PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

ATLAS PLUWIOMETRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: Caconde/SP

Estação Pluviométrica: Caconde

Códigos: 02146007 (ANA) e C3-014 (DAEE)

MINISTÉRIO DE MINAS E ENERGIA

Ministro de Estado

Bento Albuquerque

Secretário de Geologia, Mineração e Transformação Mineral

Pedro Paulo Dias Mesquita

SERVIÇO GEOLÓGICO DO BRASIL - CPRM

DIRETORIA EXECUTIVA

Diretor Presidente

Esteves Pedro Colnago

Diretora de Hidrologia e Gestão Territorial

Alice Silva de Castilho

Diretor de Geologia e Recursos Minerais

Marcio José Remédio

Diretor de Infraestrutura Geocientífica

Paulo Afonso Romano

Diretor de Administração e Finanças

Cassiano de Souza Alves

COORDENAÇÃO TÉCNICA

Chefe do Departamento de Hidrologia

Frederico Cláudio Peixinho

Chefe da Divisão de Hidrologia Aplicada

Adriana Dantas Medeiros

Achiles Monteiro (in memoriam)

Chefe do Departamento de Gestão Territorial

Diogo Rodrigues Andrade da Silva

Chefe da Divisão de Geologia Aplicada

Tiago Antonelli

Coordenação Executiva do DEHID - Projeto Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenação do Projeto - Cartas Municipais de Suscetibilidade

Raimundo Almir Costa Conceição

SUPERINTENDÊNCIA REGIONAL DE SÃO PAULO

Superintendente

Lauro Gracindo Pizzatto

Gerência de Hidrologia e Gestão Territorial

Vanesca Sartorelli Medeiros

Gerência de Geologia e Recursos Minerais

Maurício Pavan Silva

Gerência de Infraestrutura Geocientífica

Fabrizio Prior Caltabellotta

Gerência de Administração e Finanças

Carlos Augusto Fiorim Enumo

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL – CPRM

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL

PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Estação Pluviométrica: Caconde

Códigos: 02146007 (ANA) e C3-014 (DAEE)

Município: Caconde/SP

AUTORES

Caluan Rodrigues Capozzoli Karine Pickbrenner Eber José de Andrade Pinto

São Paulo 2021

REALIZAÇÃO

Superintendência de São Paulo

AUTORES

Caluan Rodrigues Capozzoli Karine Pickbrenner Eber José de Andrade Pinto

COORDENADORES REGIONAIS DO PROJETO ATLAS PLUVIOMÉTRICO

José Alexandre Moreira Farias - REFO (in memoriam) Karine Pickbrenner - SUREG/PA

EQUIPE EXECUTORA

Adriana Burin Weschenfelder - SUREG/PA Cristiane Ribeiro de Melo - SUREG/RE Caluan Rodrigues Capozzoli - SUREG /SP Catharina dos Prazeres Campos de Farias - SUREG /BE Jean Ricardo da Silva Nascimento - RETE Osvalcélio Mercês Furtunato - SUREG/SA

SISTEMA DE INFORMAÇÕES GEOGRÁFICAS E MAPA

Ivete Souza do Nascimento - SUREG/BH

PROJETO GRÁFICO/EDITORAÇÃO

Capa (DIEDIG)

Juliana Colussi

Miolo (DIEDIG)

Agmar Alves Lopes Juliana Colussi

Diagramação (REFO)

Francisca Giovania Freire Barros do Nascimento

Revisão (SUREG/PA)

Alessandra Luiza Rahel

Referências

Ana Lúcia Borges Fortes Coelho (Organização e Formatação)

Serviço Geológico do Brasil - CPRM

www.cprm.gov.br seus@cprm.gov.br

Dados Internacionais de Catalogação-na-Publicação (CIP)

Capozzoli, Caluan Rodrigues
C246 Atlas Pluviométrico do

Atlas Pluviométrico do Brasil: Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias): Município Caconde,SP / Caluan Rodrigues Capozzoli; Karine Pickbrenner; Eber José de Andrade Pinto. – São Paulo: CPRM, 2021.

1 recurso eletrônico: PDF

Programa Geologia do Brasil. Levantamento da Geodiversidade ISBN 978-65-5664-130-0

1. Hidrologia. 2. Pluviometria - Brasil. 3. Equações IDF I. Pickbrenner, Karine. II. Pinto, Eber José de Andrade. III. Título

CDD 551.570981

Ficha catalográfica elaborada pela bibliotecária Ana Lúcia Borges Fortes Coelho – CRB10 - 840

Direitos desta edição: Serviço Geológico do Brasil – CPRM Permitida a reprodução desta publicação desde que mencionada a fonte.

APRESENTAÇÃO

projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas as áreas suscetíveis a movimentos de massa e enchentes ou inseridos em sub-bacias monitoradas pelos Sistemas de Alerta Hidrológico e projetos executados pelo Serviço Geológico do Brasil – CPRM.

Este estudo, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Caconde/SP, onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Caconde, códigos 02146007 (ANA) e C3-014 (DAEE), localizada no mesmo município.

Esteves Pedro Colnago

Diretor-Presidente

Alice Silva de Castilho

Diretora de Hidrologia e Gestão Territorial

RESUMO

Este trabalho apresenta a equação Intensidade-Duração-Frequência (IDF) estabelecida para o município de Caconde/SP. A série de dados utilizada no estudo foi elaborada a partir de registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Caconde, códigos 02146007 (ANA) e C3-014 (DAEE), localizada no mesmo município. A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). A distribuição de frequência ajustada aos dados diários foi a Gumbel, com os parâmetros calculados pelo método dos momentos-L. A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas da equação IDF estabelecida por Martinez Júnior e Magni (1999 apud DAEE, 2018) para o município de São José do Rio Pardo/SP. As equações adotadas para representar a família de curvas IDF podem ser aplicadas para durações entre 10min e 24h e são recomendadas para tempos de retorno até 100 anos. A aplicação da equação IDF elaborada para o município de Caconde permite associar intensidades de precipitação à probabilidade de ocorrência, as quais serão utilizadas no dimensionamento de estruturas hidráulicas. Também pode ser utilizada de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido numa determinada duração, definindo se o evento foi raro ou ordinário, de acordo com a caracterização de chuva extrema local.

ABSTRACT

This work presents the Intensity-Duration-Frequency (IDF) equation established in the city of Caconde/SP. This study used data series prepared from records of maximum daily rainfall per hydrological year of the Caconde rain station, codes 02146007 (ANA) e C3-014 (DAEE/SP), located in the same city. The methodology for defining the equation by disaggregating daily rainfall is described in Pinto (2013). The frequency distribution adjusted to the daily data was Gumbel, with the parameters calculated by the L-moment method. The disaggregation of daily quantiles in other durations was carried out with the relationship between rainfall times of different durations obtained from the IDF equation established by Martinez Júnior and Magni (1999 apud DAEE, 2018) for the city of São José do Rio Pardo/SP. The equations adopted to represent the family of IDF curves can be applied for durations between 10min and 24 hours and are recommended for return times up to 100 years. The application of the IDF equation allows the association of precipitation intensities, in different durations, with frequencies of occurrence, which will be used in the design of hydraulic structures. The IDF can also be used inversely to estimate the frequency of a precipitation event that occurred over a given duration, defining whether the event was rare or ordinary, within the characterization of local extreme rain.

SUMÁRIO

INTRODUÇAO	
EQUAÇÃO	.7
EXEMPLO DE APLICAÇÃO1	
REFERÊNCIAS1	
ANEXO I	11
ANEXO II	13
LISTA DE FIGURAS	
Figura 01 - Localização do Município e da Estação Pluviométrica	. 7
Figura 02 - Curvas intensidade-duração-frequência	. 8
LISTA DE TABELAS	
Tabela 01 - Intensidade da chuva em mm/h	9
Tabela 02 - Altura da chuya em mm	. 9

INTRODUÇÃO

A equação definida pode ser utilizada no município de Caconde.

O município de Caconde está localizado a 290 km de São Paulo, capital do estado de São Paulo e faz divisa com os municípios de São José do Rio Pardo, Tapiratiba, Divinolândia, Muzambinho, Botelhos, Poços de Caldas e Cabo Verde. O município possui uma área aproximada de 470 km² (Instituto Brasileiro de Geografia e Estatística - IBGE, 2020) e localiza-se a uma altitude de 860 metros em sua sede. A população de Caconde, segundo IBGE (2010), é de 18.985 habitantes.

A estação Caconde, código 02146007 (ANA), está localizada na Latitude 21°32'00"S e Longitude 46°38'00"O; na sub-bacia 61, sub-bacia do rio Grande. A estação pluviométrica localiza-se no município de Caconde, a 1,5 km da sede do município. Esta estação encontra-se em operação desde 1937 e o período utilizado na elaboração da IDF foi de 1937 a 2020. Os dados para definição da equação IDF foram obtidos a partir dos dados diários de precipitação coletados em um pluviômetro operado pelo Departamento de Águas e Energia Elétrica de São Paulo (DAEE-SP).

A Figura 01 apresenta a localização do município e da estação pluviométrica.

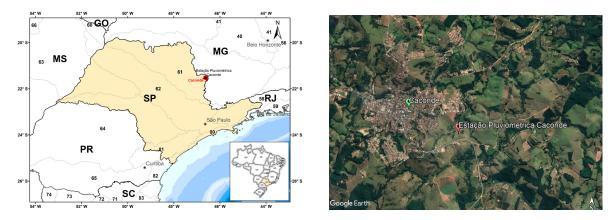


Figura 01 - Localização do Município e da Estação Pluviométrica (Fonte: Google Earth, 2020)

EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Caconde, códigos 02146007 (ANA) e C3-014 (DAEE) foi utilizada a série de precipitações diárias máximas por ano hidrológico (01/Out a 30/Set), apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Gumbel, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas da equação IDF estabelecida por Martinez Júnior e Magni (1999 *apud* DAEE, 2018) para o município de São José do Rio Pardo/SP. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

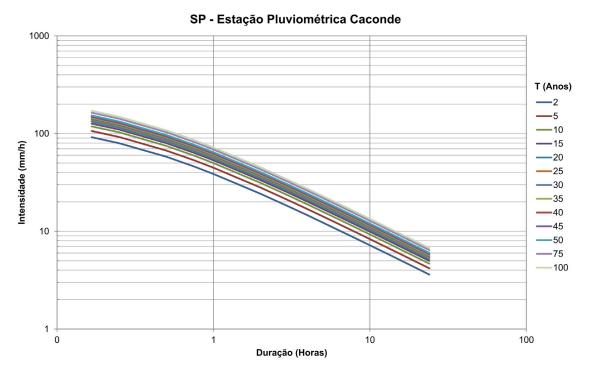


Figura 02 - Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 são do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

Té o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d e são parâmetros da equação

No caso de Caconde, os parâmetros das equações são os seguintes:

 $10min \le t \le 24h$

a = 1111,3; b = 0,1591; c = 15,7; d = 0,8018

$$i = \frac{1111,3T^{0,1591}}{(t+15,7)^{0,8018}} \tag{02}$$

A equação acima é válida para tempos de retorno de até 100 anos.

A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 - Intensidade da chuva em mm/h

DURAÇÃO	ÇÃO TEMPO DE RETORNO, T (ANO											
DA CHÚVA	2	5	10	15	20	25	30	40	50	60	75	100
10 Minutos	91,9	106,3	118,7	126,6	132,5	137,3	141,4	148,0	153,3	157,9	163,6	171,2
15 Minutos	79,7	92,2	102,9	109,8	114,9	119,1	122,6	128,3	133,0	136,9	141,8	148,5
20 Minutos	70,6	81,7	91,2	97,3	101,8	105,5	108,6	113,7	117,8	121,3	125,7	131,6
30 Minutos	57,9	67,0	74,8	79,8	83,5	86,6	89,1	93,3	96,7	99,5	103,1	107,9
45 Minutos	46,1	53,4	59,6	63,6	66,5	68,9	71,0	74,3	77,0	79,2	82,1	86,0
1 Hora	38,6	44,7	49,9	53,2	55,7	57,8	59,5	62,2	64,5	66,4	68,8	72,0
2 Horas	24,2	28,0	31,3	33,3	34,9	36,2	37,2	39,0	40,4	41,6	43,1	45,1
3 Horas	18,0	20,9	23,3	24,9	26,0	27,0	27,8	29,1	30,1	31,0	32,1	33,6
4 Horas	14,6	16,8	18,8	20,1	21,0	21,8	22,4	23,5	24,3	25,0	25,9	27,1
5 Horas	12,3	14,2	15,9	16,9	17,7	18,4	18,9	19,8	20,5	21,1	21,9	22,9
6 Horas	10,7	12,4	13,8	14,7	15,4	16,0	16,5	17,2	17,8	18,4	19,0	19,9
7 Horas	9,5	11,0	12,3	13,1	13,7	14,2	14,6	15,3	15,9	16,3	16,9	17,7
8 Horas	8,6	9,9	11,1	11,8	12,4	12,8	13,2	13,8	14,3	14,7	15,2	16,0
12 Horas	6,2	7,2	8,1	8,6	9,0	9,3	9,6	10,1	10,4	10,7	11,1	11,6
14 Horas	5,5	6,4	7,1	7,6	8,0	8,3	8,5	8,9	9,2	9,5	9,8	10,3
20 Horas	4,2	4,8	5,4	5,7	6,0	6,2	6,4	6,7	7,0	7,2	7,4	7,8
24 Horas	3,6	4,2	4,7	5,0	5,2	5,4	5,6	5,8	6,0	6,2	6,4	6,7

Tabela 02 - Altura da chuva em mm

DURAÇÃO	TEMPO DE RETORNO, T (ANOS)											
DA CHŪVA	2	5	10	15	20	25	30	40	50	60	75	100
10 Minutos	15,3	17,7	19,8	21,1	22,1	22,9	23,6	24,7	25,6	26,3	27,3	28,5
15 Minutos	19,9	23,0	25,7	27,4	28,7	29,8	30,6	32,1	33,2	34,2	35,5	37,1
20 Minutos	23,5	27,2	30,4	32,4	33,9	35,2	36,2	37,9	39,3	40,4	41,9	43,9
30 Minutos	29,0	33,5	37,4	39,9	41,8	43,3	44,6	46,6	48,3	49,7	51,5	54,0
45 Minutos	34,6	40,0	44,7	47,7	49,9	51,7	53,2	55,7	57,7	59,4	61,6	64,5
1 Hora	38,6	44,7	49,9	53,2	55,7	57,8	59,5	62,2	64,5	66,4	68,8	72,0
2 Horas	48,4	56,0	62,5	66,7	69,8	72,3	74,5	78,0	80,8	83,2	86,2	90,2
3 Horas	54,1	62,6	69,9	74,6	78,1	80,9	83,3	87,2	90,3	93,0	96,4	100,9
4 Horas	58,2	67,4	75,2	80,3	84,0	87,1	89,6	93,8	97,2	100,1	103,7	108,5
5 Horas	61,5	71,1	79,4	84,7	88,7	91,9	94,6	99,0	102,6	105,6	109,4	114,6
6 Horas	64,2	74,2	82,9	88,4	92,6	95,9	98,7	103,4	107,1	110,3	114,2	119,6
7 Horas	66,5	76,9	85,9	91,6	95,9	99,4	102,3	107,1	111,0	114,2	118,3	123,9
8 Horas	68,5	79,3	88,5	94,4	98,8	102,4	105,4	110,4	114,3	117,7	122,0	127,7
12 Horas	74,9	86,6	96,7	103,2	108,0	111,9	115,2	120,6	125,0	128,6	133,3	139,5
14 Horas	77,4	89,5	100,0	106,6	111,6	115,7	119,1	124,7	129,2	133,0	137,8	144,2
20 Horas	83,4	96,5	107,8	115,0	120,3	124,7	128,4	134,4	139,2	143,3	148,5	155,5
24 Horas	86,7	100,3	111,9	119,4	125,0	129,5	133,3	139,6	144,6	148,9	154,2	161,5

EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Caconde foi registrada uma Chuva de 86 mm com duração de 2 horas. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{03}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 86 mm dividido por 2 h é igual a 43 mm/h. Substituindo os valores na equação 03 temos:

$$T = \left[\frac{43(120 + 15,7)^{0,8018}}{1111,3}\right]^{1/0,1591} = 74 \ anos$$

O tempo de retorno de 74 anos corresponde a uma probabilidade de 1,35% que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou

$$P(i \ge 43 \ mm/h) = \frac{1}{T}100 = \frac{1}{74}100 = 1,33\%$$

REFERÊNCIAS

DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA - DAEE (São Paulo). **Precipitações intensas no estado de São Paulo**. São Paulo: DAEE; USP, 2018. p. 194-196. Disponível em: http://www.daee.sp.gov.br/index.php?option=com_content&view=article&id=743%3Apluviografia&catid=43%3Ahidrometeorologia&Itemid=30. Acesso em: 8 jun. 2021.

GOOGLE EARTH. **Imagem de localização da Estação pluviométrica Caconde**. Brasil: Google, [2021]. Disponível em: http://www.google.com/earth. Acesso em: 15 jul. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado**: Caconde. Brasília: IBGE, 2010. Disponível em: https://cidades.ibge.gov.br/brasil/sp/caconde/panorama. Acesso em: 8 jun. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado**: Caconde. Brasília: IBGE, 2020. Disponível em: https://cidades.ibge.gov.br/brasil/sp/caconde/panorama. Acesso em: 8 jun. 2021.

PINTO, E. J. de A. **Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico**. Belo Horizonte: CPRM, 2013.

ANEXO I

Série de Dados Utilizados — Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Out a 30/Set)

N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)	N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)
1	1941	1942	01/11/1941	51,4	39	1981	1982	20/10/1981	115,9
2	1942	1943	09/11/1942	61,8	40	1982	1983	16/12/1982	98,7
3	1943	1944	03/03/1944	65,5	41	1983	1984	15/12/1983	92,6
4	1944	1945	03/03/1945	75,4	42	1984	1985	08/01/1985	65,9
5	1945	1946	14/11/1945	43,3	43	1985	1986	12/01/1986	63,4
6	1946	1947	01/01/1947	62,3	44	1986	1987	27/12/1986	63,2
7	1947	1948	13/12/1947	53,2	45	1987	1988	14/11/1987	65,9
8	1948	1949	14/01/1949	62,3	46	1988	1989	07/01/1989	43,9
9	1951	1952	29/03/1952	62,2	47	1989	1990	21/03/1990	67,1
10	1952	1953	22/03/1953	90,3	48	1990	1991	06/11/1990	75,6
11	1953	1954	08/02/1954	65,3	49	1991	1992	02/05/1992	75,6
12	1954	1955	13/12/1954	74,2	50	1992	1993	10/01/1993	61,7
13	1955	1956	18/12/1955	67,6	51	1993	1994	15/05/1994	62,4
14	1956	1957	27/02/1957	78,6	52	1994	1995	07/02/1995	73,7
15	1957	1958	26/01/1958	84,3	53	1995	1996	04/01/1996	75,1
16	1958	1959	22/03/1959	62,7	54	1996	1997	22/11/1996	89,0
17	1959	1960	01/03/1960	96,4	55	1997	1998	29/01/1998	102,5
18	1960	1961	06/03/1961	96,8	56	1998	1999	07/02/1999	72,0
19	1961	1962	05/02/1962	76,8	57	1999	2000	04/01/2000	100,5
20	1962	1963	16/01/1963	80,3	58	2000	2001	08/03/2001	41,5
21	1963	1964	06/05/1964	56,7	59	2001	2002	20/11/2001	54,8
22	1964	1965	23/02/1965	89,5	60	2002	2003	20/01/2003	68,0
23	1965	1966	05/01/1966	80,2	61	2003	2004	15/02/2004	83,0
24	1966	1967	22/12/1966	71,0	62	2004	2005	19/01/2005	71,8
25	1967	1968	12/03/1968	54,0	63	2005	2006	13/02/2006	53,0
26	1968	1969	30/05/1969	48,2	64	2006	2007	07/10/2006	90,0
27	1969	1970	01/01/1970	68,6	65	2007	2008	22/01/2008	50,9
28	1970	1971	20/12/1970	57,3	66	2008	2009	29/03/2009	64,2
29	1971	1972	24/12/1971	85,6	67	2009	2010	11/12/2009	39,7
30	1972	1973	11/10/1972	56,8	68	2010	2011	30/11/2010	65,3
31	1973	1974	18/12/1973	73,5	69	2011	2012	15/11/2011	78,5
32	1974	1975	30/10/1974	63,5	70	2012	2013	10/12/2012	113,2
33	1975	1976	14/12/1975	75,8	71	2013	2014	29/12/2013	38,8
34	1976	1977	20/01/1977	260,4	72	2014	2015	06/01/2015	69,0

ANEXO I

Série de Dados Utilizados — Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Out a 30/Set) - (Continuação)

N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)	N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)
35	1977	1978	10/01/1978	81,6	73	2015	2016	11/03/2016	68,7
36	1978	1979	13/02/1979	72,5	74	2016	2017	05/03/2017	54,5
37	1979	1980	26/06/1980	72,4	75	2017	2018	04/08/2018	50,0
38	1980	1981	15/01/1981	72,4	76	2018	2019	19/12/2018	75,7

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir das relações IDF estabelecidas por Martinez Júnior e Magni (1999 *apud* DAEE, 2018) para o município de São José do Rio Pardo/SP.

Relação 24h/1dia: 1,13

| RELAÇÃO |
|---------|---------|---------|---------|---------|---------|---------|
| 14H/24H | 8H/14H | 6H/8H | 4H/6H | 3H/4H | 2H/3H | 1H/2H |
| 0,89 | 0,89 | 0,94 | 0,91 | 0,93 | 0,89 | |

RELAÇÃO	RELAÇÃO	RELAÇÃO	RELAÇÃO
45MIN/1H	30MIN/45MIN	15MIN/30MIN	10MIN/15MIN
0,89	0,84	0,69	

O SERVIÇO GEOLÓGICO DO BRASIL - CPRM E OS OBJETIVOS PARA O DESENVOLVIMENTO SUSTENTÁVEL - ODS

Em setembro de 2015 líderes mundiais reuniram-se na sede da ONU, em Nova York, e formularam um conjunto de objetivos e metas universais com intuito de garantir o desenvolvimento sustentável nas dimensões econômica, social e ambiental. Esta ação resultou na *Agenda 2030*, a qual contém um conjunto de *17 Objetivos de Desenvolvimento Sustentável - ODS*.

A Agenda 2030 é um plano de ação para as pessoas, para o planeta e para a prosperidade. Busca fortalecer a paz universal, e considera que a erradicação da pobreza em todas as suas formas e dimensões é o maior desafio global, e um requisito indispensável para o desenvolvimento sustentável.

Os 17 ODS incluem uma ambiciosa lista 169 metas para todos os países e todas as partes interessadas, atuando em parceria colaborativa, a serem cumpridas até 2030.

O **Serviço Geológico do Brasil – CPRM** atua em diversas áreas intrínsecas às Geociências, que podem ser agrupadas em quatro grandes linhas de atuação:

- Geologia
- · Recursos Minerais;
- · Hidrologia; e
- Gestão Territorial.

Todas as áreas de atuação do SGB-CPRM, sejam nas áreas das Geociências ou nos serviços compartilhados, ou ainda em seus programas internos, devem ter conexão com os ODS, evidenciando o comprometimento de nossa instituição com a sustentabilidade, com a humanidade e com o futuro do planeta.

A tabela a seguir relaciona as áreas de atuação do SGB-CPRM com os ODS.

Áreas de atuação do Serviço Geológico do Brasil - CPRM e os Objetivos de Desenvolvimento Sustentável - ODS

ÁREA DE ATUAÇÃO GEOCIÊNCIAS

LEVANTAMENTOS GEOLÓGICOS

AVALIAÇÃO DOS RECURSOS MINERAIS DO BRASIL

LEVANTAMENTOS GEOQUÍMICOS

LEVANTAMENTOS BÁSICOS DE RECURSOS HÍDRICOS SUPERFICIAIS

SISTEMAS DE ALERTA HIDROLÓGICO

AGROGEOLOGIA

RISCO GEOLÓGICO

PATRIMÔNIO GEOLÓGICO **E GEOPAROUES**

ÁREA DE ATUAÇÃO

SERVIÇOS COMPARTILHADOS

GEOPROCESSAMENTO E SENSORIAMENTO REMOTO

TECNOLOGIA DA INFORMAÇÃO

LABORATÓRIO DE ANÁLISE MINERAIS

MUSEU DE CIÊNCIAS DA TERRA

GOVERNANÇA

SUSTENTABILIDADE

PRÓ-EQUIDADE

COMITÊ DE ÉTICA

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF). As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

MINISTÉRIO DE MINAS E ENERGIA

