PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

ATLAS PLUVIONETRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: Rafard/SP

Estação Pluviométrica: Capivari

Códigos: 02247110 (ANA) e D4-069 (DAEE)

MINISTÉRIO DE MINAS E ENERGIA

Ministro de Estado

Bento Albuquerque

Secretário de Geologia, Mineração e Transformação Mineral

Alexandre Vidigal de Oliveira

SERVIÇO GEOLÓGICO DO BRASIL - CPRM

DIRETORIA EXECUTIVA

Diretor Presidente

Esteves Pedro Colnago

Diretora de Hidrologia e Gestão Territorial

Alice Silva de Castilho

Diretor de Geologia e Recursos Minerais

Marcio José Remédio

Diretor de Infraestrutura Geocientífica

Paulo Afonso Romano

Diretor de Administração e Finanças

Cassiano de Souza Alves

COORDENAÇÃO TÉCNICA

Chefe do Departamento de Hidrologia

Frederico Cláudio Peixinho

Chefe da Divisão de Hidrologia Aplicada

Adriana Dantas Medeiros

Achiles Monteiro (in memoriam)

Chefe da Divisão de Divisão de Geologia Aplicada

Diogo Rodrigues Andrade da Silva

Chefe do Departamento de Gestão Territorial

Maria Adelaide Mansini Maia

Coordenação Executiva do DEHID - Projeto Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenação do Projeto - Cartas Municipais de Suscetibilidade

Tiago Antonelli

SUPERINTENDÊNCIA REGIONAL DE BELÉM

Superintendente

Jânio Souza Nascimento

Gerência de Hidrologia e Gestão Territorial

Homero Reis de Melo Junior

Gerência de Geologia e Recursos Minerais

Cesar Lisboa Chaves

Gerente de Infraestrutura Geocientífica

Cristiane Silva de Sousa

Gerência de Administração e Finanças

Sônia Cristina dos Santos Cavalcante

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL – CPRM

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL

PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Estação Pluviométrica: Capivari

Códigos: 02247110 (ANA) e D4-069 (DAEE)

Município: Rafard/SP

AUTORES

Catharina dos Prazeres Campos de Farias Karine Pickbrenner Eber José de Andrade Pinto

Belém 2020

REALIZAÇÃO

Superintendência de Belém

AUTORES

Catharina dos Prazeres Campos de Farias Karine Pickbrenner Eber José de Andrade Pinto

COORDENADORES REGIONAIS DO PROJETO ATLAS PLUVIOMÉTRICO

José Alexandre Moreira Farias - REFO (In memorian) Karine Pickbrenner - SUREG/PA

EQUIPE EXECUTORA

Adriana Burin Weschenfelder - SUREG/PA Adriano da Silva Santos - SUREG/RE Caluan Rodrigues Capozzoli - SUREG /SP Catharina dos Prazeres Campos de Farias - SUREG /BE Jean Ricardo da Silva Nascimento - RETE Luana Késsia Lucas Alves Martins - SUREG/BH Osvalcélio Mercês Furtunato - SUREG/SA

EQUAÇÃO DEFINIDA

Furtunato, Pickbrenner e Pinto em 2016

SISTEMA DE INFORMAÇÕES GEOGRÁFICAS E MAPA

Ivete Souza do Nascimento - SUREG/BH

APOIO TÉCNICO

Maximiliano Paschoaloti Messa - SUREG/PA

PROJETO GRÁFICO/EDITORAÇÃO

Capa (DIEDIG)

Juliana Colussi

Miolo (DIEDIG)

Agmar Alves Lopes Juliana Colussi

Diagramação (SUREG/PA)

Alessandra Luiza Rahel

Referências

Ana Lúcia Borges Fortes Coelho (Organização e Formatação)

Serviço Geológico do Brasil - CPRM

www.cprm.gov.br seus@cprm.gov.br

Dados Internacionais de Catalogação-na-Publicação (CIP)

F224

Farias, Catharina dos Prazeres Campos de

Atlas Pluviométrico do Brasil: Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias): município Rafard/SP / Catharina dos Prazeres Campos de Farias; Karine Pickbrenner; Eber José de Andrade Pinto. – Belém: CPRM, 2020.

13p.; anexos

Programa Geologia do Brasil. Levantamento da Geodiversidade ISBN 978-65-5664-017-4

1. Hidrologia. 2. Pluviometria - Brasil. 3. Equações IDF I. Pickbrenner, Karine. II. Pinto, Eber José de Andrade, III. Título

CDD 551.570981

Ficha catalográfica elaborada pela bibliotecária Ana Lúcia Borges Fortes Coelho – CRB10 - 840

Direitos desta edição: Serviço Geológico do Brasil – CPRM Permitida a reprodução desta publicação desde que mencionada a fonte.

APRESENTAÇÃO

projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas as áreas suscetíveis a movimentos de massa e enchentes ou inseridos em sub-bacias monitoradas pelos Sistemas de Alerta Hidrológico e projetos executados pelo Serviço Geológico do Brasil – CPRM.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida por Furtunato, Pickbrenner e Pinto (2016) para o município de Capivari/SP, onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Capivari, códigos: 02247110 (ANA) e D4-069 (DAEE), localizada a 6 km da sede municipal de Rafard.

Esteves Pedro Colnago

Diretor-Presidente

Alice Silva de Castilho

Diretora de Hidrologia e Gestão territorial

RESUMO

Este trabalho apresenta a equação Intensidade-Duração-Frequência (IDF) estabelecida para o município de Capivari/SP e recomendada para Rafard/SP. A série de dados utilizada no estudo foi elaborada a partir de registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Capivari, códigos 02247110 (ANA) e D4-069 (DAEE/SP), localizada a seis km do município de Rafard. A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). A distribuição de frequência ajustada aos dados diários foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L. A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas da equação IDF estabelecida por Martinez Júnior e Magni (2013 apud DAEE 2014) para o município de Elias Fausto/SP. As equações ajustadas para representar a família de curvas IDF podem ser aplicadas para durações entre 10min e 24h e são recomendadas para tempos de retorno até 100 anos. A aplicação da equação IDF elaborada para o município de Rafard permite associar intensidades de precipitação, nas diferentes durações, a frequências de ocorrência, as quais serão utilizadas no dimensionamento de estruturas hidráulicas. Também pode ser utilizada de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido numa determinada duração, definindo se o evento foi raro ou ordinário, de acordo com a caracterização de chuva extrema local.

ABSTRACT

This work presents the Intensity-Duration-Frequency (IDF) equation established to the city of Capivari/SP and recommended for Rafard/SP. The data series used in the study was prepared from records of maximum daily rainfall per hydrological year of the Capivari rain station, codes 02247110 (ANA) e D4-069 (DAEE/SP), located six km from the city of Rafard. The methodology for defining the equation by disaggregating daily rainfall is described in detail in Pinto (2013). The frequency distribution adjusted to the daily data was Exponencial, with the parameters calculated by the L-moment method. The disaggregation coefficients for sub-daily time scales were obtained from the IDF equation established by Martinez Júnior and Magni (2013 apud DAEE 2014) for the city of Elias Fausto/SP. The equations fitted to represent the family of IDF curves can be applied for durations between 10min and 24h and are recommended for return period up to 100 years. The application of the IDF equation developed for the city of Rafard allows the association of precipitation intensities, in different durations, with frequencies of occurrence, which will be used in the design of hydraulic structures. It can also be used in an inverse way, that is, to estimate the frequency of a precipitation event that occurred over a given duration, defining how unusual or ordinary the event was, according to the local extreme rain characterization.

SUMÁRIO

EQUAÇÃO	7
EXEMPLO DE APLICAÇÃO1 REFERÊNCIAS1	0 0
ANEXO I	
ANEXO II1	
LISTA DE FIGURAS	
Figura 01 - Localização do Município e da Estação Pluviométrica	7
Figura 02 - Curvas intensidade-duração-frequência	8
LISTA DE TABELAS	
Tabela 01 - Intensidade da chuva em mm/h	9
Tahela 02 - Altura da chuya em mm	9

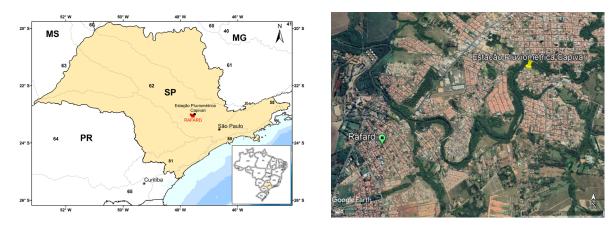
INTRODUÇÃO

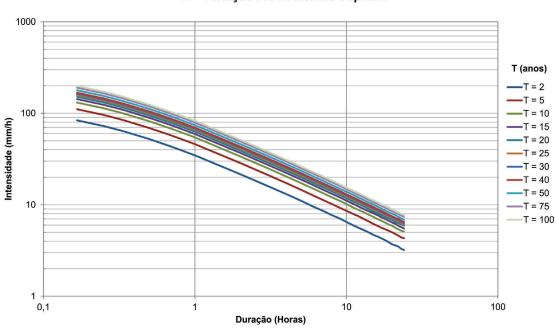
A equação definida por Furtunato, Pickbrenner e Pinto (2016) para o município de Capivari é indicada para ser utilizada no município de Rafard.

O município de Rafard está localizado a 124 km de São Paulo, capital do estado de São Paulo e faz fronteira com os municípios de Mombuca, Porto Feliz, Capivari e Tietê. O município possui uma área aproximada de 121,638 km² (Instituto Brasileiro de Geografia e Estatística - IBGE, 2019) e localiza-se a uma altitude de 515 metros em sua sede. A população de Rafard, segundo IBGE (2010), é de 8.612 habitantes.

A estação Capivari, códigos 02247110 (ANA) e D4-069 (DAEE), está localizada na Latitude 23°00'13"S e Longitude 47°30'32"W. Esta estação pluviométrica encontra-se em atividade desde 1946, sendo operada pelo Departamento de Águas e Energia Elétrica de São Paulo - DAEE, sob responsabilidade da Agência Nacional de Águas - ANA. Os dados para definição da equação IDF foram obtidos a partir dos dados diários de precipitação coletados em pluviômetro, no período de 1946 a 2014.

A Figura 01 apresenta a localização do município e da estação pluviométrica.




Figura 01 - Localização do Município e da Estação Pluviométrica (Fonte: Google Earth, 2020).

EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Capivari, códigos 02247110 (ANA) e D4-069 (DAEE), foi utilizada a série de precipitações diárias máximas por ano hidrológico (outubro a setembro) apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com as relações IDF estabelecidas por Martinez Junior e Magni (2013 apud DAEE 2014) para o município de Elias Fausto. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

SP - Estação Pluviométrica Capivari

Figura 02 - Curvas intensidade-duração-frequência

A Figura 02 apresenta as curvas ajustadas.

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \left\{ \left[(aLn(T) + b) \cdot Ln(t + (\delta/60)) \right] + cLn(T) + d \right\} / t \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

Té o tempo de retorno (anos)

t é a duração da precipitação (horas)

 $a, b, c, d \in \delta$ são parâmetros da equação

No caso de Capivari, para durações de 10 minutos a 1 hora, os parâmetros da equação são os seguintes:

$$a = 4,834$$
; $b = 10,3227$; $c = 11,9384$; $d = 25,5805$ e $\delta = 4$

$$i = \{ [(4,834Ln(T) + 10,3227).Ln(t + (4/60))] + 11,9384Ln(T) + 25,5805 \}/t$$
 (02)

Para durações superiores a 1 hora até 24 horas, os parâmetros da equação são os seguintes: a = 5,152; b = 11,136; c = 10,8294; d = 23,2015 e $\delta = 19$

$$i = \{ [(5,152Ln(T) + 11,136).Ln(t + (19/60))] + 10,8294Ln(T) + 23,2015 \}/t$$
 (03)

As equações acima são válidas para tempos de retorno de até 100 anos. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 - Intensidade da chuva em mm/h

DURAÇÃO	TEMPO DE RETORNO, T (ANOS)											
DA CHŮVA	2	5	10	15	20	25	30	40	50	60	75	100
10 Minutos	83,7	110,7	131,1	143,0	151,5	158,1	163,4	171,9	178,4	183,8	190,4	198,8
15 Minutos	72,5	95,9	113,6	123,9	131,3	137,0	141,6	149,0	154,7	159,3	165,0	172,4
20 Minutos	64,0	84,6	100,2	109,4	115,9	120,9	125,0	131,5	136,5	140,6	145,6	152,1
30 Minutos	52,2	69,0	81,8	89,2	94,5	98,6	102,0	107,3	111,4	114,7	118,8	124,1
45 Minutos	41,4	54,8	65,0	70,9	75,1	78,4	81,0	85,2	88,5	91,1	94,4	98,6
1 HORA	34,7	46,0	54,5	59,4	62,9	65,7	67,9	71,4	74,2	76,4	79,1	82,7
2 HORAS	21,5	28,5	33,7	36,8	39,0	40,7	42,1	44,2	45,9	47,3	49,0	51,2
3 HORAS	16,1	21,3	25,2	27,5	29,2	30,4	31,5	33,1	34,4	35,4	36,7	38,3
4 HORAS	13,1	17,3	20,4	22,3	23,6	24,6	25,5	26,8	27,8	28,7	29,7	31,0
5 HORAS	11,1	14,6	17,3	18,9	20,0	20,9	21,6	22,7	23,6	24,3	25,1	26,3
6 HORAS	9,6	12,7	15,1	16,5	17,4	18,2	18,8	19,8	20,5	21,2	21,9	22,9
7 HORAS	8,6	11,3	13,4	14,6	15,5	16,2	16,7	17,6	18,3	18,8	19,5	20,4
8 HORAS	7,7	10,2	12,1	13,2	14,0	14,6	15,1	15,9	16,5	17,0	17,6	18,4
12 HORAS	5,6	7,5	8,8	9,6	10,2	10,6	11,0	11,6	12,0	12,4	12,8	13,4
14 HORAS	5,0	6,6	7,8	8,5	9,0	9,4	9,7	10,2	10,6	11,0	11,3	11,8
20 HORAS	3,7	5,0	5,9	6,4	6,8	7,1	7,3	7,7	8,0	8,2	8,5	8,9
24 HORAS	3,2	4,3	5,1	5,5	5,9	6,1	6,3	6,6	6,9	7,1	7,4	7,7

Tabela 02 - Altura da chuva em mm

DURAÇÃO	TEMPO DE RETORNO, T (ANOS)												
DA CHŮVA	2	5	10	15	20	25	30	40	50	60	75	100	
10 Minutos	14,0	18,4	21,8	23,8	25,2	26,3	27,2	28,6	29,7	30,6	31,7	33,1	
15 Minutos	18,1	24,0	28,4	31,0	32,8	34,2	35,4	37,2	38,7	39,8	41,3	43,1	
20 Minutos	21,3	28,2	33,4	36,5	38,6	40,3	41,7	43,8	45,5	46,9	48,5	50,7	
30 Minutos	26,1	34,5	40,9	44,6	47,3	49,3	51,0	53,6	55,7	57,4	59,4	62,1	
45 Minutos	31,1	41,1	48,7	53,2	56,3	58,8	60,8	63,9	66,4	68,4	70,8	74,0	
1 HORA	34,7	46,0	54,5	59,4	62,9	65,7	67,9	71,4	74,2	76,4	79,1	82,7	
2 HORAS	43,1	57,0	67,5	73,6	78,0	81,3	84,1	88,5	91,9	94,6	98,0	102,4	
3 HORAS	48,3	63,9	75,7	82,6	87,5	91,3	94,4	99,3	103,1	106,2	110,0	114,9	
4 HORAS	52,2	69,0	81,8	89,2	94,5	98,6	101,9	107,2	111,3	114,7	118,8	124,1	
5 HORAS	55,3	73,1	86,6	94,4	100,0	104,4	107,9	113,5	117,8	121,4	125,7	131,3	
6 HORAS	57,8	76,4	90,5	98,8	104,6	109,2	112,9	118,7	123,2	126,9	131,5	137,3	
7 HORAS	60,0	79,3	93,9	102,5	108,5	113,2	117,1	123,1	127,8	131,7	136,4	142,5	
8 HORAS	61,9	81,8	96,9	105,7	111,9	116,8	120,7	127,0	131,8	135,8	140,7	146,9	
12 HORAS	67,6	89,4	105,9	115,5	122,4	127,7	132,0	138,8	144,1	148,5	153,8	160,6	
14 HORAS	69,8	92,3	109,3	119,3	126,4	131,8	136,3	143,4	148,8	153,3	158,8	165,9	
20 HORAS	75,0	99,1	117,4	128,1	135,7	141,5	146,3	153,9	159,8	164,6	170,5	178,1	
24 HORAS	77,6	102,6	121,5	132,6	140,4	146,5	151,5	159,3	165,4	170,4	176,5	184,3	

EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Rafard foi registrada uma Chuva de 60 mm com duração de 45 minutos. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = exp\left[\frac{it - bLn(t + (\delta/60)) - d}{aLn(t + (\delta/60)) + c}\right]$$
(04)

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 60 mm dividido por 0,75 h é igual a 80 mm/h. Substituindo os valores na equação 04 temos:

$$T = exp\left[\frac{80 \times 0.75 - 10.3227 Ln(0.75 + (4/60)) - 25.5805}{4.834 Ln(0.75 + (4/60)) + 11.9384}\right] \approx 28 \text{ anos}$$

O tempo de retorno de 28 anos corresponde a uma probabilidade de 3,6% que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou

$$P(i \ge 80 \ mm/h) = \frac{1}{T}100 = \frac{1}{28}100 \approx 3.6\%$$

REFERÊNCIAS

DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA (São Paulo). **Precipitações intensas no estado de São Paulo.** São Paulo: DAEE; Centro Tecnológico de Hidráulica e Recursos Hídricos da USP, 2014. p. 68-70. Disponível em: https://drive.google.com/file/d/0B4t5iKKyDAByeG1zZlgzRE81b28/edit. Acesso em: 03 mai. 2020.

FURTUNATO, O. M.; PICKBRENNER, K.; PINTO, E. J. de A. **Atlas Pluviométrico do Brasil:** Equações Intensidade-Duração-Frequência; município: Capivari/SP. Salvador, CPRM, 2016. 12p. Programa Geologia do Brasil. Levantamento da Geodiversidade. Carta de Suscetibilidade a Movimentos Gravitacionais de Massa e Inundação.

GOOGLE EARTH. **Imagem de localização da Estação pluviométrica de Capivari.** Disponível em: http://www.google.com/earth. Brasil: Google, [2020]. Acesso em: 03 mai. 2020.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado:** Rafard. Brasília: IBGE, 2010. Disponível em: https://cidades.ibge.gov.br/brasil/sp/rafard. Acesso em: 03 mai. 2020.

NSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado:** Rafard. Brasília: IBGE, 2019. Disponível em: https://cidades.ibge.gov.br/brasil/sp/rafard. Acesso em: 03 mai. 2020.

PINTO, E. J. de A. **Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico.** Belo Horizonte: CPRM, 2013.

ANEXO I

Série de Dados Utilizados — Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Out a 30/Set)

N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)	N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)
1	1946	1947	24/09/1947	66,0	32	1983	1984	25/01/1984	60,3
2	1947	1948	03/04/1948	69,9	33	1984	1985	22/02/1985	55,2
3	1948	1949	03/03/1949	57,5	34	1985	1986	15/04/1986	51,4
4	1949	1950	01/12/1949	69,5	35	1986	1987	21/05/1987	55,4
5	1950	1951	14/01/1951	87,1	36	1987	1988	01/03/1988	72,7
6	1951	1952	21/11/1951	53,0	37	1988	1989	26/02/1989	130,7
7	1952	1953	08/01/1953	68,8	38	1989	1990	27/10/1989	88,0
8	1953	1954	05/02/1954	80,0	39	1990	1991	25/04/1991	61,3
9	1954	1955	11/03/1955	57,0	40	1991	1992	14/11/1991	55,1
10	1955	1956	03/12/1955	85,9	41	1992	1993	31/05/1993	77,2
11	1956	1957	25/12/1956	66,4	42	1993	1994	08/02/1994	90,9
12	1958	1959	19/11/1958	62,3	43	1994	1995	04/01/1995	88,3
13	1959	1960	06/11/1959	71,3	44	1995	1996	08/01/1996	85,0
14	1960	1961	18/12/1960	99,5	45	1996	1997	09/01/1997	64,6
15	1961	1962	31/10/1961	89,1	46	1997	1998	09/02/1998	61,7
16	1962	1963	12/01/1963	69,2	47	1998	1999	10/12/1998	148,4
17	1963	1964	15/02/1964	89,1	48	1999	2000	02/01/2000	101,5
18	1964	1965	23/12/1964	62,5	49	2000	2001	10/03/2001	71,8
19	1969	1970	21/02/1970	132,7	50	2001	2002	25/03/2002	68,9
20	1970	1971	23/03/1971	49,3	51	2002	2003	13/01/2003	52,6
21	1971	1972	19/02/1972	79,4	52	2003	2004	23/02/2004	96,5
22	1972	1973	03/10/1972	64,4	53	2004	2005	25/05/2005	156,9
24	1974	1975	23/02/1975	68,0	55	2006	2007	19/02/2007	55,8
23	1973	1974	20/12/1973	91,9	54	2005	2006	12/02/2006	74,2
25	1975	1976	28/09/1976	80,0	56	2007	2008	03/05/2008	51,6
26	1977	1978	01/01/1978	79,2	57	2008	2009	05/02/2009	61,5
27	1978	1979	11/11/1978	69,3	58	2009	2010	28/12/2009	108,0
28	1979	1980	16/12/1979	102,3	59	2010	2011	23/12/2010	56,3
29	1980	1981	07/06/1981	49,8	60	2011	2012	16/10/2011	79,0
30	1981	1982	23/01/1982	97,5	61	2012	2013	13/01/2013	76,3
31	1982	1983	31/01/1983	79,8	62	2013	2014	24/10/2013	46,4

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir das relações IDF estabelecidas por Martinez Júnior e Magni (2013 apud DAEE 2014) para o município de Elias Fausto.

Relação 24h/1dia: 1,13

| RELAÇÃO |
|---------|---------|---------|---------|---------|---------|---------|
| 14H/24H | 8H/14H | 6H/8H | 4H/6H | 3H/4H | 2H/3H | 1H/2H |
| 0,89 | 0,88 | 0,94 | 0,91 | 0,93 | 0,89 | |

RELAÇÃO	RELAÇÃO	RELAÇÃO	RELAÇÃO	
45MIN/1H	30MIN/45MIN	15MIN/30MIN	10MIN/15MIN	
0,90	0,84	0,69	0,77	

O SERVIÇO GEOLÓGICO DO BRASIL - CPRM E OS OBJETIVOS PARA O DESENVOLVIMENTO SUSTENTÁVEL - ODS

Em setembro de 2015 líderes mundiais reuniram-se na sede da ONU, em Nova York, e formularam um conjunto de objetivos e metas universais com intuito de garantir o desenvolvimento sustentável nas dimensões econômica, social e ambiental. Esta ação resultou na *Agenda 2030*, a qual contém um conjunto de *17 Objetivos de Desenvolvimento Sustentável - ODS*.

A Agenda 2030 é um plano de ação para as pessoas, para o planeta e para a prosperidade. Busca fortalecer a paz universal, e considera que a erradicação da pobreza em todas as suas formas e dimensões é o maior desafio global, e um requisito indispensável para o desenvolvimento sustentável.

Os 17 ODS incluem uma ambiciosa lista 169 metas para todos os países e todas as partes interessadas, atuando em parceria colaborativa, a serem cumpridas até 2030.

O **Serviço Geológico do Brasil – CPRM** atua em diversas áreas intrínsecas às Geociências, que podem ser agrupadas em quatro grandes linhas de atuação:

- Geologia
- · Recursos Minerais;
- · Hidrologia; e
- Gestão Territorial.

Todas as áreas de atuação do SGB-CPRM, sejam nas áreas das Geociências ou nos serviços compartilhados, ou ainda em seus programas internos, devem ter conexão com os ODS, evidenciando o comprometimento de nossa instituição com a sustentabilidade, com a humanidade e com o futuro do planeta.

A tabela a seguir relaciona as áreas de atuação do SGB-CPRM com os ODS.

Áreas de atuação do Serviço Geológico do Brasil - CPRM e os Objetivos de Desenvolvimento Sustentável - ODS

ÁREA DE ATUAÇÃO GEOCIÊNCIAS

LEVANTAMENTOS GEOLÓGICOS

AVALIAÇÃO DOS RECURSOS MINERAIS DO BRASIL

LEVANTAMENTOS GEOQUÍMICOS

LEVANTAMENTOS BÁSICOS DE RECURSOS HÍDRICOS SUPERFICIAIS

SISTEMAS DE ALERTA HIDROLÓGICO

AGROGEOLOGIA

RISCO GEOLÓGICO

PATRIMÔNIO GEOLÓGICO **E GEOPAROUES**

ÁREA DE ATUAÇÃO

SERVIÇOS COMPARTILHADOS

GEOPROCESSAMENTO E SENSORIAMENTO REMOTO

PARCERIAS NACIONAIS E INTERNACIONAIS

SUSTENTABILIDADE

PRÓ-EQUIDADE

COMITÊ DE ÉTICA

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF). As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

MINISTÉRIO DE MINAS E ENERGIA

