobat*) foram gravados em DVD-ROM, descrito no item 5 deste relatório.

3.4. Equipe Envolvida no Processamento dos Dados

Participou dos trabalhos de processamento:

Álvaro Augusto Pereira - Gerente de Processamento de Dados

Artem Ivashchenko - Consultor

A direção geral das operações no *Projeto Aerogeofísico Rio Maria* esteve a cargo do oceanógrafo Cristiano Fontoura.

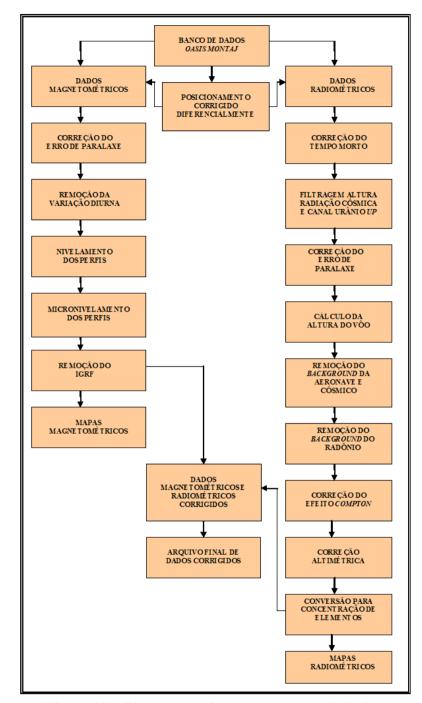


Figura 12 – Fluxograma do processamento de dados.

4. CRONOGRAMA GERAL DAS OPERAÇÕES

O levantamento do projeto foi executado no período de 24 de janeiro de 2014 a 09 de novembro de 2014. O processamento dos dados e elaboração do Relatório Final teve início após o término da fase de aquisição e foram concluídos em 6 de março de 2015.

A Figura 13 fornece o quadro comparativo entre o cronograma previsto e a duração efetiva do projeto.

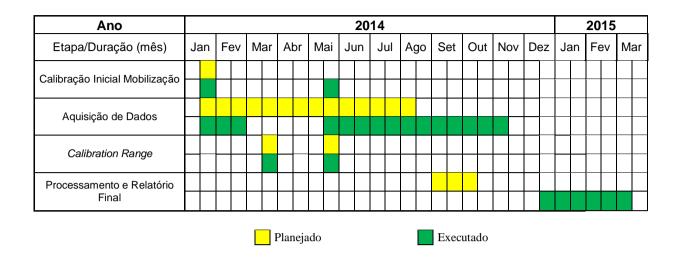


Figura 13 – Cronograma Geral das Operações.

5. PRODUTOS FINAIS

Os produtos finais relativos são apresentados, na forma de mapas, nas escalas 1:100.000, 1:250.000 e 1:500.000 que seguem em anexo ao presente relatório. Os resultados na forma de mapas são acompanhados dos arquivos digitais finais do levantamento, gravados em DVD-ROM, nos formatos *GEOSOFT e PDF*.

Os mapas foram elaborados de acordo com as especificações do Manual Técnico do IBGE (IBGE, 1989). As informações geofísicas estão superpostas à rede de projeção UTM, traçada com retículas de 8 cm (40km em 1:500.000, 20km em 1:250.000 e 8km em 1:100.000), à rede geográfica, indicada por cruzetas dispostas a cada 30, 15 e 10 minutos, respectivamente, para as escalas 1:500.000, 1:250.000 e 1:100.000, e às informações planimétricas, obtidas dos arquivos digitais das folhas ao milionésimo SC.21 disponíveis no site do IBGE (www.ibge.gov.br). Na escala de 1:500.000 os mapas integrados foram elaborados de forma a englobar toda a área do Projeto em uma folha única.

As Figuras 14 e 15 ilustram a articulação das folhas relativas aos mapas apresentados nas escalas 1:100.000 e 1:250.000, respectivamente.

A Tabela 14 apresenta os diversos tipos de mapas apresentados e suas características:

Tabela 14 – Características da Apresentação dos Mapas Aerogeofísicos.

Tema	Padrão (1:100.000)	Padrão (1:250.000)	Folha Única (1:500.000)
Campo Magnético Total (reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
1ª.Derivada Vertical do Campo Magnético Total (Reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
Radiométrico de Contagem Total	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Potássio	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Urânio	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Tório	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Razão Radiométrica eU/eTh	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Razão Radiométrica eU/K	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Razão Radiométrico eTh/K	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Radiométrico Ternário	=	=	Imagem e planimetria
Modelo Digital do Terreno	-	-	Imagem sombreada (pseudo-iluminação) e planimetria
Traço de Linhas de Voo (digital)	Traço de linhas de voo e Planimetria	-	-

As especificações dos intervalos de contorno utilizados constam da Tabela 15 a seguir:

Tabela 15 – Características dos intervalos de contorno dos mapas aerogeofísicos.

Tema	Padrão (1:100.000)	Padrão (1:250.000)
Campo Magnético Total (Reduzido do IGRF)	20 e 100 nT	20 e 100 nT
1ª.Derivada Vertical do Campo Magnético Total (Reduzido do IGRF	0,01 e 0,05 nT/m	0,01 e 0,05 nT/m
Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)	0,01 e 0,05 nT/m	0,01 e 0,05 nT/m
Radiométrico de Contagem Total	0.5 e 2.5 μR/h	0.5 e 2.5 μR/h
Radiométrico de Potássio	0,1 e 0,5 %	0,1 e 0,5 %
Radiométrico de Urânio	0.2 e 1 ppm	0.1 e 0.5 ppm
Radiométrico de Tório	1 e 5 ppm	1 e 5 ppm
Razão Radiométrica eU/eTh	-	-
Razão Radiométrica eU/K	-	-
Razão Radiométrico eTh/K	-	-

Figura 14 – Articulação das folhas na escala 1:100.000.

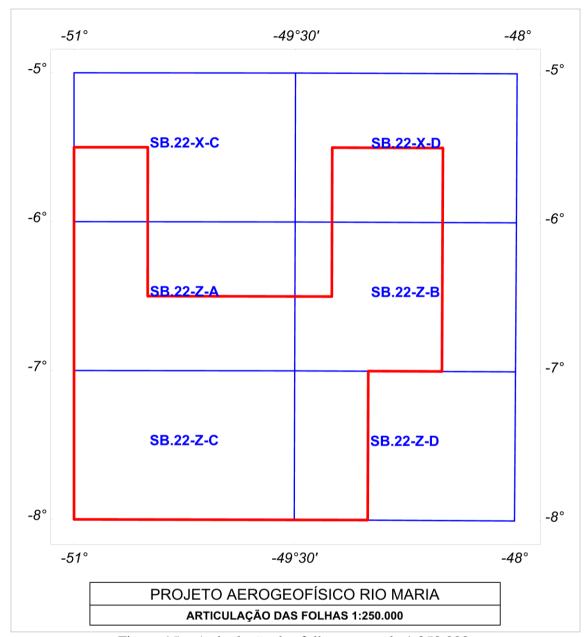


Figura 15 – Articulação das folhas na escala 1:250.000.

5.1. Mapas de Contorno do Campo Magnético Total, da 1ª Derivada Vertical e do Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)

Os mapas magnetométricos, na escala 1:500.000, foram elaborados na forma de pseudoiluminação projetada perpendicularmente às estruturas principais definidas pela magnetometria. Nos mapas de pseudo-iluminação foram adotados o ângulo de 45° para azimute e de 45° para inclinação da fonte de iluminação aplicada.

Os mapas magnetométricos nas escalas 1:250.000 e 1:100.000, foram elaborados na forma de imagem colorida, com traços de contorno superpostos.

A título de ilustração, os mapas magnetométricos do Campo Total e do Sinal Analítico estão sendo apresentados nas Figuras 16 e 17 respectivamente, com escalas reduzidas para tamanho A4.

5.2. Mapas Radiométricos dos Canais de Potássio, Urânio, Tório e Contagem total

Os mapas radiométricos foram elaborados a partir das concentrações aparentes dos canais radiométricos de potássio, urânio, tório e contagem total. Nos mapas de escalas 1:100.000 e 1:250.000 a imagem se superpõe à planimetria básica e as curvas de contorno.

Para a escala de 1:500.000, as curvas de contorno não são apresentadas.

Os valores radiométricos foram convertidos de contagens por segundo (cps) para concentração de elementos (% para K, ppm para eU e eTh e µR/h para o canal de Contagem Total), com base nos procedimentos especificados no Item 3.1. do Capítulo 3 deste Relatório.

O mapa do canal radiométrico de Contagem Total, elaborado em escala reduzida para tamanho A4, está sendo apresentado na Figura 18.

5.3. Mapa Radiométrico Ternário

Mapa elaborado apenas na escala 1:500.000 (folha única), expressa a razão entre os três canais radiométricos (K, U, Th), cujas variações são indicadas por diferentes matizes de cores. As tonalidades variam entre o vermelho (100% K), verde (100% eTh) e azul (100% eU). A cor branca representa a presença dos três elementos (K, U, Th) e a cor preta, a ausência dos três citados elementos.

O mapa radiométrico ternário, elaborado em escala reduzida para tamanho A4, está sendo apresentado na Figura 19.

5.4. Mapas das Razões Radiométricas eU/eTh, eU/K e eTh/K

Os mapas das razões radiométricas foram elaborados a partir das razões das concentrações dos canais radiométricos de potássio, urânio e tório. Nos mapas de escala 1:500.000, 1:250.000 e 1:100.000 a imagem se superpõe à planimetria básica. O mapa

radiométrico da razão Tório/Potássio está sendo elaborado em escala reduzida para tamanho A-4, sendo apresentado na Figura 20.

5.5. Mapa de Pseudo-Iluminação do Modelo Digital do Terreno

Este mapa, obtido através da subtração dos canais de Altura GPS e Radar Altímetro, está sendo apresentado na escala de 1:500.000 em cores e pseudo-iluminado, com inclinação da fonte de luz de 45° e direção da mesma em 45°, com a planimetria superposta.

O mapa pseudo-iluminado do modelo digital do terreno, também elaborado em escala reduzida para tamanho A4, está apresentado na Figura 21, a qual apresenta os principais acidentes geográficos da área levantada, obtido a partir dos dados de GPS e radar altímetro registrado pela aeronave.

5.6. Mapa de Traço de Linhas de Voo

Estes mapas apresentam o caminho percorrido ao longo das linhas levantadas. A numeração das linhas é apresentada nas extremidades de cada linha e *ticks* a cada 10 fiduciais, sendo numeradas a cada 100 fiduciais. Os mapas de traço de linhas de voo são apresentados somente em escala 1:100.000 na forma digital, não sendo portanto apresentados impressos, não obstante os arquivos de plotagem acompanharão os produtos finais.

5.7. Relatório Final

O relatório final está sendo apresentado em 14 volumes (Volume I – Texto Técnico e demais como Anexos), em 4 (quatro) vias, contendo a descrição das operações conduzidas no projeto e dos procedimentos utilizados no levantamento e no processamento dos dados correspondentes, até a elaboração dos mapas finais, conforme descrito anteriormente.

O texto deste relatório foi elaborado pelo engenheiro cartógrafo e mestre em geofísica Álvaro Augusto Pereira. A revisão e edição final estiveram a cargo do geógrafo Luis Otávio de Carvalho Simões, da Geofísica Adriana Menezes Bello e do geólogo Alexandre Lisboa Lago da CPRM - Serviço Geológico do Brasil.

5.8. Arquivos Digitais Finais

Os dados obtidos no processamento de dados estão sendo apresentados em 1 (um) CD-ROM e 4 (três) DVD-ROMs em 4 (quatro) cópias. A descrição do conteúdo das informações gravadas nos DVD-ROMs está sendo apresentada no Anexo IV. A descrição detalhada do formato dos arquivos XYZ e do padrão da CPRM (cruzamentos) é apresentada no Anexo V e também nas Tabelas 23, 24, 25 e 26.

Os dados digitais dos bancos de dados magnetométricos e gamaespectrométricos da *GEOSOFT* (GDB) são apresentados, respectivamente, nas Tabelas 23 e 24.

Os Arquivos de malha (*Grids*), os bancos de dados, bem como os arquivos XYZ e cruzamentos estão apresentados com as coordenadas métricas referenciada a zona UTM 22S (Meridiano Central 51° WGr). Maiores informações estão expostas no arquivo *Leiame.pdf* presente em cada mídia DVD, bem como no Anexo IV.

Os mapas foram gravados em arquivos de plotagem do tipo HPGL (*Hewlett Packard Graphics Language*), PDF (*Portable Document Format*), *GEOSOFT MAP* e *GeoTIFF*. As informações planimétricas foram confeccionadas com auxílio do *software ArcGis Engine* versão 9.3.1770 (*ESRI*, 2007).

Os *grids* também são apresentados no formato *GEOSOFT*, interpolados em malha quadrada de 125 x 125 m. O método de interpolação utilizado para elaboração dos *grids* da magnetometria foi o *spline* bidirecional (*Bigrid*) e para os dados de gamaespectrometria, a mínima curvatura (*Rangrid*).

A listagem fornecida no Anexo VI apresenta as linhas de voo apresentadas na Tabela 6 já citada. Todas estas linhas listadas foram aprovadas e utilizadas no processamento e estão organizadas por ordem crescente de numeração.

O arquivo Metadados, bem como todos os arquivos especificados no contrato, estão sendo apresentados em meio digital (a relação dos DVD-ROMs e do CD-ROM está no Anexo IV).

O texto do presente Relatório Final foi gravado no formato PDF *Adobe Acrobat*, em CD-ROM separado.

Tabela 16 – Banco de dados *Geosoft* (GDB) – Magnetometria.

Campo	Descrição	Unidade
X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
BARO	Altitude Barométrica	m
ALTURA	Altura de Voo (Radar Altímetro)	m
MDT	Modelo Digital do Terreno	m
MAGBASE	Campo Magnético da Base Fixa	nT
MAGBRU	Campo Magnético não Compensado	nT
MAGCOM	Campo Magnético Compensado	nT
MAGCOR	Campo Magnético Corrigido da Variação Diurna	nT
MAGNIV	Campo Magnético Total Nivelado	nT
MAGMIC	Campo Magnético Micronivelado	nT
MAGIGRF	Campo Magnético Reduzido do IGRF	nT
IGRF	Campo Magnético de Referência (fonte NOAA)	nT
LONGITUDE	Longitude	graus decimais
LATITUDE	Latitude	graus decimais
DATA	Data	ano/mês/dia
HORA	Hora	hh:mm:ss

Tabela 17 – Banco de dados Geosoft (GDB) – Gamaespectrometria.

Campo	Descrição	Unidade
X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
BARO	Altitude Barométrica	m
ALTURA	Altura de Voo (Radar Altímetro)	m
MDT	Modelo Digital do Terreno	m
CTB	Contagem Total Bruto	cps
KB	Potássio Bruto	cps
UB	Urânio Bruto	cps
THB	Tório Bruto	cps
UUP	Urânio <i>UP</i>	cps
LIVE_TIME	Tempo de Amostragem	ms
COSMICO	Radiação Cósmica	cps
TEMP	Temperatura	graus Celsius
CTCOR	Contagem Total Corrigido	cps
KCOR	Potássio Corrigido	cps
UCOR	Urânio Corrigido	cps
THCOR	Tório Corrigido	cps
CTEXP	Taxa de Exposição da Contagem Total	μR/h
KPERC	Potássio em Porcentagem	%
eU	Urânio em ppm	ppm
eTh	Tório em ppm	ppm
THKRAZÃO	Razão entre Tório e Potássio	-
UKRAZÃO	Razão entre Urânio e Potássio	-
UTHRAZÃO	Razão entre Urânio e Tório	-
LONGITUDE	Longitude	graus decimais
LATIDUDE	Latitude	graus decimais
DATA	Data	ano/mês/dia
HORA	Hora	hh:mm:ss

Tabela 18 – Banco de dados *Geosoft* (GDB) – Gamaespectrometria 256 canais.

X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
SpectraD	Vetor Espectro 256 Canais Detector <i>Downward</i>	cps
SpectraU	Vetor Espectro 256 Canais Detector <i>Upward</i>	cps

Tabela 19 – Arquivo de Cruzamento XYZ – Magnetometria.

X	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	1
GPSALT	Altitude GPS	m
ALTURA	Altura de Voo (Radar Altímetro)	m
MAGCOR	Campo Magnético Corrigido da Variação Diurna	nT
MAGNIV	Campo Magnético Total Nivelado	nT
RESIDUO	Diferença Aplicada no Cruzamento para Nivelamento	nT
VOO	Número do Voo	-

5.9. Arquivos Poligonais

Estão sendo entregues também, no formato *Geosoft* PLY, os arquivos correspondentes ao corte das folhas 1:100.000, 1:250.000 e 1:500.000. Esses arquivos contemplam os pares cartesianos (X e Y) que definem o polígono relativo ao corte padrão das folhas IBGE. A sintaxe dos arquivos compreende a sua codificação, seguida da extensão "ply".

5.10. Produtos Originais

Os originais obtidos no levantamento, tais como fitas de vídeo e fitas originais, contendo dados brutos e registros analógicos permanecerão sob guarda e conservação da Prospectors Aerolevantamentos e Sistemas Ltda., conforme determina a Portaria Nº 637-SC-6/FA-61, do EMFA, de 05.03.1998.

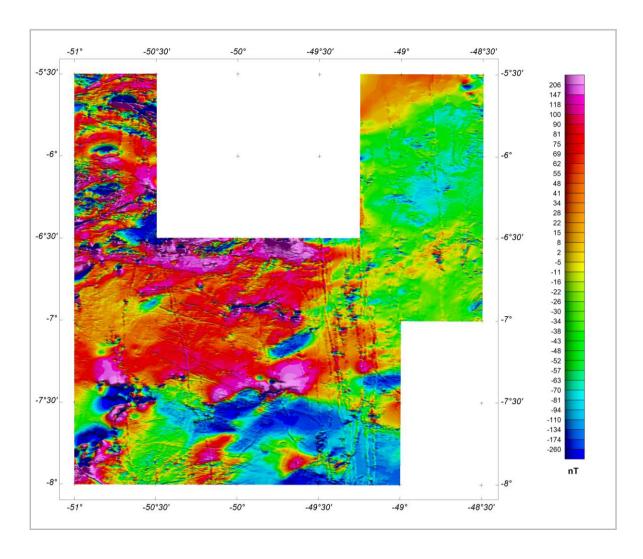


Figura 16 – Mapa pseudo-iluminado do campo magnético total (reduzido do IGRF). (Azimute da Fonte Luminosa: 45° ; Inclinação: 45°)

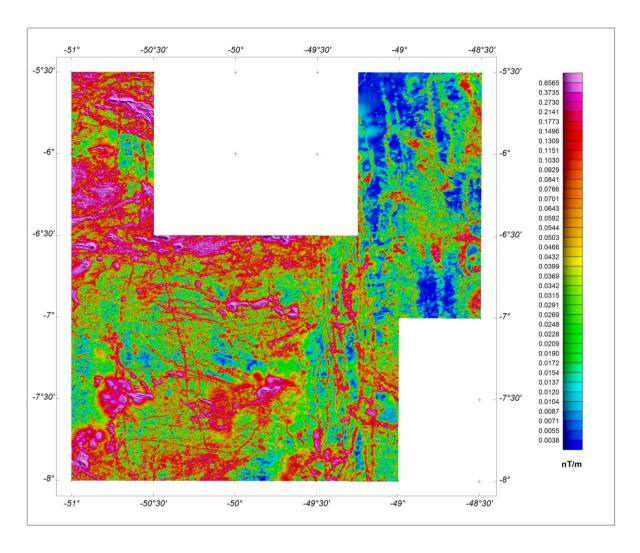


Figura 17 – Mapa do sinal analítico do campo magnético total (reduzido do IGRF). (Azimute da Fonte Luminosa: 45°; Inclinação: 45°)

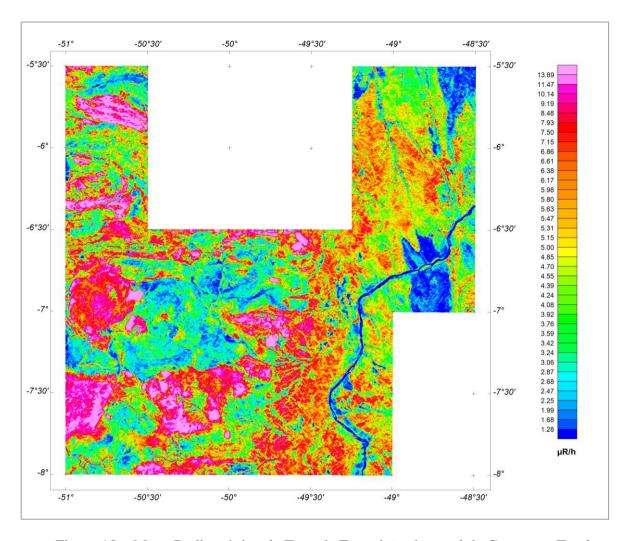


Figura 18 – Mapa Radiométrico da Taxa de Exposição do canal de Contagem Total.

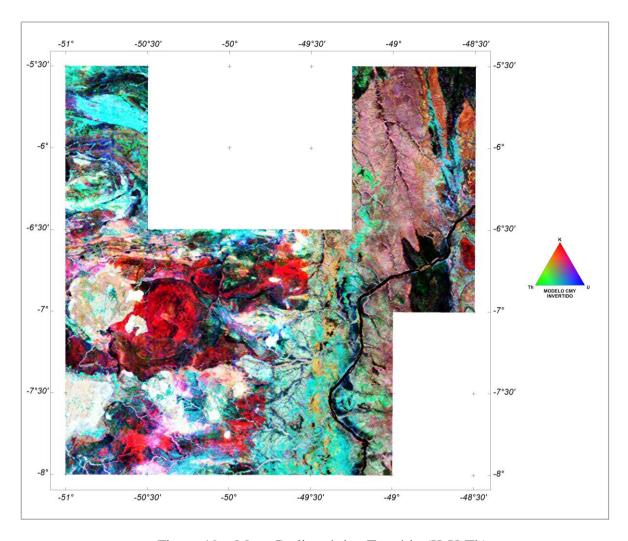


Figura 19 – Mapa Radiométrico Ternário (K-U-Th).

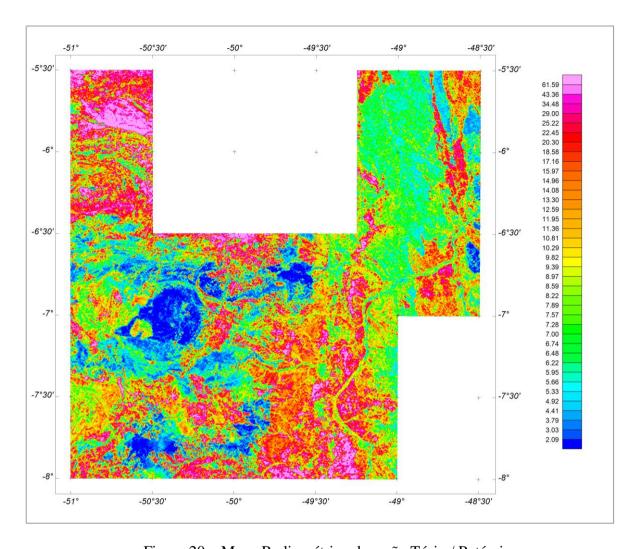


Figura 20 – Mapa Radiométrico da razão Tório / Potássio.

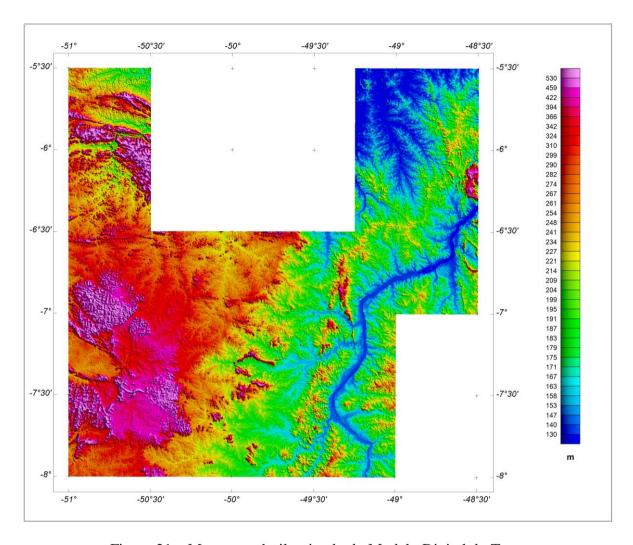


Figura 21 — Mapa pseudo-iluminado do Modelo Digital do Terreno. (Azimute da Fonte Luminosa: 45°; Inclinação: 45°)

6. PARTICIPAÇÃO DA CPRM - SERVIÇO GEOLÓGICO DO BRASIL

Os serviços de aquisição de dados do projeto foram supervisionados pela Equipe de Fiscalização da CPRM constituída pelos seguintes técnicos:

Adolfo Barbosa	Geofísico	SUREG-GO
Diego Gomes	Geofísico	SUREG-BH
Ederson Ribeiro	Geofísico	SUREG-GO
Frederico Ricardo	Geofísico	REFO
Higo Nunes	Geofísico	SUREG-BH
Iago Sousa	Geofísico	DIGEOF-ERJ

A revisão e compatibilização geral dos resultados obtidos apresentados no Relatório Final foram executadas pelo geólogo Alexandre Lisboa Lago e pelo geofísico Iago Sousa, com supervisão da gerente do contrato, a geóloga Maria Laura Vereza de Azevedo.

7. REFERÊNCIAS BIBLIOGRÁFICAS

- **CPRM 1999 -** Relatório sobre os serviços de geodésia e topografia para locação da linha de calibração dinâmica. Divisão de Cartografia DICART. Rio de Janeiro, Brasil.
- **ESRI 2007 -** Arc Gis Engine Runtime versão 9.3.1770 para Target for Arc Gis versão 7.0.1, desenvolvido pela Geosoft Inc. 1 CD-ROM.
- **GEOSOFT 2005** Montaj Geophysics Levelling System: Tutorial and User Guide. www.geosoft.com. Toronto, Canada.
- **GRASTY, R. L. & MINTY, B. R. S. 1995** A guide to the technical specifications for airbone gamma-ray surveys. AGSO, Austrália. p. 19-24.
- **IAEA. 1991 -** Airbone gamma ray spectrometer surveying. International Atomic Energy Agency. Technical Reports Series No. 323. Vienna, Austria. p. 21-52.
- **IAEA. 2003** Guidelines for radioelement mapping using gamma ray spectrometry data. International Atomic Energy Agency. TECDOC-1363. Vienna, Austria. p. 25-26, 56.
- **IBGE. 1989** Manual Técnico de Noções Básicas de Cartografia Fundação IBGE. Rio de Janeiro, Brasil.

ANEXO I – RESUMO DO PROCESSO DE CALIBRAÇÃO DO GAMAESPECTRÔMETRO.

ANEXO I – a - RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

AERONAVE

PP-AGP

UBATUBA-SP 11 DE DEZEMBRO DE 2013

Aeronave: PP-AGP Data: 11/12/2013 Local: UBATUBA, SP

Resolução do Sistema

1105014440 40 515001144				
Nome	Canal Inicial	Canal Final	Pico Estabilizado	
Contagem Total	71	478	-	
Potássio	235	269	250	
Urânio	284	318	302	
Tório	410	478	445	
Urânio Up	284	318	302	

Resolução dos Cristais Detectores

		Resolução do	s Cristais Dete	ctores	
Caixa 1		Caixa 2		Caixa 3	
Cristal	Resolução	Cristal	Resolução	Cristal	Resolução
1	5,1 %	6	4,6 %	11	6,1 %
2	5,0 %	7	5,0 %	12	5,7 %
3	4,8 %	8	4,6 %	-	-
4	4,7 %	9	5,0 %	-	-
5 - up	4,5 %	10 - up	4,9%	-	-
Resolução da Caixa	4,9 %	Resolução da Caixa	4,8 %	Resolução da Caixa	5,9%
Resolução do Conjunto			5,2%		

Teste de Resolução das Caixas dos Cristais Down (caixas 1 e 2)

Teste de Resolução das Caixas dos Cristais Down (caixa 3)

Teste de Resolução dos Cristais Voltados Para Cima - Up (caixas 1 e 2)

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

AERONAVE

PR-MCY

UBATUBA-SP 24 DE MARÇO DE 2014

Aeronave: PR-MCY Data: 24/03/2014 Local: Ubatuba, SP

Gamaespectrômetro: Exploranium GR820

Resolução do Sistema

300 000 000 000 000 000 000 000 000 000					
Nome	Canal Inicial	Canal Final	Pico Estabilizado		
Contagem Total	34	233	-		
Potássio	115	131	122		
Urânio	139	155	147		
Tório	202	233	218		
Urânio Up	139	155	302		

Fonte: Tório

Referência: < 7 % Caixas 1 e 2 e cristais 3 e 4 da caixa 3 (Cristais down)

Referência: <12 % Cristais 1 e 2 da caixa 3 (Cristais Up)

Resolução dos Cristais Detectores

Caixa 1		Caixa 2		Caixa 3	
Cristal	Resolução	Cristal	Resolução	Cristal	Resolução
1	5,1 %	6	6,2 %	1	10,5 %
2	4,8 %	7	5,8 %	2	9,9 %
3	4,6 %	8	5,7 %	3	5,3 %
4	5,3 %	9	5,7 %	4	4,6%
т	OTAL:	5,4	DOWN	11,0	UP

Fotografia da tela do sistema estabilizado

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESULTADOS DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD E UPWARD)

AERONAVE

PT-EPY

UBATUBA-SP 25 DE MAIO DE 2014

Aeronave: PT-EPY Data: 25/05/2014 Local: Ubatuba, SP

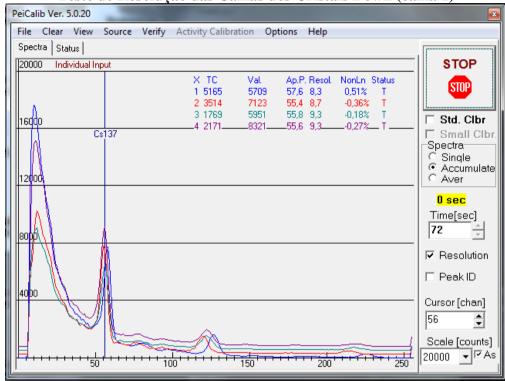
Gamaespectrômetro: PICO ENVIROTEC Caixa #1: Modelo GRS410, S/N 308-01 (1024) Caixa #2: Modelo GRS410, S/N 308-03 (1024) Caixa #3: Modelo GRS1024, Sem Número (512)

Resolução do Sistema

Nome	Canal Inicial	Canal Final	Pico Estabilizado
Contagem Total	69	477	-
Potássio	234	268	249
Urânio	282	316	300
Tório	409	477	444
Urânio Up	282	316	300

Fonte: Tório

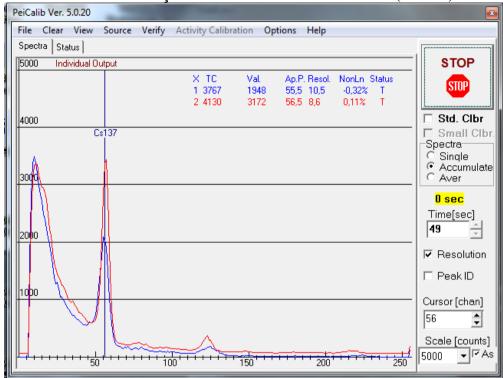
Referência: < 7 % Caixas 1 e 2 e cristais 3 e 4 da caixa 3 (Cristais down)


Referência: <12 % Cristais 1 e 2 da caixa 3 (Cristais Up)

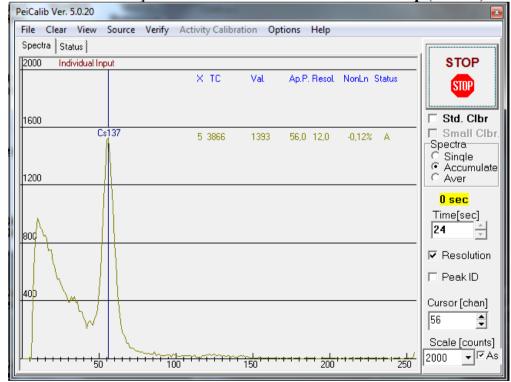
Resolução dos Cristais Detectores do pico de Césio (137Cs – 662 KeV)

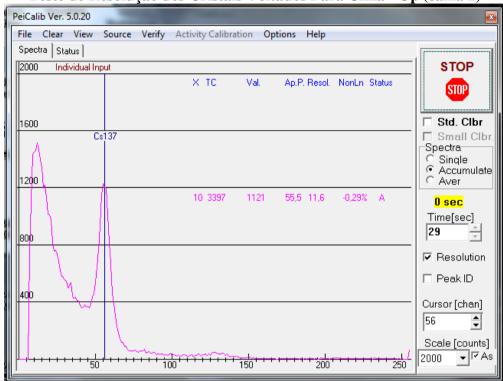
Caixa 1			ха 2	Caixa 3	
Cristal	Resolução	Cristal Resolução		Cristal	Resolução
1	8,3 %	6	7,4 %	11	10,5 %
2	8,7 %	7	8,0 %	12	8,6 %
3	9,3 %	8	11,0 %	-	i
4	9,3 %	9	10,1 %	-	i
5 - up	12,0 %	10 - up	11,6%	ı	i
Resolução	8,9 %	Resolução	9,1 %	Resolução da Caixa	9,5%
da Caixa da Caixa Resolução do Conjunto				9,1%	

Teste de Resolução das Caixas dos Cristais Down (caixa 1)



Teste de Resolução das Caixas dos Cristais Down (caixa 2)





Teste de Resolução dos Cristais Voltados Para Cima - Up (caixa 1)

Teste de Resolução dos Cristais Voltados Para Cima - Up (caixa 2)

ANEXO I – b - RESULTADOS DOS TESTES DOS COEFICIENTES DE ESPALHAMENTO COMPTON

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESULTADO DO TESTE SOBRE OS TANQUES DE CALIBRAÇÃO TRANSPORTÁTEIS PARA DETERMINAÇÃO DOS COEFICIENTES COMPTON

> AERONAVE PP- AGP

UBATUBA-SP 11 DE DEZEMBRO DE 2013

Resumo das Contagens de Cada Elemento Sobre os Tanques de Calibração Transportáveis <u>Aeronave PP-AGP</u>

Planilha contendo o Resumo das Contagens de Cada Elemento Aeronave PP-AGP Obs.: Os valores abaixo foram corrigidos do live time							
Pacote o	de cristais A (1.0)24 pol³)	F	Elementos (cps)			
Num. Linha	Tanque	Tempo (s)	K (média) U (média) Th (r				
BG1	Background	600	293,068	50,101	73,256		
TH1	Tório	600	359,178	47,988	68,577		
U1	Urânio	600	341,549	111,016	87,675		
K1	Potássio	600	329,003	78,372	155,737		
Pacote o	de cristais B (1.0	024 pol ³)	Elementos (cps)				
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)		
BG2	Background	600	268,810	49,384	65,776		
TH2	Tório	600	330,818	45,798	61,551		
U2	Urânio	600	314,033	104,433	79,325		
K2	Potássio	600	301,068	76,575	141,085		
Pacote	de cristais C (5	12 pol ³)	Elementos (cps)				
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)		
BG3	Background	600	179,915	33,015	44,868		
TH3	Tório	600	214,433	31,716	42,571		
U3	Urânio	600	206,708	64,790	52,185		
К3	Potássio	600	200,280	49,091	87,388		

Planill	ha contendo o Resum	o das Contage	ns de Cada Elem	ento	
1 1411111		nave PP-AGP	ns de Cada Lien	cito	
	Obs.: Os valores abaix	to foram corrigi	idos do <i>live time</i>		
Pacote de crista	is A (1.024 pol³)	El	lementos (Acumı	ılado)	
Tanque	Tempo (s)	Tempo (s) K U		Th	
Background	600	175841	30061	43954	
Tório	600	215507	28793	41146	
Urânio	600	204929	66610	52605	
Potássio	600	197402	47023	93442	
	T T				
Pacote de crista	is B (1.024 pol³)	El	lementos (Acumı	ılado)	
Tanque	Tempo (s)	K	U	Th	
Background	600	161286	29630	39466	
Tório	600	198491	27479	36931	
Urânio	600	188420	62660	47595	
Potássio	600	180641	45945	84651	
Pacote de crist	ais C (512 pol³)	E	lementos (Acumı	ılado)	
Tanque	Tempo (s)	K	U	Th	
Background	600	107949	19809	26921	
Tório	600	128660	19030	25543	
Urânio	600	124025	38874	31311	
Potássio	600	120168	29455	52433	
acotes de cristais A	A, B e C (2.560 pol ³)	E	lementos (Acumi	ılado)	
Tanque	Tempo (s)	К	U	Th	
Background	600	445076	79500	110340	
Tório	600	542657	75301	103619	
Urânio	600	517374	168143	131511	
Potássio	600	498211	122423	230526	

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais A:

PROGRAMA CALIPAD Obtenção dos coeficientes de striping para Pads de calibração Revisão (v.484 - 2006/09/12 17:27:17) Data de geração do relatório: 13/12/2013 Número de PADS: 4 DESCRIÇÃO DOS PADS USADOS 1 - Concentrações Descr PAD K (%) U eq (ppm) Th (ppm) BG 1 0.700 (0.000) 2.000 (0.200) 8.800 (0.300) K 6.400 (0.200) 0.100 (0.100) 1.400 (0.200) U 0.900 (0.100) 60.500 (0.600) 26.500 (0.400) Th 0.800 (0.000) 9.800 (0.500) 142.800 (2.000) 2 - Contagens Descr PAD K (cps) U eq (cps) Th (cps) T(s) BG 1 293.068 (0.699) 50.102 (0.289) 73.257 (0.349) 600.0 K 359.178 (0.774) 47.988 (0.283) 68.577 (0.338) 600.0 341.548 (0.754) 111.017 (0.430) 87.675 (0.382) 600.0 U Th 329.003 (0.740) 78.372 (0.361) 155.737 (0.509) 600.0 3 - Matriz de Sensibilidades 12.121 (0.466) 0.722 (0.028) 0.217 (0.009) 281.230 (0.928) 0.159 (0.086) 0.994 (0.014) 0.153 (0.006) 46.655 (0.436) -0.006 (0.098) 0.061 (0.010) 0.612 (0.010) 67.753 (0.492) 4 - Matriz inversa de Sensibilidades 8.33e-002 (3.22e-003) -5.95e-002 (3.18e-003) -1.47e-002 (1.29e-003) -1.37e-002 (7.42e-003) 1.03e+000 (1.41e-002) -2.53e-001 (9.68e-003) 2.21e-003 (1.35e-002) -1.04e-001 (1.70e-002) 1.66e+000 (2.89e-002) 5 - Coeficientes de stripping alfa 0.2500 (0.0087) beta 0.3548 (0.0132) gama 0.7256 (0.0276) 0.0617 (0.0102) a -0.0005 (0.0081) b 0.0131 (0.0070) g 6 - Sensibilidade das janelas para pequenas fontes Potássio (K): 12.121 (0.466) Urânio equivalente (U eq.): 0.994 (0.014) Tório (Th): 0.612 (0.010) 7 - Sensibilidade das janelas com fatores geométricos 14.181 (0.545) fator = 1.170Potássio (K): Urânio equivalente (U eq.): 1.164 (0.016) fator = 1.170

0.728 (0.012) fator = 1.190

Tório (Th):

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais B:

PROGRAMA CALIPAD Obtenção dos coeficientes de striping para Pads de calibração Revisão (v.484 - 2006/09/12 17:27:17) Data de geração do relatório: 13/12/2013 Número de PADS: 4 DESCRIÇÃO DOS PADS USADOS 1 - Concentrações Descr PAD K(%) U eq (ppm) Th (ppm) BG 1 0.700 (0.000) 2.000 (0.200) 8.800 (0.300) 6.400 (0.200) 0.100 (0.100) K 1.400 (0.200) U 0.900 (0.100) 60.500 (0.600) 26.500 (0.400) Th 0.800 (0.000) 9.800 (0.500) 142.800 (2.000) 2 - Contagens K (cps) Descr PAD U eq (cps) Th (cps) T(s) BG 1 268.810 (0.669) 49.383 (0.287) 65.777 (0.331) 600.0 K 330.818 (0.743) 45.798 (0.276) 61.552 (0.320) 600.0 314.033 (0.723) 104.433 (0.417) 79.325 (0.364) 600.0 U Th 301.068 (0.708) 76.575 (0.357) 141.085 (0.485) 600.0 3 - Matriz de Sensibilidades 11.354 (0.438) 0.676 (0.027) 0.193 (0.008) 257.813 (0.886) -0.134 (0.083) 0.896 (0.013) 0.151 (0.005) 46.358 (0.420) 0.005 (0.093) 0.063 (0.010) 0.558 (0.010) 60.735 (0.462) 4 - Matriz inversa de Sensibilidades 8.73e-002 (3.39e-003) -6.50e-002 (3.48e-003) -1.26e-002 (1.42e-003) 1.35e-002 (8.42e-003) 1.13e+000 (1.58e-002) -3.09e-001 (1.13e-002) -2.22e-003 (1.48e-002) -1.26e-001 (1.93e-002) 1.83e+000 (3.24e-002) 5 - Coeficientes de stripping alfa 0.2702 (0.0090) beta 0.3455 (0.0137) gama 0.7544 (0.0294) 0.0699 (0.0107) a 0.0004 (0.0081) b -0.0118 (0.0073) g 6 - Sensibilidade das janelas para pequenas fontes Potássio (K): 11.354 (0.438) Urânio equivalente (U eq.): 0.896 (0.013) Tório (Th): 0.558 (0.010) 7 - Sensibilidade das janelas com fatores geométricos 13.285 (0.513) fator = 1.170Potássio (K): Urânio equivalente (U eq.): 1.048 (0.015) fator = 1.170

0.664 (0.011) fator = 1.190

Tório (Th):

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais C:

PROGRAMA CALIPAD Obtenção dos coeficientes de striping para Pads de calibração Revisão (v.484 - 2006/09/12 17:27:17) Data de geração do relatório: 16/12/2013 Número de PADS: 4 DESCRIÇÃO DOS PADS USADOS 1 - Concentrações Descr PAD K(%) U eq (ppm) Th (ppm) BG 1 0.700 (0.000) 2.000 (0.200) 8.800 (0.300) 6.400 (0.200) 0.100 (0.100) 1.400 (0.200) K U 0.900 (0.100) 60.500 (0.600) 26.500 (0.400) Th 0.800 (0.000) 9.800 (0.500) 142.800 (2.000) 2 - Contagens Descr PAD K (cps) U eq (cps) Th (cps) T(s) 179.915 (0.548) 33.015 (0.235) 44.868 (0.273) 600.0 BG 1 214.433 (0.598) 31.717 (0.230) 42.572 (0.266) 600.0 K 206.708 (0.587) 64.790 (0.329) 52.185 (0.295) 600.0 U Th 200.280 (0.578) 49.092 (0.286) 87.388 (0.382) 600.0 3 - Matriz de Sensibilidades 6.350 (0.267) 0.399 (0.018) 0.124 (0.006) 173.581 (0.698) 0.061 (0.064) 0.516 (0.009) 0.090 (0.004) 31.150 (0.317) 0.017 (0.073) 0.030 (0.007) 0.316 (0.006) 42.021 (0.358) 4 - Matriz inversa de Sensibilidades 1.59e-001 (6.78e-003) -1.21e-001 (7.01e-003) -2.79e-002 (3.39e-003) -1.76e-002 (2.08e-002) 1.98e+000 (3.32e-002) -5.58e-001 (2.37e-002) -6.72e-003 (3.71e-002) -1.79e-001 (4.39e-002) 3.22e+000 (6.20e-002) 5 - Coeficientes de stripping alfa 0.2849 (0.0111) beta 0.3930 (0.0192) gama 0.7732 (0.0345) 0.0573 (0.0139) a 0.0026 (0.0115) b 0.0096 (0.0101) g 6 - Sensibilidade das janelas para pequenas fontes Potássio (K): 6.350 (0.267) Urânio equivalente (U eq.): 0.516 (0.009) Tório (Th): 0.316 (0.006) 7 - Sensibilidade das janelas com fatores geométricos

7.429 (0.313) fator = 1.170

 $0.376 \,(\,0.007)$ fator = 1.190

Urânio equivalente (U eq.): 0.603 (0.010) fator = 1.170

Potássio (K):

Tório (Th):

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o tanque de Calibração da USP e referente aos pacotes de cristais A, B e C:

PROGRAMA CALIPAD Obtenção dos coeficientes de striping para Pads de calibração Revisão (v.484 - 2006/09/12 17:27:17) Data de geração do relatório: 16/12/2013 Número de PADS: 4 DESCRIÇÃO DOS PADS USADOS 1 - Concentrações Descr PAD K(%) U eq (ppm) Th (ppm) BG 1 0.700 (0.000) 2.000 (0.200) 8.800 (0.300) 6.400 (0.200) 0.100 (0.100) 1.400 (0.200) K U 0.900 (0.100) 60.500 (0.600) 26.500 (0.400) Th 0.800 (0.000) 9.800 (0.500) 142.800 (2.000) 2 - Contagens Descr PAD K (cps) U eq (cps) Th (cps) T(s) BG 1 741.793 (1.112) 132.500 (0.470) 183.900 (0.554) 600.0 K 904.428 (1.228) 125.502 (0.457) 172.698 (0.536) 600.0

3 - Matriz de Sensibilidades

U

Th

```
29.825 ( 1.090) 1.796 ( 0.062) 0.534 ( 0.016) 712.624 ( 1.621) 0.085 ( 0.159) 2.406 ( 0.030) 0.394 ( 0.013) 124.163 ( 0.842) 0.015 ( 0.174) 0.154 ( 0.019) 1.486 ( 0.024) 170.506 ( 0.895)
```

862.290 (1.199) 280.238 (0.683) 219.185 (0.604) 600.0

830.352 (1.176) 204.038 (0.583) 384.210 (0.800) 600.0

4 - Matriz inversa de Sensibilidades

```
3.36e-002 ( 1.23e-003) -2.47e-002 ( 1.23e-003) -5.52e-003 ( 4.26e-004) -1.16e-003 ( 2.27e-003) 4.24e-001 ( 5.08e-003) -1.12e-001 ( 3.58e-003) -2.21e-004 ( 3.98e-003) -4.35e-002 ( 5.65e-003) 6.85e-001 ( 1.14e-002)
```

5 - Coeficientes de stripping

alfa	0.2650 (0.0075)
<mark>beta</mark>	0.3594 (0.0095)
gama	0.7466 (0.0246)
a	0.0638 (0.0080)
b	0.0005 (0.0058)
g	0.0029 (0.0053)

6 - Sensibilidade das janelas para pequenas fontes

Potássio (K): 29.825 (1.090) Urânio equivalente (U eq.): 2.406 (0.030) Tório (Th): 1.486 (0.024)

```
Potássio (K): 34.895 ( 1.276) fator = 1.170
Urânio equivalente (U eq.): 2.815 ( 0.035) fator = 1.170
Tório (Th): 1.768 ( 0.028) fator = 1.190
```


PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESULTADO DO TESTE SOBRE OS TANQUES DE CALIBRAÇÃO TRANSPORTÁTEIS PARA DETERMINAÇÃO DOS COEFICIENTES COMPTON

> AERONAVE PR-MCY

UBATUBA-SP 24 DE MARÇO DE 2014

Resumo das Contagens de Cada Elemento Sobre os Tanques de Calibração Transportáveis <u>Aeronave PR-MCY</u>

		<u>reronave</u>					
Planilha contendo o Resumo das Contagens de Cada Elemento <u>Aeronave PR-MCY</u> Obs.: Os valores abaixo foram corrigidos do <i>live time</i>							
Pacote de cristais A (1.024 pol ³) Elementos (cps)							
Num. Linha	Tanque	Tempo (s)	K (média) U (média) Th (1				
BG1	Background	600	345	63	91		
TH1	Tório	600	431	60	85		
U1	Urânio	600	411	144	110		
K1	Potássio	600	394	100	195		
Pacote o	de cristais B (1.0	024 pol ³)	Elementos (cps)				
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)		
BG2	Background	600	365	67	94		
TH2	Tório	600	451	64	89		
U2	Urânio	600	432	148	115		
K2	Potássio	600	415	104	198		
Pacote	de cristais C (5	12 pol³)	F	Elementos (cps)			
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)		
BG3	Background	600	191	35	49		
TH3	Tório	600	229	34	46		
U3	Urânio	600	222	72	57		
K3	Potássio	600	215	55	97		
K3	Potássio	600	215	55	97		

Planilha contendo o Resumo das Contagens de Cada Elemento Aeronave PR-MCY

	Obs.: Os valores abaix	o iorani comgi	dos do live time	
Pacote de crista	is A (1.024 pol³)	E	lementos (Acumu	ılado)
Tanque	Tempo (s)	K	U	Th
Background	600	206946	37812	54366
Tório	600	258330	36174	51126
Urânio	600	246720	86250	65850
Potássio	600	236406	60210	116742
Pacote de crista	is B (1.024 pol ³)	E	lementos (Acumu	ılado)
Tanque	Tempo (s)	K	U	Th
Background	600	219060	40068	56304
Tório	600	270366	38172	53676
Urânio	rânio 600	259464	88578	68982
Potássio	600	248784	62388	119016
Pacote de crist	ais C (512 pol³)	El	ementos (Acumu	ılado)
Tanque	Tempo (s)	K	U	Th
Background	600	113130	21258	28788
Tório	600	137370	20340	27432
Urânio	600	133404	43386	34206
Potássio	600	129294	32790	58110
				dodo)
cotes de cristais A	A, B e C (2.560 pol ³)	E	lementos (Acumu	<u> </u>
cotes de cristais A	A, B e C (2.560 pol ³) Tempo (s)	K	U U	Th
			·	
Tanque	Tempo (s)	K	U	Th
Tanque Background	Tempo (s) 600	K 539136	U 99138	Th 139458

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais A:

```
PROGRAMA CALIPAD
```

Obtenção dos coeficientes de striping para Pads de calibração

Revisao (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 25/03/2014

DESCRIÇAO DOS PADS USADOS

1 - Concentrações

2 - Contagens

Descr PAD K (cps) U eq (cps) Th (cps) T(s)
BG 1 344.910 (0.758) 63.020 (0.324) 90.610 (0.389) 600.0
K 430.550 (0.847) 60.290 (0.317) 85.210 (0.377) 600.0
U 411.200 (0.828) 143.750 (0.489) 109.750 (0.428) 600.0
Th 394.010 (0.810) 100.350 (0.409) 194.570 (0.569) 600.0

3 - Matriz de Sensibilidades

```
15.740 ( 0.590) 0.989 ( 0.035) 0.297 ( 0.010) 329.299 ( 1.042) 0.222 ( 0.101) 1.318 ( 0.017) 0.202 ( 0.007) 58.453 ( 0.520) 0.084 ( 0.112) 0.094 ( 0.012) 0.770 ( 0.013) 83.585 ( 0.565)
```

4 - Matriz inversa de Sensibilidades

```
6.43e-002 ( 2.42e-003) -4.74e-002 ( 2.40e-003) -1.24e-002 ( 9.46e-004) -9.95e-003 ( 5.06e-003) 7.80e-001 ( 1.01e-002) -2.00e-001 ( 7.30e-003) -5.79e-003 ( 9.43e-003) -8.99e-002 ( 1.22e-002) 1.32e+000 ( 2.26e-002)
```

5 - Coeficientes de stripping

alfa 0.2618 (0.0086) beta 0.3857 (0.0119) gama 0.7506 (0.0254) a 0.0712 (0.0090) b 0.0053 (0.0071) g 0.0141 (0.0064)

6 - Sensibilidade das janelas para pequenas fontes

Potassio (K): 15.740 (0.590) Urânio equivalente (U eq.): 1.318 (0.017) Tório (Th): 0.770 (0.013)

7 - Sensibilidade das janelas com fatores geométricos

Potassio (K): 18.416 (0.691) fator = 1.170 Urânio equivalente (U eq.): 1.542 (0.020) fator = 1.170 Tório (Th): 0.917 (0.015) fator = 1.190

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais B:

```
PROGRAMA CALIPAD
```

Obtenção dos coeficientes de striping para Pads de calibração

Revisao (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 25/03/2014

DESCRIÇAO DOS PADS USADOS

1 - Concentrações

2 - Contagens

```
Descr PAD K (cps) U eq (cps) Th (cps) T(s)
BG 1 365.100 ( 0.780) 66.780 ( 0.334) 93.840 ( 0.395) 600.0
K 450.610 ( 0.867) 63.620 ( 0.326) 89.460 ( 0.386) 600.0
U 432.440 ( 0.849) 147.630 ( 0.496) 114.970 ( 0.438) 600.0
Th 414.640 ( 0.831) 103.980 ( 0.416) 198.360 ( 0.575) 600.0
```

3 - Matriz de Sensibilidades

```
15.726 ( 0.592) 1.007 ( 0.035) 0.299 ( 0.010) 349.444 ( 1.067) 0.146 ( 0.103) 1.321 ( 0.018) 0.201 ( 0.007) 62.270 ( 0.529) 0.277 ( 0.115) 0.127 ( 0.012) 0.772 ( 0.013) 86.596 ( 0.573)
```

4 - Matriz inversa de Sensibilidades

```
6.43e-002 ( 2.43e-003) -4.78e-002 ( 2.42e-003) -1.25e-002 ( 9.64e-004) -3.72e-003 ( 5.15e-003) 7.79e-001 ( 1.02e-002) -2.01e-001 ( 7.38e-003) -2.24e-002 ( 9.60e-003) -1.11e-001 ( 1.26e-002) 1.33e+000 ( 2.28e-002)
```

5 - Coeficientes de stripping

```
alfa 0.2597 ( 0.0086)
beta 0.3876 ( 0.0121)
gama 0.7622 ( 0.0257)
a 0.0958 ( 0.0091)
b 0.0176 ( 0.0073)
g 0.0093 ( 0.0065)
```

6 - Sensibilidade das janelas para pequenas fontes

```
Potassio (K): 15.726 ( 0.592)
Urânio equivalente (U eq.): 1.321 ( 0.018)
Tório (Th): 0.772 ( 0.013)
```

```
Potassio (K): 18.399 ( 0.693) fator = 1.170
Urânio equivalente (U eq.): 1.545 ( 0.021) fator = 1.170
Tório (Th): 0.919 ( 0.015) fator = 1.190
```


Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de

```
Calibração da USP e referente ao pacote de cristais C:
PROGRAMA CALIPAD
Obtenção dos coeficientes de striping para Pads de calibração
Revisao (v.484 - 2006/09/12 17:27:17)
Número de PADS: 4 Data de geração do relatório: 25/03/2014
DESCRIÇAO DOS PADS USADOS
1 - Concentrações
Descr PAD
             K(%)
                           U eq (ppm)
                                           Th (ppm)
BG 1
           0.700 ( 0.000) 2.000 ( 0.200) 8.800 ( 0.300)
         6.400 ( 0.200) 0.100 ( 0.100) 1.400 ( 0.200)
K
U
         0.900 ( 0.100) 60.500 ( 0.600) 26.500 ( 0.400)
Th
         0.800 ( 0.000) 9.800 ( 0.500) 142.800 ( 2.000)
2 - Contagens
Descr PAD
             K (cps)
                           U eq (cps)
                                          Th (cps) T(s)
          188.550 ( 0.561) 35.430 ( 0.243) 47.980 ( 0.283) 600.0
BG 1
K
        228.950 ( 0.618) 33.900 ( 0.238) 45.720 ( 0.276) 600.0
U
        222.340 ( 0.609) 72.310 ( 0.347) 57.010 ( 0.308) 600.0
Th
        215.490 ( 0.599) 54.650 ( 0.302) 96.850 ( 0.402) 600.0
3 - Matriz de Sensibilidades
```

```
7.471 ( 0.303) 0.502 ( 0.020) 0.166 ( 0.007) 180.854 ( 0.725)
0.072 ( 0.067) 0.597 ( 0.010) 0.109 ( 0.004) 33.229 ( 0.335)
0.088 ( 0.076) 0.045 ( 0.008) 0.362 ( 0.007) 44.643 ( 0.375)
```

4 - Matriz inversa de Sensibilidades

```
1.35e-001 (5.57e-003) -1.11e-001 (6.04e-003) -2.87e-002 (2.82e-003)
-1.05e-002 ( 1.62e-002) 1.72e+000 ( 2.75e-002) -5.11e-001 ( 2.00e-002)
-3.17e-002 ( 2.89e-002) -1.84e-001 ( 3.62e-002) 2.83e+000 ( 5.32e-002)
```

5 - Coeficientes de stripping

```
alfa
         0.3000 ( 0.0106)
beta
          0.4592 (0.0178)
gama
           0.8400 ( 0.0327)
         0.0745 ( 0.0127)
a
         0.0118 ( 0.0102)
b
         0.0096 ( 0.0090)
g
```

6 - Sensibilidade das janelas para pequenas fontes

Potassio (K): 7.471 (0.303) Urânio equivalente (U eq.): 0.597 (0.010) Tório (Th): 0.362 (0.007)

```
8.741 (0.355) \text{ fator} = 1.170
Potassio (K):
Urânio equivalente (U eq.): 0.699 ( 0.011) fator = 1.170
Tório (Th):
                       0.431 (0.008) \text{ fator} = 1.190
```


Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o tanque de Calibração da USP e referente aos pacotes de cristais A, B e C:

PROGRAMA CALIPAD

Obtenção dos coeficientes de striping para Pads de calibração

Revisao (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 25/03/2014

DESCRIÇAO DOS PADS USADOS

1 - Concentrações

2 - Contagens

```
Descr PAD K (cps) U eq (cps) Th (cps) T(s)
BG 1 898.560 ( 1.224) 165.230 ( 0.525) 232.430 ( 0.622) 600.0
K 1110.110 ( 1.360) 157.810 ( 0.513) 220.390 ( 0.606) 600.0
U 1065.980 ( 1.333) 363.690 ( 0.779) 281.730 ( 0.685) 600.0
Th 1024.140 ( 1.306) 258.980 ( 0.657) 489.780 ( 0.903) 600.0
```

3 - Matriz de Sensibilidades

```
38.937 ( 1.409) 2.498 ( 0.079) 0.763 ( 0.020) 859.596 ( 1.903) 0.440 ( 0.194) 3.236 ( 0.039) 0.511 ( 0.016) 153.953 ( 1.046) 0.449 ( 0.207) 0.265 ( 0.024) 1.905 ( 0.030) 214.824 ( 1.070)
```

4 - Matriz inversa de Sensibilidades

```
2.60e-002 ( 9.39e-004) -1.96e-002 ( 9.41e-004) -5.13e-003 ( 3.27e-004) -2.62e-003 ( 1.57e-003) 3.18e-001 ( 3.71e-003) -8.42e-002 ( 2.70e-003) -5.75e-003 ( 2.81e-003) -3.96e-002 ( 4.15e-003) 5.38e-001 ( 8.81e-003)
```

5 - Coeficientes de stripping

```
alfa 0.2682 ( 0.0075)
beta 0.4004 ( 0.0088)
gama 0.7718 ( 0.0230)
a 0.0818 ( 0.0072)
b 0.0115 ( 0.0053)
g 0.0113 ( 0.0050)
```

6 - Sensibilidade das janelas para pequenas fontes

Potassio (K): 38.937 (1.409) Urânio equivalente (U eq.): 3.236 (0.039) Tório (Th): 1.905 (0.030)

```
Potassio (K): 45.556 ( 1.648) fator = 1.170
Urânio equivalente (U eq.): 3.787 ( 0.045) fator = 1.170
Tório (Th): 2.267 ( 0.036) fator = 1.190
```


PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESULTADO DO TESTE SOBRE OS TANQUES DE CALIBRAÇÃO TRANSPORTÁTEIS PARA DETERMINAÇÃO DOS COEFICIENTES COMPTON

> AERONAVE PT-EPY

UBATUBA-SP 19 DE MAIO DE 2014

Resumo das Contagens de Cada Elemento Sobre os Tanques de Calibração Transportáveis <u>Aeronave PT-EPY</u>

P	lanilha contend	o o Resumo das Aeronave	s Contagens de (PT-EPY	Cada Elemento	
	Obs.: Os va		ram corrigidos do	live time	
Pacote o	de cristais A (1.0	024 pol ³)	E	Elementos (cps)	
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)
BG1	Background	600	230,460	50,513	81,248
TH1	Tório	600	323,602	46,917	75,100
U1	Urânio	600	298,006	133,214	100,946
K1	Potássio	600	281,734	89,195	193,044
Pacote o	de cristais B (1.0	024 pol ³)	Elementos (cps)		
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)
BG2	Background	600	272,319	59,876	96,776
TH2	Tório	600	382,114	56,082	89,999
U2	Urânio	600	354,405	161,004	120,525
K2	Potássio	600	335,942	105,814	234,700
Pacote	de cristais C (52	12 pol ³)	Elementos (cps)		
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)
BG3	Background	600	139,006	38,763	60,146
TH3	Tório	600	193,618	37,250	56,466
U3	Urânio	600	182,246	88,753	72,311
К3	Potássio	600	171,099	64,303	127,843

Planilha contendo o Resumo das Contagens de Cada Elemento Aeronave PT-EPY

	Aeror Obs.: Os valores abaix	nave PT-EPY o foram corrigi	dos do <i>live time</i>	
Pacote de crista			lementos (Acumu	lado)
Tanque	Tempo (s)	K	U	Th
Background	600	138276	30308	48749
Tório	600	194161	28150	45060
Urânio	600	178804	79928	60568
Potássio	600	169040	53517	115826
Pacote de crista	is B (1.024 pol³)	E	lementos (Acumu	lado)
Tanque	Tempo (s)	K	U	Th
Background	600	163391	35926	58066
Tório	600	229268	33649	53999
Urânio	600	212643	96602	72315
Potássio	600	201565	63488	140820
Pacote de crista	ais C (512 pol³)	E	lementos (Acumu	lado)
Tanque	Tempo (s)	K	U	Th
Background	600	83404	23258	36088
Tório	600	116171	22350	33880
Urânio	600	109348	53252	43387
Potássio	600	102659	38582	76706
cotes de cristais A	A, B e C (2.560 pol ³)	E	lementos (Acumu	lado)
Tanque	Tempo (s)	K	U	Th
Background	600	385071	89491	142902
Tório	600	539600	84149	132939
Urânio	600	500794	229783	176269
Potássio	600	473265	155587	333352

Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais A:

```
PROGRAMA CALIPAD
```

Obtenção dos coeficientes de striping para Pads de calibração

Revisão (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 19/05/2014

DESCRIÇÃO DOS PADS USADOS

1 - Concentrações

2 - Contagens

```
Descr PAD K (cps) U eq (cps) Th (cps) T(s)
BG 1 230.460 ( 0.620) 50.513 ( 0.290) 81.248 ( 0.368) 600.0
K 323.602 ( 0.734) 46.917 ( 0.280) 75.100 ( 0.354) 600.0
U 298.007 ( 0.705) 133.213 ( 0.471) 100.947 ( 0.410) 600.0
Th 281.733 ( 0.685) 89.195 ( 0.386) 193.043 ( 0.567) 600.0
```

3 - Matriz de Sensibilidades

```
17.079 ( 0.625) 1.002 ( 0.035) 0.312 ( 0.009) 213.759 ( 0.910) 0.092 ( 0.094) 1.350 ( 0.017) 0.210 ( 0.007) 45.901 ( 0.495) 0.027 ( 0.109) 0.086 ( 0.012) 0.829 ( 0.014) 73.761 ( 0.557)
```

4 - Matriz inversa de Sensibilidades

```
5.88e-002 ( 2.15e-003) -4.29e-002 ( 2.18e-003) -1.12e-002 ( 7.84e-004) -3.76e-003 ( 4.21e-003) 7.56e-001 ( 9.51e-003) -1.90e-001 ( 6.62e-003) -1.49e-003 ( 7.83e-003) -7.67e-002 ( 1.09e-002) 1.23e+000 ( 2.07e-002)
```

5 - Coeficientes de stripping

```
alfa 0.2533 ( 0.0079)
beta 0.3757 ( 0.0098)
gama 0.7423 ( 0.0252)
a 0.0635 ( 0.0088)
b 0.0016 ( 0.0064)
g 0.0054 ( 0.0055)
```

6 - Sensibilidade das janelas para pequenas fontes

```
Potássio (K): 17.079 ( 0.625)
Urânio equivalente (U eq.): 1.350 ( 0.017)
Tório (Th): 0.829 ( 0.014)
```

```
Potássio (K): 19.983 ( 0.731) fator = 1.170
Urânio equivalente (U eq.): 1.579 ( 0.020) fator = 1.170
Tório (Th): 0.987 ( 0.016) fator = 1.190
```


Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais B:

```
PROGRAMA CALIPAD
```

Obtenção dos coeficientes de striping para Pads de calibração

Revisão (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 19/05/2014

DESCRIÇÃO DOS PADS USADOS

1 - Concentrações

2 - Contagens

3 - Matriz de Sensibilidades

```
20.173 ( 0.734) 1.217 ( 0.041) 0.389 ( 0.011) 252.342 ( 1.019) 0.205 ( 0.108) 1.653 ( 0.021) 0.246 ( 0.009) 54.258 ( 0.571) 0.172 ( 0.124) 0.096 ( 0.014) 1.024 ( 0.017) 87.458 ( 0.636)
```

4 - Matriz inversa de Sensibilidades

```
5.00e-002 ( 1.82e-003) -3.62e-002 ( 1.79e-003) -1.03e-002 ( 6.32e-004) -5.03e-003 ( 3.30e-003) 6.17e-001 ( 7.52e-003) -1.47e-001 ( 5.14e-003) -7.92e-003 ( 6.07e-003) -5.16e-002 ( 8.37e-003) 9.92e-001 ( 1.65e-002)
```

5 - Coeficientes de stripping

```
alfa 0.2407 ( 0.0076)
beta 0.3800 ( 0.0089)
gama 0.7358 ( 0.0238)
a 0.0579 ( 0.0083)
b 0.0085 ( 0.0061)
g 0.0102 ( 0.0053)
```

6 - Sensibilidade das janelas para pequenas fontes

```
Potássio (K): 20.173 ( 0.734)
Urânio equivalente (U eq.): 1.653 ( 0.021)
Tório (Th): 1.024 ( 0.017)
```

```
Potássio (K): 23.602 ( 0.858) fator = 1.170
Urânio equivalente (U eq.): 1.934 ( 0.024) fator = 1.170
Tório (Th): 1.218 ( 0.020) fator = 1.190
```


Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o Tanque de Calibração da USP e referente ao pacote de cristais C:

```
PROGRAMA CALIPAD
```

Obtenção dos coeficientes de striping para Pads de calibração

Revisão (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 19/05/2014

DESCRIÇÃO DOS PADS USADOS

1 - Concentrações

2 - Contagens

3 - Matriz de Sensibilidades

```
10.049 ( 0.378) 0.646 ( 0.022) 0.194 ( 0.007) 128.970 ( 0.664) 0.191 ( 0.074) 0.811 ( 0.012) 0.143 ( 0.005) 35.748 ( 0.375) 0.025 ( 0.088) 0.056 ( 0.009) 0.502 ( 0.009) 55.600 ( 0.436)
```

4 - Matriz inversa de Sensibilidades

```
1.01e-001 ( 3.83e-003) -7.94e-002 ( 4.03e-003) -1.65e-002 ( 1.53e-003) -2.34e-002 ( 9.72e-003) 1.28e+000 ( 1.83e-002) -3.55e-001 ( 1.28e-002) -2.36e-003 ( 1.78e-002) -1.39e-001 ( 2.29e-002) 2.03e+000 ( 3.65e-002)
```

5 - Coeficientes de stripping

```
alfa 0.2855 ( 0.0091)
beta 0.3873 ( 0.0120)
gama 0.7970 ( 0.0270)
a 0.0691 ( 0.0111)
b 0.0025 ( 0.0087)
g 0.0190 ( 0.0073)
```

6 - Sensibilidade das janelas para pequenas fontes

```
Potássio (K): 10.049 ( 0.378)
Urânio equivalente (U eq.): 0.811 ( 0.012)
Tório (Th): 0.502 ( 0.009)
```

```
Potássio (K): 11.757 ( 0.442) fator = 1.170
Urânio equivalente (U eq.): 0.948 ( 0.014) fator = 1.170
Tório (Th): 0.597 ( 0.010) fator = 1.190
```


Cópia do arquivo de saída do programa CALIPAD com o resultado do Teste sobre o tanque de Calibração da USP e referente aos pacotes de cristais A, B e C:

PROGRAMA CALIPAD

Obtenção dos coeficientes de striping para Pads de calibração

Revisão (v.484 - 2006/09/12 17:27:17)

Número de PADS: 4 Data de geração do relatório: 19/05/2014

DESCRICSÃO DOS PADS USADOS

1 - Concentrações

2 - Contagens

```
Descr PAD K (cps) U eq (cps) Th (cps) T(s)
BG 1 641.785 ( 1.034) 149.152 ( 0.499) 238.170 ( 0.630) 600.0
K 899.333 ( 1.224) 140.248 ( 0.483) 221.565 ( 0.608) 600.0
U 834.657 ( 1.179) 382.972 ( 0.799) 293.782 ( 0.700) 600.0
Th 788.775 ( 1.147) 259.312 ( 0.657) 555.587 ( 0.962) 600.0
```

3 - Matriz de Sensibilidades

```
47.301 ( 1.687) 2.864 ( 0.092) 0.895 ( 0.022) 595.071 ( 1.887) 0.488 ( 0.209) 3.814 ( 0.045) 0.600 ( 0.019) 135.905 ( 1.147) 0.223 ( 0.228) 0.237 ( 0.027) 2.355 ( 0.037) 216.817 ( 1.205)
```

4 - Matriz inversa de Sensibilidades

```
2.13e-002 ( 7.60e-004) -1.58e-002 ( 7.59e-004) -4.09e-003 ( 2.42e-004) -2.45e-003 ( 1.16e-003) 2.68e-001 ( 3.04e-003) -6.74e-002 ( 2.11e-003) -1.77e-003 ( 2.06e-003) -2.55e-002 ( 3.20e-003) 4.32e-001 ( 7.01e-003)
```

5 - Coeficientes de stripping

```
alfa 0.2547 ( 0.0070)
beta 0.3800 ( 0.0071)
gama 0.7511 ( 0.0227)
a 0.0622 ( 0.0070)
b 0.0047 ( 0.0048)
g 0.0103 ( 0.0044)
```

6 - Sensibilidade das janelas para pequenas fontes

```
Potássio (K): 47.301 ( 1.687)
Urânio equivalente (U eq.): 3.814 ( 0.045)
Tório (Th): 2.355 ( 0.037)
```

```
Potássio (K): 55.342 ( 1.974) fator = 1.170
Urânio equivalente (U eq.): 4.462 ( 0.052) fator = 1.170
Tório (Th): 2.802 ( 0.044) fator = 1.190
```


ANEXO I – c - DETERMINAÇÃO DOS *BACKGROUNDS* DA AERONAVE E CÓSMICO

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA

CPRM CONTRATO N.º 066/PR/13

RESULTADO DA COMPILAÇÃO DO VOO CÓSMICO PARA DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

AERONAVE PP-AGP

UBATUBA-SP 17 DE DEZEMBRO DE 2013

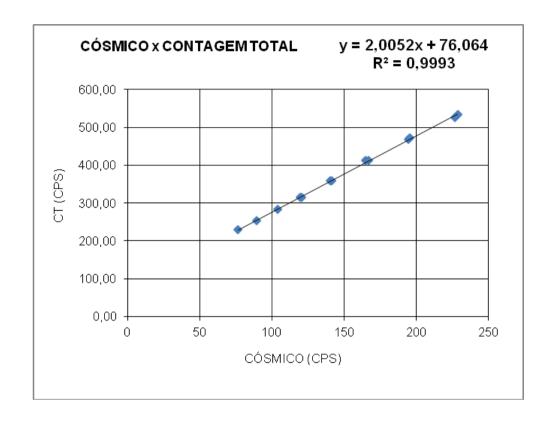
RESULTADO DO VOO CÓSMICO DA AERONAVE PP-AGP

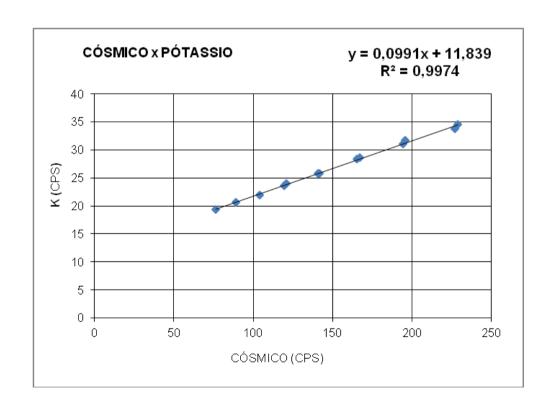
(Vol. Pacote de Cristais: 2.560 pol³)

Gamaespectrômetro: PICO ENVIROTEC

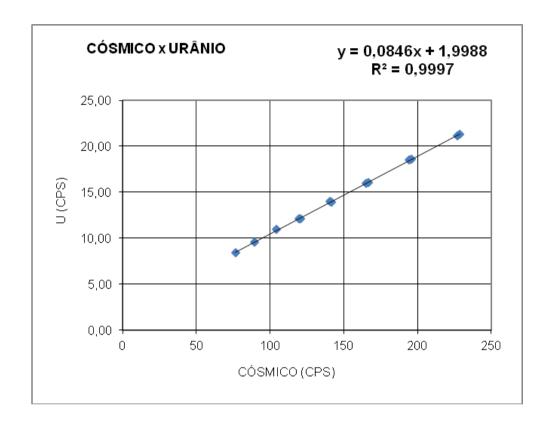
Caixa #1: Modelo GRS410, S/N 308-02 (1024)

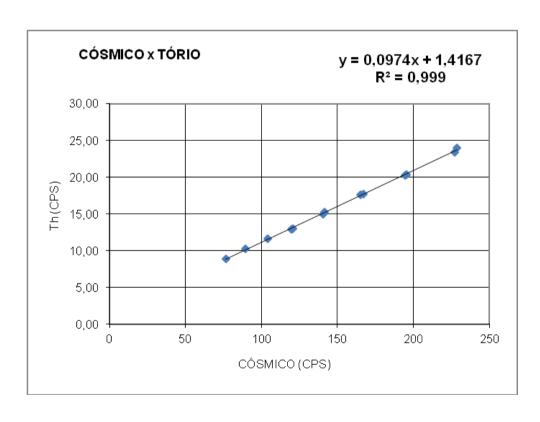
Caixa #2: Modelo GRS410, S/N 308-07 (1024)

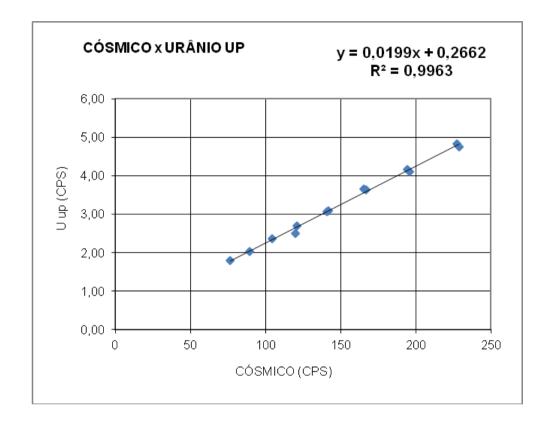

Caixa #3: Modelo GRS1024, S/N 023 (512)


Realizado no litoral do município de Ubatuba-SP em 17 de Dezembro 2013

Linha	Cósmico	СТ	K	U	Th	UUP	GPSHT
	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(m)
12000	227,09	526,04	33,77	21,15	23,43	4,82	3795,64
11000	194,48	467,58	31,12	18,54	20,26	4,16	3476,85
10000	165,07	412,36	28,43	15,97	17,65	3,66	3159,95
9000	140,62	358,51	25,74	13,98	14,98	3,07	2840,47
8000	119,67	315,26	23,66	12,10	12,88	2,51	2521,90
12001	228,76	533,42	34,49	21,33	24,02	4,75	3799,59
11001	195,60	471,91	31,72	18,64	20,33	4,10	3477,48
10001	166,86	412,04	28,59	16,06	17,68	3,63	3158,12
9001	141,71	359,28	25,82	13,94	15,27	3,09	2837,61
8001	120,74	316,01	23,97	12,15	13,04	2,69	2516,05
7000	104,15	283,56	21,95	10,93	11,68	2,37	2196,59
6000	89,22	254,64	20,61	9,57	10,25	2,03	1879,43
5000	76,60	229,51	19,36	8,41	8,94	1,80	1564,96


Canal	<i>Background</i> da Aeronave	Espalhamento da Radiação Cósmica
СТ	76,064	2,0052
K	11,839	0,0991
U	1,9988	0,0846
Th	1,4167	0,0974
Uup	0,2662	0,0199





PROCEDIMENTOS DE CALIBRAÇÃO

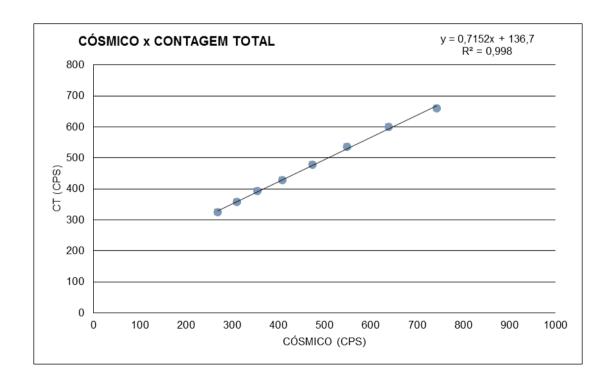
PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESULTADO DA COMPILAÇÃO DO VOO CÓSMICO PARA DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

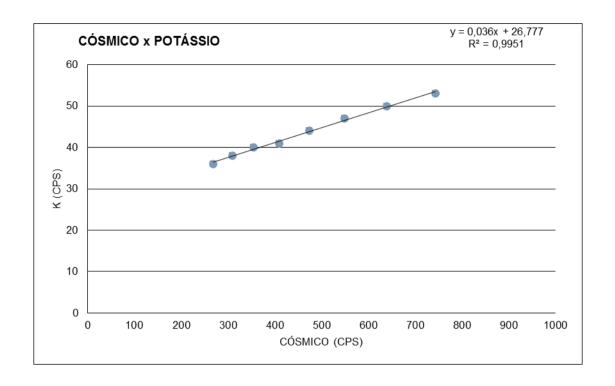
AERONAVE

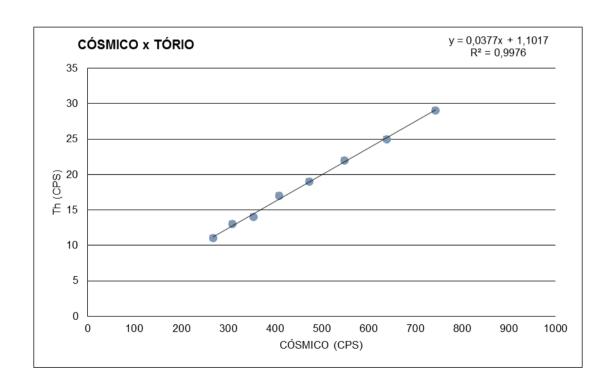
PR-MCY

RIO DE JANEIRO-RJ 25 DE MARÇO DE 2014

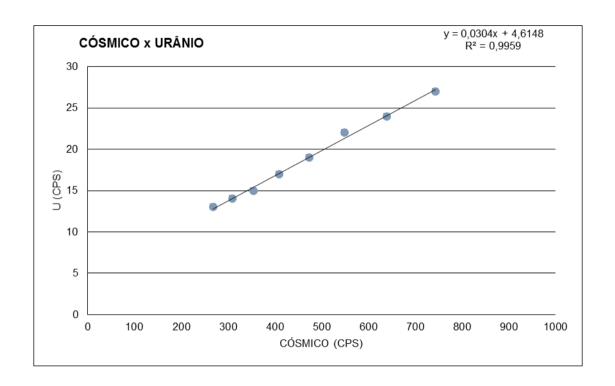

RESULTADO DO VOO CÓSMICO DA AERONAVE PR-MCY (Vol. Pacote de Cristais: 2.560 pol3)

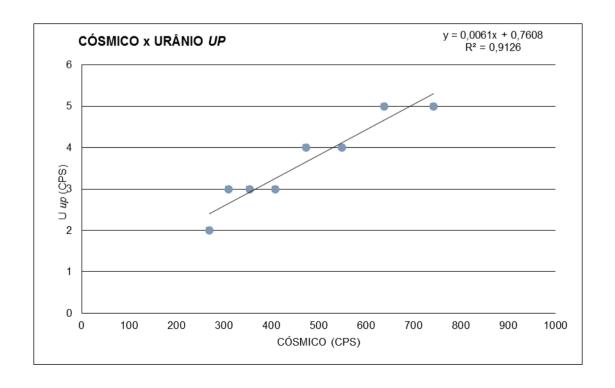
Gamaespectrômetro: EXPLORANIUM GR820


Realizado no litoral do município de Rio de Janeiro em 25 de Marco de 2014


<u> </u>	Redizado no inordi do município de Kio de Janeiro em 25 de Março de 2014							
Linha	Cósmico	СТ	K	U	Th	UUP	GPSHT	
	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(m)	
5000	269	324	36	13	11	2	1635,70	
6000	310	357	38	14	13	3	1961,20	
7000	355	393	40	15	14	3	2282,80	
8000	409	428	41	17	17	3	2597,60	
9000	474	478	44	19	19	4	2918,00	
10000	549	536	47	22	22	4	3233,80	
11000	639	599	50	24	25	5	3555,60	
12000	743	659	53	27	29	5	3877,10	

Canal	<i>Background</i> da Aeronave	Espalhamento da Radiação Cósmica
СТ	136,700	0,7152
K	26,777	0,0360
U	4,6148	0,0304
Th	1,1017	0,0377
Uup	0,7680	0,0061





PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

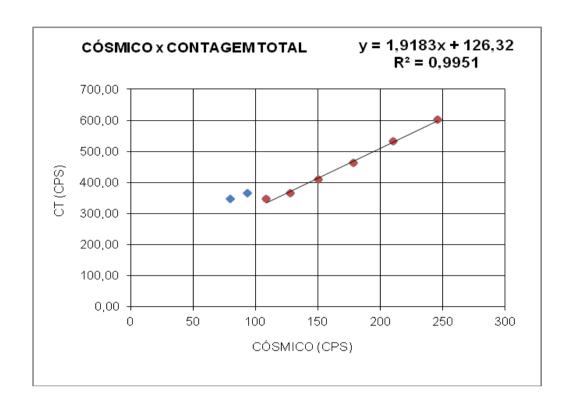
RESULTADO DA COMPILAÇÃO DO VOO CÓSMICO PARA DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

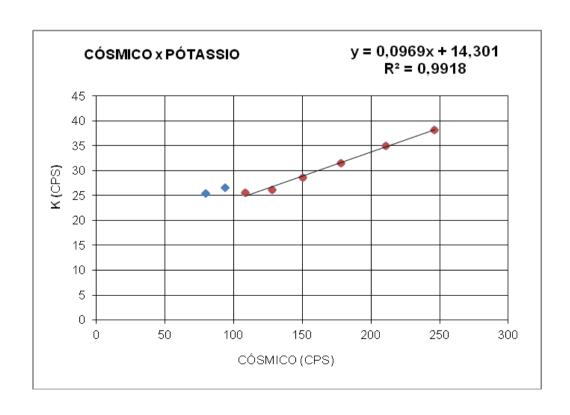
AERONAVE

PT-EPY

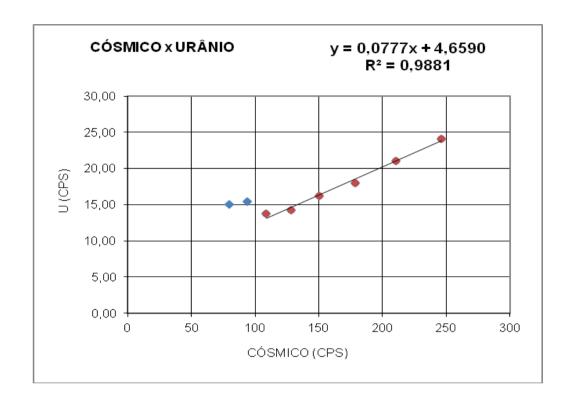
UBATUBA-SP 14 DE MAIO DE 2014

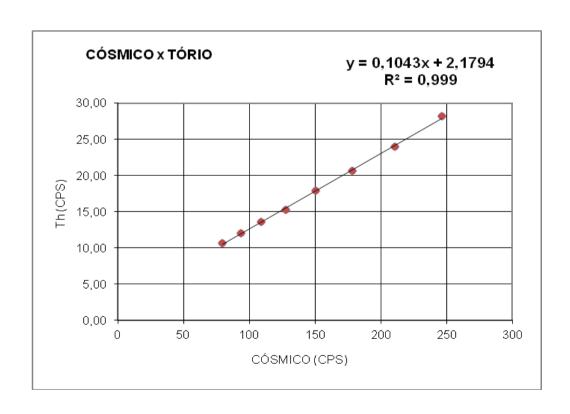
RESULTADO DO VOO CÓSMICO DA AERONAVE PT-EPY (Vol. Pacote de Cristais: 2.560 pol3)

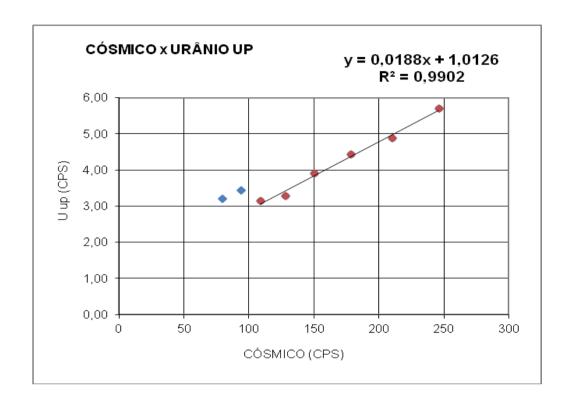

Gamaespectrômetro: PICO ENVIROTEC

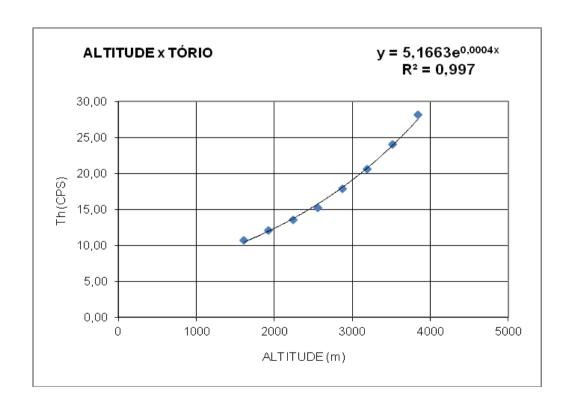

Realizado no litoral do município de Rio de Janeiro em 25 de Março de 2014

Linha	Cósmico	CT	K	U	Th	UUP	GPSHT
	(cps)	(cps)	(cps)	(cps)	(cps)	(cps)	(m)
12000	246,26	602,36	38,14	24,12	28,16	5,70	3841,97
11000	210,66	532,46	34,99	21,08	24,00	4,88	3520,14
10000	178,30	463,27	31,55	18,01	20,61	4,43	3191,52
9000	150,29	409,01	28,54	16,24	17,89	3,91	2874,54
8000	128,05	365,56	26,09	14,21	15,25	3,28	2560,92
7000	108,80	346,42	25,53	13,78	13,57	3,14	2237,41
6000	93,84	365,07	26,57	15,45	12,05	3,43	1926,96
5000	79,66	346,68	25,44	15,07	10,68	3,21	1612,51


Canal	<i>Background</i> da Aeronave	Espalhamento da Radiação Cósmica
СТ	126,32	1,9183
K	14,301	0,0969
U	4,6590	0,0777
Th	2,1794	0,1043
Uup	1,0126	0,0188



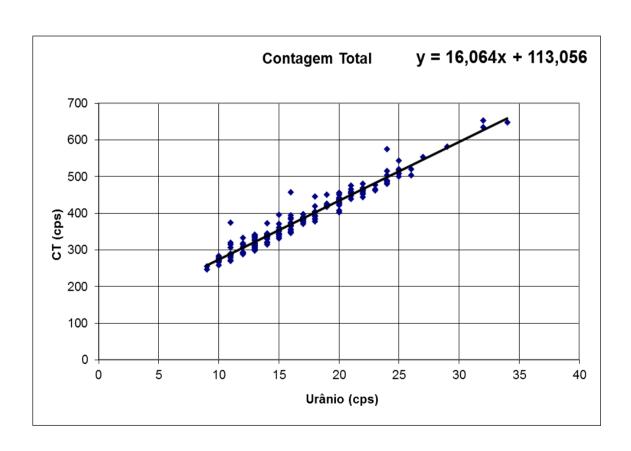


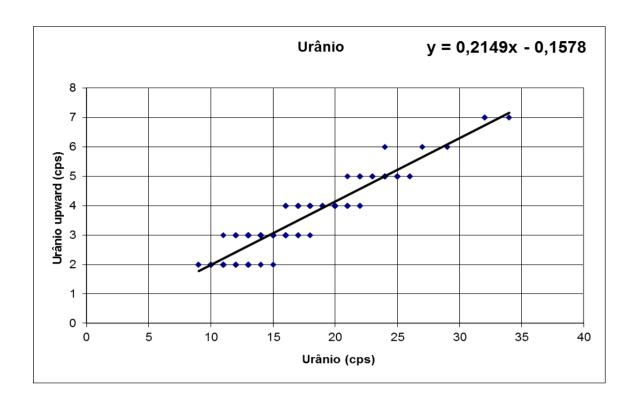


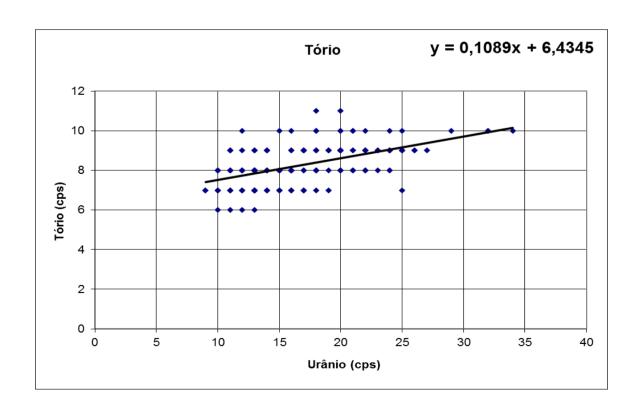
ANEXO I-d - DETERMINAÇÃO DAS CONSTANTES DE CALIBRAÇÃO DO RADÔNIO

	Aeronave PP-AGP - Médias por voo (cps)											
Voo	Urânio	Potássio	Contagem Total	Tório	Cósmico	Urânio <i>Upward</i>						
604	13	22	319	8	59	3						
604	17	26	387	9	58	4						
<i>C</i> 05	15	24	361	8	57	3						
605	25	32	517	10	57	5						
606	14	23	334	9	60	3						
606	17	26	384	9	59	4						
607	11	22	320	9	58	2						
607	25	32	521	9	58	5						
600	13	21	333	9	58	3						
608	18	28	419	10	57	4						
C1.1	13	22	317	8	52	2						
611	26	35	521	9	54	5						
<i>c</i> 10	-	-	-	-	-	-						
612	20	30	450	9	59	4						
(10	20	28	456	10	59	4						
613	19	27	418	9	60	4						
	12	20	292	8	56	3						
614	24	32	488	9	52	5						
£1.7	18	28	446	11	50	3						
615	16	24	356	8	50	3						
	13	23	337	8	51	2						
616	25	34	508	9	52	5						
	13	21	313	8	56	2						
617	29	36	582	10	57	6						
	15	24	343	8	50	3						
618	24	32	480	8	51	6						
	14	23	336	8	52	3						
619	25	33	509	9	51	5						
	-	-	-	-	-	-						
620	18	27	403	9	50	4						
	13	20	311	7	52	2						
621	32	39	653	10	51	7						
	15	26	396	10	47	2						
622	24	33	515	9	48	5						
	-	-	-	-	-	-						
623	18	26	404	8	51	4						
	13	22	338	8	50	2						
624	20	28	403	8	51	4						
	12	20	294	8	52	2						
625	18	25	384	9	53	4						
	11	20	284	9	52	2						
626	22	29	469	9	52	4						
	-	-	-	-	-	-						
627	13	22	327	8	52	3						
	10	19	266	8	52	2						
628	20	27	428	9	53	4						

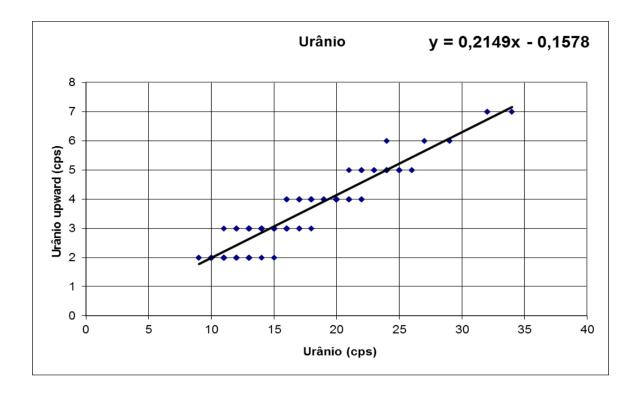
Voo	Urânio	Potássio	Contagem Total	Tório	Cósmico	Urânio <i>Upward</i>
629	11	19	270	8	53	2
029	20	28	438	9	54	4
630	10	20	284	8	54	2
030	13	21	313	9	55	3
631	10	18	258	8	63	2
031	20	29	455	9	55	4
632	10	19	271	8	56	2
032	21	30	459	10	54	4
633	14	21	320	8	55	2
033	16	26	388	10	56	4
C24	14	22	322	8	55	3
634	20	29	443	10	55	4
<i>(</i> 25	10	21	270	7	46	2
635	34	39	648	10	54	7
627	11	21	290	8	56	2
637	32	38	634	10	54	7
640	13	23	341	8	52	3
640	25	32	543	9	51	5
641	14	22	329	8	51	3
641	16	23	351	9	78	4
£ 42	21	28	439	8	52	4
642	24	38	575	9	51	5
* 10	13	21	306	7	50	3
649	22	30	461	9	51	4
	-	-	-	-	-	-
650	17	25	378	9	53	4
	13	21	311	8	50	2
651	27	33	553	9	50	6
	17	25	386	8	51	4
652	19	27	426	9	52	4
	12	20	293	8	54	2
653	23	30	462	9	53	5
	14	23	338	9	53	3
654	19	28	421	9	54	4
	13	23	328	9	55	3
655	18	26	391	9	54	4
	20	28	422	9	53	4
656	24	31	488	9	53	5
	16	23	372	9	53	3
657	17	26	390	9	54	3
	13	22	318	8	52	3
658	22	28	452	9	52	5
	14	22	340	9	54	3
659	17	25	382	9	55	4
	16	24	365	8	54	3
660	22	30	480	10	55	5
	12	21	308	8	54	3
661	24	31	485	10	55	5

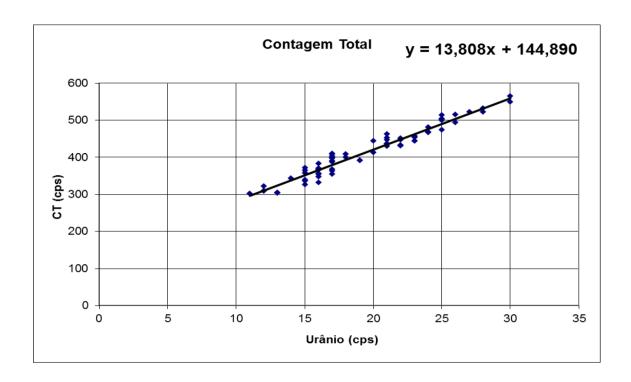

Voo	Urânio	Potássio	Contagem Total	Tório	Cósmico	Urânio <i>Upward</i>
662	-	-	-	-	-	-
662	20	26	407	8	56	4
663	15	23	352	8	54	3
	21	28	454	9	54	4
664	10	19	279	7	54	2
	20	29	436	9	54	4
665	ı	-	-	-	-	-
	18	24	377	8	50	4
666	12	20	294	8	52	2
	23	29	466	9	54	5
667	-	-	-	-	-	-
	15	22	332	7	49	3
668	13	20	299	8	53	2
	22	28	444	8	53	5
669	-	-	-	-	-	-
	21	29	465	10	61	4
670	13	23	327	8	55	2
	-	-	-	-	-	-
671	-	-	-	-	-	-
	15	23	354	8	50	3
672	16	24	356	8	53	3
	22	30	463	9	54	4
673	-	-	-	-	-	-
	18	26	405	10	51	4
674	14	23	344	9	51	3
	21	29	447	8	51	4
675	15	23	344	8	51	3
	26	32	504	9	51	5
677	-	-	-	-	-	-
	13	21	318	7	53	3
679	11	20	287	8	54	2
	14	21	314	8	61	3
680	9	19	255	7	51	2
	18	26	394	8	53	4
681	-	-	-	-	-	-
	12	20	294	7	51	3
682	9	18	246	7	52	2
	16	24	346	8	52	4
683	20	27	430	8	54	4
	16	23	348	7	52	3
684	13	21	310	7	52	3
	21	29	456	8	48	5
685	-	-	-	-	-	-
	15	22	336	7	50	3
686	12	20	288	7	51	2
	18	25	385	8	50	4
687	-	-	-	-	-	-
	13	21	301	6	48	3

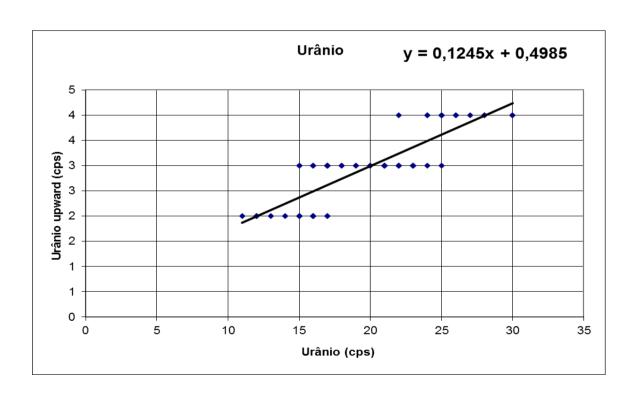

Voo	Urânio	Potássio	Contagem Total	Tório	Cósmico	Urânio <i>Upward</i>
688	13	22	327	7	51	2
	17	24	376	7	49	4
689	-	-	-	-	-	-
	14	22	342	7	49	3
690	11	20	306	7	50	2
	17	24	371	7	49	3
691	-	-	-	-	-	-
	11	18	271	6	48	2
692	12	20	291	6	45	2
	24	32	503	8	47	5
693	-	-	-	-	-	-
	19	26	426	7	51	4
694	24	30	481	9	56	5
	-	-	-	-	-	-
695	-	-	-	-	-	-
-	20	27	428	11	54	4
696	11	19	278	7	52	3
	17	25	383	7	50	3
697	-	-	-	-	-	-
0,7	-	-	-	-	-	-
698	11	21	315	9	61	2
070	16	23	368	8	55	3
699	12	23	333	10	55	2
0,7,7	-	-	-	-	-	-
700	-	_	_	_	-	-
700	21	29	476	9	50	4
701	-	-	-	_	-	-
701	18	25	405	7	50	4
702	13	22	333	7	52	3
102	22	29	465	8	49	5
703	-	-	-	-	-	-
103	20	27	422	9	52	4
704	10	19	283	6	50	2
/ U -1	15	23	342	7	49	3
709	16	25	385	7	53	3
10)	20	29	440	8	51	4
710	16	27	394	8	52	3
/10	23	31	478	8	52	5
711	13	23	341	7	49	3
/11	17	26	398	8	50	4
712	15	23	354	8	48	3
114	16	25	366	7	49	4
712	11	21	288	7	48	2
713	15	23	371	8	49	3
714	12	22	318	9	39	3
714	13	21	305	7	45	3
			 			
715	11	21	375	8	50	2
	19	27	450	8	52	4

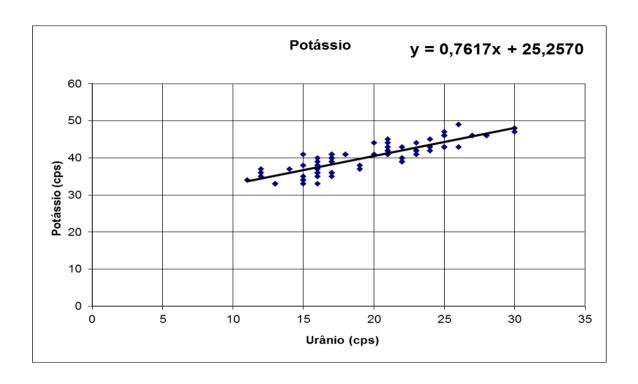


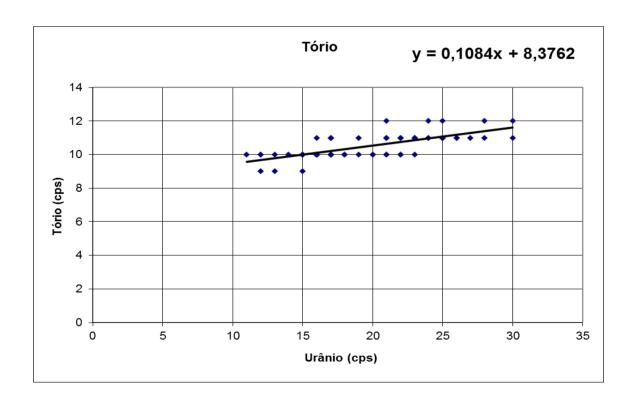
Voo	Urânio	Potássio	Contagem Total	Tório	Cósmico	Urânio <i>Upward</i>
716	16	26	457	8	44	3
	14	22	373	7	49	3
717	14	23	344	7	50	3
	25	32	500	7	49	5
719	12	22	315	7	51	3
	16	25	374	8	52	3
721	10	20	275	7	52	2
	22	30	455	8	52	5

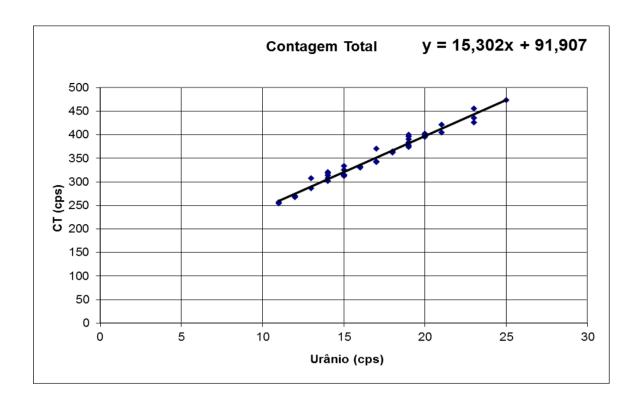


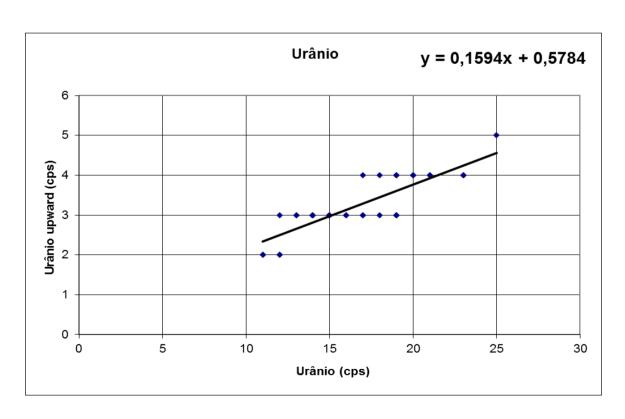


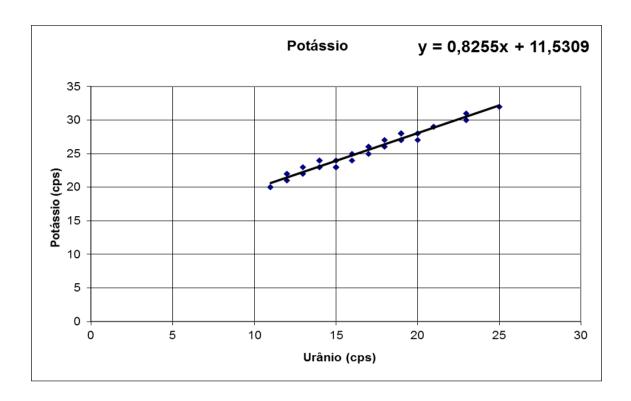

Voo	Urânio	Potássio	Contagem	Tório	Cósmico	Urânio
	15	34	Total 365	10	225	Upwara 2
017	16	35	368	10	227	2
			+			3
030	15	41	372	10	219	
	18	41	401	10	222	3
033	15	38	358	10	224	3
	21	42	436	11	228	3
034	-	- 41	- 400	- 10	- 225	-
	18	41	409	10	225	3
035	17	41	403	10	218	3
	21	44	447	10	220	3
036	-	-	-	-	-	-
	25	47	514	11	220	4
037	17	40	410	10	221	3
	25	46	504	11	224	4
038	17	40	409	11	221	3
030	21	43	453	10	223	3
040	17	40	399	10	222	3
040	20	44	444	10	224	3
041	16	40	383	10	215	2
041	24	45	468	11	222	3
0.42	16	39	371	10	235	3
043	28	46	522	11	237	4
0.4.4	-	-	-	-	-	-
044	21	45	463	11	231	3
	14	37	343	10	214	2
045	26	49	515	11	216	4
	-	-	-	_	_	-
046	25	46	503	11	220	4
	12	37	322	9	202	2
047	22	43	451	10	215	3
-	-	-	-		-	_
048	17	41	398	11	209	3
	11	34	302	10	200	2
049	17	39	388	11	216	3
	-	-	-	-	-	-
050	16	38	367	10	220	3
	12	35	310	10	201	2
051	17	39	391	11	202	3
	-	-	-	-	-	-
052	16	37	356	10	220	3
	12	36	309	10	203	2
053	23	44	454			3
				11	208	
055	15	34	336	9	209	2
	23	42	445	11	216	3
	-	-	-	-	-	-

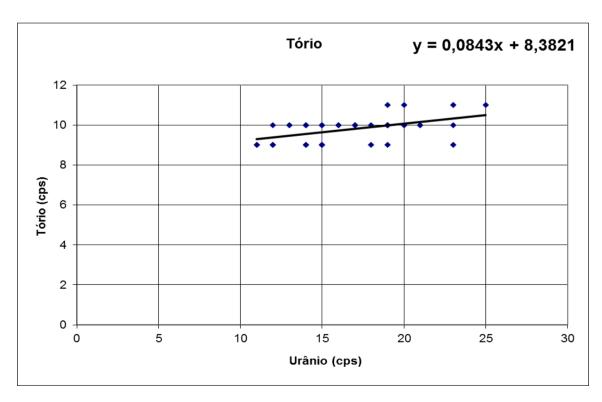

Voo	Urânio	Potássio	Contagem Total	Tório	Cósmico	Urânio <i>Upward</i>
0.55	15	35	340	10	217	2
057	25	43	475	11	225	3
0.50	-	-	-	-	-	_
058	21	42	438	11	232	3
0.50	16	36	348	10	221	2
059	30	47	549	11	216	4
0.60	-	-	-	-	-	-
060	23	42	458	11	216	3
0.41	17	35	355	10	228	2
061	23	41	445	10	229	3
0.62	-	-	-	-	-	-
062	19	37	392	10	236	3
0.62	15	33	327	10	214	2
063	-	-	-	-	-	-
064	22	40	448	11	218	3
064	24	43	482	12	235	4
0.45	16	33	333	11	217	2
065	22	39	432	11	240	3
066	-	-	-	-	-	-
066	19	38	392	11	220	3
0.67	13	33	306	9	261	
067	24	42	467	11	265	4
0.60	-	-	-	-	-	-
068	23	42	455	11	221	3
0.60	13	33	304	10	203	2
069	-	-	-	-	-	-
070	22	39	433	10	221	4
070	26	43	494	11	220	4
071	16	36	355	10	219	2
071	28	46	532	12	224	4
072	27	46	523	11	242	4
072	25	43	500	12	257	4
072	17	36	368	10	239	
073	30	48	565	12	238	4
074	-	-	-	-	-	-
074	22	40	432	11	222	3
070	17	36	364	10	219	2
079	20	41	413	10	225	3








Aeronave PT-EPY - Médias por voo (cps)										
Voo	Urânio	Potássio	Contagem Total	Tório	Cósmico	Urânio <i>Upward</i>				
304	13	22	308	10	71	3				
304	19	27	391	10	70	3				
205	15	24	334	10	71	3				
305	19	27	396	11	71	3				
306	15	23	325	10	72	3				
300	20	28	403	11	71	4				
312	14	24	318	10	62	3				
312	14	23	321	10	66	3				
315	15	24	314	9	58	3				
313	20	28	395	10	68	4				
317	18	26	362	10	58	3				
317	25	32	474	11	58	5				
318	17	25	343	10	59	3				
318	23	30	426	9	59	4				
210	16	25	330	10	58	3				
319	21	29	405	10	60	4				
220	-	-	-	-	-	-				
320	18	27	364	9	60	4				
221	14	23	302	9	60	3				
321	-	-	-	-	-	-				
	-	-	-	-	-	-				
322	20	27	398	10	60	4				
222	15	23	315	9	60	3				
323	23	31	456	11	60	4				
224	14	24	314	9	60	3				
324	19	28	383	9	60	3				
22-	14	24	308	10	59	3				
325	19	28	384	10	59	3				
22.4	11	20	255	9	60	2				
326	17	26	342	10	60	3				
227	11	20	257	9	64	2				
327	16	24	332	10	63	3				
220	12	22	270	9	59	3				
328	19	27	378	10	60	4				
•••	12	21	268	10	62	2				
329	21	29	421	10	64	4				
220	12	22	270	9	59	2				
330	23	30	436	10	60	4				
224	15	23	315	9	60	3				
331	19	28	400	10	62	4				
222	13	23	286	10	60	3				
332	19	28	374	10	60	4				
200	15	23	313	10	62	3				
333	-	-	-	-	-	-				
	-	-	-	-	-	-				
334	17	26	371	10	65	4				



ANEXO I-e - CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESUMO DOS RESULTADOS DOS TESTES DE CALIBRAÇÃO DINÂMICA - SENSIBILIDADE

AERONAVE

PP-AGP

MARICÁ - RJ 16 DE DEZEMBRO DE 2013

CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS POTÁSSIO, URÂNIO E TÓRIO

SUMÁRIO

- 1 Considerações Gerais
- 2 Levantamento Terrestre
- 3 Levantamento Aéreo
- 4 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)
- 5 Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

- Figura 1 Gamaespectrômetro Portátil Exploranium GR-320
- Figura 2 Coleta de Dados Terrestres na Pista de Calibração Dinâmica
- Figura 3 Calibração Dinâmica Perfil Comparativo Contagem Total
- Figura 4 Calibração Dinâmica Perfil Comparativo Potássio
- Figura 5 Calibração Dinâmica Perfil Comparativo Urânio
- Figura 6 Calibração Dinâmica Perfil Comparativo Tório
- Quadro 1 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
- Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
- Quadro 3 Resultado Estatístico do Levantamento Aéreo sobre a Pista de Calibração
- Quadro 4 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*
- Quadro 5 Coeficientes de Sensibilidade
- Tabela 1 Listagem dos Valores das Leituras do Levantamento Terrestre
- Mapa 1 Mapa de localização das Estações Terrestres sobre a Pista de Calibração Dinâmica

1. Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para a concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μR/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um *workshop* patrocinado pela CPRM, em conjunto com o *Geological Survey of Canada*, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" ($Dynamic\ Calibration\ Range\ -\ DCR$), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

No dia 16 de Dezembro de 2013 a Prospectors Aerolevantamentos e Sistemas Ltda. efetuou os testes sobre a "pista de calibração dinâmica" no distrito de Inoã, município de Maricá (RJ).

2. Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração foi utilizado um gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, 256 canais, com detector de iodeto de sódio ativado à Tálio NaI(TI), medindo 76x76mm com resolução melhor que 8,5% para fotopico de Cs-137 (662KeV), como mostra a figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotada pelo operador em planilha apropriada.

Figura 1 – Gamaespectrômetro Portátil EXPLORANIUM GR-320.

Foram registradas 75 estações, sendo 69 sobre a pista de calibração e 6 sobre a Lagoa de Maricá, estas últimas com vistas a remover o background atmosférico da região. A Tabela 1 e o Mapa 1 proporcionam, respectivamente, uma visão dos valores das leituras das estações e a locação das mesmas na Pista de Calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre.

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica.

Quadro 1 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração.

ESTATÍSTICA	CT(*)	K	eU	eTh	СТ	K	U	Th
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	25,36	2,31	3,69	41,80	3829,84	835,32	343,97	345,32
DESVIO PADRÃO	5,07	0,64	0,92	12,84	765,09	167,88	76,68	97,38
ERRO NA MÉDIA(1)	0,61	0,08	0,11	1,55	92,11	20,21	9,23	11,72
INCERTEZA (%) (2)	2,40%	3,32%	3,01%	3,70%	2,40%	2,42%	2,68%	3,40%

• (*) Valor obtido através da expressão:

E = 1,505K + 0,653eU + 0,287eTh

E = Taxa de Exposição (μR/h)

- (1) Erro na média = Desvio Padrão / (Número de Estações) 1/2
- (2) Incerteza = Erro na Média/Média
- cpm = contagem por minuto
- 69 estações utilizadas no cálculo estatístico

Quadro 2 – Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (*background*).

FCTATÍCTICA	CT(*)	К	eU	eTh	СТ	К	U	Th
ESTATÍSTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	1,45	0,02	0,23	2,63	217,50	21,83	20,83	21,33
DESVIO PADRÃO	0,47	0,04	0,12	1,07	70,93	15,89	8,04	8,62
ERRO NA MÉDIA(1)	0,19	0,02	0,05	0,44	28,96	6,49	3,28	3,52
INCERTEZA (%) (2)	13,18%	100,00%	21,19%	16,57%	13,31%	29,72%	15,75%	16,49%

3. Levantamento Aéreo

Foi utilizada a aeronave PP-AGP equipada com gama espectrômetro PICO ENVIROTEC, com cristais detectores de NaI com 2560 pol3 down e 512 pol3 up. Foram realizadas 9 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 330 (três vezes), 400, 500, 600, 700, 800 e 900 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (attenuation coefficients), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4. Correção Altimétrica (Coeficientes de Atenuação Atmosférica)

Esse procedimento é comentado no próximo resumo.

5. Conversão para Concentração de Elementos

A sensibilidade dos detectores da aeronave PP-AGP para as janelas de Potássio, Urânio e Tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:

$$S = N/C$$
, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100m) e situada no trecho de interesse das estações utilizadas.

C e a média das concentrações para cada canal das estações terrestres de interesse.

Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100m sobre a pista de calibração, correspondente ao intervalo de 50 metros entre as estações terrestres consideradas para efeito de cálculo da média dos elementos K, U e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (Exposure rate) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

E = 1,505 K% + 0,653 eU + 0,287 eTh, onde:

E é o símbolo para Exposure rate, K%, eU e eTh correspondem às concentrações médias destes elementos determinados em terra na pista de calibração dinâmica.

Os dados estatísticos e os resultados de calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração.

ESTATÍSTICA*	CT(*)	К	eU	eTh	
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)	
MÉDIA	2137,38	119,11	24,84	95,89	
DESVIO PADRÃO	152,13	12,42	3,87	10,46	
ERRO NA MÉDIA(1)	0,73	0,06	0,02	0,05	
INCERTEZA (%) (2)	0,03%	0,05%	0,08%	0,05%	

^{*} tempo morto, background, stripping e atenuação corrigidos

Quadro 4 - Resultado Estatístico do Levantamento Terrestre na Pista de Calibração, após a correção do *Background*.

ESTATÍSTICA	CT(*)	К	eU	eTh	СТ	К	U	Th
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	23,91	2,30	3,46	39,17	3612,34	813,49	323,14	323,99
DESVIO PADRÃO	5,07	0,64	0,92	12,84	765,09	167,88	76,68	97,38
ERRO NA MÉDIA(1)	0,61	0,08	0,11	1,55	92,11	20,21	9,23	11,72
INCERTEZA (%) (2)	2,55%	3,34%	3,21%	3,95%	2,55%	2,48%	2,86%	3,62%

cpm = contagens por minuto

Quadro 5 - Coeficientes de Sensibilidade.

	CT(*)	K	eU	eTh
	(cps / μR/h)	(cps / %)	(cps / ppm)	(cps / ppm)
Sensibilidade (S)	89,40	51,84	7,19	2,45

As Figuras 3, 4, 5 e 6 apresentam os perfis comparativos dos levantamentos aéreo e terrestre:

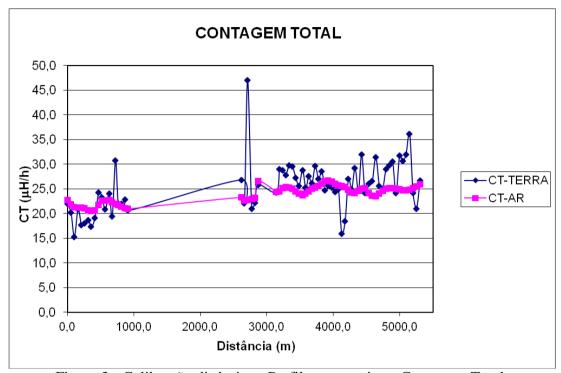


Figura 3 - Calibração dinâmica - Perfil comparativo - Contagem Total.

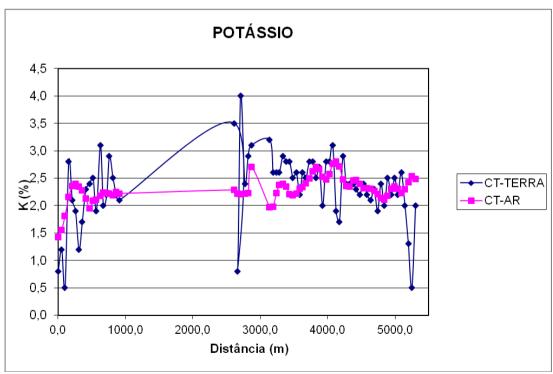


Figura 4 - Calibração dinâmica - Perfil comparativo - Potássio.

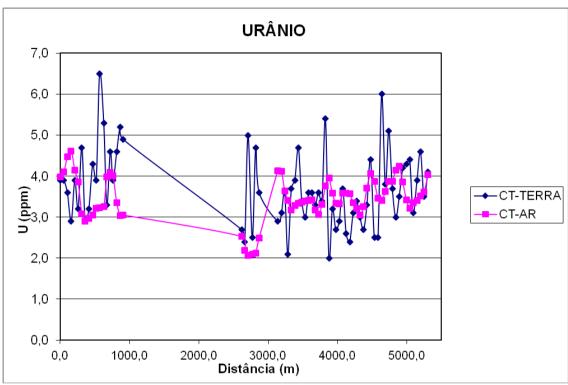


Figura 5 - Calibração dinâmica - Perfil comparativo – Urânio.

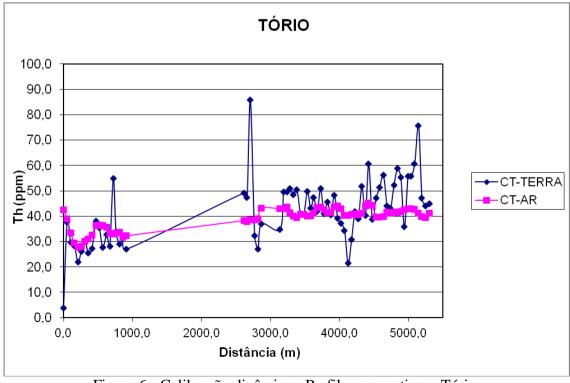
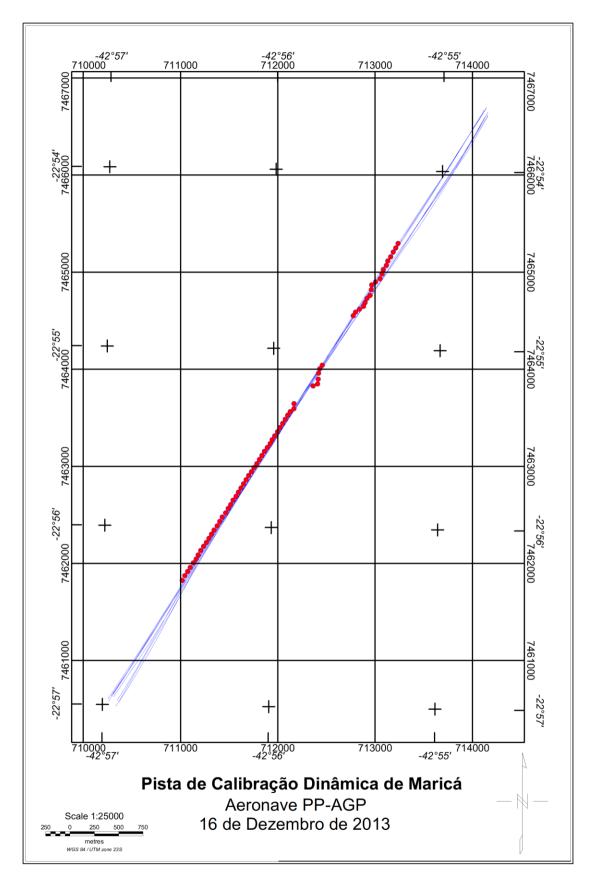


Figura 6 - Calibração dinâmica - Perfil comparativo - Tório.

TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE PISTA DE CALIBRAÇÃO DINÂMICA – 16/12/2013 DADOS BRUTOS – PP-AGP.


Estação	LAT S	LONG W	СТ	K	eU	eTh	СТ	K	U	Th
Lotagao	2711 0	20.10 11	(µR/h)	(%)	(ppm)	(ppm)	(cps)	(cps)	(cps)	(cps)
7	22°54'24.3"	42°55'15.7"	21,9	0,8	3,9	3,8	3309	533	365	366
8	22°54'25.8"	42°55'16.5"	20,2	1,2	3,9	37,7	3056	577	322	308
9	22°54'27.2"	42°55'17.4"	15,3	0,5	3,6	29,7	2313	359	268	243
10	22°54'28.8"	42°55'18.3"	20,8	2,8	2,9	28,4	3136	854	241	230
11	22°54'30.2"	42°55'19.3"	17,7	2,1	3,9	22,0	2675	670	229	179
12	22°54'31.7"	42°55'19.8"	18,0	1,9	3,2	26,1	2713	643	236	213
13	22°54'33.1"	42°55'20.9"	18,7	1,2	4,7	30,3	2818	542	299	248
14	22°54'34.6"	42°55'21.3"	17,3	1,7	2,9	25,5	2615	594	224	208
15	22°54'36.2"	42°55'22.0"	19,1	2,3	3,2	27,2	2882	736	241	222
16	22°54'37.3"	42°55'23.6"	24,3	2,4	4,3	38,1	3672	836	334	311
17	22°54'38.3"	42°55'25.0"	23,3	2,5	3,9	35,5	3511	835	309	289
18	22°54'39.9"	42°55'25.1"	20,8	1,9	6,5	27,7	3146	725	329	228
19	22°54'41.8"	42°55'25.5"	24,0	3,1	5,3	32,8	3622	973	304	267
20	22°54'42.8"	42°55'26.6"	19,4	2,0	3,3	28,2	2925	672	250	230
21	22°54'44.3"	42°55'27.3"	30,7	2,2	4,6	54,9	4629	923	442	447
22	22°54'45.5"	42°55'27.8"	22,1	2,9	3,9	33,8	3332	698	229	276
23	22°54'46.5"	42°55'29.3"	21,9	2,5	4,6	29,0	3306	816	289	237
24	22°54'47.5"	42°55'30.7"	22,8	2,2	5,2	31,5	3443	790	318	257
25	22°54'48.7"	42°55'31.5"	20,6	2,1	4,9	27,0	3113	785	285	221
26	22°55'05.4"	42°55'42.4"	26,8	3,5	2,7	49,2	4053	776	381	401
27	22°55'06.6"	42°55'43.3"	22,1	0,8	2,4	47,4	3344	521	343	386
28	22°55'08.1"	42°55'43.7"	47,0	4,0	5,0	85,8	7099	1503	636	698
29	22°55'10.1"	42°55'43.8"	21,0	2,4	2,5	32,3	3164	769	254	262
30	22°55'11.7"	42°55'44.0"	22,2	2,9	4,7	27,0	3348	893	280	220
31	22°55'12.4"	42°55'45.6"	25,8	3,1	3,6	37,0	3896	987	310	300
32	22°55'18.4"	42°55'52.4"	24,3	3,2	2,9	34,8	3671	970	281	283
33	22°55'20.1"	42°55'52.4"	29,0	2,6	3,1	49,6	4385	942	373	403
34	22°55'21.1"	42°55'53.7"	28,8	2,6	3,6	49,5	4352	942	385	403
35	22°55"22.3"	42°55'54.6"	27,8	2,6	2,1	50,8	4202	933	356	413
36	22°55'23.7"	42°55'55.5"	29,8	2,9	3,7	48,4	4493	998	380	394
37	22°55'25.1"	42°55'56.4"	29,5	2,8	3,9	50,5	4455	994	400	411
38	22°55'26.5"	42°55'57.4"	27,2	2,8	4,7	41,0	4112	960	362	334
39	22°55'27.9"	42°55'58.2"	25,6	2,5	3,4	40,8	3961	873	327	332
40	22°55'29.3"	42°55'59.2"	28,8	2,6	3,0	49,7	4356	929	371	405
41	22°55'30.6"	42°56'00.1"	25,2	2,2	3,6	43,2	3802	824	348	352
42	22°55'31.9"	42°56'00.8"	27,5	2,6	3,6	47,3	4153	933	373	385
43	22°55'33.2"	42°56'01.8"	26,1	2,5	3,3	41,9	3934	866	332	341
44	22°55'34.5"	42°56'02.8"	29,6	2,8	3,6	50,8	4465	993	392	413

Estação	LAT S	LONG W	СТ	K	eU	eTh	СТ	K	U	Th
Lotagao	ZAT G	20110 11	(µR/h)	(%)	(ppm)	(ppm)	(cps)	(cps)	(cps)	(cps)
45	22°55'35.9"	42°56'03.7"	27,0	2,8	3,4	40,9	4071	939	329	333
46	22°55'37.3"	42°56'04.6"	28,5	2,5	5,4	45,6	4297	942	407	372
47	22°55'38.7"	42°56'05.5"	24,7	2,7	2,0	40,4	3725	880	291	328
48	22°55'40.0"	42°56'06.5"	25,7	2,0	3,2	48,3	3877	797	367	393
49	22°55'41.4"	42°56'07.4"	25,3	2,8	2,7	39,1	3819	917	301	318
50	22°55'42.7"	42°56'08.4"	24,4	2,8	2,9	37,2	3686	901	295	302
51	22°55'44.1"	42°56'09.3"	24,9	3,1	3,7	34,4	3759	971	298	280
52	22°55'45.5"	42°56'10.2"	15,9	1,9	2,6	21,4	2394	596	192	174
53	22°55'46.9"	42°56'11.1"	18,4	1,7	2,4	30,7	2785	616	244	250
54	22°55'48.3"	42°56'12.0"	27,0	2,9	3,1	41,8	4076	956	327	339
55	22°55'49.7"	42°56'12.8"	24,9	2,4	3,4	39,0	3754	839	317	317
56	22°55'51.0"	42°56'13.9"	29,2	2,4	3,0	51,7	4403	907	382	420
57	22°55'52.5"	42°56'14.7"	24,6	2,4	2,7	40,3	3716	825	307	327
58	22°55'53.8"	42°56'15.6"	31,9	2,3	3,3	60,6	4810	944	444	493
59	22°55'55.3"	42°56'16.5"	24,1	2,2	4,4	38,8	3636	810	342	316
60	22°55'56.7"	42°56'17.7"	26,0	2,4	2,5	47,1	3932	857	343	383
61	22°55'58.2"	42°56'18.6"	26,6	2,2	2,5	51,4	4013	861	369	418
62	22°55'59.7"	42°56'19.5"	31,4	2,1	6,0	56,2	4745	921	485	459
63	22°56'01.1"	42°56'20.6"	25,6	2,3	3,8	44,1	3868	842	359	360
64	22°56'02.5'	42°56'21.5"	25,0	1,9	5,1	43,1	3775	792	385	352
65	22°56'03.9"	42°56'22.4"	29,0	2,4	3,7	52,2	4380	926	403	425
66	22°56'05.3"	42°56'23.3"	29,7	2,0	3,0	58,8	4478	852	425	478
67	22°56'06.6"	42°56'24.3"	30,5	2,5	3,5	55,4	4610	949	417	451
68	22°56'08.0"	42°56'25.3"	24,2	2,2	4,2	35,9	3658	798	319	293
69	22°56'09.5"	42°56'26.2"	31,7	2,5	4,3	55,7	4782	977	441	454
70	22°56'10.9"	42°56'26.9"	30,6	2,2	4,4	55,7	4627	932	443	454
71	22°56'12.2"	42°56'27.9"	31,9	2,6	3,1	60,7	4814	1012	438	494
72	22°56'13.7"	42°56'29.0"	36,1	2,0	3,9	75,6	5451	978	549	616
73	22°56'15.1"	42°56'29.9"	24,2	1,3	4,6	47,1	3657	674	397	385
74	22°56'16.5"	42°56'30.9"	21,0	0,5	3,5	44,0	3167	451	349	360
75	22°56'18.1"	42°56'31.8"	26,7	2,0	4,1	45,0	4033	808	371	367
1*	22°56'26.7"	42°49'34.0"	1,0	0,0	0,3	1,6	158	10	18	13
2*	22°56'26.5"	42°49"33.9"	1,0	0,0	0,2	1,5	146	10	13	12
3*	22°56'26.3"	42°49'34.4"	2,1	0,1	0,1	3,7	319	49	25	30
4*	22°56'26.6"	42°49'33.9"	1,9	0,0	0,3	4,1	285	33	33	33
5*	22°56'26.2"	42°49'34.2"	1,5	0,0	0,4	2,4	220	17	24	20
6*	22°56'26.4"	42°49'34.2"	1,2	0,0	0,1	2,5	177	12	12	20

^{*} Background na Lagoa de Maricá cpm = Contagem por minuto; ppm = Parte por milhão

Mapa 1 - Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica.

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESUMO DOS RESULTADOS DOS TESTES DE CALIBRAÇÃO DINÂMICA - SENSIBILIDADE

AERONAVE

PR-MCY

MARICÁ - RJ 28 DE MARÇO DE 2014

CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS POTÁSSIO, URÂNIO E TÓRIO

SUMÁRIO

- 1 Considerações Gerais
- 2 Levantamento Terrestre
- 3 Levantamento Aéreo
- 4 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)
- 5 Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

- Figura 1 Gamaespectrômetro Portátil Exploranium GR-320
- Figura 2 Coleta de Dados Terrestres na Pista de Calibração Dinâmica
- Figura 3 Calibração Dinâmica Perfil Comparativo Contagem Total
- Figura 4 Calibração Dinâmica Perfil Comparativo Potássio
- Figura 5 Calibração Dinâmica Perfil Comparativo Urânio
- Figura 6 Calibração Dinâmica Perfil Comparativo Tório
- Quadro 1 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
- Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
- Quadro 3 Resultado Estatístico do Levantamento Aéreo sobre a Pista de Calibração
- Quadro 4 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*
- Quadro 5 Coeficientes de Sensibilidade
- Tabela 1 Listagem dos Valores das Leituras do Levantamento Terrestre
- Mapa 1 Mapa de localização das Estações Terrestres sobre a Pista de Calibração Dinâmica

1. Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para a concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μR/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um *workshop* patrocinado pela CPRM, em conjunto com o *Geological Survey of Canada*, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" ($Dynamic\ Calibration\ Range\ -\ DCR$), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

No dia 28 de Março de 2014 a Prospectors Aerolevantamentos e Sistemas Ltda. efetuou os testes sobre a "pista de calibração dinâmica" no distrito de Inoã, município de Maricá (RJ).

2. Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração foi utilizado um gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, 256 canais, com detector de iodeto de sódio ativado à Tálio NaI(TI), medindo 76x76mm com resolução melhor que 8,5% para fotopico de Cs-137 (662KeV), como mostra a figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotada pelo operador em planilha apropriada.

Figura 1 – Gamaespectrômetro Portátil EXPLORANIUM GR-320.

Foram registradas 72 estações, sendo 66 sobre a pista de calibração e 6 sobre a Lagoa de Maricá, estas últimas com vistas a remover o background atmosférico da região. A Tabela 1 e o Mapa 1 proporcionam, respectivamente, uma visão dos valores das leituras das estações e a locação das mesmas na Pista de Calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre.

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica.

Quadro 1 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração.

ESTATÍSTICA	CT(*)	K	eU	eTh	СТ	K	U	Th
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	12,03	2,24	3,02	29,85	5684,89	571,81	121,99	259,63
DESVIO PADRÃO	3,05	0,64	0,97	8,84	1161,24	134,60	27,61	76,67
ERRO NA MÉDIA(1)	0,34	0,07	0,11	0,99	130,65	15,14	3,11	8,63
INCERTEZA (%) (2)	2,85%	3,21%	3,61%	3,33%	2,30%	2,65%	2,55%	3,32%

• (*) Valor obtido através da expressão:

E = 1,505K + 0,653eU + 0,287eTh

 $E = Taxa de Exposição (\mu R/h)$

- (1) Erro na média = Desvio Padrão / (Número de Estações)^{1/2}
- (2) Incerteza = Erro na Média/Média
- cpm = contagem por minuto
- 66 estações utilizadas no cálculo estatístico

Quadro 2 – Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (*background*).

FETATÍSTICA	CT(*)	К	eU	eTh	СТ	К	U	Th
ESTATÍSTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	0,38	0,08	0,60	0,64	194,06	26,28	11,84	5,78
DESVIO PADRÃO	0,10	0,04	0,20	0,30	10,12	7,57	3,73	2,43
ERRO NA MÉDIA(1)	0,045	0,018	0,089	0,134	4,526	3,385	1,668	1,087
INCERTEZA (%) (2)	11,77%	22,36%	14,91%	20,96%	2,33%	12,88%	14,09%	18,80%

3. Levantamento Aéreo

Foi utilizada a aeronave PR-MCY equipada com gama espectrômetro EXPLORANIUM GR820, com cristais detectores de NaI com 2560 pol3 down e 512 pol3 up. Foram realizadas 8 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 330 (três vezes), 400, 500, 600, 700 e 800 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (attenuation coefficients), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4. Correção Altimétrica (Coeficientes de Atenuação Atmosférica)

Esse procedimento é comentado no próximo resumo.

5. Conversão para Concentração de Elementos

A sensibilidade dos detectores da aeronave PR-MCY para as janelas de Potássio, Urânio e Tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:S = N/C, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100m) e situada no trecho de interesse das estações utilizadas.

C e a média das concentrações para cada canal das estações terrestres de interesse.

Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100m sobre a pista de calibração, correspondente ao intervalo de 50 metros entre as estações

terrestres consideradas para efeito de cálculo da média dos elementos K, U e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (Exposure rate) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

$$E = 1,505 \text{ K}\% + 0,653 \text{ eU} + 0,287 \text{ eTh}$$
, onde:

E é o símbolo para Exposure rate, K%, eU e eTh correspondem às concentrações médias destes elementos determinados em terra na pista de calibração dinâmica.

Os dados estatísticos e os resultados de calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração.

ESTATÍSTICA*	CT(*)	К	eU	eTh
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)
MÉDIA	3080,48	166,01	33,16	142,41
DESVIO PADRÃO	271,43	38,52	11,53	16,53
ERRO NA MÉDIA(1)	21,53	3,05	0,91	1,31
INCERTEZA (%) (2)	0,70%	1,84%	2,76%	0,92%

^{*} tempo morto, background, stripping e atenuação corrigidos

Quadro 4 - Resultado Estatístico do Levantamento Terrestre na Pista de Calibração, após a correção do *Background*.

FCT A TÍCTICA	CT(*)	K	eU	eTh	СТ	К	U	Th
ESTATÍSTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	11,65	2,16	2,42	29,21	5490,83	545,53	110,15	253,85
DESVIO PADRÃO	3,05	0,64	0,97	8,84	1161,24	134,60	27,61	76,67
ERRO NA MÉDIA(1)	0,34	0,07	0,11	0,99	130,65	15,14	3,11	8,63
INCERTEZA (%) (2)	2,95%	3,33%	4,51%	3,40%	2,38%	2,78%	2,82%	3,40%

cpm = contagens por minuto

Quadro 5 - Coeficientes de Sensibilidade.

	CT(*)	К	eU	eTh
	(cps / μR/h)	(cps / %)	(cps / ppm)	(cps / ppm)
Sensibilidade (S)	264,42	76,86	13,70	4,88

As Figuras 3, 4, 5 e 6 apresentam os perfis comparativos dos levantamentos aéreo e terrestre:

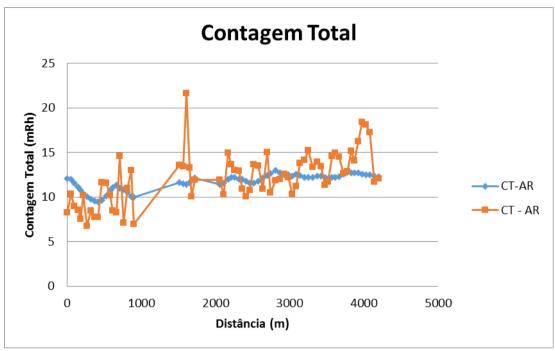


Figura 3 - Calibração dinâmica - Perfil comparativo - Contagem Total.

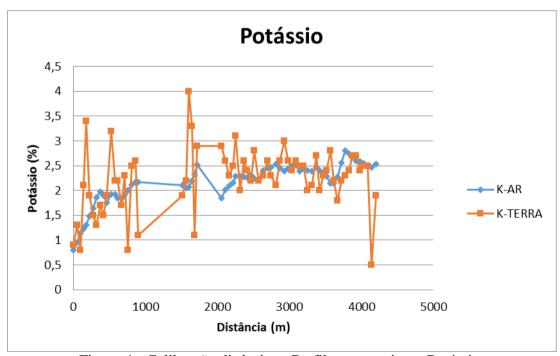


Figura 4 - Calibração dinâmica - Perfil comparativo - Potássio.

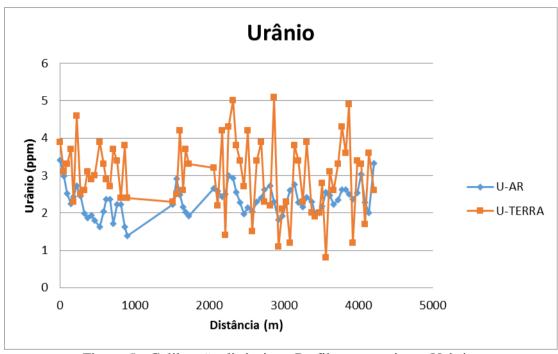


Figura 5 - Calibração dinâmica - Perfil comparativo – Urânio.

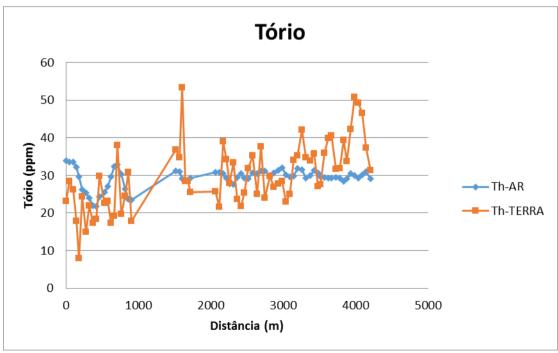
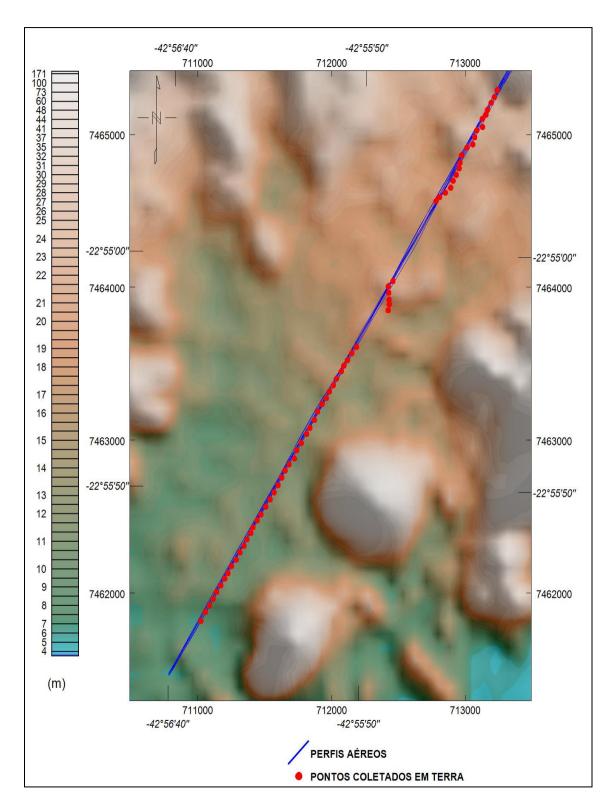


Figura 6 - Calibração dinâmica - Perfil comparativo - Tório.

TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE PISTA DE CALIBRAÇÃO DINÂMICA – 28/03/2014 DADOS BRUTOS – PR-MCY.


Estação	LAT S	LONG W	СТ	K	eU	eTh	СТ	K	U	Th
LStação	LAIO	LONG W	(µR/h)	(%)	(ppm)	(ppm)	(cps)	(cps)	(cps)	(cps)
1	-22°54.408'	-42°55.261'	8,3	0,9	3,9	23,2	4281,5	300,4	122,2	203,3
2	-22°55.432'	-42°55.273'	10,3	1,3	3,1	28,4	4960,4	383,1	120,1	247,3
3	-22°54.454'	-42°55.287'	9,0	0,8	3,3	26,3	4475,3	278,4	119,0	229,5
4	-22°54.478'	-42°55.302'	8,5	2,1	3,7	17,9	4339,2	520,2	105,9	156,7
5	-22°54.496'	-42°55.309'	7,6	3,4	2,3	8,0	3759,4	710,1	55,1	68,7
6	-22°54.511'	-42°55.324'	10,2	1,9	4,6	24,4	5258,0	511,0	137,4	213,3
7	-22°54.540'	-42°55.323'	6,7	1,5	2,5	15,0	3559,4	367,0	77,6	130,9
8	-22°54.552'	-42°55.348'	8,4	1,3	2,6	22,0	4262,5	360,6	97,5	191,8
9	-22°54.577'	-42°55.357'	7,7	1,7	3,1	17,3	3981,5	435,3	93,3	150,9
10	-22°54.602'	-42°55.365'	7,7	1,5	2,9	18,4	3989,9	396,1	93,3	160,8
11	-22°54.614'	-42°55.390'	11,6	1,9	3,0	29,8	5428,6	506,4	121,2	258,9
12	-22°54.641'	-42°55.413'	11,6	3,2	3,9	22,7	5694,4	746,3	119,6	198,2
13	-22°54.668'	-42°55.419'	10,2	2,2	3,3	23,2	4761,8	536,5	111,2	202,2
14	-22°54.688'	-42°55.423'	8,5	2,2	2,9	17,4	4226,8	520,6	90,2	151,9
15	-22°54.711'	-42°55.435'	8,3	1,7	2,7	19,3	4213,3	434,9	91,8	168,2
16	-22°54.732'	-42°55.449'	14,6	2,3	3,7	38,0	7300,2	620,4	154,4	331,1
17	-22°54.757'	-42°55.459'	7,1	0,8	3,4	19,8	3626,0	265,1	105,3	173,3
18	-22°54.775'	-42°55.482'	11,0	2,5	2,4	24,5	5040,4	604,1	98,1	212,7
19	-22°54.791'	-42°55.507'	13,0	2,6	3,8	30,9	6417,2	652,4	138,5	269,0
20	-22°54.805'	-42°55.522'	6,9	1,1	2,4	17,8	3574,9	310,6	83,4	155,5
21	-22°55.091'	-42°55.706'	13,6	1,9	2,3	36,8	5989,2	526,1	126,5	319,9
22	-22°55.110'	-42°55.726'	13,4	2,2	2,5	34,7	5975,5	571,2	124,9	301,0
23	-22°55.133'	-42°55.724'	21,6	4,0	4,2	53,4	9877,5	1011,6	197,2	464,0
24	-22°55.157'	-42°55.722'	13,3	3,3	2,6	28,4	5909,9	770,5	110,2	245,9
25	-22°55.173'	-42°55.721'	10,1	1,1	3,7	28,4	4820,2	352,3	132,1	248,4
26	-22°55.195'	-42°55.725'	11,9	2,9	3,3	25,5	5448,5	678,7	114,9	221,7
27	-22°55.327'	-42°55.862'	12,0	2,9	3,2	25,7	5673,4	686,8	114,4	223,4
28	-22°55.349'	-42°55.882'	10,3	2,6	2,2	21,6	4716,0	601,9	87,1	187,1
29	-22°55.374'	-42°55.900'	15,0	2,3	4,2	39,1	7198,6	623,7	164,8	340,4
30	-22°55.394'	-42°55.916'	13,7	2,5	1,4	34,2	5888,2	614,9	103,9	296,1
31	-22°55.414'	-42°55.927'	13,0	3,1	4,3	28,0	6536,5	757,7	139,6	243,9
32	-22°55.440'	-42°55.947'	12,9	2,0	5,0	33,4	6030,2	562,7	164,7	292,0
33	-22°55.464'	-42°55.961'	10,9	2,6	3,8	23,6	5431,7	625,2	120,6	206,0
34	-22°55.486'	-42°55.978'	10,1	2,4	3,4	21,7	5267,2	570,6	108,0	189,2
35	-22°55.510'	-42°55.991'	10,8	2,2	2,7	25,4	4915,2	553,8	105,9	220,6
36	-22°55.531'	-42°56.009'	13,6	2,8	4,2	31,8	6725,6	703,3	145,9	277,4
37	-22°55.558'	-42°56.028'	13,5	2,2	1,5	35,2	6107,0	554,4	108,1	304,7
38	-22°55.588'	-42°56.042'	10,9	2,3	3,4	25,1	4954,8	574,7	116,4	218,5

Estação	LAT S	LONG W	СТ	K	eU	eTh	СТ	K	U	Th
			(µR/h)	(%)	(ppm)	(ppm)	(cps)	(cps)	(cps)	(cps)
39	-22°55.616'	-42°56.061'	15,0	2,6	3,9	37,7	6827,5	680,3	156,4	327,8
40	-22°55.638'	-42°56.075'	10,5	2,3	2,3	24,0	5574,5	556,3	95,5	208,1
41	-22°55.670'	-42°56.098'	11,9	2,1	2,2	29,8	5524,9	537,3	108,1	258,4
42	-22°55.696'	-42°56.117'	12,0	2,6	5,1	26,9	5821,8	663,2	150,0	235,4
43	-22°55.726'	-42°56.127'	12,5	3,0	1,1	27,7	5683,9	686,3	83,0	239,6
44	-22°55.747'	-42°56.150'	12,2	2,6	2,1	28,4	5749,9	621,2	101,8	245,8
45	-22°55.769'	-42°56.167'	10,4	2,4	2,3	23,0	4703,5	568,4	93,4	199,6
46	-22°55.794'	-42°56.181'	11,2	2,6	1,2	25,0	4690,9	599,8	78,7	216,4
47	-22°55.821'	-42°56.197'	13,8	2,5	3,8	34,0	6233,9	640,2	145,9	296,2
48	-22°55.847'	-42°56.214'	14,1	2,5	3,4	35,3	6203,2	652,9	141,7	306,7
49	-22°55.872'	-42°56.231'	15,2	2,0	2,3	42,1	6913,2	567,1	139,6	365,5
50	-22°55.898'	-42°56.249'	13,4	2,1	3,9	34,7	6551,9	564,9	150,1	302,6
51	-22°55.926'	-42°56.270'	13,9	2,7	2,0	33,9	6138,4	661,3	114,4	294,2
52	-22°55.947'	-42°56.286'	13,4	2,0	1,9	35,8	6027,9	539,6	116,5	310,9
53	-22°55.972'	-42°56.304'	11,4	2,3	2,0	27,1	5544,2	568,7	97,6	235,4
54	-22°55.992'	-42°56.313'	11,7	2,4	2,8	27,6	5878,0	583,7	112,3	239,7
55	-22°56.015'	-42°56.330'	14,6	2,8	0,8	36,0	6250,0	680,2	97,7	311,0
56	-22°56.038'	-42°56.342'	15,0	2,2	3,1	39,9	6498,1	590,1	148,0	346,6
57	-22°56.061'	-42°56.360'	14,5	1,8	2,6	40,6	6279,1	520,9	141,7	352,9
58	-22°56.088'	-42°56.376'	12,6	2,2	3,3	31,6	6727,6	567,2	131,2	275,4
59	-22°56.111'	-42°56.396'	12,9	2,3	4,3	31,8	6646,0	646,9	148,0	277,5
60	-22°56.136'	-42°56.411'	15,2	2,4	3,6	39,4	6516,5	640,4	154,3	342,4
61	-22°56.156'	-42°56.425'	14,1	2,7	4,9	33,7	6073,6	705,4	162,7	294,2
62	-22°56.180'	-42°56.442'	16,3	2,7	1,2	42,2	7062,5	672,2	120,8	365,6
63	-22°56.203'	-42°56.460'	18,4	2,4	3,4	50,8	7963,9	681,1	179,6	441,5
64	-22°56228'	-42°56.474'	18,1	2,5	3,3	49,3	7455,9	689,2	173,3	428,7
65	-22°56.252'	-42°56.490'	17,3	2,5	1,7	46,6	7479,8	655,7	139,7	403,6
66	-22°56.275'	-42°56.508'	11,7	0,5	3,6	37,3	5481,4	269,2	152,1	325,6
67*	-22°56.307'	-42°56.527'	12,0	1,9	2,6	31,4	5769,7	502,0	118,6	273,2
68*	-22°56.269'	-42°48.936'	0,10	0,0	0,6	0,2	190,2	17,0	10,6	2,2
69*	-22°56.283'	-42°48935'	0,38	0,1	0,4	0,7	195,4	19,6	8,5	5,9
70*	-22°56.297'	-42°48.930'	0,32	0,1	0,4	0,5	182,4	29,0	8,5	4,8
71*	-22°56.307'	-42°48.938'	0,46	0,1	0,8	0,9	210,0	31,6	15,3	8,0
72*	-22°56.317'	-42°48.996'	0,46	0,1	0,8	0,9	192,3	34,2	16,3	8,0

^{*} Background na Lagoa de Maricá cpm = Contagem por minuto; ppm = Parte por milhão

Mapa 1 - Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica.

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESUMO DOS RESULTADOS DOS TESTES DE CALIBRAÇÃO DINÂMICA - SENSIBILIDADE

AERONAVE

PT-EPY

MARICÁ - RJ 15 DE MAIO DE 2014

CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS POTÁSSIO, URÂNIO E TÓRIO

SUMÁRIO

- 1 Considerações Gerais
- 2 Levantamento Terrestre
- 3 Levantamento Aéreo
- 4 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)
- 5 Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

- Figura 1 Gamaespectrômetro Portátil Exploranium GR-320
- Figura 2 Coleta de Dados Terrestres na Pista de Calibração Dinâmica
- Figura 3 Calibração Dinâmica Perfil Comparativo Contagem Total
- Figura 4 Calibração Dinâmica Perfil Comparativo Potássio
- Figura 5 Calibração Dinâmica Perfil Comparativo Urânio
- Figura 6 Calibração Dinâmica Perfil Comparativo Tório
- Quadro 1 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
- Quadro 2 Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
- Quadro 3 Resultado Estatístico do Levantamento Aéreo sobre a Pista de Calibração
- Quadro 4 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*
- Quadro 5 Coeficientes de Sensibilidade
- Tabela 1 Listagem dos Valores das Leituras do Levantamento Terrestre
- Mapa 1 Mapa de localização das Estações Terrestres sobre a Pista de Calibração Dinâmica

1. Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para a concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μR/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um *workshop* patrocinado pela CPRM, em conjunto com o *Geological Survey of Canada*, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" ($Dynamic\ Calibration\ Range\ -\ DCR$), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

No dia 15 de Maio de 2014 a Prospectors Aerolevantamentos e Sistemas Ltda. efetuou os testes sobre a "pista de calibração dinâmica" no distrito de Inoã, município de Maricá (RJ).

2. Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração foi utilizado um gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, 256 canais, com detector de iodeto de sódio ativado à Tálio NaI(TI), medindo 76x76mm com resolução melhor que 8,5% para fotopico de Cs-137 (662KeV), como mostra a figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotada pelo operador em planilha apropriada.

Figura 1 – Gamaespectrômetro Portátil EXPLORANIUM GR-320.

Foram registradas 69 estações, sendo 63 sobre a pista de calibração e 6 sobre a Lagoa de Maricá, estas últimas com vistas a remover o background atmosférico da região. A Tabela 1 e o Mapa 1 proporcionam, respectivamente, uma visão dos valores das leituras das estações e a locação das mesmas na Pista de Calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre..

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica.

Quadro 1 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração.

ESTATÍSTICA	CT(*)	K	eU	eTh	СТ	K	U	Th
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	12,69	2,08	2,74	27,08	5237,12	528,19	110,70	235,49
DESVIO PADRÃO	3,01	0,62	0,70	8,36	1192,57	133,86	25,57	72,45
ERRO NA MÉDIA(1)	0,38	0,08	0,09	1,05	150,25	16,87	3,22	9,13
INCERTEZA (%) (2)	2,99%	3,73%	3,22%	3,89%	2,87%	3,19%	2,91%	3,88%

• (*) Valor obtido através da expressão:

E = 1,505K + 0,653eU + 0,287eTh

E = Taxa de Exposição (μR/h)

- (1) Erro na média = Desvio Padrão / (Número de Estações) 1/2
- (2) Incerteza = Erro na Média/Média
- cpm = contagem por minuto
- 63 estações utilizadas no cálculo estatístico

Quadro 2 – Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (*background*).

ESTATÍSTICA	CT(*)	К	eU	eTh	СТ	К	U	Th
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	0,54	0,03	0,50	0,58	180,97	17,40	9,97	5,30
DESVIO PADRÃO	0,13	0,05	0,06	0,17	33,74	6,41	1,25	1,63
ERRO NA MÉDIA(1)	0,05	0,02	0,03	0,07	13,77	2,62	0,51	0,67
INCERTEZA (%) (2)	9,85%	63,25%	5,16%	12,05%	7,61%	15,05%	5,11%	12,57%

3. Levantamento Aéreo

Foi utilizada a aeronave PT-EPY equipada com gama espectrômetro EXPLORANIUM GR820, com cristais detectores de NaI com 2560 pol3 down e 512 pol3 up. Foram realizadas 8 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 330 (três vezes), 400, 500, 600, 700 e 800 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (attenuation coefficients), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4. Correção Altimétrica (Coeficientes de Atenuação Atmosférica)

Esse procedimento é comentado no próximo resumo.

5. Conversão para Concentração de Elementos

A sensibilidade dos detectores da aeronave PT-EPY para as janelas de Potássio, Urânio e Tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:

$$S = N/C$$
, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100m) e situada no trecho de interesse das estações utilizadas.

C e a média das concentrações para cada canal das estações terrestres de interesse.

Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100m sobre a pista de calibração, correspondente ao intervalo de 50 metros entre as estações terrestres consideradas para efeito de cálculo da média dos elementos K, U e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (Exposure rate) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

E = 1,505 K% + 0,653 eU + 0,287 eTh, onde:

E é o símbolo para Exposure rate, K%, eU e eTh correspondem às concentrações médias destes elementos determinados em terra na pista de calibração dinâmica.

Os dados estatísticos e os resultados de calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração.

ESTATÍSTICA*	CT(*)	К	eU	eTh
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)
MÉDIA	216,05	12,80	4,18	11,33
DESVIO PADRÃO	1,14	0,07	0,02	0,06
ERRO NA MÉDIA(1)	0,05%	0,06%	0,06%	0,05%
INCERTEZA (%) (2)	216,05	12,80	4,18	11,33

^{*} tempo morto, background, stripping e atenuação corrigidos

Quadro 4 - Resultado Estatístico do Levantamento Terrestre na Pista de Calibração, após a correção do *Background*.

ESTATÍSTICA	CT(*)	K	eU	eTh	СТ	К	U	Th
ESTATISTICA	(μR/h)	(%)	(ppm)	(ppm)	(cpm)	(cpm)	(cpm)	(cpm)
MÉDIA	12,14	2,04	2,24	26,49	5056,16	510,79	100,74	230,19
DESVIO PADRÃO	3,01	0,62	0,70	8,36	1192,6	133,9	25,6	72,4
ERRO NA MÉDIA(1)	0,38	0,08	0,09	1,05	150,25	16,87	3,22	9,13
INCERTEZA (%) (2)	3,12%	3,79%	3,94%	3,97%	2,97%	3,30%	3,20%	3,97%

cpm = contagens por minuto

Quadro 5 - Coeficientes de Sensibilidade.

	CT(*)	K	eU	eTh
	(cps / μR/h)	(cps / %)	(cps / ppm)	(cps / ppm)
Sensibilidade (S)	205,70	57,62	15,18	4,23

As Figuras 3, 4, 5 e 6 apresentam os perfis comparativos dos levantamentos aéreo e terrestre:

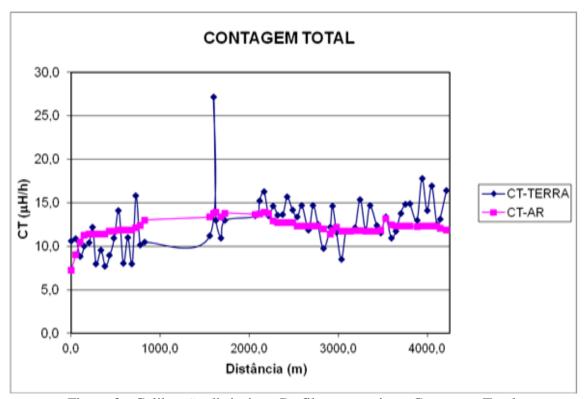


Figura 3 - Calibração dinâmica - Perfil comparativo - Contagem Total.

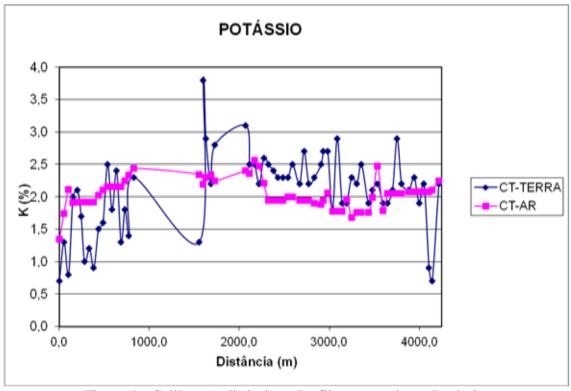


Figura 4 - Calibração dinâmica - Perfil comparativo - Potássio.

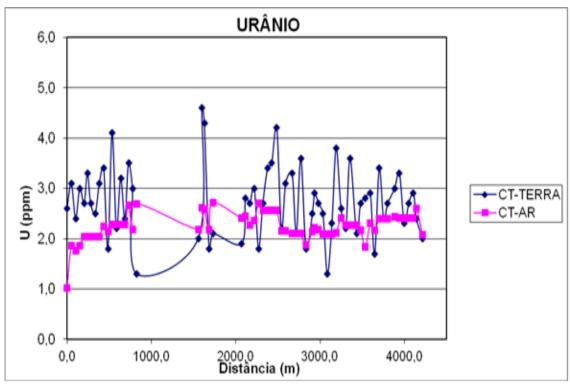


Figura 5 - Calibração dinâmica - Perfil comparativo – Urânio.

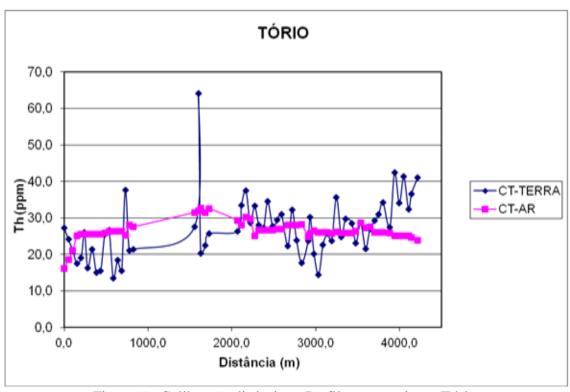
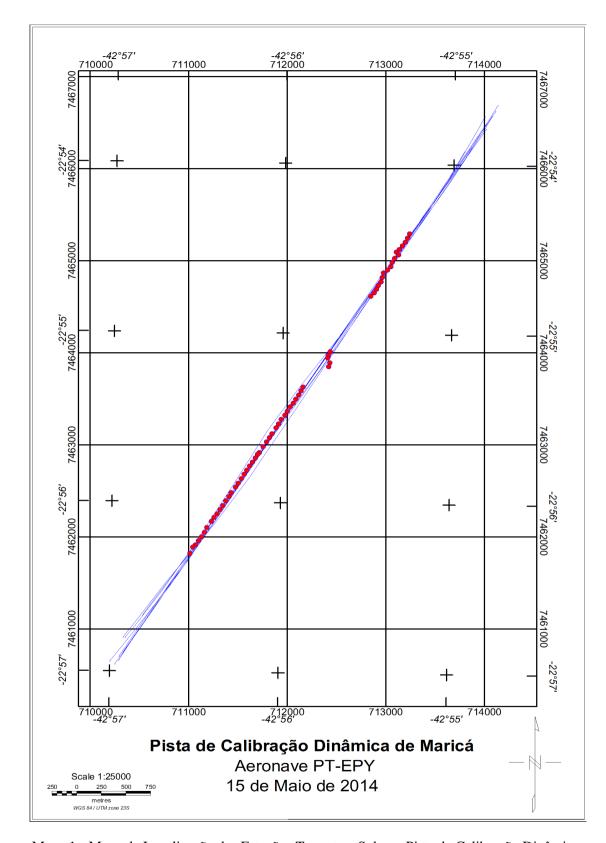


Figura 6 - Calibração dinâmica - Perfil comparativo - Tório.

TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE PISTA DE CALIBRAÇÃO DINÂMICA – 16/12/2013 DADOS BRUTOS – PP-AGP.


Estação	LAT S	LONG W	СТ	K	eU	eTh	СТ	K	U	Th
Lotagao	27.1.0	20.10.11	(μR/h)	(%)	(ppm)	(ppm)	(cps)	(cps)	(cps)	(cps)
1	22°54'24.4"	42°55'15.5"	10,6	0,7	2,6	27,3	4478,8	267,9	110,6	238,4
2	22°54'25.9"	42°55'16.2"	10,9	1,3	3,1	24,1	4371,8	372,1	110,1	210,1
3	22°54'27.4"	42°55'17.0"	8,8	0,8	2,4	21,1	3796,1	263,1	91,2	183,9
4	22°54'28.7"	42°55'18.0"	10,0	2,0	3,0	17,5	4144,2	479,4	92,8	152,5
5	22°54'30.0"	42°55'19.1"	10,4	2,1	2,7	19,1	4191,4	497,2	90,7	166,6
6	22°54'30.9"	42°55'20.1"	12,2	1,7	3,3	26,0	5029,9	457,6	117,5	226,4
7	22°54'31.9"	42°55'19.3"	7,9	1,0	2,7	16,3	3391,9	282,9	84,4	142,5
8	22°54'33.1"	42°55'20.7"	9,6	1,2	2,5	21,4	4287,7	343,8	93,9	186,5
9	22°54'34.5"	42°55'21.5"	7,7	0,9	3,1	15,1	3230,2	267,6	89,6	132,5
10	22°54'36.1"	42°55'22.0"	8,9	1,5	3,4	15,5	3438,8	378,1	94,9	136,2
11	22°54'37.3"	42°55'23.2"	10,9	1,6	1,8	25,6	4635,8	421,4	91,3	222,2
12	22°54'38.3"	42°55'24.6"	14,1	2,5	4,1	26,7	5601,0	620,9	132,8	232,8
13	22°54'39.9"	42°55'25.0"	8,0	1,8	2,2	13,5	3475,1	423,5	68,2	117,3
14	22°54'41.5"	42°55'25.4"	11,0	2,4	3,2	18,4	4498,5	568,9	97,0	160,4
15	22°54'42.8"	42°55'26.4"	8,0	1,3	2,4	15,5	3440,4	334,2	78,1	135,1
16	22°54'44.1"	42°55'27.0"	15,8	1,8	3,5	37,6	6157,9	526,2	149,6	327,2
17	22°54'45.4"	42°55'27.8"	10,1	1,4	3,0	21,1	4238,4	371,0	100,7	183,9
18	22°54'46.6"	42°55'29.0"	10,5	2,3	1,3	21,4	4658,7	533,4	70,8	185,0
19	22°55'06.4"	42°55'43.1"	11,2	1,3	2,0	27,6	4598,5	374,2	100,2	240,0
20	22°55'07.7"	42°55'43.8"	27,1	3,8	4,6	64,1	10826,1	1008,8	231,0	556,9
21	22°55'08.6"	42°55'44.0"	13,0	2,9	4,3	20,3	5354,2	680,3	120,6	177,7
22	22°55'10.3"	42°55'43.2"	10,9	2,2	1,8	22,4	4775,3	519,8	82,9	194,4
23	22°55'11.7"	42°55'43.6"	13,0	2,8	2,1	25,7	5220,3	649,7	96,0	222,7
24	22°55'19.0"	42°55'52.6"	13,5	3,1	1,9	26,4	5531,3	718,7	93,4	228,6
25	22°55'20.3"	42°55'53.3"	15,2	2,5	2,8	33,5	6450,8	636,7	127,0	291,1
26	22°55'21.8"	42°55'54.1"	16,3	2,5	2,7	37,5	6619,1	640,9	134,4	325,7
27	22°55'23.3"	42°55'55.1"	13,5	2,2	3,0	28,6	5675,3	568,8	119,1	248,5
28	22°55'24.7"	42°55'56.0"	14,6	2,6	1,8	33,3	5999,0	648,7	109,7	288,9
29	22°55'26.0"	42°55'57.1"	13,6	2,5	2,7	28,1	5827,2	606,7	111,3	244,4
30	22°55'27.6"	42°55'58.1"	13,7	2,4	3,4	27,3	5529,2	600,2	122,7	237,5
31	22°55'29.0"	42°55'58.9"	15,6	2,3	3,5	34,5	6270,1	601,1	141,2	300,5
32	22°55'30.5"	42°56'00.2"	14,2	2,3	4,2	27,7	5447,4	590,7	136,9	242,1
33	22°55'32.1"	42°56'01.1"	13,4	2,3	2,2	29,5	5660,9	573,6	107,6	255,8
34	22°55'33.5"	42°56'02.0"	14,7	2,5	3,1	31,0	5832,1	631,8	125,4	269,5
35	22°55'35.6"	42°56'03.4"	11,9	2,2	3,3	22,3	4807,8	544,9	108,5	194,4
36	22°55'37.0"	42°56'04.3"	14,7	2,7	2,1	32,2	6191,0	666,0	111,3	279,5
37	22°55'38.5"	42°56'05.3"	12,5	2,2	3,6	23,8	4907,2	544,4	116,9	207,5
38	22°55'40.2"	42°56'06.5"	9,7	2,3	1,8	17,7	4065,6	532,7	70,8	153,5

Estação	LAT S	LONG W	СТ	K	eU	eTh	CT	K	U	Th
,			(µR/h)	(%)	(ppm)	(ppm)	(cps)	(cps)	(cps)	(cps)
39	22°55'42.3"	42°56'07.8"	12,2	2,5	2,5	23,7	5002,6	594,2	97,0	205,4
40	22°55'42.9"	42°56'08.4"	14,6	2,7	2,9	30,2	5713,0	654,8	120,7	262,1
41	22°55'44.2"	42°56'09.2"	11,6	2,7	2,7	20,2	4987,4	630,8	92,3	175,6
42	22°55'45.7"	42°56'10.2"	8,5	1,8	2,5	14,4	3365,5	419,3	75,5	125,7
43	22°55'47.1"	42°56'11.2"	11,7	2,9	1,3	22,6	4833,6	649,6	74,5	195,5
44	22°55'48.6"	42°56'12.2"	11,7	1,9	2,3	25,7	5088,7	492,6	100,2	223,2
45	22°55'50.0"	42°56'13.1"	12,1	1,9	3,8	23,7	5132,5	489,6	121,1	207,0
46	22°55'51.6"	42°56'14.1"	15,4	2,3	2,6	35,6	6456,7	605,8	129,1	308,9
47	22°55'53.2"	42°56'15.2"	11,9	2,2	2,2	24,8	4903,0	537,1	95,5	215,4
48	22°55'54.6"	42°56'16.1"	14,7	2,5	3,6	29,8	6019,0	630,9	132,2	259,6
49	22°55'56.6"	42°56'17.7"	12,4	1,9	2,1	28,5	5199,7	495,9	103,4	247,9
50	22°55'58.0"	42°56'18.4"	11,6	2,1	2,7	23,1	4760,0	510,9	99,7	200,7
51	22°55'59.5"	42°56'19.5"	13,3	2,2	2,8	28,6	5404,0	550,9	114,9	249,0
52	22°56'01.2"	42°56'20.5"	11,0	1,9	2,9	21,6	4496,3	481,0	99,6	188,1
53	22°56'02.6"	42°56'21.5"	11,7	1,9	1,7	27,0	4738,9	472,7	93,4	234,2
54	22°56'04.1"	42°56'22.5"	13,8	2,1	3,4	29,2	5544,1	540,6	126,4	254,3
55	22°56'05.4"	42°56'23.6"	14,8	2,9	2,4	31,0	6297,5	698,0	113,4	268,5
56	22°56'06.8"	42°56'24.5"	14,9	2,2	2,7	34,3	6269,2	584,8	127,5	297,9
57	22°56'09.0"	42°56'26.1"	13,0	2,1	3,0	27,4	5152,9	530,8	115,9	238,4
58	22°56'10.7"	42°56'26.9"	17,8	2,3	3,3	42,5	7244,5	634,5	158,0	369,4
59	22°56'12.3"	42°56'27.9"	14,1	1,9	2,3	34,0	6254,6	510,4	120,7	295,8
60	22°56'13.7"	42°56'29.0"	16,9	2,2	2,7	41,3	7136,3	605,2	143,9	358,4
61	22°56'15.2"	42°56'30.1"	12,5	0,9	2,9	32,4	5330,6	316,9	127,5	282,6
62	22°56'16.0"	42°56'31.0"	13,1	0,7	2,4	36,6	5206,2	293,8	129,0	318,1
63	22°56'18.2"	42°56'32.0"	16,4	2,2	2,0	41,0	6746,9	597,1	131,8	355,7
64*	22°56'16.4"	42°48'56.2"	0,6	0,1	0,5	0,6	186,5	25,8	9,5	5,4
65*	22°56'16.4"	42°48'58.3"	0,5	0,0	0,5	0,6	197,0	17,0	10,6	5,4
66*	22°56'16.5"	42°49'00.0"	0,7	0,1	0,5	0,8	236,1	24,3	10,6	7,5
67*	22°56'17.6"	42°49'02.2"	0,3	0,0	0,4	0,3	165,1	15,4	8,0	2,8
68*	22°56'17.4"	42°49'03.4"	0,6	0,0	0,6	0,7	162,0	11,2	11,6	6,4
69*	22°56'17.0"	42°49'04.9"	0,5	0,0	0,5	0,5	139,1	10,7	9,5	4,3

^{*} Background na Lagoa de Maricá cpm = Contagem por minuto; ppm = Parte por milhão

Mapa 1 - Mapa de Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica.

ANEXO I-f - ATENUAÇÃO ATMOSFÉRICA - RESULTADOS DOS TESTES

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESUMO DO RESULTADO DOS TESTES DE CALIBRAÇÃO DINÂMICA ATENUAÇÃO ATMOSFÉRICA

AERONAVE

PP-AGP

MARICÁ - RJ 16 DE DEZEMBRO DE 2013

SUMÁRIO

1 - Cálculo das constantes de atenuação atmosférica para a aeronave PP-AGP

Índice do Quadro, Tabelas e Figuras

Quadro 1 - Coeficientes de Atenuação Atmosférica

Tabela 1 - Cálculo dos Coeficientes de Atenuação Atmosférica

- a) Médias Terra, Água e Terra-Água
- b) Médias em cps
- c) Médias em Logaritmo

Figura - Coeficientes de Atenuação

- a) Contagem Total
- b) Potássio
- c) Urânio
- d) Tório

1.Cálculo das Constantes de Atenuação Atmosférica para a Aeronave PR-PEC

Durante os voos sobre a pista de calibração dinâmica (dynamic calibration range - DCR) realizados em 16/12/2013 nas proximidades de Maricá (RJ), objetivando a determinação dos coeficientes de sensibilidade para converter os dados aerogamaespetrométricos, medidos em contagens por segundo (cps), para concentração de elementos (%K, ppm para eU e eTh e μR/h para o canal de contagem total), também são realizados voos em diversas alturas (de 300 a 900 pés com intervalo de 100 pés, com três passagem a 300 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (μ) dos radioelementos Potássio, Urânio e Tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada pela fórmula (IAEA, 1991):

$$\begin{split} N_H &= N_0.e^{-\mu H} \ (1), \text{ onde:} \\ N_H \text{ \'e a radiação à distância H da fonte,} \\ N_0 \text{ \'e a radiação na superfície do terreno (H=0),} \\ \mu \text{ \'e o coeficiente de atenuação atmosférica} \end{split}$$

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$Ln(N_H) = -\mu H + Ln(N_0)$$

que é a equação de uma reta de coeficiente angular -μ e coeficiente linear Ln (N0). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos Ln (NH) em relação às alturas de voo (de 330, 330, 330, 400, 500, 600, 700, 800 e 900 pés) sobre a "pista de calibração dinâmica" (dynamic calibration range - DCR) situada no distrito de Inoã, Município de Maricá (RJ).

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) $H = H_{100} = 100 \text{ m}$ (altura nominal do levantamento) tem-se:

 $N_{100} = N_0 \cdot e^{-\mu H} 100$ (2)

Dividindo-se (2) por (1), obtêm-se:

$$N_{100} = N_{H} \cdot e^{-\mu(H)}_{100} \cdot H$$
 (3)

onde:

- N100 é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal;
- NH é a taxa de contagem corrigida dos *backgrounds* da aeronave, cósmico e do radônio, bem como do efeito do espalhamento *Compton*;
- μ é o coeficiente de atenuação atmosférica para determinado canal;
- H₁₀₀ é a altura nominal do voo (100m);
- H é a altura medida.

Os valores das médias obtidas são apresentados na Tabela 1a.

Tabela 1a – Médias Terra, Água e Terra-Água.

	MÉDIAS SOBRE A TERRA *					
Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)	
L900	233,22	941,98	70,12	26,94	44,33	
L800	202,12	1132,79	83,06	30,72	53,02	
L700	176,93	1313,77	97,14	35,56	62,30	
L600	149,24	1561,62	114,74	42,06	73,63	
L500	122,75	1858,62	140,15	49,20	87,26	
L400	98,12	2233,38	171,29	57,01	104,31	
L330	79,41	2536,49	193,83	63,56	118,28	
L331	79,89	2534,75	196,77	64,35	120,89	
L332	81,00	2514,78	191,52	64,51	117,72	
		MÉDIAS	SOBRE A	ÁGUA*		
Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)	
S900	230,86	160,11	16,70	5,28	5,86	
S800	206,22	156,80	16,82	5,23	5,55	
S700	181,38	157,46	16,40	5,58	6,15	
S600	155,75	157,94	16,65	4,99	5,42	
S500	133,14	156,92	16,36	4,96	5,61	
S400	104,92	161,47	17,80	5,66	5,99	
S330	89,16	160,81	17,25	4,98	5,41	
S331	88,05	159,31	18,22	4,95	5,66	
S332	90,03	158,05	17,23	5,00	5,15	
		MÉDIAS	TERRA-Á	GUA*		
Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)	
L900	233,22	781,87	53,42	21,66	38,47	
L800	202,12	975,99	66,24	25,49	47,47	
L700	176,93	1156,31	80,74	29,98	56,15	
L600	149,24	1403,68	98,09	37,07	68,21	
L500	122,75	1701,70	123,79	44,24	81,65	
L400	98,12	2071,91	153,49	51,35	98,32	
L330	79,41	2375,68	176,58	58,58	112,87	
L331	79,89	2375,44	178,55	59,40	115,23	
L332	81,00	2356,73	174,29	59,51	112,57	

^{*} valores corrigidos do tempo morto

A Tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

- Tempo morto
- Background
- Espalhamento Compton

Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)
L900	233,22	781,87	53,42	21,66	38,47
L800	202,12	975,99	66,24	25,49	47,47
L700	176,93	1156,31	80,74	29,98	56,15
L600	149,24	1403,68	98,09	37,07	68,21
L500	122,75	1701,70	123,79	44,24	81,65
L400	98,12	2071,91	153,49	51,35	98,32
L330	79,41	2375,68	176,58	58,58	112,87
L331	79,89	2375,44	178,55	59,40	115,23
L332	81,00	2356,73	174,29	59,51	112,57

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica.

A Tabela 1c apresenta o logaritmo neperiano dos valores da Tabela 1b.

Linha	ALTURA (m)	ln CT (cps)	ln K (cps)	ln U (cps)	ln Th (cps)
L900	233,22	6,66	3,98	3,08	3,65
L800	202,12	6,88	4,19	3,24	3,86
L700	176,93	7,05	4,39	3,40	4,03
L600	149,24	7,25	4,59	3,61	4,22
L500	122,75	7,44	4,82	3,79	4,40
L400	98,12	7,64	5,03	3,94	4,59
L330	79,41	7,77	5,17	4,07	4,73
L331	79,89	7,77	5,18	4,08	4,75
L332	81,00	7,77	5,16	4,09	4,72

Tabela 1c – Cálculo dos Coeficientes de Atenuação Atmosférica.

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das figuras 1a, 1b, 1c e 1d, conforme mostra o quadro 1 a seguir:

Quadro 1 – Coeficientes de Atenuação Atmosférica.

Canal Radiométrico	μ em m ⁻¹
ContagemTotal	-0,0073
Potássio	-0,0079
Urânio	-0,0067
Tório	-0,0071

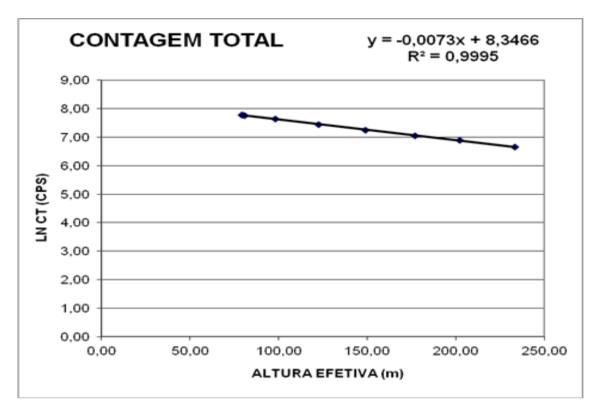


Figura 1a - Coeficiente de Atenuação - Contagem Total.

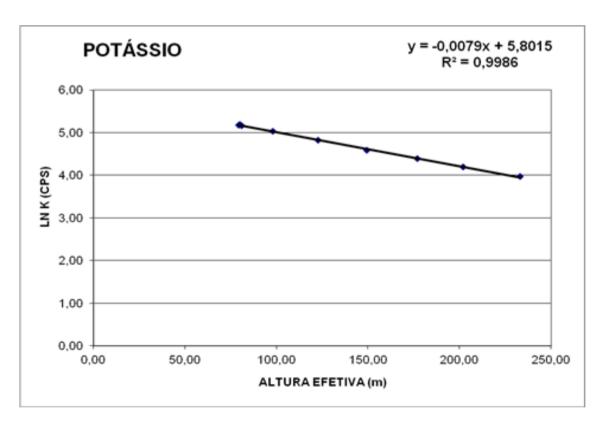


Figura 1b - Coeficiente de Atenuação - Potássio.

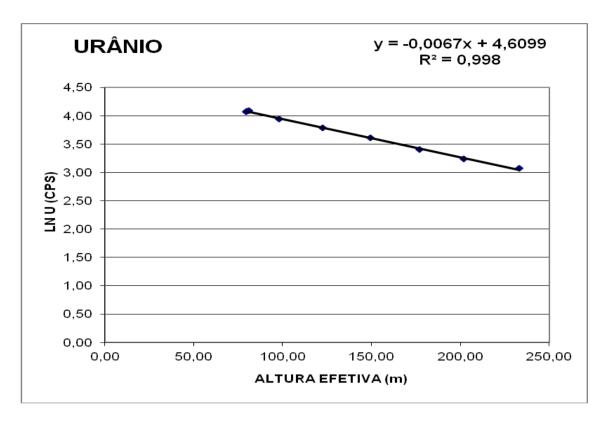


Figura 1c - Coeficiente de Atenuação - Urânio.

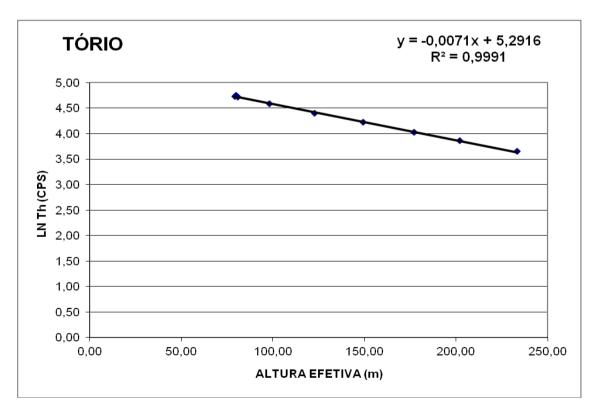


Figura 1d - Coeficiente de Atenuação - Tório.

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESUMO DO RESULTADO DOS TESTES DE CALIBRAÇÃO DINÂMICA ATENUAÇÃO ATMOSFÉRICA

AERONAVE

PR-MCY

MARICÁ - RJ 28 DE MARÇO DE 2014

SUMÁRIO

1 - Cálculo das constantes de atenuação atmosférica para a aeronave PR-MCY

Índice do Quadro, Tabelas e Figuras

Quadro 1 - Coeficientes de Atenuação Atmosférica

Tabela 1 - Cálculo dos Coeficientes de Atenuação Atmosférica

- a) Médias Terra, Água e Terra-Água
- b) Médias em cps
- c) Médias em Logaritmo

Figura - Coeficientes de Atenuação

- a) Contagem Total
- b) Potássio
- c) Urânio
- d) Tório

1.Cálculo das Constantes de Atenuação Atmosférica para a Aeronave PR-MCY

Durante os voos sobre a pista de calibração dinâmica (dynamic calibration range - DCR) realizados em 28/03/2014 nas proximidades de Maricá (RJ), objetivando a determinação dos coeficientes de sensibilidade para converter os dados aerogamaespetrométricos, medidos em contagens por segundo (cps), para concentração de elementos (%K, ppm para eU e eTh e μR/h para o canal de contagem total), também são realizados voos em diversas alturas (de 300 a 800 pés com intervalo de 100 pés, com três passagem a 300 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (μ) dos radioelementos Potássio, Urânio e Tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada pela fórmula (IAEA, 1991):

$$\begin{split} N_H &= N_0.e^{-\mu H} \, (1), \, \text{onde:} \\ N_H \, \acute{\text{e}} \, \text{a radiação} \, \grave{\text{a}} \, \text{distância H da fonte,} \\ N_0 \, \acute{\text{e}} \, \text{a radiação na superfície do terreno (H=0),} \\ \mu \, \acute{\text{e}} \, \text{o coeficiente de atenuação atmosférica} \end{split}$$

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$Ln(N_H) = -\mu H + Ln(N_0)$$

que é a equação de uma reta de coeficiente angular -μ e coeficiente linear Ln (N0). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos Ln (NH) em relação às alturas de voo (de 330, 330, 330, 400, 500, 600, 700 e 800 pés) sobre a "pista de calibração dinâmica" (dynamic calibration range - DCR) situada no distrito de Inoã, Município de Maricá (RJ).

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) $H = H_{100} = 100 \text{ m}$ (altura nominal do levantamento) tem-se:

 $N_{100} = N_0 \cdot e^{-\mu H} 100$ (2)

Dividindo-se (2) por (1), obtêm-se:

$$N_{100} = N_{H} \cdot e^{-\mu(H)}_{100} \cdot H$$
 (3)

onde:

- N100 é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal;
- NH é a taxa de contagem corrigida dos *backgrounds* da aeronave, cósmico e do radônio, bem como do efeito do espalhamento *Compton*;
- μ é o coeficiente de atenuação atmosférica para determinado canal;
- H₁₀₀ é a altura nominal do voo (100m);
- H é a altura medida.

Os valores das médias obtidas são apresentados na Tabela 1a.

Tabela 1a – Médias Terra, Água e Terra-Água.

MÉDIAS SOBRE A TERRA *					
ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)	
93,28	3465	205	43	157	
100,58	3288	197	38	149	
103,96	3185	190	37	146	
118,35	2876	164	35	130	
139,10	2477	142	33	110	
166,98	2049	115	28	93	
194,61	1680	96	22	75	
214,12	1512	89	23	67	
	MÉDIAS	SOBRE A	ÁGUA*		
ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)	
92,32	212	31	6	7	
95,27	213	31	6	7	
95,22	212	30	6	7	
112,59	213	31	6	7	
137,89	209	30	6	6	
170,80	213	30	6	7	
185,31	208	28	6	7	
206,51	209	30	7	7	
	MÉDIAS	TERRA-Á	GUA*		
ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)	
93,28	3253	174	37	150	
100,58	3075	166	32	142	
103,96	2973	160	31	139	
118,35	2663	133	29	123	
139,10	2268	112	27	104	
166,98	1836	85	22	86	
194,61	1472	68	16	68	
214,12	1303	59	16	60	
	(m) 93,28 100,58 103,96 118,35 139,10 166,98 194,61 214,12 ALTURA (m) 92,32 95,27 95,22 112,59 137,89 170,80 185,31 206,51 ALTURA (m) 93,28 100,58 103,96 118,35 139,10 166,98 194,61	ALTURA (m) CT (cps) 93,28 3465 100,58 3288 103,96 3185 118,35 2876 139,10 2477 166,98 2049 194,61 1680 214,12 1512 MÉDIAS ALTURA (m) CT (cps) 92,32 212 95,27 213 95,22 212 112,59 213 137,89 209 170,80 213 185,31 208 206,51 209 MÉDIAS ALTURA (m) CT (cps) 93,28 3253 100,58 3075 103,96 2973 118,35 2663 139,10 2268 166,98 1836 194,61 1472	ALTURA (m) CT (cps) K (cps) 93,28 3465 205 100,58 3288 197 103,96 3185 190 118,35 2876 164 139,10 2477 142 166,98 2049 115 194,61 1680 96 214,12 1512 89 MÉDIAS SOBRE A A ALTURA (m) 92,32 212 31 95,27 213 31 95,22 212 30 112,59 213 31 137,89 209 30 170,80 213 30 185,31 208 28 206,51 209 30 MÉDIAS TERRA-Á ALTURA (m) CT (cps) K (cps) 93,28 3253 174 100,58 3075 166 103,96 2973 160 118,35 2663 133	ALTURA (m) CT (cps) K (cps) U (cps) 93,28 3465 205 43 100,58 3288 197 38 103,96 3185 190 37 118,35 2876 164 35 139,10 2477 142 33 166,98 2049 115 28 194,61 1680 96 22 214,12 1512 89 23 MÉDIAS SOBRE A ÁGUA* ALTURA (m) CT (cps) K (cps) U (cps) 92,32 212 31 6 95,27 213 31 6 95,22 212 30 6 112,59 213 31 6 137,89 209 30 6 170,80 213 30 6 185,31 208 28 6 206,51 209 30 7 MÉDIAS TERRA-ÁGUA	

^{*} valores corrigidos do tempo morto

A Tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

- Tempo morto
- Background
- Espalhamento Compton

Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)
L300	93,28	3253	174	37	150
L301	100,58	3075	166	32	142
L302	103,96	2973	160	31	139
L400	118,35	2663	133	29	123
L500	139,10	2268	112	27	104
L600	166,98	1836	85	22	86
L700	194,61	1472	68	16	68
L800	214,12	1303	59	16	60

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica.

A Tabela 1c apresenta o logaritmo neperiano dos valores da Tabela 1b.

Linha	ALTURA (m)	ln CT (cps)	ln K (cps)	ln U (cps)	ln Th (cps)
L300	93,28	8,09	5,16	3,61	5,01
L301	100,58	8,03	5,11	3,47	4,96
L302	103,96	8,00	5,08	3,43	4,93
L400	118,35	7,89	4,89	3,37	4,81
L500	139,10	7,73	4,72	3,30	4,64
L600	166,98	7,52	4,44	3,09	4,45
L700	194,61	7,29	4,22	2,77	4,22
L800	214,12	7,17	4,08	2,77	4,09

Tabela 1c – Cálculo dos Coeficientes de Atenuação Atmosférica.

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das figuras 1a, 1b, 1c e 1d, conforme mostra o quadro 1 a seguir:

Quadro 1 – Coeficientes de Atenuação Atmosférica.

Canal Radiométrico	μ em m ⁻¹
ContagemTotal	-0,0076
Potássio	-0,0092
Urânio	-0,0068
Tório	-0,0077

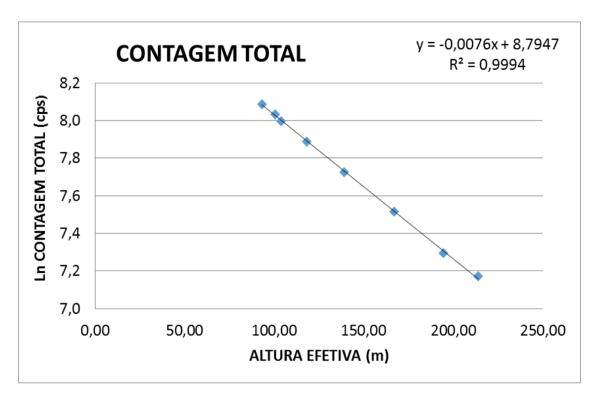


Figura 1a - Coeficiente de Atenuação - Contagem Total.

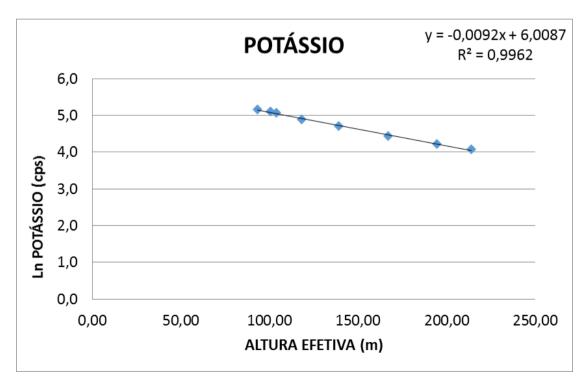


Figura 1b - Coeficiente de Atenuação - Potássio.

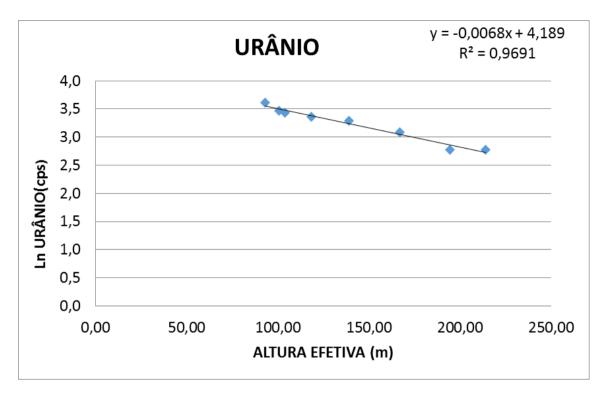


Figura 1c - Coeficiente de Atenuação - Urânio.

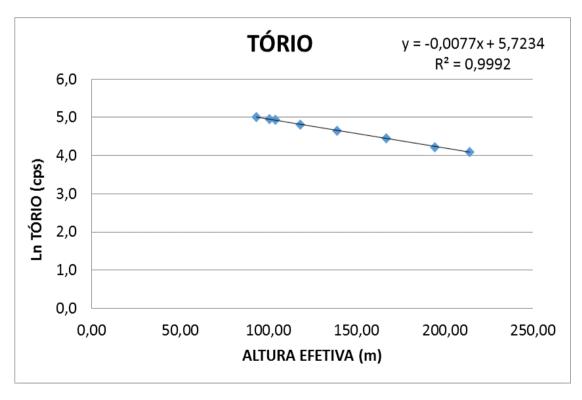


Figura 1d - Coeficiente de Atenuação - Tório.

PROCEDIMENTOS DE CALIBRAÇÃO

PROJETO AEROGEOFÍSICO RIO MARIA CPRM CONTRATO N.º 066/PR/13

RESUMO DO RESULTADO DOS TESTES DE CALIBRAÇÃO DINÂMICA ATENUAÇÃO ATMOSFÉRICA

AERONAVE

PT-EPY

MARICÁ - RJ 15 DE MAIO DE 2014

SUMÁRIO

1 - Cálculo das constantes de atenuação atmosférica para a aeronave PT-EPY

Índice do Quadro, Tabelas e Figuras

Quadro 1 - Coeficientes de Atenuação Atmosférica

Tabela 1 - Cálculo dos Coeficientes de Atenuação Atmosférica

- a) Médias Terra, Água e Terra-Água
- b) Médias em cps
- c) Médias em Logaritmo

Figura - Coeficientes de Atenuação

- a) Contagem Total
- b) Potássio
- c) Urânio
- d) Tório

1.Cálculo das Constantes de Atenuação Atmosférica para a Aeronave PT-EPY

Durante os voos sobre a pista de calibração dinâmica (dynamic calibration range - DCR) realizados em 15/05/2014 nas proximidades de Maricá (RJ), objetivando a determinação dos coeficientes de sensibilidade para converter os dados aerogamaespetrométricos, medidos em contagens por segundo (cps), para concentração de elementos (%K, ppm para eU e eTh e µR/h para o canal de contagem total), também são realizados voos em diversas alturas (de 300 a 800 pés com intervalo de 100 pés, com três passagem a 300 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (µ) dos radioelementos Potássio, Urânio e Tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada pela fórmula (IAEA, 1991):

$$\begin{split} N_H &= N_0.e^{-\mu H} \, (1), \, \text{onde:} \\ N_H \, \acute{\text{e}} \, \text{a radiação à distância H da fonte,} \\ N_0 \, \acute{\text{e}} \, \text{a radiação na superfície do terreno (H=0),} \\ \mu \, \acute{\text{e}} \, \text{o coeficiente de atenuação atmosférica} \end{split}$$

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

$$Ln(N_H) = -\mu H + Ln(N_0)$$

que é a equação de uma reta de coeficiente angular -μ e coeficiente linear Ln (N0). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos Ln (NH) em relação às alturas de voo (de 330, 330, 330, 400, 500, 600, 700 e 800 pés) sobre a "pista de calibração dinâmica" (dynamic calibration range - DCR) situada no distrito de Inoã, Município de Maricá (RJ).

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) $H = H_{100} = 100$ m (altura nominal do levantamento) tem-se:

 $N_{100} = N_0 \cdot e^{-\mu H} 100 \quad (2)$

Dividindo-se (2) por (1), obtêm-se:

$$N_{100} = N_{H} \cdot e^{-\mu(H)}_{100} \cdot H$$
 (3)

onde:

- N100 é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal;
- NH é a taxa de contagem corrigida dos *backgrounds* da aeronave, cósmico e do radônio, bem como do efeito do espalhamento *Compton*;
- μ é o coeficiente de atenuação atmosférica para determinado canal;
- H₁₀₀ é a altura nominal do voo (100m);
- H é a altura medida.

Os valores das médias obtidas são apresentados na Tabela 1a.

Tabela 1a – Médias Terra, Água e Terra-Água.

	M	ÉDIAS S	OBRE A	TERRA *	:
Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)
L800	232,15	1175,63	82,46	35,37	49,51
L700	207,06	1372,31	97,48	42,39	58,72
L600	178,74	1591,70	113,53	47,99	70,18
L500	152,94	1879,20	138,27	53,91	81,67
L400	111,58	2350,22	176,43	64,12	105,65
L300	93,23	2602,81	198,62	67,56	116,48
L301	100,79	2424,57	180,52	65,60	107,05
L302	99,59	2465,93	185,47	64,43	112,03
	N	1ÉDIAS S	SOBRE A	ÁGUA*	
Linha	ALTURA	CT	V (ong)	II (ong)	Th
Lillia	(m)	(cps)	K (cps)	U (cps)	(cps)
S800	215,58	334,69	23,32	13,79	11,56
S700	196,80	358,50	25,12	15,13	11,75
S600	179,88	358,44	24,57	15,51	11,82
S500	170,83	358,34	25,56	15,05	11,76
S400	118,61	372,76	26,08	16,27	12,11
S300	97,71	365,48	26,40	15,29	11,52
S301	96,78	362,20	26,43	15,18	11,85
S302	100,88	362,26	27,13	14,85	11,17
]	MÉDIAS	TERRA-	ÁGUA*	
Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)
L800	232,15	840,94	59,14	21,58	37,95
L700	207,06	1013,81	72,36	27,26	46,97
L600	178,74	1233,26	88,96	32,48	58,36
L500	152,94	1520,86	112,71	38,86	69,91
L400	111,58	1977,46	150,35	47,85	93,54
L300	93,23	2237,33	172,22	52,27	104,96
L301	100,79	2062,37	154,09	50,42	95,20
L302	99,59	2103,67	158,34	49,58	100,86

^{*} valores corrigidos do tempo morto

A Tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

- Tempo morto
- Background
- Espalhamento *Compton*

Linha	ALTURA (m)	CT (cps)	K (cps)	U (cps)	Th (cps)
L800	232,15	840,94	59,14	21,58	37,95
L700	207,06	1013,81	72,36	27,26	46,97
L600	178,74	1233,26	88,96	32,48	58,36
L500	152,94	1520,86	112,71	38,86	69,91
L400	111,58	1977,46	150,35	47,85	93,54
L300	93,23	2237,33	172,22	52,27	104,96
L301	100,79	2062,37	154,09	50,42	95,20
L302	99,59	2103,67	158,34	49,58	100,86

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica.

A Tabela 1c apresenta o logaritmo neperiano dos valores da Tabela 1b.

Linha	ALTURA (m)	ln CT (cps)	ln K (cps)	ln U (cps)	ln Th (cps)
L800	232,15	6,73	4,08	3,07	3,64
L700	207,06	6,92	4,28	3,31	3,85
L600	178,74	7,12	4,49	3,48	4,07
L500	152,94	7,33	4,72	3,66	4,25
L400	111,58	7,59	5,01	3,87	4,54
L300	93,23	7,71	5,15	3,96	4,65
L301	100,79	7,63	5,04	3,92	4,56
L302	99,59	7,65	5,06	3,90	4,61

Tabela 1c – Cálculo dos Coeficientes de Atenuação Atmosférica.

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das figuras 1a, 1b, 1c e 1d, conforme mostra o quadro 1 a seguir:

Quadro 1 – Coeficientes de Atenuação Atmosférica.

Canal Radiométrico	μ em m ⁻¹
ContagemTotal	-0,0069
Potássio	-0,0075
Urânio	-0,0061
Tório	-0,0071

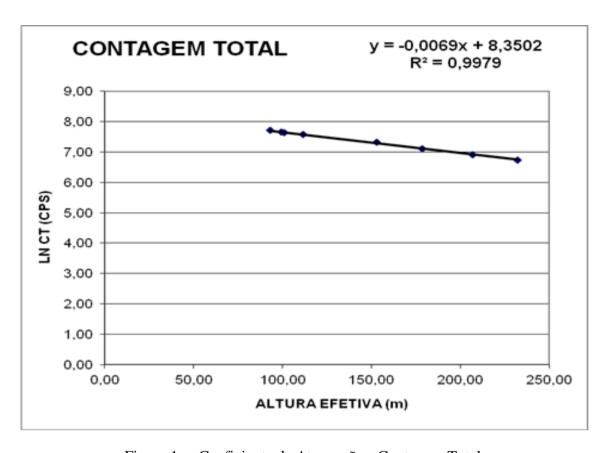


Figura 1a - Coeficiente de Atenuação - Contagem Total.

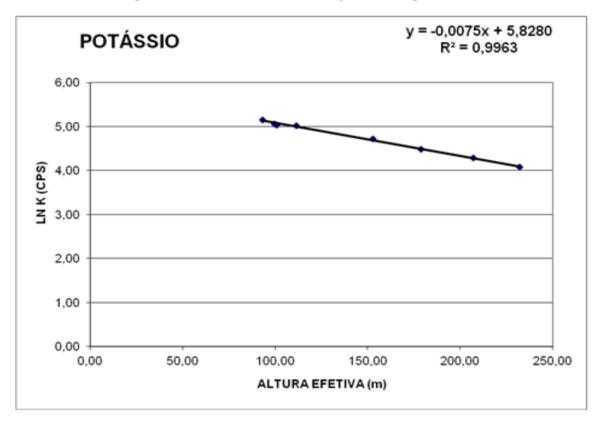


Figura 1b - Coeficiente de Atenuação - Potássio.

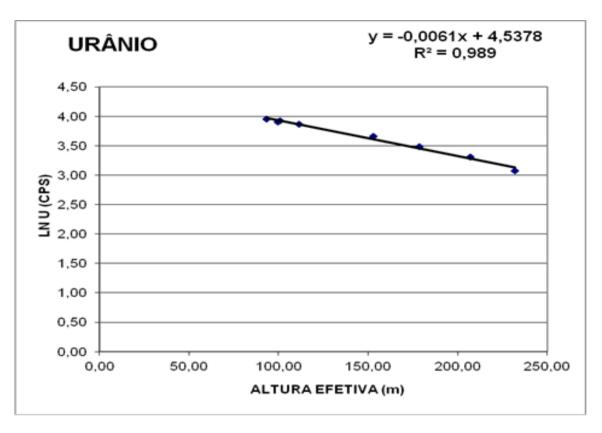


Figura 1c - Coeficiente de Atenuação - Urânio.

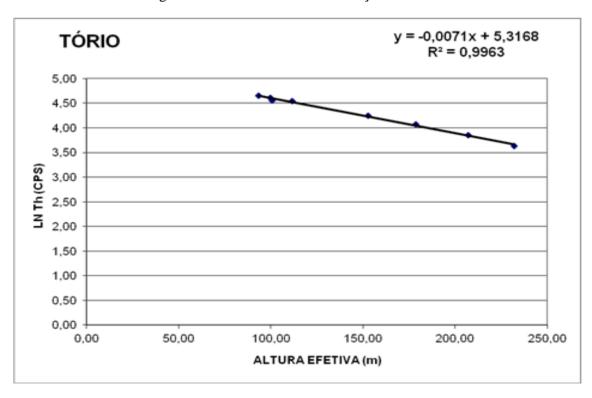
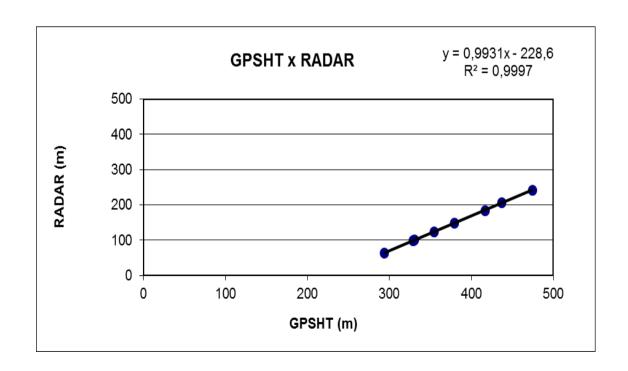
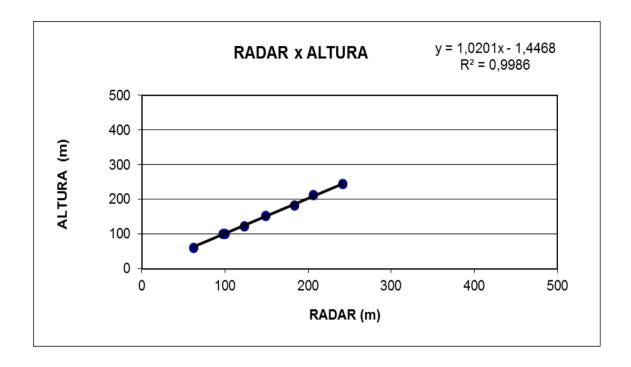
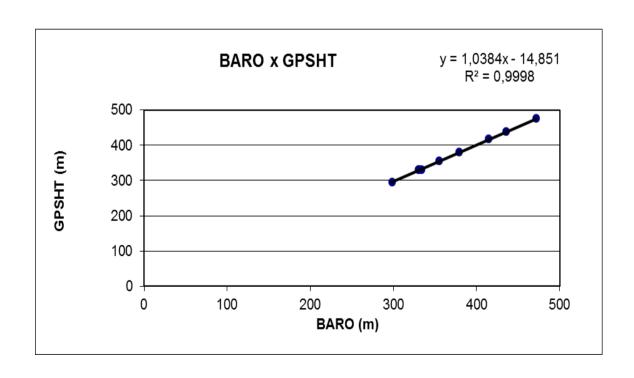


Figura 1d - Coeficiente de Atenuação - Tório.

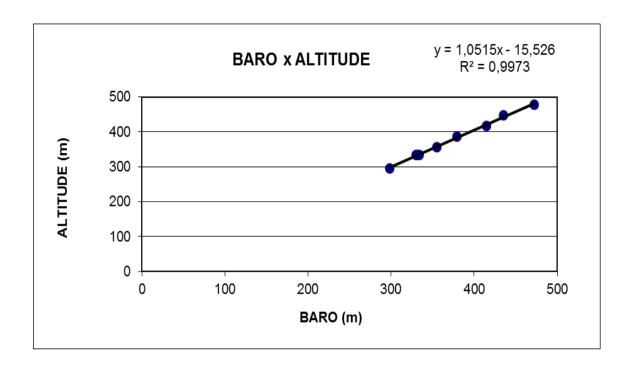
ANEXO II – TESTES CONTRATUAIS

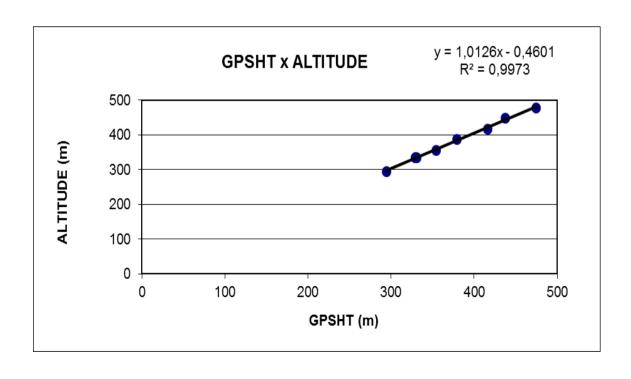

Anexo II-a – Teste de Altímetros

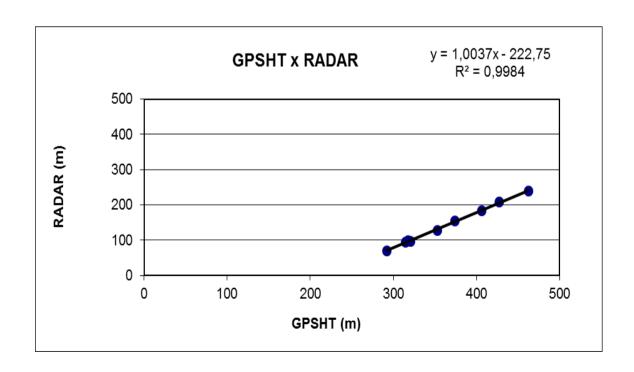

Nº Projeto	AGFW67-2013
Base	Araguaína-TO
Aeronave	PR-MCY
Data	20/05/2014
Nº Voo	028

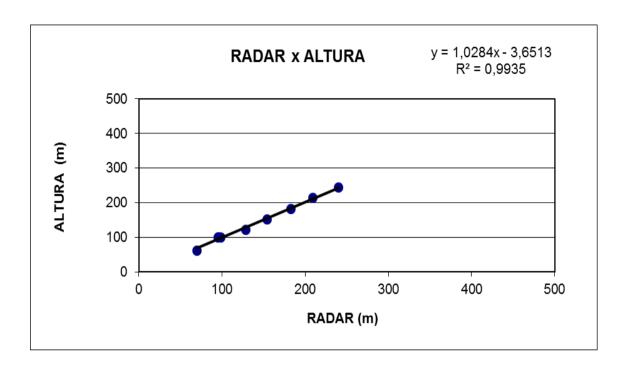

Altura: Altura teórica

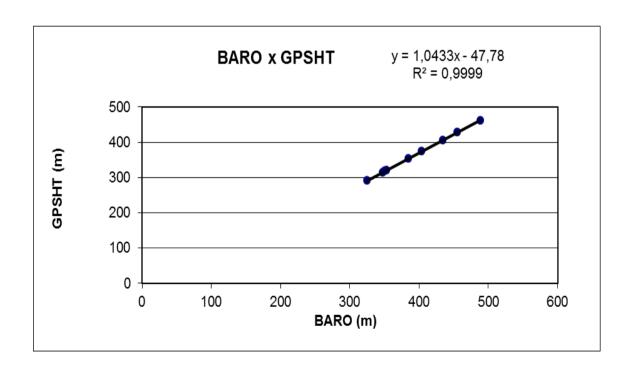
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	294,96	294,13	62,45	298,39
330	100,58	334,58	329,12	98,13	330,22
331	100,58	334,58	330,78	100,13	333,84
332	100,58	334,58	329,00	99,08	331,20
400	121,92	355,92	354,60	123,12	354,86
500	152,40	386,40	379,17	149,34	379,55
600	182,88	416,88	416,58	183,68	414,65
700	213,36	447,36	437,28	206,69	435,54
800	243,84	477,84	474,50	242,07	471,95



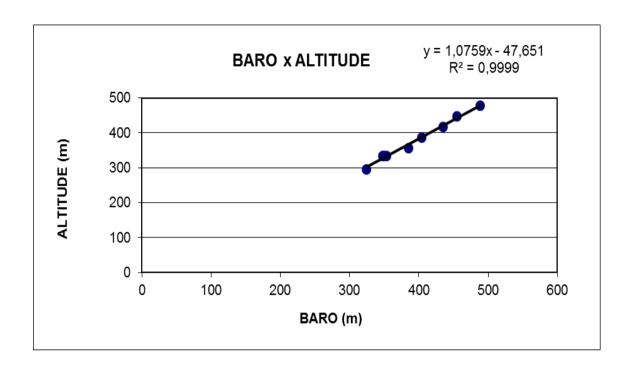


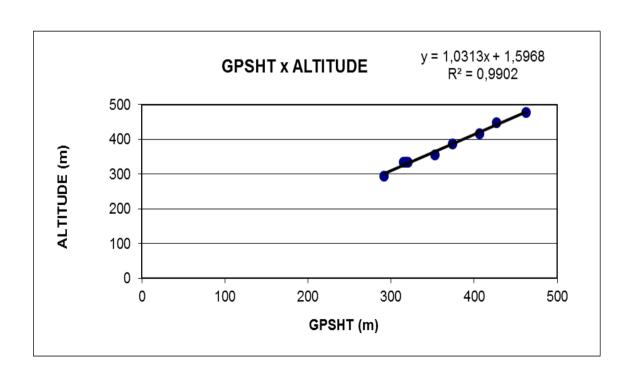


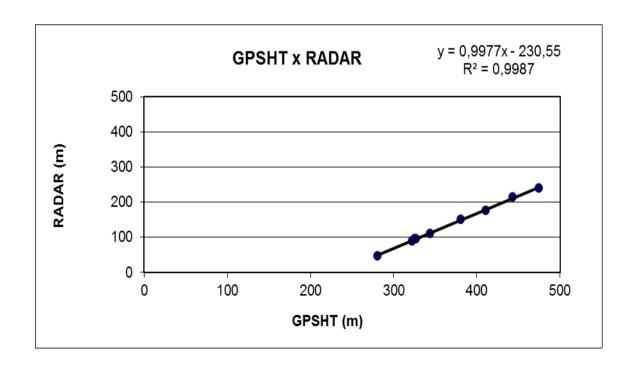

Nº Projeto	AGFW67-2013
Base	Araguaína-TO
Aeronave	PR-MCY
Data	07/06/2014
Nº Voo	042

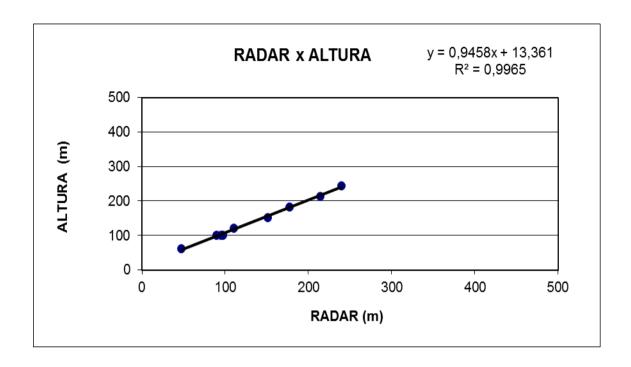

Altura: Altura teórica

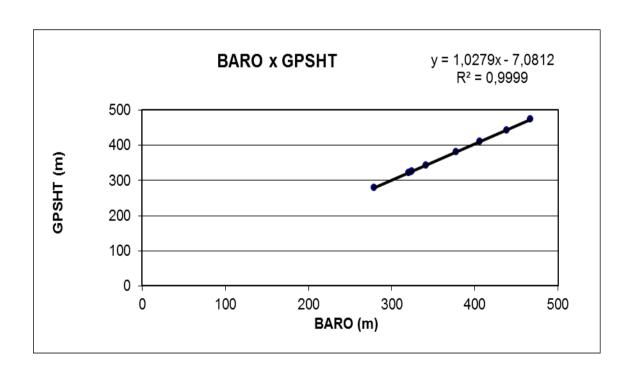
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	294,96	291,68	69,72	324,73
330	100,58	334,58	314,82	95,19	347,72
331	100,58	334,58	320,31	95,71	352,97
332	100,58	334,58	317,78	98,46	350,11
400	121,92	355,92	352,79	128,56	384,76
500	152,40	386,40	373,57	154,25	404,16
600	182,88	416,88	406,08	182,61	434,67
700	213,36	447,36	427,23	208,86	455,24
800	243,84	477,84	462,31	240,37	488,70



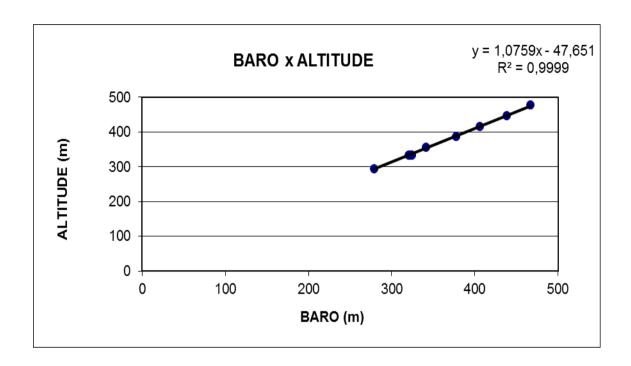


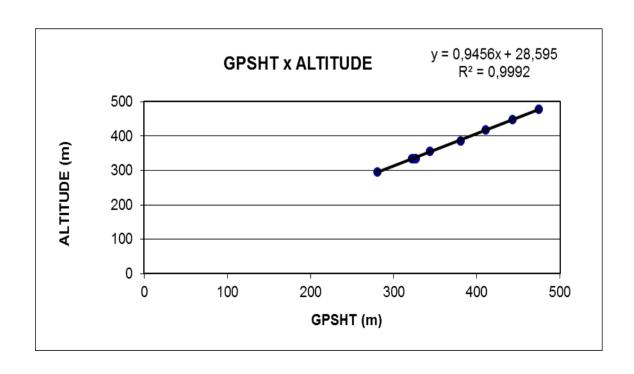


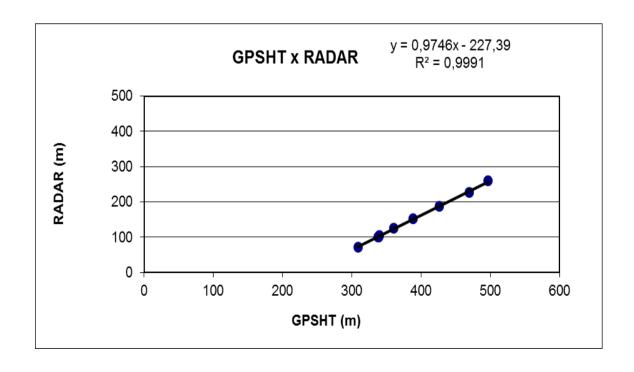

Nº Projeto	AGFW67-2013
Base	Araguaína-TO
Aeronave	PR-MCY
Data	17/06/2014
Nº Voo	054

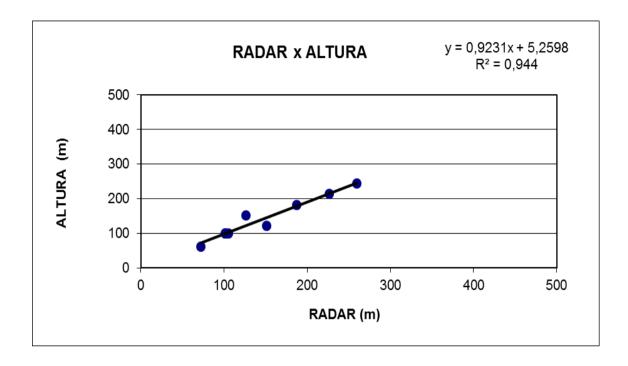

Altura: Altura teórica

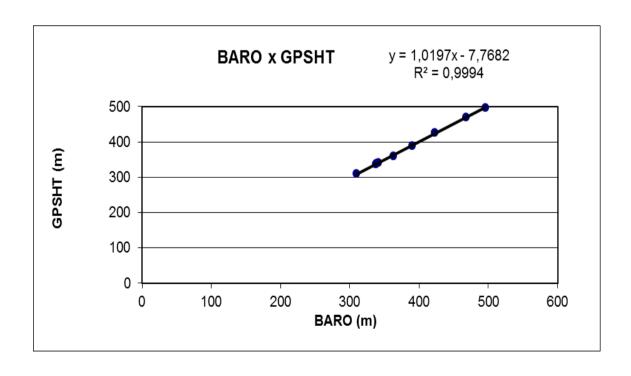
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	294,96	280,33	47,45	278,80
330	100,58	334,58	324,70	95,30	323,02
331	100,58	334,58	322,08	89,79	320,60
332	100,58	334,58	326,44	97,09	324,47
400	121,92	355,92	343,81	110,12	341,53
500	152,40	386,40	380,55	151,57	377,67
600	182,88	416,88	410,84	177,65	406,17
700	213,36	447,36	442,71	214,29	438,60
800	243,84	477,84	474,11	239,83	467,12



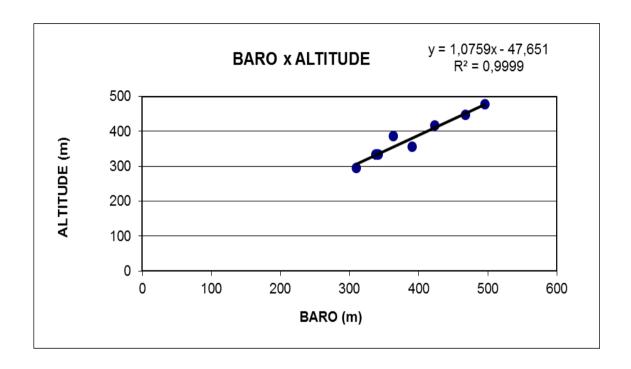


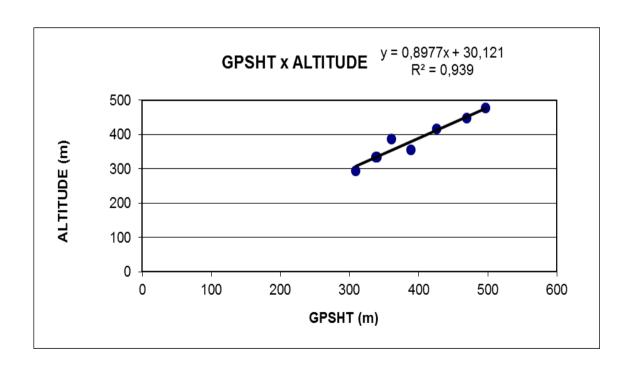


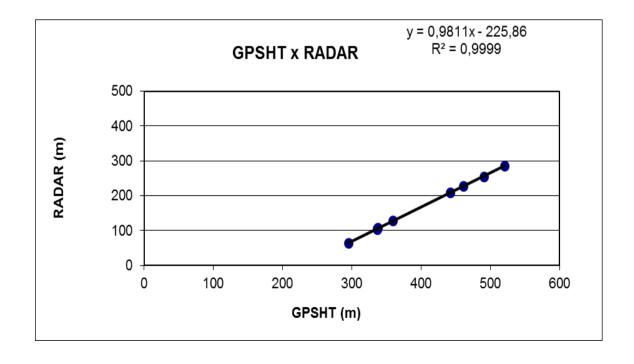

Nº Projeto	AGFW67-2013
Base	Araguaína-TO
Aeronave	PR-MCY
Data	05/07/2014
Nº Voo	078

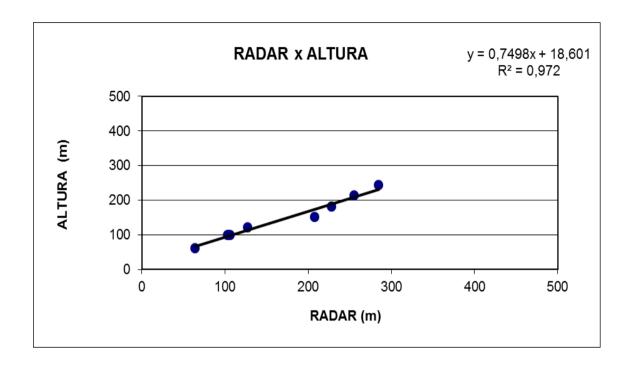

Altura: Altura teórica

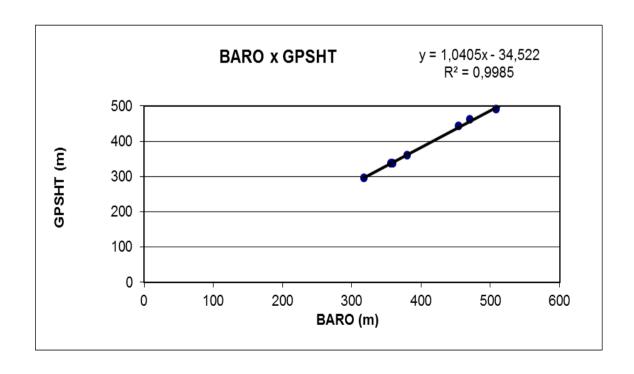
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	294,96	308,95	72,42	310,05
330	100,58	334,58	337,67	101,41	337,48
331	100,58	334,58	338,46	101,68	339,05
332	100,58	334,58	340,04	105,35	341,65
400	121,92	355,92	388,36	151,51	390,24
500	152,40	386,40	360,45	126,00	363,38
600	182,88	416,88	426,03	187,69	422,95
700	213,36	447,36	469,76	226,63	467,51
800	243,84	477,84	496,88	259,46	495,78



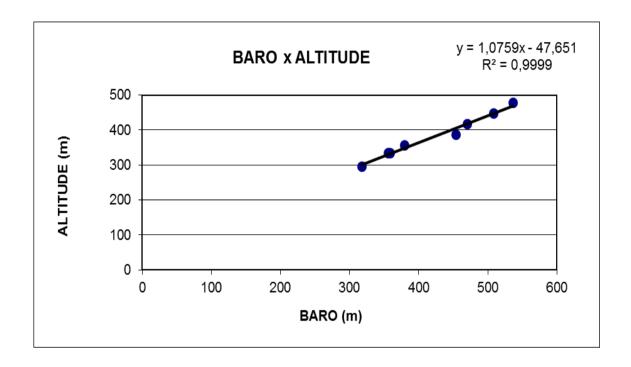


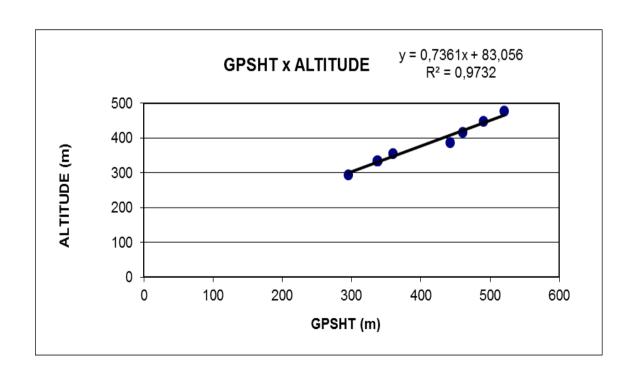


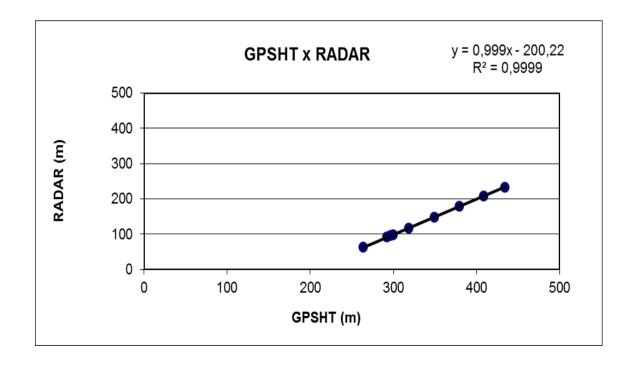

Nº Projeto	AGFW67-2013
Base	Araguaína-TO
Aeronave	PT-EPY
Data	03/07/2014
Nº Voo	302

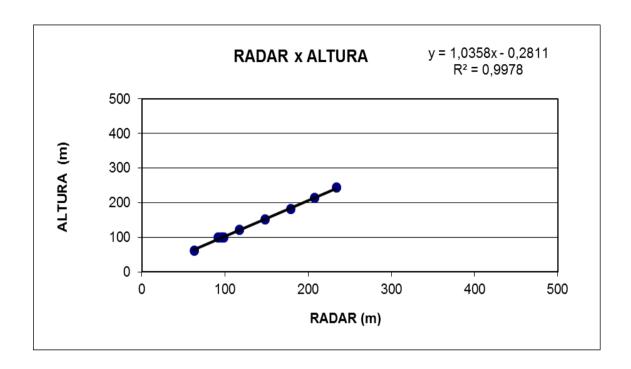

Altura: Altura teórica

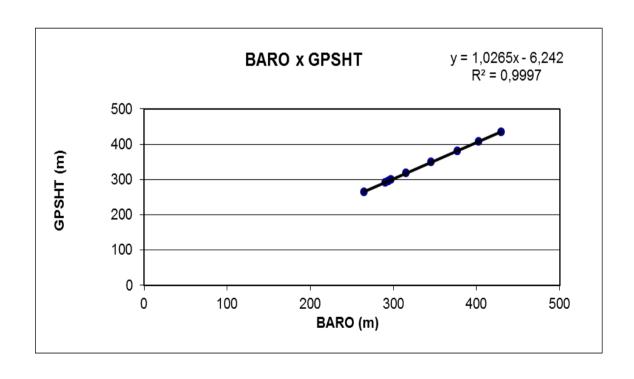
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	294,96	295,07	63,87	317,76
330	100,58	334,58	336,67	103,16	357,21
331	100,58	334,58	337,80	106,23	359,00
332	100,58	334,58	336,66	104,33	356,47
400	121,92	355,92	359,89	127,25	379,82
500	152,40	386,40	442,08	208,00	454,42
600	182,88	416,88	460,90	227,79	470,29
700	213,36	447,36	490,68	254,78	508,25
800	243,84	477,84	520,68	284,60	536,40



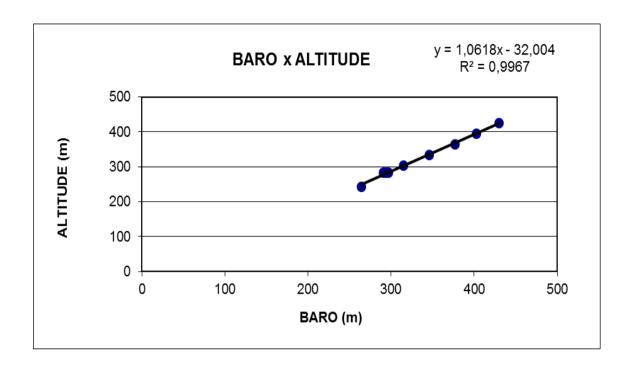


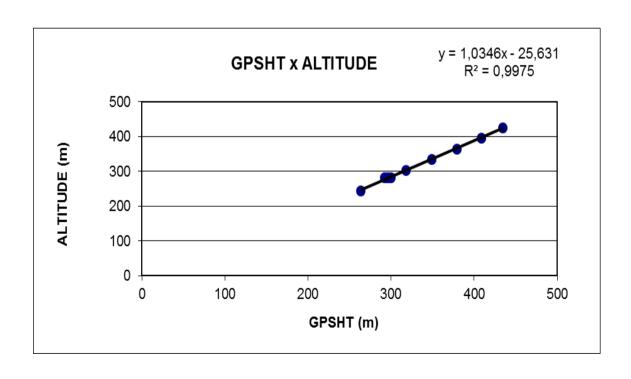


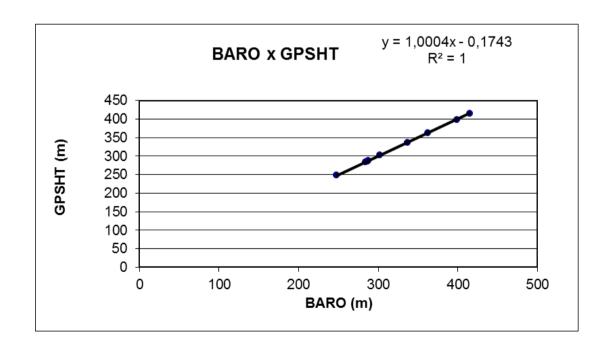

Nº Projeto	AGFW67-2013
Base	São Felix do Xingu-PA
Aeronave	PP-AGP
Data	15/06/2014
Nº Voo	601

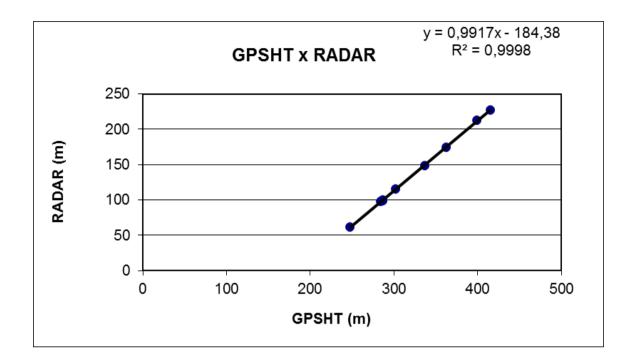

Altura: Altura teórica

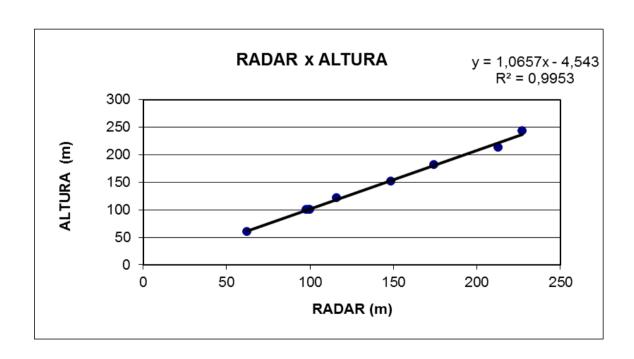
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	242,96	263,54	62,98	264,53
330	100,58	282,58	299,42	98,60	296,97
331	100,58	282,58	292,00	91,99	290,66
332	100,58	282,58	296,20	95,84	293,94
400	121,92	303,92	318,06	117,04	315,01
500	152,40	334,40	349,21	148,54	345,66
600	182,88	364,88	379,45	179,30	377,25
700	213,36	395,36	408,36	207,36	403,01
800	243,84	425,84	434,30	233,75	429,71



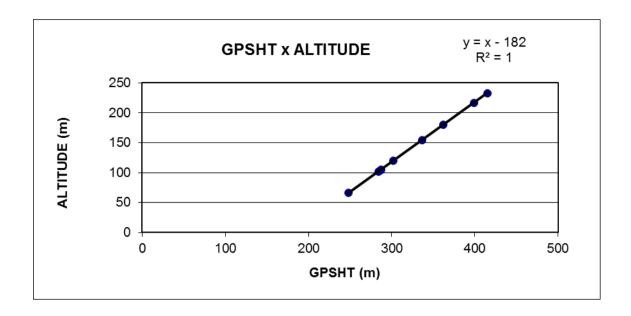


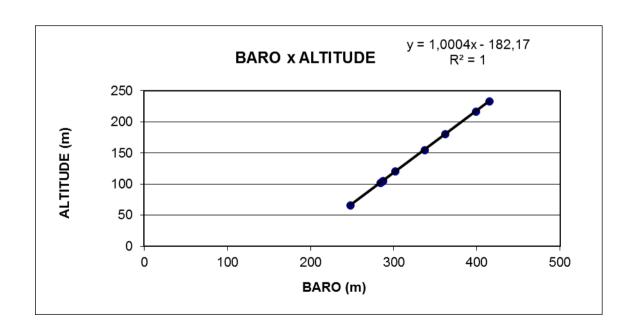



Nº Projeto	AGFW67-2013
Base	Redenção-PA
Aeronave	PP-AGP
Data	16/09/2014
Nº Voo	652

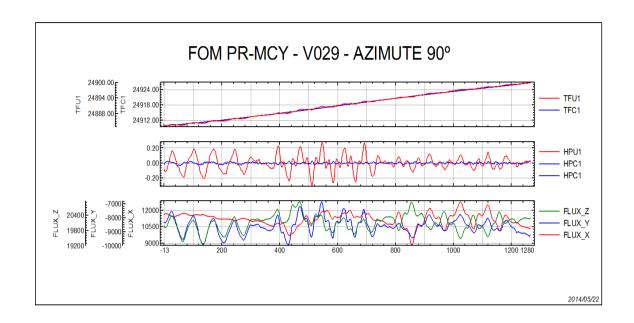

Altura: Altura teórica

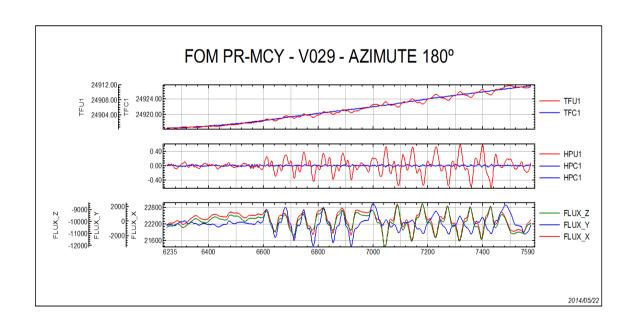
LINHA	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR ALTÍMETRO (m)	BARÔMETRO (m)
200	60,96	65,78	247,78	62,24	247,81
330	100,58	104,34	286,34	99,41	286,39
331	100,58	102,22	284,22	97,46	284,28
332	100,58	105,00	287,00	99,88	287,1
400	121,92	120,20	302,20	115,63	302,2
500	152,40	154,70	336,70	148,38	337
600	182,88	180,35	362,35	174,10	362,34
700	213,36	216,80	398,80	212,66	398,79
800	243,84	232,99	414,99	227,02	414,97



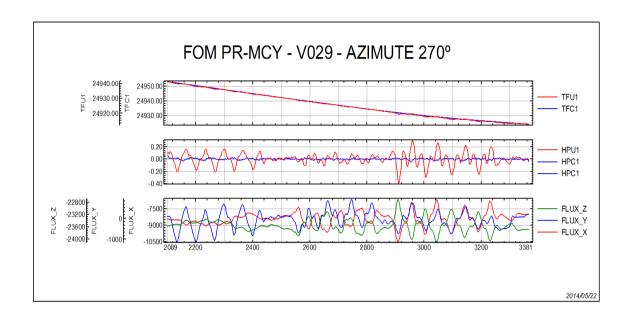


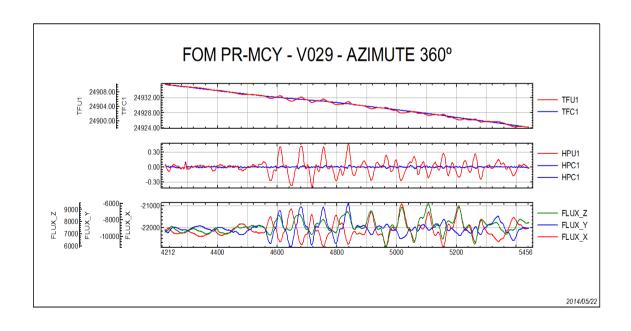
Anexo II-b – Compensação Magnética

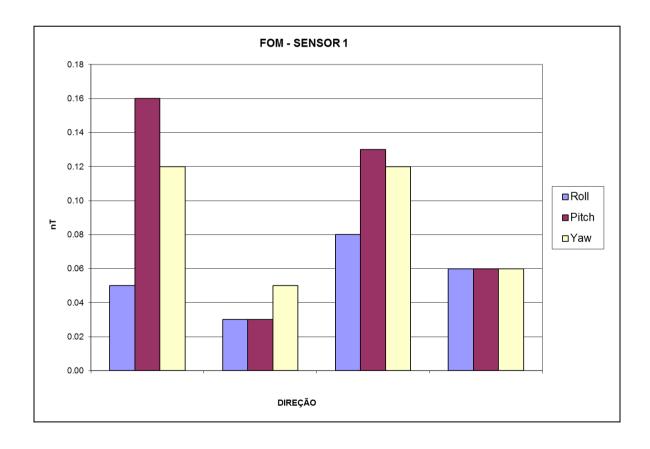


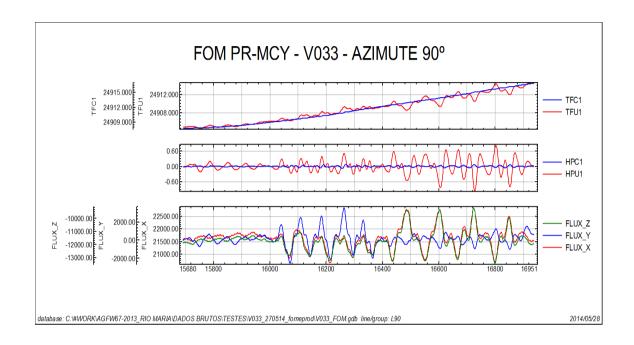

Número do Projeto	AGFW67-2013
Base	Araguaina - TO
Aeronave	PR-MCY
Data	21/05/2014
Voo	029

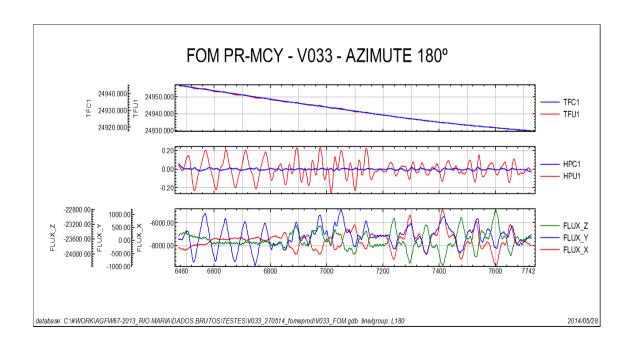
SENSOR 1	-				
Linha	Azimute	PITCH (nT)	ROLL (nT)	YAW (nT)	FOM (nT)
1	90°	0,05	0,05	0,05	0,15
2	180°	0,09	0,08	0,08	0,25
3	270°	0,09	0,04	0,07	0,20
4	360°	0,14	0,06	0,06	0,26
				TOTAL	0,86



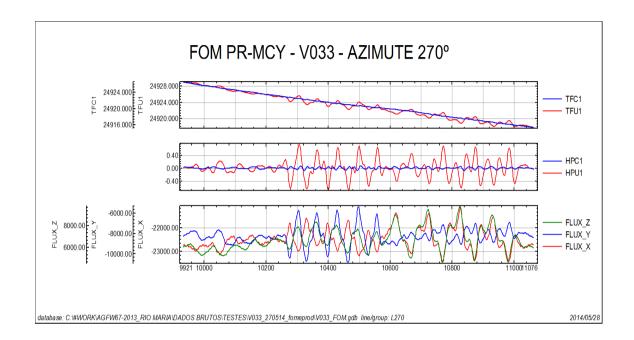


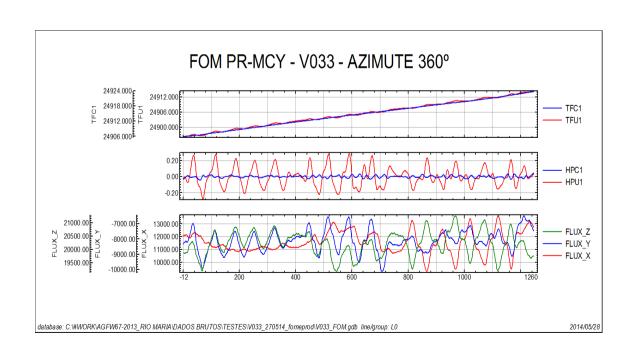


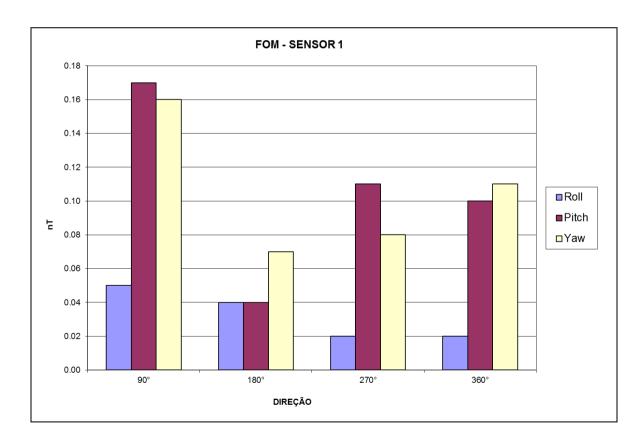


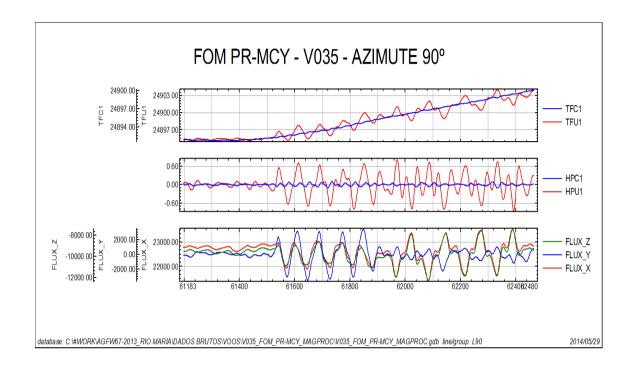

Número do Projeto	AGFW67-2013
Base	Araguaina - TO
Aeronave	PR-MCY
Data	27/05/2014
Voo	033

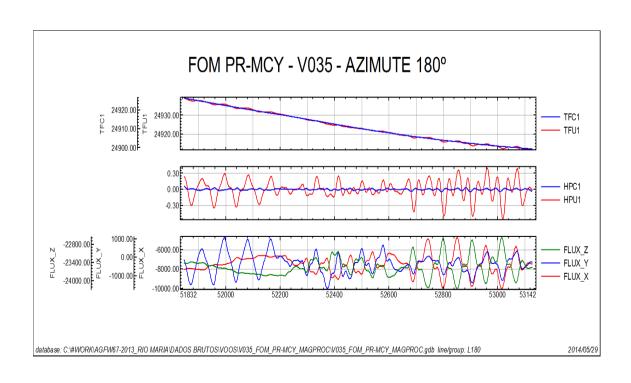
SENSOR 1					
Linha	Azimute	PITCH (nT)	ROLL (nT)	YAW (nT)	FOM (nT)
1	90°	0,05	0,16	0,12	0,33
2	180°	0,03	0,03	0,05	0,11
3	270°	0,08	0,13	0,12	0,33
4	360°	0,06	0,06	0,06	0,18
				TOTAL	0,95



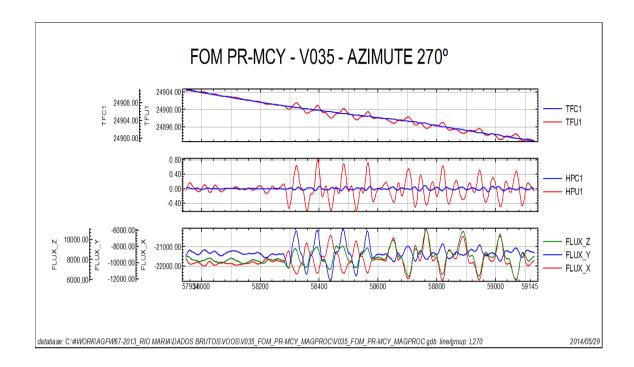


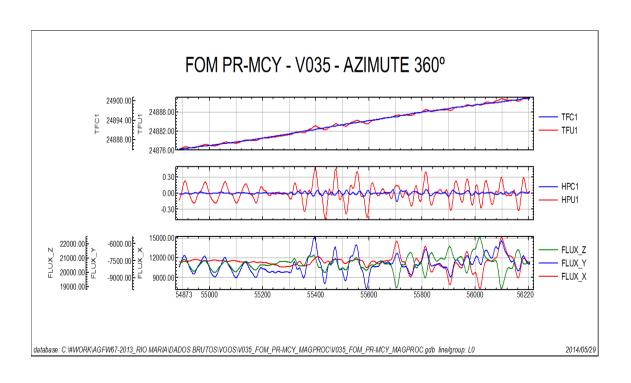


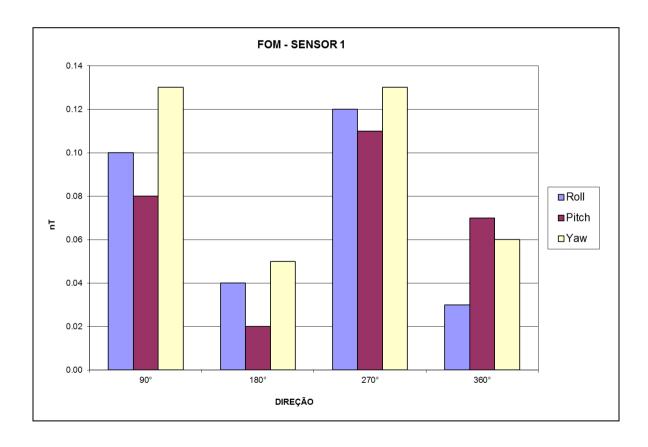


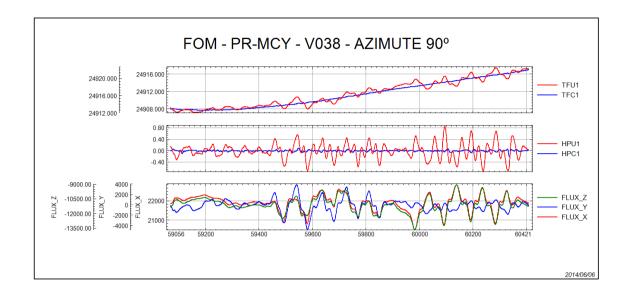

Número do Projeto	AGFW67-2013
Base	Araguaina - TO
Aeronave	PR-MCY
Data	29/05/2014
Voo	035

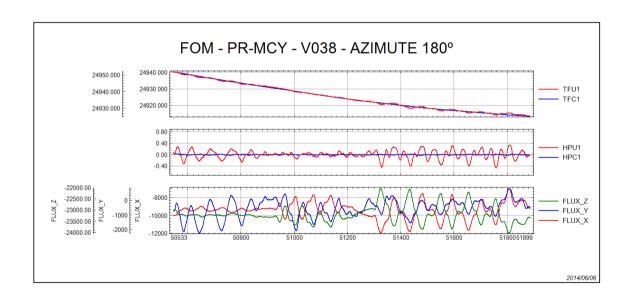
SENSOR 1	-				
Linha	Azimute	PITCH (nT)	ROLL (nT)	YAW (nT)	FOM (nT)
1	90°	0,05	0,17	0,16	0,38
2	180°	0,04	0,04	0,07	0,15
3	270°	0,02	0,11	0,08	0,21
4	360°	0,02	0,10	0,11	0,23
				TOTAL	0,97



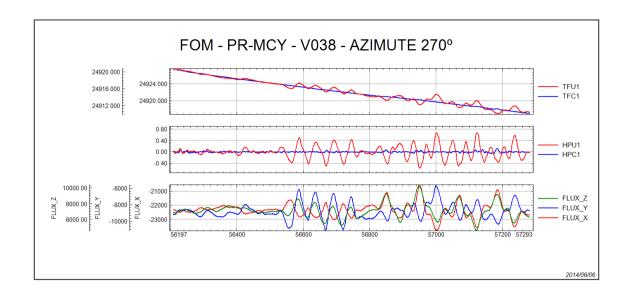


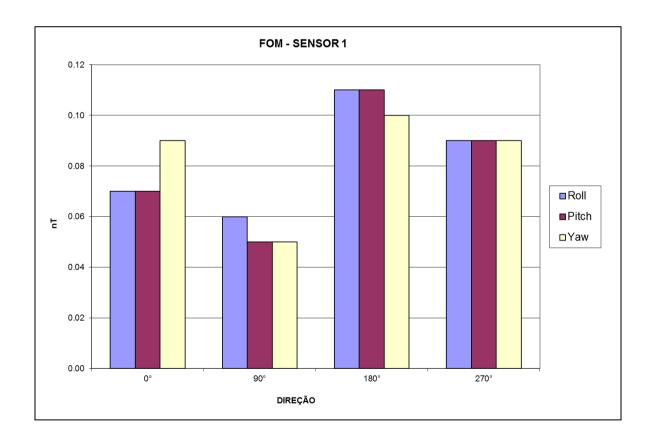


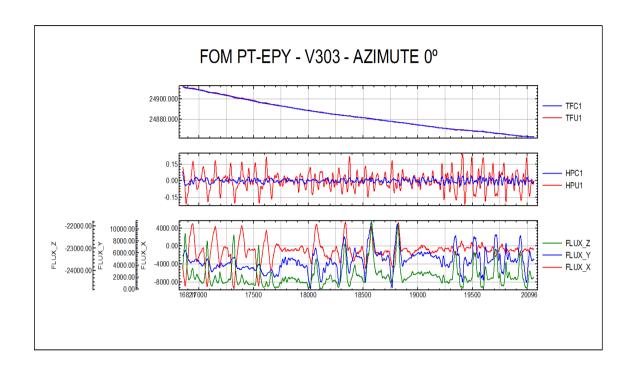


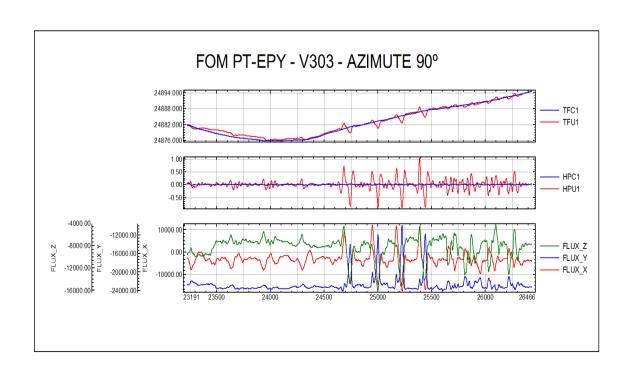

Número do Projeto	AGFW67-2013
Base	Araguaina - TO
Aeronave	PR-MCY
Data	05/06/2014
Voo	038

SENSOR 1	-				
Linha	Azimute	PITCH (nT)	ROLL (nT)	YAW (nT)	FOM (nT)
1	90°	0,10	0,08	0,13	0,31
2	180°	0,04	0,02	0,05	0,11
3	270°	0,12	0,11	0,13	0,36
4	360°	0,03	0,07	0,06	0,16
				TOTAL	0,94

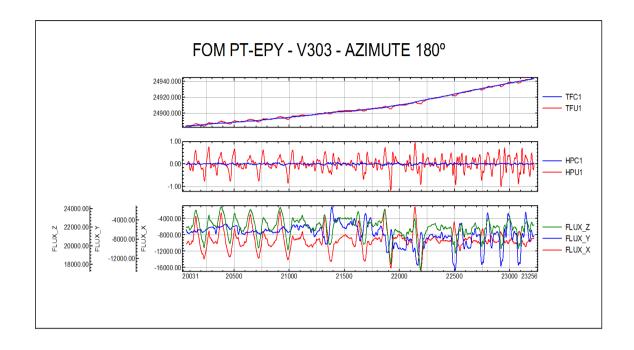


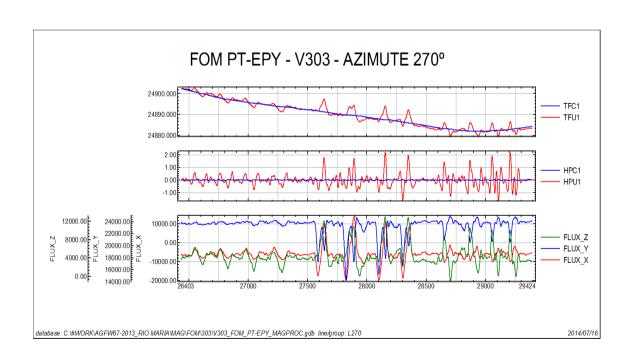


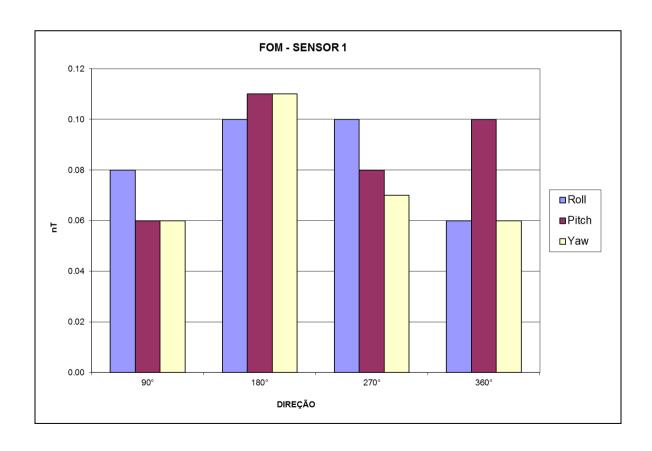


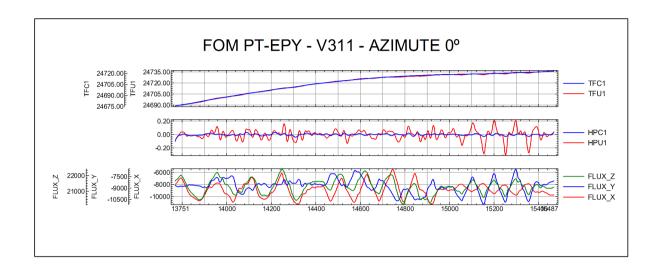

Número do Projeto	AGFW67-2013
Base	Araguaina - TO
Aeronave	PT-EPY
Data	09/07/2014
Voo	303

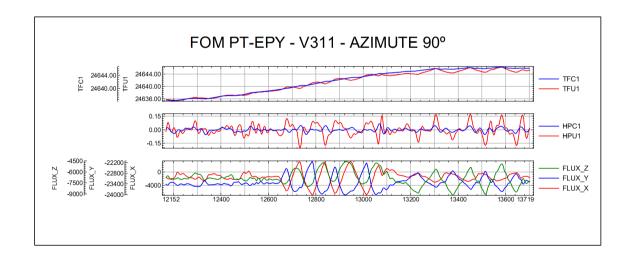
SENSOR 1					
Linha	Azimute	PITCH	ROLL	YAW	FOM
- Dilliu	1 izimute	(\mathbf{nT})	(nT)	(nT)	(nT)
0	0°	0,07	0,07	0,09	0,23
90	90°	0,06	0,05	0,05	0,16
180	180°	0,11	0,11	0,10	0,32
270	270°	0,09	0,09	0,09	0,27
				TOTAL	0,98



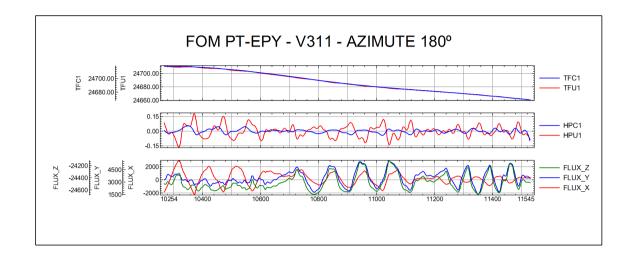


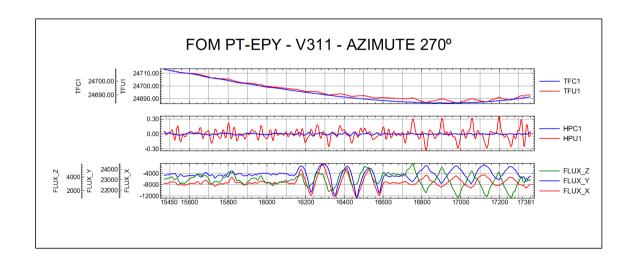


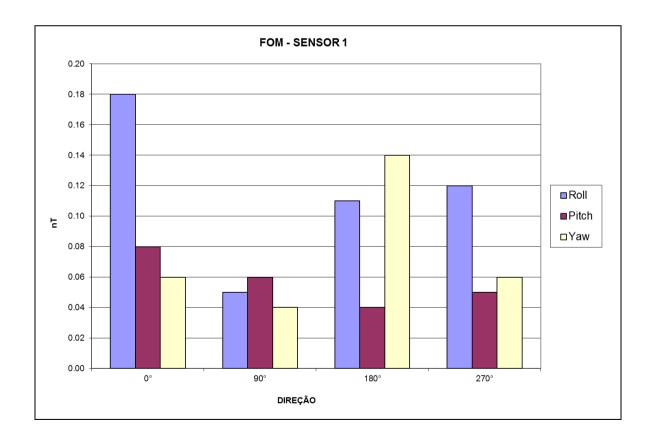


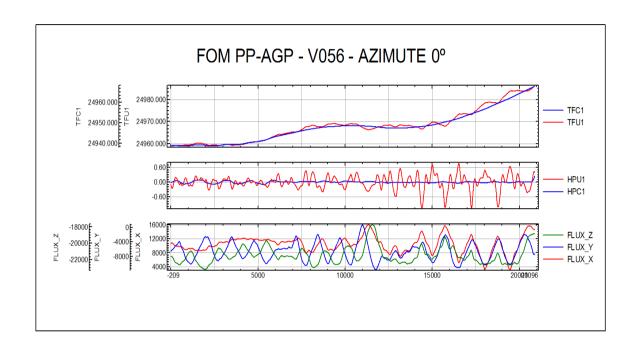

Número do Projeto	AGFW67-2013
Base	Redenção - TO
Aeronave	PT-EPY
Data	31/07/2014
Voo	311

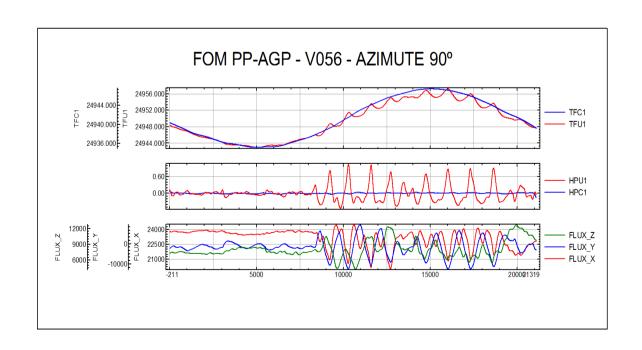
SENSOR 1	-	-			
Linha	Azimute	PITCH (nT)	ROLL (nT)	YAW (nT)	FOM (nT)
0	0°	0,08	0,06	0,06	0,20
90	90°	0,10	0,11	0,11	0,32
180	180°	0,10	0,08	0,07	0,25
270	270°	0,06	0,10	0,06	0,22
				TOTAL	0,99



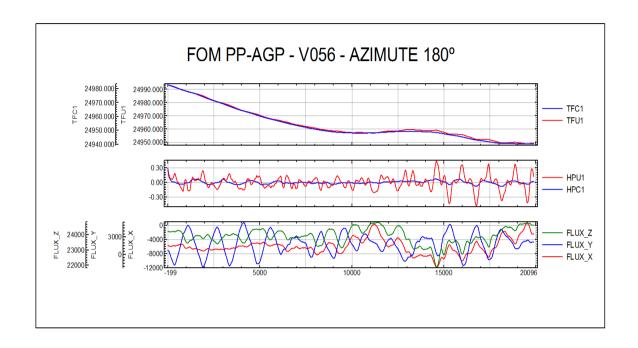


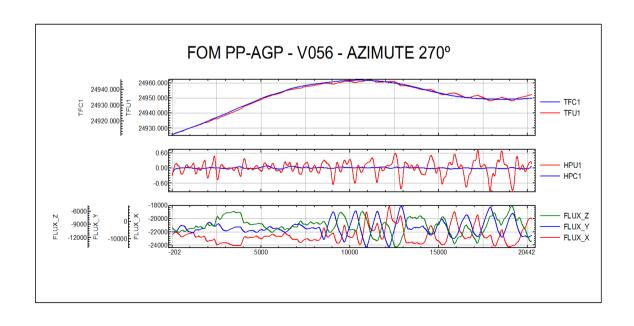


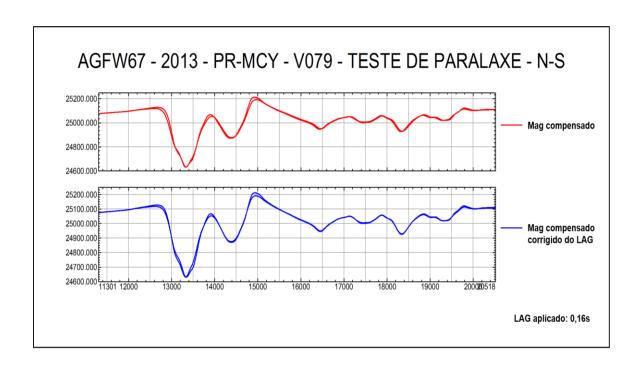



Número do Projeto	AGFW69-2013
Base	São Felix do Xingu - PA
Aeronave	PP-AGP
Data	22/07/2014
Voo	602

SENSOR 1					
Linha	Azimute	PITCH (nT)	ROLL (nT)	YAW (nT)	FOM (nT)
0	0°	0,18	0,08	0,06	0,32
90	90°	0,05	0,06	0,04	0,15
180	180°	0,11	0,04	0,14	0,29
270	270°	0,12	0,05	0,06	0,23
				TOTAL	0,99

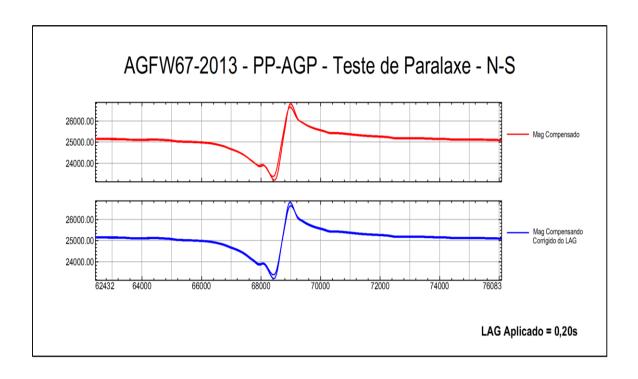






Anexo II-c – Teste de Paralaxe

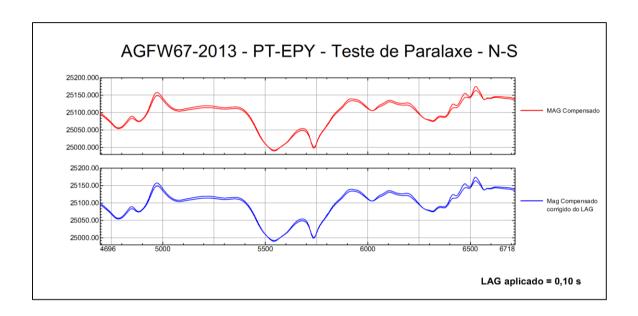
Nº Projeto	AGFW67-2013
Base	Araguaína – TO
Aeronave	PR-MCY
Data	05/07/2014
Nº Voo	079



MAG Compensado = Campo Magnético Total Compensado

MAG Compensado corrigido de LAG = Campo Magnético Total Compensado Corrigido Paralaxe (0,16 segundos)

Nº Projeto	AGFW67-2013
Base	Redenção-PA
Aeronave	PP-AGP
Data	13/10/2014
Nº Voo	686



MAG Compensado = Campo Magnético Total Compensado

MAG Compensado corrigido de LAG = Campo Magnético Total Compensado Corrigido Paralaxe (0,20 segundos)

Nº Projeto	AGFW67-2013
Base	Redenção-PA
Aeronave	PT-EPY
Data	12/07/2014
Nº Voo	304

MAG Compensado = Campo Magnético Total Compensado

MAG Compensado corrigido de LAG = Campo Magnético Total Compensado Corrigido Paralaxe (0,10 segundos)

Anexo II-d – Teste de Repetibilidade Radioativa

TESTE DE REPETIBILIDADE RADIOATIVA PP-AGP (LOW LEVEL = 100m) Base: Redenção-PA				
DATA	HORÁRIO	voo	TÓRIO	URÂNIO
29/jul/14	9/jul/14 INÍCIO 604	55,00	41,00	
29/jul/ 14	FIM	004	28,00	32,00
20/jul/4.4	INÍCIO	COE	59,00	73,00
30/jul/14	FIM	605	39,00	43,00
30/jul/14	INÍCIO	606	-	-
30/jul/ 14	FIM	000	36,00	36,00
31/jul/14	INÍCIO	607	52,00	60,00
3 1/jul/ 14	FIM	607	45,00	43,00
24/iul/47	INÍCIO	608	-	-
31/jul/14	FIM	000	48,00	42,00
03/ago/14	INÍCIO	613	57,00	48,00
03/ag0/14	FIM	013	57,00	50,00
04/000/14	INÍCIO	614	46,00	61,00
04/ago/14	FIM	014	52,00	49,00
04/200/14	INÍCIO	615		-
04/ago/14	FIM	013	35,00	36,00
05/202/14	INÍCIO	616	50,00	85,00
05/ago/14	FIM	7 616	-	-
06/ago/14	INÍCIO	617	35,00	63,00
06/ag0/14	FIM	017	46,00	49,00
07/ago/14	INÍCIO	618	41,00	66,00
07/ag0/14	FIM	010	43,00	50,00
09/090/14	INÍCIO	619	55,00	75,00
08/ago/14	FIM	019	53,00	48,00
08/ago/14	INÍCIO	620	-	-
06/ag0/14	FIM	020	48,00	43,00
02/ago/14	INÍCIO	611	28,00	60,00
02/ag0/14	FIM	011	43,00	44,00
02/ago/14	INÍCIO	612	-	-
02/ag0/14	FIM	012	-	-
12/ago/14	INÍCIO	621	45,00	67,00
12/agu/14	FIM	021	36,00	41,00
13/ago/14	INÍCIO	622	50,00	73,00
13/agu/14	FIM	022	38,00	50,00
13/ago/14	INÍCIO	623	-	-
10/4g0/14	FIM	020	45,00	47,00
14/ago/14	INÍCIO	624	44,00	63,00
	FIM		34,00	39,00

DATA	HORÁRIO	voo	TÓRIO	URÂNIO
15/ago/14	INÍCIO	625	43,00	59,00
15/ago/14	FIM	023	51,00	44,00
16/ago/14	INÍCIO	626	44,00	57,00
10/ag0/14	FIM	020	33,00	38,00
16/ago/14	INÍCIO	627	-	-
10/ag0/14	FIM	021	43,00	37,00
17/ago/14	INÍCIO	628	44,00	48,00
177ag0/14	FIM	020	44,00	42,00
18/ago/14	INÍCIO	629	29,00	58,00
10/agu/14	FIM	029	41,00	38,00
10/000/14	INÍCIO	630	50,00	55,00
19/ago/14	FIM	030	-	-
10/000/14	INÍCIO	621	-	-
19/ago/14	FIM	631	42,00	39,00
20/202/14	INÍCIO	632	57,00	54,00
20/ago/14	FIM	032	44,00	44,00
20/202/14	INÍCIO	633	-	-
20/ago/14	FIM	033	42,00	38,00
04/000/44	INÍCIO	004	51,00	48,00
21/ago/14	FIM	634	38,00	37,00
22/ago/14	INÍCIO	635	50,00	60,00
22/ay0/14	FIM	033	43,00	50,00
23/ago/14	INÍCIO	637	46,00	69,00
23/ag0/14	FIM	037	47,00	50,00
24/ago/14	INÍCIO	640	43,00	58,00
24/agu/14	FIM	040	38,00	39,00
24/ago/14	INÍCIO	641	-	-
24/ag0/14	FIM	041	50,00	46,00
25/ago/14	INÍCIO	642	43,00	44,00
25/agu/14	FIM	042	48,00	48,00
15/set/14	INÍCIO	649	46,00	69,00
13/361/14	FIM	049	52,00	49,00
15/set/14	INÍCIO	650	-	-
10/36//14	FIM	550	38,00	38,00
16/set/14	INÍCIO	651	48,00	61,00
10/361/14	FIM	001	52,00	50,00
16/set/14	INÍCIO	652	-	-
10/36//14	FIM	002	44,00	44,00
17/set/14	INÍCIO	653	41,00	52,00
17/360/14	FIM	000	46,00	45,00

DATA	HORÁRIO	voo	TÓRIO	URÂNIO
17/set/14	INÍCIO	654	-	-
17/36014	FIM	034	46,00	41,00
18/set/14	INÍCIO	655	42,00	54,00
10/36/14	FIM	000	44,00	42,00
19/set/14	INÍCIO	GEG	44,00	67,00
19/56/14	FIM	656	49,00	51,00
19/set/14	INÍCIO	657	-	-
19/56/14	FIM	657	46,00	42,00
20/set/14	INÍCIO	GE O	-	-
20/56/14	FIM	658	50,00	49,00
20/set/14	INÍCIO	650	-	-
20/Sel/ 14	FIM	659	50,00	46,00
21/aat/14	INÍCIO	660	42,00	40,00
21/set/14	FIM	660	-	-
20/2 24/4 4	INÍCIO	004	47,00	56,00
22/set/14	FIM	661	50,00	52,00
00/ 1/44	INÍCIO	000	-	-
22/set/14	FIM	662	49,00	45,00
00/ ////	INÍCIO	000	38,00	52,00
23/set/14	FIM	663	47,00	50,00
04/ //44	INÍCIO	004	45,00	50,00
24/set/14	FIM	664	45,00	45,00
0.4/ ./4.4	INÍCIO	205	-	-
24/set/14	FIM	665	44,00	54,00
05/ ////	INÍCIO	200	39,00	64,00
25/set/14	FIM	666	41,00	44,00
05/ 1/44	INÍCIO	007	-	-
25/set/14	FIM	667	43,00	40,00
00/ 1/44	INÍCIO	000	45,00	70,00
26/set/14	FIM	668	44,00	45,00
00/ ///	INÍCIO	000	-	-
26/set/14	FIM	669	43,00	39,00
07/ ///	INÍCIO	070	45,00	71,00
27/set/14	FIM	670	45,00	50,00
07/ ///	INÍCIO	07.1	-	-
27/set/14	FIM	671	42,00	43,00
001	INÍCIO		40,00	64,00
29/set/14	FIM	672	47,00	49,00
001	INÍCIO	2==	-	-
29/set/14	FIM	673	39,00	43,00
			22,00	13,00

DATA	HORÁRIO	voo	TÓRIO	URÂNIO
30/set/14	INÍCIO	674	34,00	50,00
00/3CV 14	FIM	074	45,00	48,00
01/out/14	INÍCIO	675	42,00	50,00
01/000/14	FIM	073	43,00	50,00
01/out/14	INÍCIO	677	-	-
01/000/14	FIM	011	30,00	35,00
04/out/14	INÍCIO	679	44,00	45,00
04/000/14	FIM	019	45,00	44,00
05/out/14	INÍCIO	680	36,00	55,00
05/001/14	FIM	000	45,00	47,00
05/out/14	INÍCIO	601	-	-
05/0ul/14	FIM	681	26,00	27,00
06/out/14	INÍCIO	682	34,00	56,00
06/001/14	FIM	002	46,00	43,00
44/204/44	INÍCIO	000	-	-
11/out/14	FIM	683	47,00	44,00
40/	INÍCIO	004	44,00	61,00
12/out/14	FIM	684	39,00	43,00
40/ //44	INÍCIO	005	-	-
12/out/14	FIM	685	41,00	41,00
40/	INÍCIO	000	45,00	61,00
13/out/14	FIM	686	34,00	38,00
40/ //44	INÍCIO	007	-	-
13/out/14	FIM	687	36,00	36,00
44/ //44	INÍCIO	000	-	-
14/out/14	FIM	689	39,00	40,00
4.4/ ./4.4	INÍCIO	000	41,00	65,00
14/out/14	FIM	688	32,00	37,00
45/ //44	INÍCIO	200	35,00	47,00
15/out/14	FIM	690	37,00	42,00
45/ //44	INÍCIO	204	-	-
15/out/14	FIM	691	34,00	35,00
40/	INÍCIO	000	39,00	61,00
16/out/14	FIM	692	32,00	43,00
40/	INÍCIO	000	-	-
16/out/14	FIM	693	39,00	42,00
471	INÍCIO	00.4	32,00	49,00
17/out/14	FIM	694	39,00	44,00
4=1	INÍCIO	0.5-	-	-
17/out/14	FIM	695	-	-

DATA	HORÁRIO	voo	TÓRIO	URÂNIO
18/out/14	INÍCIO	696	43,00	54,00
10/000/14	FIM	030	38,00	36,00
18/out/14	INÍCIO	697	-	-
10/00/14	FIM	037	-	-
18/out/14	INÍCIO	698	-	-
10/000/14	FIM	030	29,00	35,00
20/out/14	INÍCIO	699	42,00	51,00
20/000/14	FIM	000	-	-
20/out/14	INÍCIO	700	-	-
20/000/14	FIM	700	39,00	44,00
20/out/14	INÍCIO	701	-	-
20/00/14	FIM	701	30,00	33,00
21/out/14	INÍCIO	702	39,00	56,00
21/000/14	FIM	702	30,00	40,00
21/out/14	INÍCIO	703	-	-
21/000/14	FIM	700	45,00	46,00
22/out/14	INÍCIO	704	43,00	45,00
22/00011	FIM	704	39,00	39,00
02/nov/14	INÍCIO	709	41,00	38,00
02/1104/11	FIM	700	42,00	49,00
03/nov/14	INÍCIO	710	39,00	48,00
00/1101/11	FIM	,	44,00	49,00
04/nov/14	INÍCIO	711	35,00	40,00
0 1/110 1/11	FIM		42,00	41,00
04/nov/14	INÍCIO	712	-	-
0 1/110 1/11	FIM	, , , _	27,00	32,00
05/nov/14	INÍCIO	713	41,00	43,00
00/1101/11	FIM	,	33,00	34,00
05/nov/14	INÍCIO	714	-	-
00/110 1/11	FIM	' ' '	26,00	30,00
06/nov/14	INÍCIO	715	39,00	48,00
00/1101/11	FIM	,	26,00	33,00
06/nov/14	INÍCIO	716	-	-
2227711	FIM		28,00	31,00
07/nov/14	INÍCIO	717	36,00	63,00
2	FIM		27,00	37,00
08/nov/14	INÍCIO	719	35,00	49,00
33,37,11	FIM		41,00	50,00
09/nov/14	INÍCIO	721	31,00	37,00
09/110 // 14	FIM	121	29,00	38,00

TESTE DE REPETIBILIDADE RADIOATIVA PR-MCY (LOW LEVEL = 100m) Base: Araguaina-TO				
DATA	HORÁRIO	voo	TÓRIO	URÂNIO
08/fev/14	INÍCIO	017	46,00	37,00
00/16 1/14	FIM	017	45,00	39,00
24/mai/14	INÍCIO	030	30,00	31,00
24/11101/14	FIM	030	33,00	38,00
27/mai/14	INÍCIO	033	35,00	36,00
21/11101/14	FIM	000	33,00	40,00
27/mai/14	INÍCIO	034	-	-
21/11101/14	FIM	004	33,00	37,00
29/mai/14	INÍCIO	035	31,00	35,00
23/111al/14	FIM	033	30,00	43,00
29/mai/14	INÍCIO	036	-	-
23/111al/14	FIM	030	33,00	41,00
30/mai/14	INÍCIO	037	31,00	39,00
30/111al/14	FIM	037	33,00	41,00
0E/ium/4.4	INÍCIO	020	31,00	41,00
05/jun/14	FIM	038	33,00	40,00
06/jup/1/	INÍCIO	040	30,00	32,00
06/jun/14	FIM	040	32,00	37,00
07/ium/4.4	INÍCIO	041	31,00	41,00
07/jun/14	FIM	041	31,00	42,00
08/jun/14	INÍCIO	043	34,00	42,00
06/jun/14	FIM	043	35,00	45,00
09/jun/1/	INICIO	044	-	-
08/jun/14	FIM	044	32,00	37,00
09/jun/14	INICIO	045	30,00	36,00
09/jun/14	FIM	043	35,00	47,00
09/jun/14	INICIO	046	-	-
Uərjun/14	FIM	040	34,00	41,00
10/jun/14	INICIO	047	31,00	38,00
10/juii/14	FIM	047	33,00	39,00
10/jun/14	INICIO	048		-
10/juli/ 14	FIM	040	31,00	35,00
44/:144	INICIO	049	30,00	34,00
11/jun/14	FIM	049	34,00	39,00
11/jun/14	INICIO	050	-	-
1 1/jul1/ 1 4	FIM	050	31,00	31,00
12/jun/14	INICIO	051	32,00	36,00
12/juli/14	FIM	001	32,00	37,00

DATA	HORÁRIO	voo	TÓRIO	URÂNIO
12/jun/14	INICIO	052	-	-
12/juli/14	FIM	002	33,00	33,00
13/jun/14	INICIO	053	35,00	40,00
13/juli/14	FIM	000	36,00	43,00
18/jun/14	INICIO	055	30,00	39,00
10/juli/14	FIM	033	30,00	43,00
18/jun/14	INICIO	056	-	-
10/juli/14	FIM	030	33,00	41,00
19/jun/14	INICIO	057	28,00	42,00
19/juli/14	FIM	037	26,00	40,00
10/jup/14	INICIO	050	-	-
19/jun/14	FIM	058	33,00	44,00
20/jup/4.4	INICIO	050	32,00	45,00
20/jun/14	FIM	059	31,00	46,00
20/:/4.4	INICIO	000	-	-
20/jun/14	FIM	060	37,00	46,00
04/: /44	INICIO	004	31,00	41,00
21/jun/14	FIM	061	33,00	43,00
04/11 /44	INICIO	000	-	-
21/jun/14	FIM	062	34,00	44,00
00/: /4.4	INICIO	000	34,00	44,00
22/jun/14	FIM	063	-	-
00" // /	INICIO	004	31,00	39,00
22/jun/14	FIM	064	34,00	46,00
00" // /	INICIO		34,00	44,00
23/jun/14	FIM	065	33,00	46,00
00/: /4.4	INICIO	000	-	-
23/jun/14	FIM	066	33,00	38,00
0.4/: /4.4	INICIO	007	35,00	45,00
24/jun/14	FIM	067	36,00	52,00
0.4/1 /4.4	INICIO	000	-	-
24/jun/14	FIM	068	33,00	43,00
0=" // /	INICIO		34,00	42,00
25/jun/14	FIM	069	-	-
05/5 /4/	INICIO	070	31,00	43,00
25/jun/14	FIM	070	39,00	49,00
00% /4.4	INICIO	074	34,00	43,00
26/jun/14	FIM	071	-	-
00/1 // /	INICIO	070	31,00	41,00
26/jun/14	FIM	072	34,00	46,00

DATA	HORÁRIO	voo	TÓRIO	URÂNIO
27/jun/14	INICIO	073	36,00	49,00
21/juli/14	FIM		36,00	51,00
27/jun/14	INICIO	074	-	•
21/juli/14	FIM		40,00	49,00
05/:1/4.4	INICIO	070	29,00	35,00
05/jul/14	FIM 079	31,00	39,00	

TESTE DE REPETIBILIDADE RADIOATIVA PT-EPY				
(LOW LEVEL = 100m) Base: Redenção-PA				
DATA	HORÁRIO	voo	TÓRIO	URÂNIO
12/jul/14	INÍCIO	304	23,36	27,60
12/jul/11	FIM	001	26,09	29,79
13/jul/14	INÍCIO	305	24,60	30,99
10/jul/11	FIM	000	23,93	30,40
14/jul/14	INÍCIO	306	23,23	32,43
1-7,501/1-1	FIM	500	28,18	36,45
04/ago/14	INÍCIO	315	39,99	53,28
o iragori i	FIM	010	52,66	50,94
06/ago/14	INÍCIO	317	41,72	38,23
00/ag0/14	FIM	317	33,74	35,70
07/ago/14	INÍCIO	318	48,06	59,92
077ago/11	FIM	310	39,86	43,74
08/ago/14	INÍCIO	319	46,54	69,81
oo, ago, 11	FIM	0.0	43,31	39,54
08/ago/14	INÍCIO	320	-	-
- coragor :	FIM		46,88	38,59
12/ago/14	INÍCIO	321	51,99	69,68
12/ago/11	FIM	021	-	-
12/ago/14	INÍCIO	322	-	-
. <u>_</u> , a.g.,	FIM	<u> </u>	37,97	35,43
13/ago/14	INÍCIO	323	37,27	58,16
	FIM	525	36,65	42,94
14/ago/14	INICIO	324	38,59	53,85
. 1/4go/11	FIM	02.	36,47	33,60
15/ago/14	INICIO	325	41,69	66,49
. 5, 495, 11	FIM	020	34,90	34,62
16/ago/14	INICIO	326	37,62	52,36
2, 2, 3 -, 1	FIM		44,46	41,03

DATA	HORÁRIO	voo	TÓRIO	URÂNIO
17/ago/14	INICIO	327	39,82	45,84
177ag0/14	FIM	321	38,98	32,27
18/ago/14	INICIO	328	39,84	54,25
10/490/14	FIM	320	42,46	39,01
19/ago/14	INICIO	329	49,60	54,54
19/ag0/14	FIM	329	42,82	39,52
20/ago/14	INICIO	330	41,67	50,95
20/ag0/14	FIM		39,88	37,49
21/ago/14	INICIO	331	46,13	63,05
21/ag0/14	FIM		40,90	36,85
22/ago/14	INICIO	332	38,97	57,38
22/ayu/14	FIM	332	47,70	66,08
23/ago/14	INICIO	333 / 334	38,03	66,15
25/ag0/14	FIM		39,05	33,73

ANEXO III – QUADROS SINÓPTICOS DAS OPERAÇÕES DE CAMPO – Anexo em MídiaDigital

ANEXO IV – CONTEÚDO DO CD-ROM E DOS DVDs-ROM

Este arquivo apresenta a relação do conteúdo dos arquivos digitais que compõe o acervo do Projeto Aerogeofísico Rio Maria.

Um total de 1 CD-ROM e 4 DVDs-Rom compõem a totalidade dos arquivos conforme descrito abaixo:

Mídia	Conteúdo
CD#01	Relatório Final, Arquivo de Metadados do projeto, Articulações das
	Folhas (1:100.000, 1:250.000) e ArcGis Engine
	Grids
DVD#01	Arquivos de Mapas Geosoft
	Arquivos de Poligonais das Folhas 1:100.000, 1:250.000 e 1:500.000
	Geosoft PLY
	GeoTIFF
DVD#02	Banco de Dados Geosoft
	Arquivos XYZ – Magnetometria e Gamaespectrometria
DVD#03	Arquivos de Plotagem HPGL
DVD#04	Arquivos PDF

Estrutura dos Arquivos de Mapas:

A codificação para os arquivos de mapas é apresentada a seguir, onde o asterístico presente refere-se a codificação das folhas:

1129_*_1DV = 1° Derivada Vertical do Campo Magnético Total (Reduzido do IGRF)

1129_*_SA = Sinal Analítico do Campo Magnético Total

1129_*_MDT = Modelo digital do Terreno

 1129_* _CTexp = Contagem Total (μ R/h)

1129_*_Kperc = Potássio (%)

1129_*_eU = Urânio (ppm)

 1129_* _eTh = Tório (ppm)

1129_*_ThKrazao = Razão Tório/Potássio

1129_*_ UThrazao = Razão Urânio/Tório

1129_*_ ThKrazao = Razão Tório/Potássio

1129_*_ UKrazao = Razão Urânio/Potássio

1129_TERNÁRIO = Ternário (K-U-Th)

Exemplos:

1129_SB-22-X-C-IV_MAG.map = Geosoft MAP da Folha SB-22-X-C-IV Escala 1:100.000 do Campo Magnético Total (Reduzido do IGRF)

1129_SB-22-Z-A_SA.map = Geosoft MAP da Folha SB-22-Z-A Escala 1:250.000 do Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)

1129_ThKrazao.map = Geosoft MAP da Folha Única na Escala 1:500.000 da Razão Tório/Potássio

Observações:

A codificação para os arquivos HGPL segue a mesma regra utilizada para os arquivos de Mapas Geosoft (*.map).

A sigla HPGL significa: Hewlett-Packard Language.

O prefixo 1129 em todos os arquivos corresponde ao nº do projeto na Base Aero da CPRM.

Relação dos Arquivos: georeferenciados a UTM 22S (Meridiano Central -51°W Gr).

Arquivos de GRIDS:

Arquivo	Conteúdo	Unidade
1129_MAG.grd	Campo Magnético Total (Reduzido IGRF)	nT
1129_1DV.grd	1 ^a . Derivada Vertical do Campo Magnético Total	nT/m
1129_SA.grd	Sinal Analítico do Campo Magnético Total	nT/m
1129_CTexp.grd	Taxa de Exposição da Contagem Total	μR/h
1129_Kperc.grd	Concentração de Potássio	%
1129_eU.grd	Concentração de Urânio	ppm
1129_eTh.grd	Concentração de Tório	ppm
1129_ThKrazao.grd	Concentração de Tório/Potássio	
1129_UKrazao.grd	Concentração de Urânio/Potássio	
1129_UThrazao.grd	Concentração de Urânio/ Tório	
1129_MDT.grd	Modelo Digital do Terreno	m

Arquivos de banco de Dados GDB:

Arquivo	Conteúdo
1129_GamaLine.gdb	Banco de Dados de gamaespectrometria com as linhas de voo
1129_GamaTie.gdb	Banco de Dados de gamaespectrometria com as linhas de
	controle
1129_MagLine.gdb	Banco de Dados de magnetometria com as linhas de voo
1129_MagTie.gdb	Banco de Dados de magnetometria com as linhas de controle
1129_Gama256.gdb	Banco de Dados de gamaespectrometria com os 256 canais up
	e down

Arquivos de Bancos de Dados XYZ:

Arquivo	Conteúdo
1129_GamaLine.XYZ	Gamaespectrometria Linhas de Voo
1129_GamaTie.XYZ	Gamaespectrometria Linhas de Controle
1129_MagLine.XYZ	Magnetometria Linhas de Voo
1129_MagTie.XYZ	Magnetometria Linhas de Controle

Arquivos de Cruzamentos:

Arquivo	Conteúdo
1129_Cruzamentos.XYZ	Cruzamentos do Nivelamento Magnetométrico

Arquivos de Poligonais:

Arquivo	Conteúdo
1129_SB-22-X-C-VI	Polígono Referente à Folha SB-22-X-C-VI
1129_SB-22-X-C	Polígono Referente à Folha SB-22-X-C
1129_SB-22-X-D-IV	Polígono Referente à Folha SB-22-X-D-IV
1129_SB-22-X-D-V	Polígono Referente à Folha SB-22-X-D-V
1129_SB-22-X-D	Polígono Referente à Folha SB-22- X-D
1129_SB-22-Z-A-I	Polígono Referente à Folha SB-22-Z-A-I
1129_SB-22-Z-A-IV	Polígono Referente à Folha SB-22- Z-A-IV
1129_SB-22-Z-A-V	Polígono Referente à Folha SB-22-Z-A-V
1129_SB-22-Z-A-VI	Polígono Referente à Folha SB-22-Z-A-VI
1129_SB-22-Z-A	Polígono Referente à Folha SB-22-Z-A
1129_SB-22-Z-B-I	Polígono Referente à Folha SB-22-Z-B-I
1129_SB-22-Z-B-II	Polígono Referente à Folha SB-22-Z-B-II
1129_SB-22-Z-B-IV	Polígono Referente à Folha SB-22-Z-B-IV
1129_SB-22-Z-B-V	Polígono Referente à Folha SB-22-Z-B-V
1129_SB-22-Z-B	Polígono Referente à Folha SB-22-Z-B
1129_SB-22-Z-C-I	Polígono Referente à Folha SB-22-Z-C-I
1129_SB-22-Z-C-II	Polígono Referente à Folha SB-22-Z-C-II
1129_SB-22-Z-C-III	Polígono Referente à Folha SB-22-Z-C-III
1129_SB-22-Z-C-IV	Polígono Referente à Folha SB-22-Z-C-IV
1129_SB-22-Z-C-V	Polígono Referente à Folha SB-22-Z-C-V
1129_SB-22-Z-C-VI	Polígono Referente à Folha SB-22-Z-C-VI
1129_SB-22-Z-C	Polígono Referente à Folha SB-22-Z-C
1129_SB-22-Z-D-I	Polígono Referente à Folha SB-22-Z-D-I
1129_SB-22-Z-D-IV	Polígono Referente à Folha SB-22-Z-D-IV
1129_SB-22-Z-D	Polígono Referente à Folha SB-22-Z-D

ANEXO V – FORMATO DE GRAVAÇÃO DOS DADOS DO PROJETO

PROJETO AEROGEOFÍSICO RIO MARIA FORMATO DIGITAL DOS DADOS MAGNÉTICOS PARA AS LINHAS DE VÔO - LINES FOLHA 1 de 1 29 Z9 MAGCOR (CORNIGIDO) (F10.3) Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS MAGNETOMÉTRICOS (LINHAS DE VÔO - LINES) 95 95 95 9 -06 (F10.3) 85 85 80 HH:MM:SS::S) Z17 HORA (A10) Z7 MAGBRU (BRUTO) 20 Z16 DATA (A10) 65 Z6 MAGBASE (F10.3) -65 65 9 9 GRAUS DECIMAIS) 09 LATITUDE **Z15** (F11.6) (F8.2) Z5 (E) 55 55 55 Z4 ALTURA (RADAR ALTÍMETRO) 20 20 20 20 (F8.2) LONGITUDE Z14 (F11.6) 45 45 Z3 BARO (F8.2) 40 40 Z13 (F10.3) Z2 GPSALT GTTTUDE GPS) 35 (F8.2) E 30 30 30 MAGIGRF (IGRF) Z12 (F10.3) 25 Z1 TDUCIAL (F8.1) 25 20 COORDENADA UTM NORTE Z11 (F10.3) F10.0 15 NÚMERO DA LINHA 10 10 COORDENADA UTM LESTE Z10 MAGNIV (NIVELADO) (F10.3) × LINE REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE MAGNÉTICO

PROJETO AEROGEOFÍSICO RIO MARIA FORMATO DIGITAL DOS DADOS MAGNÉTICOS PARA AS LINHAS DE CONTROLE -TIES FOLHA 1 de 1 95 Z9 MAGCOR (CORNIGIDO) Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS MAGNETOMÉTRICOS (LINHAS DE CONTROLE - TIES) (F10.3) (nT) 95 95 95 -06 (F10.3) 85 85 80 Z17 HORA (A10) Z7 MAGBRU (BRUTO) 70 Z16 DATA (A10) 65 Z6 (F10.3) 65 65 9 09 9 (GRAUS DECIMAIS) LATITUDE **Z15** (F11.6) (F8.2) Z5 MDT (E) 55 -52 55 Z4 ALTURA (RADAR ALTIMETRO) -20 -20 20 -20 (F8.2) LONGITUDE Z14 (F11.6) 45 Z3 BARO (F8.2) 40 4 Z13 (F10.3) Z2 GPSALT LTITUDE GPS) 35 (E) (F8.2) 30 30 MAGIGRF (IGRF) Z12 (F10.3) 25 Z1 TDUCIAL (F8.1) 25 20 Z11 (F10.3) 15 F10.0 15 NÚMERO DA LINHA 10 10 Z10 MAGNIV (NIVELADO) (F10.3) 出 REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE MAGNÉTICO

PROJETO AEROGEOFÍSICO RIO MARIA Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS MAGNETOMÉTRICOS DE CRUZAMENTO ENTRE LINHAS DE VÔO E LINHAS DE CONTROLE FORMATO DIGITAL DOS DADOS DE CRUZAMENTO MAGNETOMÉTRICOS ENTRE LINHAS DE VÔO E LINHAS DE CONTROLE Z 00 8 (14) (F8.3) (F10.3) (F10.3) -20 (F8.2) Y COORDENADA UTM NORTE F10.0 NÚMERO DA LINHA UTM LESTE F10.0 E B H REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE

PROJETO AEROGEOFÍSICO RIO MARIA FORMATO DIGITAL DOS DADOS RADIOMÉTRICOS PARA AS LINHAS DE VÔO - LINES FOLHA 1 de 1 Z12 CÓSMICO (RAD COSM) (CPS) (F6.0) Z23 UKRAZÃO (F9.3) 95 95 Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS RADIOMÉTRICOS (LINHAS DE VÔO - LINES) 95 (sw) (F6.0) 9 Z22 THKRAZÃO Z10 (F6.0) (CPS) 85 (F6.0) Z9 HB (CPS) Z21 eTH TRAÇÃO DE TA 80 (F9.3) Z8 (F6.0) (CPS) Z Z 3 (F6.0) 70 Z20 (F9.3) 70 20 65 (F6.0) 65 26 GB (CPS) 60 Z19 KPERC (F9.3) 09 9 9 (F8.2) Z5 (m) 55 55 55 Z18 (F9.3) Z4 ALTURA RADAR ALTIMETR 20 20 20 20 (F8.2) (HH:MM:SS:S) Z28 HORA (A10) Z17 THCOR (F9.3) Z3 BARO 40 (AA/MM/DD) Z27 DATA (A10) Z2 GPSALT LITTUDE GPS) Z16 (F9.3) UCOR (CPS) (F8.2) 30 (F11.6) Z5 Z1 TDUCIAL (F8.1) Z15 (F9.3) KCOR (GRAUS DECIMAIS) COORDENADA UTM NORTE Z25 LONGITUDE Z14 CTCOR (F9.3) (CPS) (F11.6) F10.0 12 15 15 NÚMERO DA LINHA 10 Z13 TEMP COORDENADA UTM LESTE (F8.2) LINE REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE ADIOMÉTRICO REGISTRO DE DETALHE ADIOMÉTRICC

PROJETO AEROGEOFÍSICO MARIA FORMATO DIGITAL DOS DADOS RADIOMÉTRICOS PARA AS LINHAS DE CONTROLE - TIES FOLHA 1 de 1 Z12 CÓSMICO (RAD COSM) (CPS) (F6.0) Z23 UKRAZÃO Arquivos XYZ (FORMATO GEOSOFT) PARA DADOS RADIOMÉTRICOS (LINHAS DE CONTROLE - TIES) (F83) 95 Z11 (sm) (F6.0) 8 90 90 Z22 THKRAZÃO Z10 (CPS) (F6.0) (F9.3) 85 85 85 Z9 (CPS) (F6.0) Z21 eTH TRAÇÃO DE T. 80 (F9.3) (F6.0) Z8 (CPS) (F6.0) 70 Z20 5 Z Z (F9.3) 70 70 65 9 Z6 (CPS) (F6.0) 60 Z19 KPERC (F.6.3) 09 09 (F8.2) Z5 (E) 55 55 **Z18** (F9.3) Z4 ALTURA RADAR ALTÍMET 20 20 20 (F8.2) (HH:MM:SS:S) Z28 HORA (A10) 45 45 45 717 (F9.3) Z3 BARO 40 49 Z27 DATA (A10) Z2 GPSALT ALITIUDE GPS) 35 35 **Z16** (F9.3) UCOR (CPS) (F8.2) Z26 (F11.6) 25 Z1 FIDUCIAL 25 Z15 KCOR (F8.1) (F9.3) (CPS) 25 20 (GRAUS DECIMAIS) COORDENADA UTM NORTE Z25 LONGITUDE 15 Z14 CTCOR (F9.3) (CPS) (F11.6) F10.0 15 15 9 NÚMERO DA LINHA Z13 TEMP COORDENADA UTM LESTE (F8.2) Z24 UTHRAZÃO 当 REGISTRO MESTRE DAS LINHAS DE VÔO REGISTRO DE DETALHE ADIOMÉTRICO REGISTRO DE DETALHE ADIOMÉTRIC

ANEXO VI – LISTAGEM DAS LINHAS APROVADAS E UTILIZADAS NO PROCESSAMENTO

	Ī	Fiducial	Fiducial
Linha	Voo	Inicial	Final
10010	604	62459.60	66068.00
10020	604	66202.20	69805.30
10030	605	39980.30	43554.50
10040	605	43725.10	47332.50
10050	605	47457.00	51017.00
10060	605	51171.50	54766.90
10070	606	65288.20	68892.60
10080	606	69052.40	72760.80
10090	607	40297.20	43919.10
10100	607	44081.10	47670.50
10110	607	47810.10	51436.90
10120	607	51592.60	55200.50
10130	608	64543.70	68177.70
10140	608	68344.60	71951.60
10150	611	42568.50	46301.80
10161	622	40113.40	41655.50
10162	622	42970.20	45212.50
10170	612	60517.10	64190.10
10180	612	64367.20	68076.40
10190	612	68245.10	71951.00
10201	622	49689.30	53448.90
10210	613	61322.40	64993.30
10220	613	65150.90	68884.80
10230	614	42057.80	45905.20
10240	614	46087.40	49720.00
10250	614	49868.20	53577.90
10260	614	53750.90	57325.40
10270	615	65065.30	68655.20
10280	615	68854.50	72578.80
10290	616	39277.70	43026.70
10300	616	43187.60	46950.60
10310	616	47150.60	50998.60
10320	616	51145.60	55029.60
10330	617	40336.20	44240.50
10340	617	44417.70	48100.70
10350	617	48262.30	52066.80
10360	617	52234.00	55889.10
10362	634	54895.00	55054.60
10370	618	40435.10	44235.00
10380	618	44405.60	48109.60

Linha	Voo	Fiducial Inicial	Fiducial Final
10390	618	48270.10	49421.00
10391	618	49805.10	51375.60
10392	622	45559.10	46315.30
10393	622	41963.30	42392.70
10400	618	51953.90	54801.50
10401	622	48572.00	49462.40
10410	619	40603.30	42967.50
10411	619	43440.30	44184.30
10412	622	46758.90	47334.00
10420	619	45578.60	48111.70
10421	619	44331.90	45076.30
10422	622	47494.10	48083.40
10430	619	48242.70	51883.10
10440	619	52025.80	55858.90
10450	620	66194.80	69879.70
10460	620	70036.20	73770.00
10470	621	40302.00	44063.30
10480	621	44247.10	48034.30
10490	621	48173.30	51926.60
10500	621	52108.80	55837.50
10510	623	64113.20	67729.00
10520	623	67878.10	71575.00
10530	624	40408.80	44109.70
10540	624	44258.90	48101.00
10550	624	48224.60	51898.90
10560	624	52104.70	55871.00
10570	625	39393.80	43180.60
10580	625	43321.40	47112.00
10590	625	47326.90	49035.70
10591	634	51121.40	53119.50
10600	626	39995.30	43664.40
10610	626	43829.60	47610.20
10620	627	63400.50	67005.40
10630	627	67155.30	70904.60
10640	628	41088.10	44751.80
10650	628	44933.10	48710.30
10660	629	40506.10	44260.00
10670	629	44433.20	48290.70
10680	629	48400.90	52127.90
10690	629	52271.00	56085.00

Linha	Voo	Fiducial Inicial	Fiducial Final
10700	630	40389.30	44048.30
10710	631	51125.10	54727.70
10720	632	40942.90	44547.90
10730	632	44808.90	48407.90
10740	632	48536.90	49856.90
10741	632	49959.90	52096.90
10742	640	47842.20	47996.40
10750	632	52244.80	55853.80
10760	633	64936.10	68506.50
10770	633	68674.90	72265.40
10780	634	47307.50	50910.50
10790	634	55698.90	59254.00
10800	635	39922.70	43468.10
10810	635	43786.90	45383.40
10811	637	47456.70	49308.70
10813	641	67896.10	68055.50
10820	635	45725.30	47348.00
10821	640	45115.80	47088.60
10830	635	47480.40	51009.20
10840	637	40068.20	43627.20
10850	637	43745.40	47288.00
10860	637	51053.10	54581.40
10870	640	49411.10	52982.60
10880	640	53091.10	56640.00
10890	641	65738.80	67776.30
10891	641	68363.90	70026.20
10900	642	50193.20	53779.70
10910	642	53902.00	57480.20
10920	642	57613.00	61195.20
10930	642	61327.90	63474.90
10931	652	70607.00	72066.20
10940	649	40357.50	43964.70
10950	649	44462.40	48029.20
10960	649	48171.10	51773.90
10970	649	51930.90	55497.80
10980	650	67663.30	71232.30
10990	650	71349.00	74886.20
11000	651	40934.90	44148.70
11001	652	67833.60	68289.00
11010	651	44980.20	48088.50
11011	652	68422.60	68887.00

Linha	Voo	Fiducial	Fiducial
Lillia	100	Inicial	Final
11020	651	48238.80	51855.20
11030	651	51997.00	55531.80
11040	654	66177.20	69767.60
11050	654	69905.10	73460.30
11060	655	39956.10	43536.20
11070	655	43670.80	47237.50
11080	655	47369.80	50981.20
11090	655	51138.20	54689.80
11100	657	65886.60	69478.30
11110	657	69628.70	73188.40
11120	659	65228.80	68871.20
11130	659	69008.80	72538.10
11140	710	40262.00	43823.00
11150	711	41323.80	43445.90
11160	712	65670.20	67808.90
11170	713	40808.40	42940.20
11180	719	52659.30	54762.40
11190	710	53829.60	55963.40
11200	674	58636.00	60743.00
11210	674	56368.30	58525.40
11220	674	54141.20	56258.20
11230	674	51865.90	54029.10
11240	674	49646.20	51761.30
11250	674	47380.50	49528.70
11260	671	72448.40	74546.90
11270	671	70170.90	72335.40
11280	671	67930.40	70040.40
11290	671	64710.70	66901.70
11300	670	50914.20	52983.90
11301	671	64533.50	64600.10
11302	681	71320.50	71524.90
11310	670	48615.10	50776.50
11320	670	46355.40	48478.40
11330	670	44078.40	46220.00
11340	670	41828.40	43959.30
11350	670	39549.60	41681.00
11360	669	71406.50	73522.00
11370	669	69154.70	71303.90
11380	669	66948.00	69057.20
11390	669	64701.10	66847.60
11400	668	50779.50	52896.20

Linha	Voo	Fiducial Inicial	Fiducial Final
11410	668	48555.90	50679.90
11420	668	46345.60	48446.50
11430	668	44085.10	46227.20
11440	668	41850.90	43971.50
11450	667	72408.10	74521.40
11460	667	70114.70	72313.00
11470	667	67853.10	69985.10
11480	668	39593.90	41574.90
11481	671	67538.10	67732.50
11490	666	51348.20	53465.90
11500	666	49043.30	51214.10
11510	666	46802.70	48916.70
11520	666	44538.00	46693.80
11530	666	42167.10	44288.60
11540	666	39944.70	42063.90
11550	665	72514.60	74632.80
11560	665	70246.30	72420.20
11570	665	68015.20	70125.40
11580	665	63682.20	65871.80
11590	664	50180.40	52278.70
11600	664	47958.80	50097.10
11610	664	45709.80	47817.80
11620	664	43486.50	45606.40
11630	664	41629.20	43335.40
11631	665	66016.50	66454.30
11640	664	39163.90	40872.70
11641	665	66543.10	66981.70
11650	663	53318.80	55422.60
11660	663	51074.50	53193.10
11670	663	48836.70	50942.40
11680	663	46572.00	48710.40
11690	663	44326.90	46445.70
11700	663	42102.10	44211.50
11710	662	67333.10	69177.30
11711	665	67120.30	67433.30
11720	662	65355.40	67223.30
11721	665	67562.10	67874.00
11730	661	50689.60	52799.60
11740	661	48443.70	50571.20
11750	661	46219.90	48326.00
11760	661	43961.90	46107.30

Linha	Voo	Fiducial Inicial	Fiducial Final
11770	661	41695.80	43789.20
11780	661	39411.90	41519.90
11790	660	66638.00	68741.10
11800	660	64400.40	66528.70
11810	660	62126.00	64240.20
11820	660	59887.70	62001.70
11830	658	51184.10	53281.90
11840	658	48939.40	51064.80
11850	658	46696.50	48794.80
11860	658	44425.60	46561.10
11870	658	42173.80	44276.30
11880	658	39910.60	42012.90
11890	656	52528.40	54638.80
11900	656	50262.70	52392.20
11910	656	48028.60	50131.40
11920	656	45745.90	47869.80
11930	656	43487.20	45604.10
11940	656	41196.40	43325.80
11950	653	52201.70	54297.80
11960	653	49931.00	52070.80
11970	653	47597.80	49708.10
11980	653	45290.50	47445.70
11990	653	42930.90	45035.50
12000	653	40614.40	42759.50
12010	672	40220.20	42337.90
12020	672	42425.70	44542.40
12030	672	44638.90	46776.20
12040	672	46874.70	48968.60
12050	672	49078.20	51202.60
12060	672	51298.70	53388.70
12070	673	64936.60	67041.90
12080	673	67148.50	69261.40
12090	673	69359.50	71463.00
12100	673	71565.90	73675.40
12110	675	39113.50	41218.40
12120	675	41342.90	43423.90
12130	675	43548.30	45250.40
12131	675	45347.10	45656.70
12132	697	70198.10	70664.20
12140	675	45749.40	47835.40
12150	676	57135.60	59252.90

Linha	Voo	Fiducial Inicial	Fiducial Final
12160	677	63758.60	66126.00
12170	677	66441.10	67568.60
12171	681	72264.50	72461.90
12172	697	68436.90	69465.50
12180	677	67750.70	68472.20
12181	681	73017.10	73619.00
12182	697	67311.20	68274.90
12190	679	46572.30	48647.50
12191	680	42506.10	42701.20
12200	679	48847.50	50804.30
12201	680	41836.90	42163.10
12210	680	39448.80	41696.90
12220	680	42836.10	45049.40
12230	680	45228.60	47502.90
12240	680	47665.30	49863.90
12250	680	50021.00	52202.90
12260	680	52328.70	54493.90
12270	681	66033.40	68186.10
12280	681	68354.60	70550.80
12290	682	39764.00	41970.60
12300	682	42119.30	44332.50
12310	682	44502.80	46742.10
12320	682	46897.30	49042.50
12330	683	56511.10	57885.10
12331	709	65235.90	66193.70
12340	683	58035.10	60227.10
12350	683	60535.70	63022.20
12360	683	63136.10	63991.20
12361	683	64090.00	65318.40
12362	714	74460.50	74631.90
12370	683	65449.50	67831.80
12380	683	67932.10	70063.50
12390	684	40794.80	43115.80
12400	684	43257.60	45528.40
12410	684	45663.70	47935.70
12420	684	48035.50	50216.50
12430	684	50378.10	52621.00
12440	684	52763.10	54890.90
12450	685	65094.30	67425.70
12460	685	67591.10	69657.40
12470	685	69786.30	72156.10

Linha	Voo	Fiducial	Fiducial
		Inicial	Final
12480	685	72295.80	74379.60
12490	686	39928.00	42176.00
12500	686	42336.30	44528.00
12510	682	51653.80	53796.70
12520	682	49267.50	51486.60
12530	686	49471.70	51750.00
12540	686	51888.70	53997.20
12550	687	63519.10	65823.00
12560	687	65989.80	68091.20
12570	687	68237.70	70525.70
12580	687	70905.60	72956.60
12590	688	42199.10	44479.60
12600	688	44640.20	46724.10
12610	688	46872.10	47886.30
12611	688	48000.30	49178.80
12612	716	67663.50	67842.70
12620	688	49363.30	51428.30
12630	688	51618.80	53886.60
12640	688	54079.10	56098.20
12650	689	64664.00	65423.70
12651	689	65531.60	66918.50
12652	716	67181.90	67372.50
12660	689	67121.30	69180.20
12670	689	69348.60	71554.50
12680	689	71711.50	73726.10
12690	690	40179.50	42407.10
12700	690	42573.90	44665.50
12710	690	44845.10	47137.90
12720	690	47310.00	48714.50
12721	690	48807.90	49365.70
12722	713	54450.60	54660.00
12730	690	49511.10	51767.30
12740	690	51947.10	53987.00
12750	691	63525.50	65815.30
12760	691	65961.60	68036.00
12770	691	68207.50	70356.70
12780	691	70533.00	72581.80
12790	692	40952.70	43157.40
12800	692	43324.30	45418.50
12810	692	45582.20	47649.10
12811	692	47949.90	48156.00

Linha	Voo	Fiducial Inicial	Fiducial Final
12820	692	48339.80	50457.00
12830	692	50605.40	52794.40
12840	692	52991.60	55101.00
12850	693	63784.30	65427.50
12851	693	65531.30	65819.90
12852	716	68356.50	68537.30
12853	716	68727.10	68948.60
12860	693	65986.70	67970.40
12861	716	69123.20	69331.70
12870	693	68095.50	70339.00
12880	693	70561.20	72673.70
12890	694	41409.10	43602.40
12900	694	43843.40	45992.50
12910	694	46192.40	48373.50
12920	694	48580.90	50695.80
12930	694	50835.00	53045.20
12940	694	53235.70	55321.50
12950	695	65609.10	67908.70
12960	695	68145.80	70193.70
12970	695	70313.90	72592.40
12980	695	72743.10	74858.40
12990	696	41502.50	43746.70
13000	696	43914.00	46068.60
13010	696	46215.90	48469.40
13020	696	48633.20	50733.50
13030	696	50891.80	53177.50
13040	696	53362.20	55460.70
13050	697	64409.60	66675.00
13060	698	73724.00	75848.60
13070	699	42161.10	44301.10
13080	699	44480.40	46643.70
13090	699	46833.10	48969.30
13100	700	51765.10	53941.20
13110	701	65334.30	67489.60
13120	701	67623.10	69828.90
13130	702	41499.10	43706.00
13140	702	43858.20	45998.90
13150	702	46162.50	48355.00
13160	702	48496.30	50669.60
13170	702	50842.10	52992.10
13180	702	53162.60	55297.30

Linha	Voo	Fiducial	Fiducial
Liilla	V 00	Inicial	Final
13190	703	67519.50	69649.40
13200	334	65657.30	68024.70
13210	333	42029.70	44270.30
13220	332	43154.40	44924.10
13221	333	44505.50	44952.50
13230	332	40919.40	42878.70
13231	333	45420.20	45765.20
13240	331	51010.40	53150.90
13250	331	48394.10	50744.50
13260	331	45913.40	48111.00
13270	331	43288.60	45626.70
13280	330	50255.90	52432.30
13290	330	47759.60	50036.80
13300	330	45230.60	47478.20
13310	330	42729.50	44914.50
13320	329	50036.60	52293.20
13330	329	47598.90	49794.50
13340	329	45036.00	47308.00
13350	329	42505.60	44722.50
13360	328	49008.40	51254.60
13370	328	46526.20	48755.40
13380	328	44028.30	46290.50
13390	328	41562.70	43781.70
13400	327	50411.90	52671.80
13410	327	47957.60	50111.70
13420	327	45454.60	47735.20
13430	327	43009.20	45179.10
13440	703	70106.10	72373.90
13450	704	54025.50	56125.10
13460	704	51490.70	53879.40
13470	704	49115.40	51218.80
13480	704	46536.40	49033.30
13490	704	44221.00	46348.00
13500	704	41750.10	44110.20
13510	716	71620.60	73716.90
13520	326	49856.70	52084.50
13530	326	47255.90	48461.00
13531	326	48693.20	49398.30
13532	714	71940.50	72251.50
13540	326	44773.70	45642.30
13541	326	45878.30	47020.50

Linha	Voo	Fiducial Inicial	Fiducial Final
13542	714	72515.10	72861.80
13550	326	42320.40	43716.30
13551	326	43950.90	44554.50
13552	714	73235.10	73554.70
13560	717	41577.10	43683.80
13570	715	54421.40	56526.30
13580	715	52182.00	54303.70
13590	703	73540.20	75642.10
13600	325	49837.20	51075.70
13601	714	70760.90	71706.10
13610	325	46513.40	47769.30
13611	716	70455.10	71400.80
13620	325	44128.30	46306.40
13630	325	41734.70	43938.80
13640	715	49908.10	52005.30
13650	715	47656.70	49785.80
13660	715	45419.00	47525.60
13670	715	43143.20	45302.90
13680	714	65894.10	68046.00
13690	711	53537.10	55633.90
13700	324	53109.50	54641.90
13701	714	68195.80	68894.70
13710	324	50062.20	52234.10
13720	323	52094.50	53201.60
13721	713	52494.80	53573.20
13730	323	50693.60	51852.10
13731	714	69510.50	70590.50
13740	323	48310.50	50455.50
13750	323	45884.70	48097.30
13760	323	43454.30	45631.90
13770	323	41037.10	43255.40
13780	322	55809.00	57951.90
13790	322	53431.40	55594.70
13800	320	67320.60	69493.70
13810	320	64919.10	67076.20
13820	319	54179.00	55300.90
13821	713	49041.60	50120.60
13830	319	52777.00	53882.60
13831	713	51281.80	52334.20
13840	319	50324.40	52510.80
13850	319	47878.90	50089.90

Linha	Voo	Fiducial	Fiducial
		Inicial	Final
13860	319	45402.90	47623.20
13870	319	43030.10	44278.80
13871	319	44376.20	45202.20
13872	713	50373.00	50595.80
13880	318	45670.10	47924.10
13881	712	72651.40	74029.40
13890	318	41680.10	45492.50
13900	317	68301.10	71675.50
13901	333	47149.00	47354.90
13910	317	63786.70	64936.70
13911	317	65237.90	67840.80
13920	324	46138.80	49800.80
13930	324	42282.20	45893.20
13940	315	47775.10	51270.80
13950	315	43680.10	47610.80
13960	322	49599.30	53147.40
13970	74	72759.80	75019.90
13971	79	69081.90	70591.70
13980	74	68879.90	72627.20
13990	74	64940.70	68736.50
14000	74	61054.70	64807.40
14010	73	50593.90	52781.50
14011	74	59270.20	60909.20
14020	73	46616.30	50388.80
14030	73	42178.50	45971.10
14040	73	39536.10	42035.20
14041	79	71083.20	72352.50
14050	72	66415.30	70232.70
14060	72	62673.70	66281.00
14070	71	51200.10	55187.00
14080	71	47396.60	51069.50
14090	71	43420.30	47246.30
14100	71	39558.70	43311.20
14110	70	69160.70	73009.10
14120	70	65325.00	69012.40
14130	70	61098.00	64969.60
14140	70	58368.60	60718.00
14141	72	70456.50	71883.50
14150	69	48266.40	52065.50
14160	69	44380.60	48131.20
14170	69	40343.90	44236.10

Linha	Voo	Fiducial Inicial	Fiducial Final
14180	68	69455.00	71010.60
14181	69	38004.50	40209.00
14190	68	65462.90	69304.50
14200	68	61671.90	65371.60
14210	67	50264.80	52851.10
14211	68	71457.80	72796.80
14220	67	46406.50	50131.50
14230	67	42454.60	46252.80
14240	67	38550.00	42310.00
14250	66	71695.10	73908.50
14251	68	59957.00	61563.30
14260	66	67784.10	71548.80
14270	66	63863.80	67625.60
14280	66	60003.80	63703.50
14290	64	70605.10	72215.20
14291	65	51115.80	53313.60
14300	64	69003.70	70511.60
14301	65	48785.50	50940.10
14310	64	67287.30	68876.80
14311	65	46401.30	48606.40
14320	64	65621.90	67156.20
14321	65	43848.00	46015.30
14330	64	61711.80	64374.20
14331	64	64549.30	65492.40
14332	65	53666.70	53992.30
14340	63	52253.00	53426.00
14341	64	58908.80	61542.70
14350	63	48316.30	52083.10
14360	63	44443.90	48175.90
14370	63	40525.70	44289.40
14380	62	71762.60	73295.70
14381	63	38133.10	40367.10
14390	62	67874.50	71602.50
14400	61	53788.60	54968.80
14401	62	60305.30	62979.90
14410	61	52154.60	53662.00
14411	62	63182.70	65385.70
14420	61	50440.80	52025.60
14421	62	65523.80	67761.10
14430	61	46604.20	50282.60
14440	61	42711.20	46483.90

Linha	Voo	Fiducial	Fiducial
Lillia	V 00	Inicial	Final
14450	60	69812.60	72073.10
14451	61	40991.80	42544.30
14460	60	67489.40	69702.10
14470	60	65085.80	67374.20
14480	60	62718.50	64964.60
14490	60	60265.20	62586.00
14500	60	57873.50	60107.90
14510	59	49656.60	51855.40
14520	59	46709.20	48920.00
14530	59	44300.40	46520.40
14540	59	39570.50	41740.30
14550	58	68695.30	70002.80
14551	59	41962.00	42950.70
14560	58	67481.60	68545.90
14561	59	43124.00	44096.60
14562	59	52014.60	52224.90
14570	58	64907.30	67159.00
14580	58	62487.80	64531.00
14581	59	49319.70	49531.60
14590	58	60093.50	62331.10
14600	58	57793.60	59961.00
14610	57	46907.40	49185.30
14620	57	44517.40	46708.50
14630	57	42104.10	44310.50
14640	57	39726.90	41914.70
14650	56	68657.60	70949.00
14660	56	66267.80	68482.40
14670	56	63829.30	66093.30
14680	56	61396.80	63625.40
14690	55	50514.20	52776.90
14700	55	48124.20	50348.30
14710	55	45607.90	47939.30
14720	55	44031.00	45439.00
14721	56	59399.50	60264.90
14730	55	42469.10	43892.50
14731	56	60414.30	61308.90
14740	55	39992.80	42263.80
14750	53	50349.40	52571.60
14760	53	48001.20	50174.70
14770	53	45350.60	47599.30
14780	53	41006.80	43144.80

Linha	Voo	Fiducial	Fiducial
Lillia	V 00	Inicial	Final
14790	52	73697.00	87432.00
14791	53	43327.20	44159.10
14800	52	59373.00	72310.00
14801	53	44350.30	45195.80
14810	52	35962.00	57485.00
14820	52	13231.00	34130.00
14830	51	93193.00	115304.00
14840	51	69463.00	90963.00
14850	51	45546.00	67640.00
14860	51	22054.00	43704.00
14870	50	126219.00	147475.00
14880	50	103108.00	124209.00
14890	50	79731.00	100908.00
14900	50	56470.00	77754.00
14910	50	33331.00	54581.00
14920	50	10213.00	31300.00
14930	49	144415.00	166322.00
14940	49	120447.00	142340.00
14950	49	96909.00	119123.00
14960	49	72744.00	94573.00
14970	49	49431.00	71270.00
14980	49	25370.00	47267.00
14991	304	46110.10	48494.90
15000	48	101451.00	123669.00
15010	48	77504.00	99902.00
15020	48	54262.00	76012.00
15030	48	30736.00	52583.00
15040	48	20631.00	29086.00
15041	48	147977.00	161415.00
15050	47	142469.00	164354.00
15060	47	118863.00	140154.00
15070	47	95073.00	116897.00
15080	47	71512.00	92892.00
15090	47	47518.00	69557.00
15100	47	24087.00	45453.00
15110	46	83382.00	105121.00
15120	46	59702.00	81129.00
15130	46	35452.00	57214.00
15140	46	12159.00	33644.00
15150	45	131837.00	153974.00
15160	45	107927.00	129664.00

Linha	Voo	Fiducial Inicial	Fiducial Final
15170	45	84486.00	106407.00
15180	45	60402.00	82369.00
15190	45	37137.00	58941.00
15200	45	13257.00	35113.00
15210	44	77317.00	98905.00
15220	44	54066.00	75853.00
15230	44	30761.00	52627.00
15240	44	7296.00	29290.00
15250	43	135455.00	157094.00
15260	43	111798.00	133196.00
15270	43	87669.00	109562.00
15280	43	64050.00	68949.00
15281	43	71442.00	85553.00
15282	57	49870.40	50337.30
15290	43	40425.00	51039.00
15291	43	53952.00	61602.00
15292	57	50781.00	51234.60
15300	43	16844.00	38813.00
15310	40	138373.00	160496.00
15320	40	114231.00	135800.00
15330	34	80899.00	102841.00
15340	34	57434.00	79823.00
15350	34	34006.00	56101.00
15360	34	10549.00	32697.00
15370	40	89587.00	111580.00
15380	40	65112.00	87043.00
15390	40	41674.00	63609.00
15400	37	131445.00	153770.00
15411	40	17365.00	39491.00
15420	37	84159.00	106176.00
15431	38	35300.00	56873.00
15440	37	36342.00	58478.00
15451	38	11135.00	33482.00
15460	33	79861.00	102129.00
15470	33	55525.00	77800.00
15481	36	80414.00	102990.00
15491	36	56216.00	76684.00
15492	41	85159.00	87269.00
15501	36	32330.00	54900.00
15511	36	7956.00	30399.00
15521	35	39987.00	61900.00

Linha	Voo	Fiducial Inicial	Fiducial Final
15531	35	13043.00	36018.00
15541	41	88627.00	105091.00
15542	56	72508.60	73187.20
15551	41	63114.00	79719.00
15552	56	71683.00	72317.10
15562	41	21160.00	43561.00
15571	41	45043.00	60222.00
19091	709	68555.90	69753.00
19101	709	66644.40	68227.80
19010	715	40873.30	42370.20
19011	721	55788.00	57431.00
19020	721	46334.00	49147.60
19030	721	52550.80	55370.60
19040	721	49549.50	52368.20
19050	306	52480.10	54170.80
19051	717	52424.20	54002.60
19060	306	50825.10	52270.80
19061	719	49139.70	50717.80
19070	306	48920.10	50620.80
19071	717	48411.80	49953.60
19080	306	47220.10	48740.80
19081	717	50265.90	51787.20
19090	306	45395.10	47010.80
19092	719	47866.00	48461.30
19100	306	43665.10	45200.80
19110	305	60110.10	61081.90
19111	712	70018.30	72221.80
19120	305	58355.10	59470.80
19121	719	44176.40	46835.80
19130	305	56825.10	58140.80
19131	713	45656.20	48287.40
19140	305	55420.10	56630.80
19141	717	44630.90	47287.70
19150	305	53925.10	55210.80
19151	711	44526.90	47123.80
19160	305	52560.10	53740.80
19161	711	47436.30	50037.60
19170	305	51060.10	52360.00

	_	_	
Linha	Voo	Fiducial	Fiducial
	700	Inicial	Final
19171	711	50358.20	52998.20
19180	712	68136.40	68854.00
19185	305	49680.10	50850.80
19190	710	52863.90	53586.50
19195	305	48160.10	49440.80
19200	710	51903.90	52650.70
19205	305	46765.10	47956.30
19210	710	50915.90	51664.30
19215	304	58730.10	59990.80
19220	710	49917.40	50667.10
19225	304	57430.10	58540.80
19230	710	48922.30	49681.90
19235	304	56000.90	57225.80
19240	710	47912.00	48672.50
19245	304	54675.10	55810.80
19250	710	46967.10	47705.10
19255	304	53260.10	54474.80
19260	710	45931.50	46693.50
19265	304	51955.10	53092.60
19270	710	44976.90	45694.50
19275	304	50530.10	51760.80
19280	710	44073.20	44794.40
19285	304	49190.10	50331.40