PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

ATLAS PLUVIONETRICO DO BRASIL

Equações Intensidade-Duração-Frequência

Estado: Amazonas Município: Manicoré

Estação Pluviométrica: Manicoré

Código ANA: 00561000 Código INMET: 82533

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: Manicoré/AM

Estação Pluviométrica: Manicoré Códigos: 00561000(ANA) e 82533(INMET)

PROGRAMA GEOLOGIA DO BRASIL

LEVANTAMENTO DA GEODIVERSIDADE

CARTAS DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Porto Alegre

Copyright @ 2015 CPRM - Superintendência Regional de Porto Alegre Rua Banco da Província, 105 - Bairro Santa Teresa Porto Alegre - RS - 90.840-030

Telefone: 0(xx)(51) 3406-7300 Fax: 0(xx)(51) 3233-7772

http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias). Município: Manicoré. Estação Pluviométrica: Manicoré Códigos 00561000 (ANA) e 82533 (INMET). Adriana Burin Weschenfelder, Karine Pickbrenner e Eber José de Andrade Pinto – Porto Alegre: CPRM, 2015.

12p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II - WESCHENFELDER, A. B.; PICKBRENNER, K. e PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Carlos Eduardo de Souza Braga

SECRETÁRIO EXECUTIVO

Márcio Pereira Zimmermann

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Luiz Gonzaga Baião

Jarbas Raimundo de Aldano Matos

Waldir Duarte Costa Filho

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Thales de Queiroz Sampaio

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Eduardo Santa Helena

SUPERINTENDÊNCIA REGIONAL DE PORTO ALEGRE

José Leonardo Silva Andriotti Superintendente

Marcos Alexandre de Freitas Gerente de Hidrologia e Gestão Territorial

João Angelo Toniolo Gerente de Geologia e Recursos Minerais

Ana Claudia Viero
Gerente de Relações Institucionais e Desenvolvimento

Alexandre Goulart Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Cássio Roberto da Silva

Divisão de Hidrologia Aplicada

Achiles Eduardo Guerra Castro Monteiro

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenaçãodo Projeto Cartas Municipais de Suscetibilidade

Sandra Fernandes da Silva

Coordenadores Regionais do Projeto Atlas Pluviométrico

Andressa Macêdo Silva de Azambuja-Sureg/BE José Alexandre Moreira Farias-REFO Karine Pickbrenner-Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder-Sureg/PA

Albert Teixeira Cardoso-Sureg/GO

Caluan Rodrigues Capozzoli-Sureg/SP

Catharina Ramos dos Prazeres Campos – Sureg/BE

Jean Ricardo da Silvado Nascimento-RETE

Luana Késsia Lucas Alves Martins – Sureg/BH Margarida Regueira da Costa-Sureg/RE Osvalcélio Mercês Furtunato -Sureg/SA

Sistema de Informações Geográficas e Mapa

Ivete Souza de Almeida-Sureg/BH

Apoio Técnico

Amanda Elizalde Martins – Sureg/PA

Augusto Cezar Gessi Caneppele – Sureg/PA

Celina Monteiro – Sureg/BE

Debora Gurgel – REFO

Douglas Sanches Soller – Sureg/PA

Eliane Cristina Godoy Moreira-Sureg/SP

Fabiana Ferreira Cordeiro-Sureg/SP

Jennifer Laís Assano -Sureg/SP

João Paulo Vicente Pereira-Sureg/SP

Juliana Oliveira-Sureg/BE

Luisa Collischonn – Sureg/PA

Murilo Raphael Dias Cardoso -Sureg/GO

Paulo Guilherme de Oliveira Sousa – RETE

Estagiários de Hidrologia

Caroline Centeno - Sureg/PA Cassio Pereira - Sureg/PA Cláudio Dálio Albuquerque Júnior-Sureg/MA Diovana Daugs Borges Fortes -Sureg/PA Fernanda Ribeiro Gonçalves Sotero de Menezes - Sureg/BH Fernando Lourenço de Souza Junior – Sureg/RE Ivo Cleiton Costa Bonfim -REFO João Paulo Lopes Chaves Miranda-Sureg/BH José Érico Nascimento Barros -Sureg/RE Liomar Santos da Hora-Sureg/SA Lemia Ribeiro-Sureg/SA Márcia Faermann - Sureg/PA Mariana Carolina Lima de Oliveira-Sureg/BH Mayara Luiza de Menezes Oliveira-Sureg/MA Nayara de Lima Oliveira-Sureg/GO Pedro da Silva Junqueira-Sureg/PA Rosangela de Castro - Sureg/SP Taciana dos Santos Lima-RETE Thais Danielle Oliveira Gasparin - Sureg/SP Vanessa Romero-Sureg/GO

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Manicoré onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica de Manicoré, código 00561000(ANA) e 82533 (INMET). Esta estação está localizada na sede no município de Manicoré e é operada pelo INMET (Instituto Nacional de Meteorologia).

1 – INTRODUÇÃO

A equação definida pode ser utilizada no município de Manicoré.

O município de Manicoré está localizado no estado do Amazonas, na Latitude 05°48'18" S e Longitude 61°17'24" W, a 458 km de Manaus, capital do estado. O município possui área de 48.282,537 Km² e localiza-se a uma altitude aproximada de 50 metros. Sua população, segundo o censo de 2010 do IBGE, é de 47.017 habitantes.

A estação Manicoré, códigos 00561000 (ANA) e 82533 (INMET), está localizada na Latitude 05°49'00" S e Longitude 61°18'00" W, na sede do município de Manicoré, inserindose na sub-bacia 15, sub-bacia dos rios Amazonas, Madeira e Guaporé, em sua porção localizada no estado do Amazonas. Encontra-se em operação desde 1924 e os dados para definição da equação IDF foram obtidos a partir dos dados diários de precipitação do período de 1967 a 2014. A Figura 01 apresenta a localização do município e da estação pluviométrica.

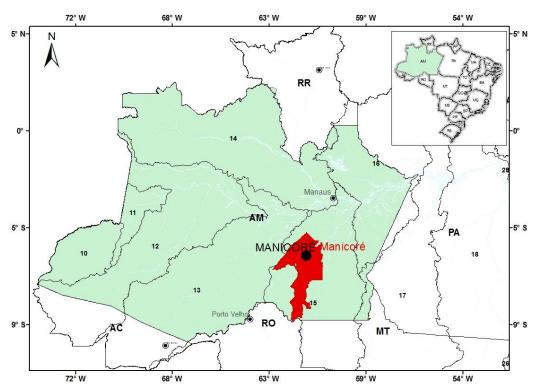


Figura 01 – Localização do Município e da Estação Pluviométrica.

2 – EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Manicoré, códigos 00561000 (ANA) e 82533 (INMET), foi utilizada a série de precipitações diárias máximas por ano hidrológico (01/Out a 30/Set), apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Gumbel, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com a média das relações IDF

estabelecidas por Pfafstetter (1982), para Porto Velho, Manaus e Alto Tapajós. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

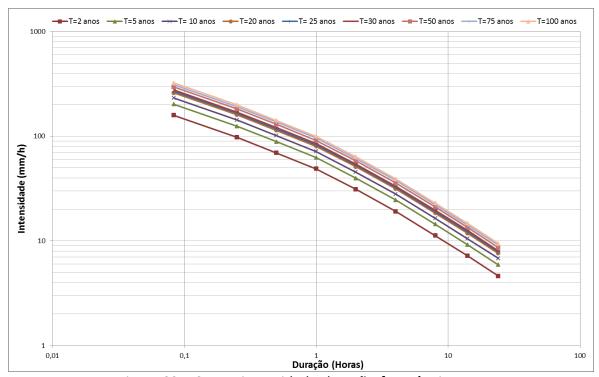


Figura 02 – Curvas intensidade-duração-frequência

As equações adotadas para representar a família de curvas da Figura 02 são do tipo:

$$i = \{ [(aLn(T) + b).Ln(t + (\delta/60))] + cLn(T) + d \}/t$$
(01)

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (horas)

a, b, c, d e δ são parâmetros da equação

No caso da estação de Manicoré os parâmetros da equação são os seguintes:

5min ≤ t ≤ 24h

a = 5,3742; b =17,5952 ; c =11,9861; d =39,2567 e δ = 6,8

$$i = \{ [(5,3742Ln(T) + 17,5952).Ln(t + (6,8/60))] + 11,9861Ln(T) + 39,2567 \}/t (02)$$

As equações acima são válidas para tempos de retorno de até 100 anos e durações de 5 minutos a 24 horas. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h.

Duração		Tempo de Retorno, T (anos)											
da Chuva	2	5	10	15	20	25	30	40	50	60	75	90	100
5 Minutos	154,7	190,4	217,4	233,2	244,4	253,1	260,2	271,4	280,1	287,2	295,9	303	307,1
10 Minutos	122,5	150,8	172,2	184,7	193,6	200,5	206,1	215	221,9	227,5	234,4	240,1	243,3
15 Minutos	103,9	127,9	146,1	156,7	164,2	170	174,8	182,3	188,2	193	198,8	203,6	206,3
20 Minutos	91,1	112,2	128,1	137,4	144	149,1	153,3	159,9	165,1	169,3	174,4	178,6	181
30 Minutos	74,3	91,4	104,4	112	117,4	121,6	125	130,4	134,5	137,9	142,1	145,5	147,5
45 Minutos	59,2	72,9	83,3	89,3	93,6	96,9	99,7	104	107,3	110	113,3	116,1	117,6
1 HORA	49,9	61,4	70,1	75,2	78,8	81,6	83,9	87,5	90,3	92,6	95,4	97,7	99
2 HORAS	31,8	39,1	44,6	47,9	50,2	52	53,4	55,7	57,5	59	60,8	62,2	63,1
3 HORAS	23,9	29,5	33,6	36,1	37,8	39,2	40,3	42	43,3	44,4	45,8	46,9	47,5
4 HORAS	19,4	23,9	27,3	29,3	30,7	31,8	32,7	34,1	35,2	36,1	37,2	38,1	38,6
5 HORAS	16,5	20,3	23,2	24,8	26	27	27,7	28,9	29,8	30,6	31,5	32,3	32,7
6 HORAS	14,4	17,7	20,2	21,7	22,7	23,5	24,2	25,2	26	26,7	27,5	28,1	28,5
7 HORAS	12,8	15,7	18	19,3	20,2	20,9	21,5	22,4	23,1	23,7	24,4	25	25,4
8 HORAS	11,5	14,2	16,2	17,4	18,2	18,9	19,4	20,2	20,9	21,4	22,1	22,6	22,9
12 HORAS	8,4	10,3	11,8	12,7	13,3	13,7	14,1	14,7	15,2	15,6	16,1	16,4	16,7
14 HORAS	7,4	9,1	10,4	11,2	11,7	12,2	12,5	13	13,5	13,8	14,2	14,6	14,8
20 HORAS	5,6	6,9	7,8	8,4	8,8	9,1	9,4	9,8	10,1	10,4	10,7	10,9	11,1
24 HORAS	4,8	5,9	6,8	7,3	7,6	7,9	8,1	8,4	8,7	8,9	9,2	9,4	9,6

Tabela 02 – Altura de chuva em mm

Duração		Tempo de Retorno, T (anos)											
da Chuva	_	_	4.0	4-		1							100
ua Criuva	2	5	10	15	20	25	30	40	50	60	75	90	100
5 Minutos	12,9	15,9	18,1	19,4	20,4	21,1	21,7	22,6	23,3	23,9	24,7	25,3	25,6
10 Minutos	20,4	25,1	28,7	30,8	32,3	33,4	34,4	35,8	37,0	37,9	39,1	40,0	40,6
15 Minutos	26,0	32,0	36,5	39,2	41,1	42,5	43,7	45,6	47,0	48,2	49,7	50,9	51,6
20 Minutos	30,4	37,4	42,7	45,8	48,0	49,7	51,1	53,3	55,0	56,4	58,1	59,5	60,3
30 Minutos	37,1	45,7	52,2	56,0	58,7	60,8	62,5	65,2	67,3	69,0	71,1	72,8	73,8
45 Minutos	44,4	54,7	62,5	67,0	70,2	72,7	74,8	78,0	80,5	82,5	85,0	87,1	88,2
1 HORA	49,9	61,4	70,1	75,2	78,8	81,6	83,9	87,5	90,3	92,6	95,4	97,7	99,0
2 HORAS	63,5	78,2	89,3	95,8	100,4	103,9	106,9	111,5	115,0	118,0	121,5	124,5	126,1
3 HORAS	71,8	88,4	100,9	108,2	113,4	117,5	120,8	126,0	130,0	133,3	137,3	140,6	142,5
4 HORAS	77,7	95,7	109,2	117,2	122,8	127,2	130,8	136,4	140,8	144,3	148,7	152,3	154,3
5 HORAS	82,4	101,4	115,8	124,2	130,1	134,8	138,6	144,5	149,2	153,0	157,6	161,4	163,6
6 HORAS	86,2	106,1	121,1	129,9	136,2	141,0	145,0	151,2	156,1	160,0	164,9	168,8	171,1
7 HORAS	89,4	110,0	125,7	134,8	141,3	146,3	150,4	156,9	161,9	166,0	171,1	175,2	177,5
8 HORAS	92,2	113,5	129,6	139,0	145,7	150,9	155,1	161,8	167,0	171,2	176,4	180,7	183,1
12 HORAS	100,7	124,0	141,6	151,9	159,2	164,9	169,5	176,8	182,5	187,1	192,8	197,4	200,1
14 HORAS	104,0	128,0	146,2	156,8	164,4	170,2	175,0	182,5	188,4	193,2	199,0	203,8	206,5
20 HORAS	111,6	137,3	156,8	168,2	176,3	182,6	187,7	195,8	202,1	207,2	213,5	218,6	221,5
24 HORAS	115,4	142,1	162,2	174,0	182,4	188,9	194,2	202,6	209,1	214,4	220,9	226,2	229,2

3 - EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Manicoré, foi registrada uma Chuva de 70 mm com duração de 30 minutos, a qual gerou vários problemas no sistema de drenagem pluvial da cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = exp\left[\frac{it - bLn(t + (\delta/60)) - d}{aLn(t + (\delta/60)) + c}\right] \tag{03}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 70 mm dividido por 0,5 h é igual a 140 mm/h. Substituindo os valores na equação 03 temos:

$$T = exp\left[\frac{140.0,5 - 17,5952Ln(0,5 + (6,8/60)) - 39,2567}{5,3742n(0,5 + (6,8/60)) + 11,9861}\right] = 67 \ anos$$

O tempo de retorno de 67 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 1,49%, ou

$$P(i \ge 140mm/h) = \frac{1}{T}100 = \frac{1}{67}100 = 1,49\%$$

4 – REFERÊNCIAS BIBLIOGRÁFICAS

IBGE - Instituto Brasileiro de Geografia e Estatística, 2010. Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?codmun=130270. Acesso em maio de 2015.

PFAFSTETTER, O. Chuvas Intensas no Brasil. 2ª ed. DNOS, 1982.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar., 2013.

ANEXO I

Série de Dados Utilizados – Altura de Chuva diária (mm)

Máximos por ano hidrológico (01/Out a 30/Set)

AI	AF	Data	Precipitação Máxima Diária (mm)	AI	AF	Data	Precipitação Máxima Diária (mm)
1967	1968	16/03/68	82,8	1994	1995	08/12/94	99,7
1969	1970	18/11/69	52,8	1995	1996	16/03/96	142,6
1970	1971	13/09/71	51,6	1996	1997	03/10/96	113,0
1971	1972	28/01/72	69,4	1997	1998	04/03/98	81,2
1972	1973	02/04/73	106,8	1998	1999	08/01/99	90,4
1973	1974	31/12/73	104,4	1999	2000	17/03/00	107,0
1974	1975	19/12/74	97,7	2000	2001	17/02/01	77,6
1975	1976	24/12/75	94,0	2001	2002	14/01/02	147,0
1976	1977	10/10/76	67,0	2002	2003	17/03/03	107,4
1977	1978	16/01/78	108,0	2003	2004	18/02/04	54,6
1978	1979	30/03/79	128,0	2004	2005	24/12/04	79,0
1979	1980	16/10/79	97,0	2005	2006	04/03/06	85,2
1982	1983	11/01/83	111,4	2006	2007	14/12/06	73,6
1983	1984	15/11/83	125,0	2007	2008	25/01/08	154,8
1984	1985	08/01/85	120,0	2008	2009	23/04/09	113,4
1985	1986	07/03/86	112,0	2009	2010	05/04/10	103,4
1986	1987	11/11/86	168,0	2010	2011	07/11/10	123,2
1987	1988	27/02/88	80,4	2011	2012	19/12/11	162,2
1988	1989	18/02/89	130,0	2012	2013	07/03/13	102,8
1992	1993	06/03/93	64,0	2013	2014	23/03/14	110,8
1993	1994	30/12/93	84,6	2014	2015	15/11/14	150,8

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir da média das relações IDF estabelecidas por Pfafstetter (1982) para os munícipios Porto Velho (RO), Manaus (AM) e Alto Tapajós (PA).

Relação 24h/1dia: 1,13

Relação 14h/24h	Relação 8h/24h	Relação 4h/24h	Relação 2h/24h	Relação 1h/24h
0,91	0,81	0,69	0,56	0,44

Relação	Relação	Relação
30 min/1h	15 min/1h	5 min/1h
0,71	0,50	0,27

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília – DF – CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

Superintendência Regional de Porto Alegre

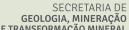
Rua Banco da Província, 105 - Santa Teresa Porto Alegre - RS - CEP: 90840-030 Tel.: 51 3406-7300 - Fax: 51 3233-7772

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br


Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495

www.cprm.gov.br

