PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

ATLAS PLUWIOMETRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Município: Guareí/SP

Estação Pluviográfica: Guareí

Código: 02348014 (ANA) e E5-027R (DAEE)

MINISTÉRIO DE MINAS E ENERGIA

Ministro de Estado

Bento Albuquerque

Secretário de Geologia, Mineração e Transformação Mineral

Pedro Paulo Dias Mesquita

SERVIÇO GEOLÓGICO DO BRASIL - CPRM

DIRETORIA EXECUTIVA

Diretor Presidente

Esteves Pedro Colnago

Diretora de Hidrologia e Gestão Territorial

Alice Silva de Castilho

Diretor de Geologia e Recursos Minerais

Marcio José Remédio

Diretor de Infraestrutura Geocientífica

Paulo Afonso Romano

Diretor de Administração e Finanças

Cassiano de Souza Alves

COORDENAÇÃO TÉCNICA

Chefe do Departamento de Hidrologia

Frederico Cláudio Peixinho

Chefe da Divisão de Hidrologia Aplicada

Adriana Dantas Medeiros

Achiles Monteiro (in memoriam)

Chefe do Departamento de Gestão Territorial

Diogo Rodrigues Andrade da Silva

Chefe da Divisão de Geologia Aplicada

Tiago Antonelli

Coordenação Executiva do DEHID - Projeto Atlas Pluviométrico

Eber José de Andrade Pinto

SUPERINTENDÊNCIA REGIONAL DE BELÉM

Superintendente

Jânio Souza Nascimento

Gerência de Hidrologia e Gestão Territorial

Homero Reis de Melo Junior

Gerência de Geologia e Recursos Minerais

Cesar Lisboa Chaves

Gerência de Infraestrutura Geocientífica

Cristiane Silva de Sousa

Gerência de Administração e Finanças

Sônia Cristina dos Santos Cavalcante

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL – CPRM

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL

PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Estação Pluviográfica: Guareí

Códigos: 02348014 (ANA) e E5-027R (DAEE)

Município: Guareí/SP

AUTORES

Catharina dos Prazeres Campos de Farias Karine Pickbrenner Eber José de Andrade Pinto

Belém 2021

REALIZAÇÃO

Superintendência de Belém

AUTORES

Catharina dos Prazeres Campos de Farias Karine Pickbrenner Eber José de Andrade Pinto

COORDENADORES REGIONAIS DO PROJETO ATLAS PLUVIOMÉTRICO

José Alexandre Moreira Farias - REFO (in memoriam) Karine Pickbrenner - SUREG/PA

EQUIPE EXECUTORA

Adriana Burin Weschenfelder - SUREG/PA Cristiane Ribeiro de Melo - SUREG/RE Caluan Rodrigues Capozzoli - SUREG/SP Catharina dos Prazeres Campos de Farias - SUREG/BE Jean Ricardo da Silva Nascimento - RETE Osvalcélio Mercês Furtunato - SUREG/SA

SISTEMA DE INFORMAÇÕES GEOGRÁFICAS E MAPA

Ivete Souza do Nascimento - SUREG/BH

PROJETO GRÁFICO/EDITORAÇÃO

Capa (DIEDIG)

Juliana Colussi

Miolo (DIEDIG)

Agmar Alves Lopes Juliana Colussi

Diagramação (NANA)

Aline da Silva Prado

Revisão (SUREG/PA)

Alessandra Luiza Rahel

Referências

Ana Lúcia Borges Fortes Coelho (Organização e Formatação)

Serviço Geológico do Brasil - CPRM

www.cprm.gov.br seus@cprm.gov.br

Dados Internacionais de Catalogação-na-Publicação (CIP)

Farias, Catharina dos Prazeres Campos de F224 Atlas Pluviométrico do Brasil: Equa

Atlas Pluviométrico do Brasil: Equações Intensidade-Duração-Frequência: Município Guareí/SP / Catharina dos Prazeres Campos de Farias; Karine Pickbrenner; Eber José de Andrade Pinto. – Belém: CPRM, 2021.

1 recurso eletrônico: PDF

Programa Geologia do Brasil. Levantamento da Geodiversidade ISBN 978-65-5664-143-0

1. Hidrologia. 2. Pluviometria - Brasil. 3. Equações IDF I. Pickbrenner, Karine. II. Pinto, Eber José de Andrade. III. Título CDD 551.570981

Ficha catalográfica elaborada pela bibliotecária Ana Lúcia Borges Fortes Coelho – CRB10 - 840

Direitos desta edição: Serviço Geológico do Brasil – CPRM Permitida a reprodução desta publicação desde que mencionada a fonte.

APRESENTAÇÃO

projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas as áreas suscetíveis a movimentos de massa e enchentes ou inseridos em sub-bacias monitoradas pelos Sistemas de Alerta Hidrológico e projetos executados pelo Serviço Geológico do Brasil – CPRM.

Este relatório apresenta a equação IDF estabelecida para o município de Guareí onde foram utilizados os registros contínuos da estação pluviográfica Guareí, códigos 02348014 (ANA) e E5-027R (DAEE), operada pelo DAEE (Departamento de Águas e Energia Elétrica do Estado de São Paulo). Esta estação está localizada à 1,5 km da sede do município.

Esteves Pedro Colnago

Diretor-Presidente

Alice Silva de Castilho

Diretora de Hidrologia e Gestão Territorial

RESUMO

Este trabalho apresenta a equação Intensidade-Duração-Frequência (IDF) estabelecida para o município de Guareí/SP. As séries de dados utilizadas no estudo foram elaboradas a partir de registros contínuos de precipitação da estação pluviográfica Guareí, códigos 02348014 (ANA) e E5-027R (DAEE), localizada no mesmo município. A metodologia para definição da equação utilizando séries de duração parcial está descrita em detalhes em Pinto (2013). A distribuição de frequência ajustada aos dados foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L. As equações adotadas para representar a família de curvas IDF podem ser aplicadas para durações entre 10min e 24h e são recomendadas para tempos de retorno até 50 anos. A aplicação da equação IDF elaborada para o município de Guareí permite associar intensidades de precipitação, nas diferentes durações, a frequências de ocorrência, as quais serão utilizadas no dimensionamento de estruturas hidráulicas. Também pode ser utilizada de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido numa determinada duração, definindo se o evento foi raro ou ordinário, dentro da caracterização de chuva extrema local.

ABSTRACT

This work presents the Intensity-Duration-Frequency (IDF) equation established to the city of Guareí /SP. The data series used in the study were prepared from continuous precipitation records of the Guareí rain station, code 02348014 (ANA) and E5-027R (DAEE), located in the same city. The methodology for defining the equation using partial duration series is described in detail in Pinto (2013). The frequency distribution adjusted to the data was Exponential, with the parameters calculated by the L-moment method. The equations fitted to represent the family of IDF curves can be applied for durations between 10min and 24h and are recommended for return period up to 50 years. The application of the IDF equation developed for the city of Guareí allows the association of precipitation intensities, in different durations, with frequencies of occurrence, which will be used in the design of hydraulic structures. It can also be used in an inverse way, that is, to estimate the frequency of a precipitation event that occurred over a given duration, defining how unusual or ordinary the event was, according to the local extreme rain characterization.

SUMÁRIO

INTRODUÇÃO	7
EQUAÇÃO	7
REFERÊNCIAS	10
ANEXO I	11
ANEXO II	13
LISTA DE FIGURAS	
Figura 01 - Localização do Município e da Estação Pluviográfica	7
Figura 02 - Curvas intensidade-duração-frequência	8
LISTA DE TABELAS	
Tabela 01 - Intensidade da chuva em mm/h	9
Tabela 02 - Altura da chuva em mm	9

INTRODUÇÃO

A equação definida pode ser utilizada no município de Guareí

O município de Guareí está localizado no Estado de São Paulo, na Latitude 23°22'22" S e Longitude 48°11'02" W, distante 160 km da capital do Estado, São Paulo, e faz divisa com os municípios de Angatuba, Bofete, Itapetininga, Porangaba, Quadra, Tatuí e Torre de Pedra. O município possui área de 567,884 Km² (Instituto Brasileiro de Geografia e Estatística - IBGE, 2020) e localiza-se a uma altitude de 635 metros. A população de Guareí, segundo IBGE (2010), é de 14.565 habitantes.

A estação Guareí, códigos 02348014 (ANA) e E5-027R (DAEE), está localizada na Latitude 23°21'41"S e Longitude 48°10'33"O; na sub-bacia 64, sub-bacia dos rios Paraná, Paranapanema, Amambaí e outros. A estação pluviográfica localiza-se à 1,5 km da sede municipal de Guareí. Esta estação encontra-se em operação desde 1969 e o período utilizado na elaboração da IDF foi de 1974 a 1984. Os dados para definição da equação IDF foram obtidos a partir dos dados contínuos de precipitação coletados em um pluviógrafo operado pelo Departamento de Águas e Energia Elétrica do Estado de São Paulo (DAEE).

A Figura 01 apresenta a localização do município e da estação pluviográfica.

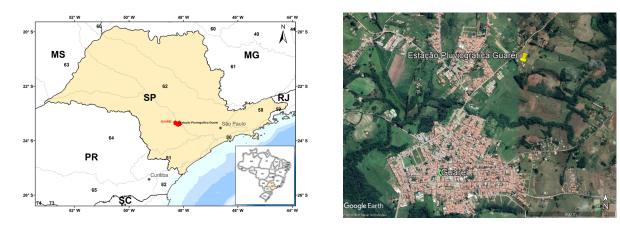


Figura 01 - Localização do Município e da Estação Pluviográfica (Fonte: Google Earth, 2021)

EQUAÇÃO

A metodologia para definição da equação está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Guareí, códigos 02348014 (ANA) e E5-027R (DAEE), foram utilizadas séries de duração parcial e os dados utilizados constam do Anexo I. A distribuição de frequência ajustada aos dados foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L. O Anexo II apresenta as relações entre as alturas de diferentes durações calculadas com os resultados das análises de frequência.

A Figura 02 apresenta as curvas ajustadas.

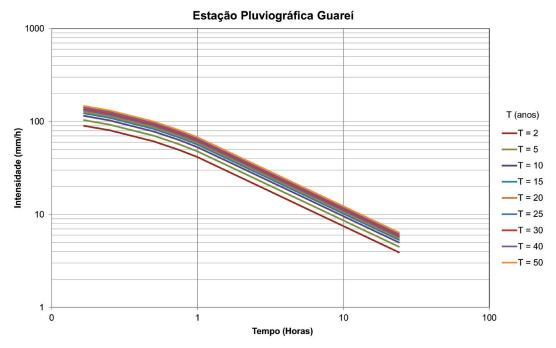


Figura 02 - Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Guareí os parâmetros das equações são os seguintes:

 $10min \le t \le 1h$

$$a = 3168,0$$
; $b = 0,1525$; $c = 31,7$ $e d = 0,9831$

$$i = \frac{3168 \, T^{0,1525}}{(t+31,7)^{0,9831}} \tag{02}$$

 $1h < t \le 24h$

$$a = 781,3$$
; $b = 0,1525$; $c = 0,0$ $e d = 0,7429$

$$i = \frac{781,3 \, T^{0,1525}}{(t)^{0,7429}} \tag{03}$$

As equações acima são válidas para tempos de retorno de até 50 anos. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno.

Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 - Intensidade da chuva em mm/h

DURAÇÃO				TEMPO DE	RETORNO	, T (ANOS)			
DA CHÚVA	2	5	10	15	20	25	30	40	50
10 Minutos	89,9	103,4	115,0	122,3	127,8	132,2	135,9	142,0	146,9
15 Minutos	80,5	92,5	102,8	109,4	114,3	118,3	121,6	127,1	131,5
20 Minutos	72,8	83,7	93,1	99,0	103,4	107,0	110,0	115,0	118,9
30 Minutos	61,2	70,4	78,2	83,2	86,9	89,9	92,5	96,6	100,0
45 Minutos	49,4	56,8	63,1	67,2	70,2	72,6	74,7	78,0	80,7
1 Hora	41,4	47,7	53,0	56,4	58,9	60,9	62,6	65,4	67,7
2 Horas	24,8	28,5	31,7	33,7	35,2	36,4	37,5	39,1	40,5
3 Horas	18,3	21,1	23,4	24,9	26,0	27,0	27,7	29,0	30,0
4 Horas	14,8	17,0	18,9	20,1	21,0	21,8	22,4	23,4	24,2
5 Horas	12,5	14,4	16,0	17,1	17,8	18,4	19,0	19,8	20,5
6 Horas	11,0	12,6	14,0	14,9	15,6	16,1	16,6	17,3	17,9
7 Horas	9,8	11,2	12,5	13,3	13,9	14,4	14,8	15,4	16,0
8 Horas	8,8	10,2	11,3	12,0	12,6	13,0	13,4	14,0	14,5
12 Horas	6,5	7,5	8,4	8,9	9,3	9,6	9,9	10,3	10,7
14 Horas	5,8	6,7	7,5	7,9	8,3	8,6	8,8	9,2	9,5
20 Horas	4,5	5,2	5,7	6,1	6,4	6,6	6,8	7,1	7,3
24 Horas	3,9	4,5	5,0	5,3	5,6	5,7	5,9	6,2	6,4

Tabela 02 - Altura da chuva em mm

DURAÇÃO				TEMPO DI	RETORNO	, T (ANOS)			
DA CHUVA	2	5	10	15	20	25	30	40	50
10 Minutos	15,0	17,2	19,2	20,4	21,3	22,0	22,7	23,7	24,5
15 Minutos	20,1	23,1	25,7	27,4	28,6	29,6	30,4	31,8	32,9
20 Minutos	24,3	27,9	31,0	33,0	34,5	35,7	36,7	38,3	39,6
30 Minutos	30,6	35,2	39,1	41,6	43,5	45,0	46,2	48,3	50,0
45 Minutos	37,1	42,6	47,4	50,4	52,6	54,5	56,0	58,5	60,5
1 Hora	41,4	47,7	53,0	56,4	58,9	60,9	62,6	65,4	67,7
2 Horas	49,6	57,0	63,3	67,4	70,4	72,8	74,9	78,3	81,0
3 Horas	55,0	63,3	70,3	74,8	78,1	80,9	83,1	86,9	89,9
4 Horas	59,2	68,1	75,7	80,5	84,1	87,1	89,5	93,5	96,8
5 Horas	62,7	72,1	80,2	85,3	89,1	92,2	94,8	99,0	102,5
6 Horas	65,7	75,6	84,0	89,4	93,4	96,6	99,3	103,8	107,4
7 Horas	68,4	78,6	87,4	93,0	97,2	100,5	103,4	108,0	111,7
8 Horas	70,8	81,4	90,5	96,2	100,6	104,0	107,0	111,8	115,6
12 Horas	78,6	90,3	100,4	106,8	111,6	115,5	118,7	124,1	128,3

DURAÇÃO	TEMPO DE RETORNO, T (ANOS)											
DA CHUVA	2	5	10	15	20	25	30	40	50			
14 Horas	81,7	94,0	104,5	111,1	116,1	120,1	123,5	129,1	133,5			
20 Horas	89,6	103,0	114,5	121,8	127,3	131,7	135,4	141,5	146,4			
24 Horas	93,9	108,0	120,0	127,7	133,4	138,0	141,9	148,3	153,4			

Tabela 02 - Altura da chuva em mm (continuação)

EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, na estação de Guareí, foi registrada uma chuva de 60 mm com duração de 45 minutos, a qual gerou vários problemas no sistema de drenagem pluvial na cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{04}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 60 mm dividido por 0,75 h é igual a 80 mm/h. Substituindo os valores na equação 04 temos:

$$T = \left[\frac{80(45 + 31,7)^{0,9831}}{3168}\right]^{1/0,1525} = 47,2 \ anos$$

O tempo de retorno de 47,2 anos corresponde a uma probabilidade que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 2,1%, ou

$$P(i \ge 80 \ mm/h) = \frac{1}{T}100 = \frac{1}{47,2}100 = 2,1\%$$

REFERÊNCIAS

GOOGLE EARTH. **Imagem de localização da Estação Pluviográfica Guareí.** Brasil: Google, [2020]. Disponível em: http://www.google.com/earth. Acesso em: 20 ago. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado:** Guareí. Brasília: IBGE, 2010. Disponível em: https://cidades.ibge.gov.br/brasil/sp/guarei/panorama. Acesso em: 20 ago. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado:** Guareí. Brasília: IBGE, 2020. Disponível em: https://cidades.ibge.gov.br/brasil/sp/guarei/panorama. Acesso em: 20 ago. 2021.

PINTO, E. J. de A. **Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico.** Belo Horizonte: CPRM, 2013.

ANEXO I

Série de Dados Utilizados por Duração (10 Min. - 1 Hora) — Altura de Chuva (mm)

DATA	10 MIN.	DATA	15 MIN.	DATA	30 MIN.	DATA	45 MIN.	DATA	1 HORA
12/01/1974	17,4	12/01/1974	23,2	12/01/1974	38,6	12/01/1974	46,0	12/01/1974	49,0
19/01/1974	20,9	19/01/1974	24,1	19/01/1974	28,3	19/01/1974	28,9	08/03/1974	32,4
07/11/1975	13,8	27/01/1974	17,5	27/01/1974	24,5	02/12/1974	31,2	02/12/1974	31,7
07/12/1975	13,7	07/11/1975	18,1	02/12/1974	25,9	06/02/1975	37,3	06/02/1975	44,7
14/12/1975	13,3	23/11/1975	29,9	06/02/1975	27,5	23/11/1975	43,0	23/11/1975	44,0
29/12/1975	17,8	07/12/1975	16,8	07/11/1975	25,2	14/12/1975	29,8	14/12/1975	33,2
02/01/1977	13,5	29/12/1975	23,9	23/11/1975	40,2	29/12/1975	39,9	29/12/1975	41,3
23/03/1977	13,0	25/10/1976	17,2	14/12/1975	25,6	08/01/1976	30,4	08/01/1976	34,4
18/04/1977	13,5	30/01/1977	17,2	29/12/1975	36,9	30/01/1977	34,9	30/01/1977	41,2
24/09/1977	15,8	18/04/1977	18,8	30/01/1977	25,7	07/03/1977	41,9	07/03/1977	46,8
12/11/1977	13,9	24/09/1977	18,3	07/03/1977	30,8	05/03/1978	34,6	05/03/1978	40,3
04/11/1978	19,3	04/11/1978	20,7	18/04/1977	25,3	11/03/1979	37,9	11/03/1979	49,4
05/04/1979	13,7	05/04/1979	18,2	11/03/1979	26,7	05/04/1979	35,1	05/04/1979	38,5
14/03/1980	14,5	04/05/1979	16,5	05/04/1979	30,9	14/03/1980	30,0	16/03/1980	39,8
16/03/1980	14,3	14/03/1980	21,2	14/03/1980	29,4	16/03/1980	37,9	17/03/1981	31,2
04/12/1980	15,1	16/03/1980	19,1	16/03/1980	31,1	17/03/1981	29,7	28/10/1981	43,2
17/03/1981	13,3	04/12/1980	17,2	28/10/1981	34,7	28/10/1981	39,7	09/11/1981	57,0
28/10/1981	13,7	28/10/1981	20,4	09/11/1981	37,6	09/11/1981	50,3	24/01/1982	36,3
09/11/1981	17,0	09/11/1981	22,3	10/03/1982	24,4	06/09/1982	42,4	06/09/1982	43,9
23/11/1982	14,8	06/09/1982	19,9	06/09/1982	38,1	23/11/1982	29,5	03/12/1982	45,5
13/02/1983	16,5	23/11/1982	17,7	23/11/1982	26,0	03/12/1982	33,0	16/12/1982	35,0
25/04/1984	16,9	13/02/1983	18,3	16/12/1982	25,3	16/12/1982	32,8	05/03/1983	31,7
12/05/1984	13,7	25/04/1984	19,1	25/04/1984	27,5	25/04/1984	35,8	25/04/1984	39,3
18/11/1984	16,2	18/11/1984	22,1	18/11/1984	38,9	18/11/1984	52,9	18/11/1984	63,1

ANEXO I

Série de Dados Utilizados por Duração (2 Horas. - 24 Horas) — Altura de Chuva (mm)

DATA	2H.	DATA	3Н.	DATA	4H.	DATA	8H	DATA	14H.	DATA	24H
12/01/1974	50,7	12/01/1974	52,9	12/01/1974	55,7	12/01/1974	62,9	12/01/1974	63,0	12/01/1974	63,0
08/03/1974	40,4	08/03/1974	51,0	08/03/1974	51,8	18/03/1974	84,3	18/03/1974	119,3	17/03/1974	135,6
18/03/1974	40,6	18/03/1974	51,5	18/03/1974	56,7	01/12/1974	61,4	01/12/1974	61,9	01/12/1974	108,8
06/02/1975	63,2	01/12/1974	47,8	01/12/1974	50,6	06/02/1975	88,0	05/02/1975	94,9	05/02/1975	101,3
23/11/1975	44,1	02/12/1974	45,5	02/12/1974	46,9	30/11/1975	53,9	30/11/1975	79,4	30/11/1975	81,7
29/12/1975	42,6	06/02/1975	71,4	06/02/1975	73,2	14/12/1975	56,6	08/01/1976	66,0	07/01/1976	86,8
08/01/1976	47,0	29/12/1975	45,6	29/12/1975	47,5	08/01/1976	53,6	06/06/1976	59,2	07/02/1976	68,2
30/01/1977	45,9	08/01/1976	50,9	08/01/1976	53,1	30/01/1977	63,9	30/01/1977	64,6	29/05/1976	63,7
07/03/1977	49,8	30/01/1977	45,9	30/01/1977	45,9	23/03/1977	61,3	22/03/1977	64,0	03/07/1976	78,6
05/03/1978	40,8	07/03/1977	50,4	07/03/1977	50,4	27/12/1978	74,8	27/12/1978	76,7	30/01/1977	64,6
11/03/1979	67,5	11/03/1979	72,8	27/12/1978	56,6	11/03/1979	75,3	11/03/1979	76,7	22/03/1977	64,3
05/04/1979	39,9	23/11/1979	48,5	11/03/1979	73,3	19/08/1979	62,0	18/08/1979	76,9	27/12/1978	88,7
10/12/1979	46,3	10/12/1979	54,6	23/11/1979	66,6	23/11/1979	87,9	23/11/1979	92,8	11/03/1979	76,7
16/12/1979	43,1	16/12/1979	53,1	10/12/1979	54,6	10/12/1979	58,5	10/12/1979	58,5	18/08/1979	94,0
16/03/1980	44,2	16/03/1980	45,3	16/12/1979	57,7	16/12/1979	63,8	16/12/1979	65,9	23/11/1979	92,8
28/10/1981	51,7	28/10/1981	55,5	28/10/1981	55,5	28/10/1981	62,7	28/10/1981	63,6	16/12/1979	68,9
09/11/1981	60,9	09/11/1981	64,6	09/11/1981	65,7	09/11/1981	66,9	09/11/1981	67,9	27/10/1981	80,5
13/12/1981	40,8	13/12/1981	44,1	13/12/1981	46,2	23/01/1982	93,8	23/01/1982	102,2	09/11/1981	67,9
24/01/1982	48,0	23/01/1982	55,6	23/01/1982	62,1	06/09/1982	59,3	06/09/1982	59,3	23/01/1982	102,2
06/09/1982	49,9	06/09/1982	56,4	06/09/1982	57,8	03/12/1982	53,5	29/05/1983	76,9	29/05/1983	97,3
03/12/1982	52,1	03/12/1982	52,4	03/12/1982	52,5	29/05/1983	56,0	31/05/1983	78,5	30/05/1983	96,9
13/02/1983	41,7	25/04/1984	55,4	25/04/1984	55,6	25/04/1984	55,6	07/06/1983	63,6	06/06/1983	91,0
25/04/1984	47,2	21/09/1984	44,6	21/09/1984	49,3	21/09/1984	60,6	21/09/1984	85,6	20/09/1984	92,0
18/11/1984	64,4	18/11/1984	64,5	18/11/1984	64,5	18/11/1984	64,5	18/11/1984	64,5	18/11/1984	64,5

ANEXO II

Relações entre as alturas de precipitações de diferentes durações (Pd1/Pd2) Tempos de Retorno de 2 a 50 anos

	RELAÇÃO 10MIN/15 MIN	RELAÇÃO 15MIN/30 MIN	RELAÇÃO 30MIN/45 MIN	RELAÇÃO 45MIN/1H
Máxima	0,76	0,66	0,82	0,89
Mínima	0,74	0,61	0,81	0,87
Média	0,74	0,62	0,82	0,87
Mediana	0,74	0,62	0,82	0,87

	RELAÇÃO 1H/2H	RELAÇÃO 2H/3H	RELAÇÃO 3H/4H	RELAÇÃO 4H/8H	RELAÇÃO 8H/14H	RELAÇÃO 14H/20H
Máxima	0,92	0,95	0,96	0,86	0,88	0,92
Mínima	0,86	0,91	0,95	0,79	0,83	0,89
Média	0,90	0,94	0,96	0,81	0,85	0,90
Mediana	0,91	0,94	0,96	0,80	0,84	0,90

Relações entre as alturas de precipitações de diferentes durações (Pd/Pd1hora) Tempos de Retorno de 2 a 50 anos

	RELAÇÃO 10MIN/1H	RELAÇÃO 15MIN/1H	RELAÇÃO 30MIN/1H	RELAÇÃO 45MIN/1H
Máxima	0,37	0,48	0,73	0,89
Mínima	0,32	0,43	0,71	0,87
Média	0,33	0,44	0,71	0,87
Mediana	0,32	0,44	0,71	0,87

Relações entre as alturas de precipitações de diferentes durações (Pd/Pd24horas) Tempos de Retorno de 2 a 50 anos

	RELAÇÃO 1H/24H	RELAÇÃO 2H/24H	RELAÇÃO 3H/24H	RELAÇÃO 4H/24H	RELAÇÃO 8H/24H	RELAÇÃO 14H/24H	RELAÇÃO 20H/24H
Máxima	0,48	0,51	0,63	0,66	0,77	0,88	0,96
Mínima	0,47	0,51	0,54	0,56	0,71	0,85	0,95
Média	0,47	0,53	0,56	0,59	0,73	0,86	0,95
Mediana	0,47	0,52	0,55	0,58	0,72	0,86	0,95

O SERVIÇO GEOLÓGICO DO BRASIL - CPRM E OS OBJETIVOS PARA O DESENVOLVIMENTO SUSTENTÁVEL - ODS

Em setembro de 2015 líderes mundiais reuniram-se na sede da ONU, em Nova York, e formularam um conjunto de objetivos e metas universais com intuito de garantir o desenvolvimento sustentável nas dimensões econômica, social e ambiental. Esta ação resultou na *Agenda 2030*, a qual contém um conjunto de *17 Objetivos de Desenvolvimento Sustentável - ODS*.

A Agenda 2030 é um plano de ação para as pessoas, para o planeta e para a prosperidade. Busca fortalecer a paz universal, e considera que a erradicação da pobreza em todas as suas formas e dimensões é o maior desafio global, e um requisito indispensável para o desenvolvimento sustentável.

Os 17 ODS incluem uma ambiciosa lista 169 metas para todos os países e todas as partes interessadas, atuando em parceria colaborativa, a serem cumpridas até 2030.

O **Serviço Geológico do Brasil – CPRM** atua em diversas áreas intrínsecas às Geociências, que podem ser agrupadas em quatro grandes linhas de atuação:

- Geologia
- · Recursos Minerais;
- · Hidrologia; e
- Gestão Territorial.

Todas as áreas de atuação do SGB-CPRM, sejam nas áreas das Geociências ou nos serviços compartilhados, ou ainda em seus programas internos, devem ter conexão com os ODS, evidenciando o comprometimento de nossa instituição com a sustentabilidade, com a humanidade e com o futuro do planeta.

A tabela a seguir relaciona as áreas de atuação do SGB-CPRM com os ODS.

Áreas de atuação do Serviço Geológico do Brasil - CPRM e os Objetivos de Desenvolvimento Sustentável - ODS

ÁREA DE ATUAÇÃO GEOCIÊNCIAS

LEVANTAMENTOS GEOLÓGICOS

AVALIAÇÃO DOS RECURSOS MINERAIS DO BRASIL

LEVANTAMENTOS GEOQUÍMICOS

LEVANTAMENTOS BÁSICOS DE RECURSOS HÍDRICOS SUPERFICIAIS

SISTEMAS DE ALERTA HIDROLÓGICO

AGROGEOLOGIA

RISCO GEOLÓGICO

PATRIMÔNIO GEOLÓGICO **E GEOPAROUES**

ÁREA DE ATUAÇÃO

SERVIÇOS COMPARTILHADOS

GEOPROCESSAMENTO E SENSORIAMENTO REMOTO

TECNOLOGIA DA INFORMAÇÃO

LABORATÓRIO DE ANÁLISE MINERAIS

MUSEU DE CIÊNCIAS DA TERRA

GOVERNANÇA

SUSTENTABILIDADE

PRÓ-EQUIDADE

COMITÊ DE ÉTICA

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF). As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

MINISTÉRIO DE MINAS E ENERGIA

