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RESUMO 

O desenvolvimento da exploração mineral com foco no aumento da 
disponibilidade dos recursos minerais e na redução do impacto ambiental é crucial para o 
desenvolvimento sócio-econômico sólido e sustentável da sociedade.  A sociedade está 
atualmente passando por um rápido crescimento na extração e consumo de recursos 
minerais devido ao aumento da população humana, aumento dos níveis de atividade 
econômica e transição para novas tecnologias. Técnicas de inteligência artificial, análise de 
grandes volumes de dados e outras tecnologias da Industria 4.0 são soluções promissoras 
para contornar muitos desses problemas. Este trabalho apresenta novas abordagens para a 
exploração mineral que incorpora métodos de última geração focados na aplicação de 
algoritmos de aprendizagem de máquina para o mapeamento da prospectividade mineral e 
estimativa de teor de minério por meio de dados espectrais. 

As abordagens são exemplificadas pela exploração de depósitos de cobre, ouro e 
óxido de ferro (IOCG), fonte de commodities economicamente importantes, como o cobre (Cu) 
e elementos de terras raras (REE), que atualmente têm uma demanda alta e crescente. Os 
métodos desenvolvidos neste trabalho abrangem duas etapas distintas de exploração 
mineral, a identificação de novas zonas mineralizadas e a mineração de jazidas conhecidas. 
Como estes métodos são inovadores e, ainda assim, são testes, o núcleo do projeto se 
concentra nos numerosos aspectos do processamento de dados, otimização de algoritmos, 
arquitetura de modelos e ajuste de hiperparâmetros de algoritmos de aprendizagem de 
máquina. 

Técnicas de aprendizagem de máquina foram adaptadas para processar dados 
geológicos e geofísicos da província mineral de Carajás, Brasil, para modelar a 
prospectividade dos depósitos minerais do IOCG na região. Os resultados mostram que os 
modelos de prospectividade desenvolvidos utilizando algoritmos de aprendizagem de 
máquina têm o desempenho espacial e de classificação melhores do que os métodos 
tradicionais baseados em dados, como peso da evidência.  

Este trabalho também mostra uma nova abordagem pela qual algoritmos de 
aprendizagem profunda são usados para prever as classes Cu no depósito Olimpic Dam, 
Austrália, por meio de dados hiperespectrais. Os resultados mostraram que a abordagem 
proposta pode ser usada em sistemas de automação para a identificação de zonas 
mineralizadas, permitindo mineração seletiva, diminuindo assim os custos e o impacto 
ambiental, e aumentando o desempenho das operações de mineração. 

Além disso, foi proposto um novo fluxo de trabalho para automatizar a 
identificação de limites litológicos e de alteração utilizando dados hiperespectrais adquiridos 
de testemunhos. Os resultados mostraram que os aglomerados obtidos pela abordagem 
proposta têm uma correlação significativa com as litologias registradas e as concentrações 
de Cu, foram capazes de estimar corretamente os limites litológicos e de alteração, bem como 
identificar padrões de alteração associados ao grau do minério que não foram identificados 
durante a extração visual. 

Os resultados desta tese indicam que as técnicas de aprendizagem de máquinas 
superam as técnicas tradicionais utilizadas para a modelagem de prospectividade e 
vetorização de mineralizações IOCG. Os métodos desenvolvidos podem ser perfeitamente 
adaptados e utilizados na exploração de outros tipos de depósitos minerais.  
 

Palavras-chave: Exploração mineral; aprendizagem de máquina; mapeamento de 
prospectividade mineral; dados espectrais; estimativa de teor de minério. 
  



 
 

ABSTRACT 

The development of mineral exploration focused on increasing the availability of 
mineral resources and reducing environmental impact is crucial for a solid and sustainable 
socio-economic development of society.  Society is currently experiencing rapid growth in the 
extraction and consumption of mineral resources due to an increasing human population, 
increasing levels of economic activity, and transition to new technologies. Artificial intelligence 
techniques, big data analysis, and other Industry 4.0 technologies are promising solutions to 
circumvent many of these problems. This work presents new approaches to mineral 
exploration targeting that incorporates state-of-the-art methods focused on the applicability 
of machine learning algorithms for mineral prospectivity mapping and estimation of ore grade 
by means of spectral data. 

The approaches are exemplified by the exploration of Iron-Oxide Cupper Gold 
(IOCG) deposits, source of economically important commodities, as copper (Cu) and rare earth 
elements (REEs), that currently have a high and growing demand. The methods developed at 
this work cover two distinct stages of mineral exploration, the identification of new mineralized 
zones and mining of known deposits. As these methods are innovative and yet being testes, 
the core of the project focuses on the numerous aspects of data processing, algorithm 
optimization, model architecture and hyperparameters tunning of machine learning 
algorithms.  

Machine learning techniques were adapted to process geological and geophysical 
data of Carajás mineral province, Brazil, to modelling the prospectivity of IOCG mineral 
deposits in the region. Results shows that prospectivity models developed using machine 
learning algorithms have a better classification and spatial performance than traditional data-
driven methods, as weight of evidence. Therefore, these methods are likely to be dominant in 
this field in the coming years. 

This work also shows a novel approach whereby deep learning algorithms are used 
to predict Cu grades at Olympic Dam deposit, Australia, by means of hyperspectral data. 
Results shown that the proposed approach has the potential to be used in automation systems 
for the identification of mineralized zones, allowing selective mining, thus lowering costs and 
environmental impact, and increasing performance of mining operations. 

In addition, a novel workflow was proposed for automating the identification of 
lithologic and alteration boundaries using hyperspectral data acquired from drill cores. Results 
shown that the clusters obtained by the proposed approach has a significative correlation with 
the logged lithologies and the Cu concentrations, been able to correctly estimate the 
lithological and alteration boundaries, as well as identify alteration patterns associated with 
the ore grade which were not identified during visual logging.  

The results of this thesis indicate that machine learning techniques overperform 
traditional techniques used for prospectivity modelling and vectoring of IOCG mineralizations. 
The developed methods can be seamlessly adapted and used in the exploration of other types 
of mineral deposits.  

 
Keywords: Mineral exploration; machine Learning; mineral prospectivity mapping; spectral 
data; ore grade estimation. 
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1 GENERAL INTRODUCTION 

1.1 Industry 4.0 in the mining industry 

The socioeconomic development of a nation is linked to the development 

of mineral exploration. Increasing the availability of raw materials from mineral 

resources, and reducing the environmental impact generated by the mineral industry 

are critical factors to promote a solid and sustainable socioeconomic development. 

However, the mineral industry is currently experiencing some important challenges 

that need to be overcome, such as the high global demand for raw material, the 

reduction of ore content in mines, the tight labor market, and the high standards 

required for mineral production, coupled with the preservation of natural resources 

(Dorin et al., 2014). Industry 4.0 technologies that encompass the Internet of Things 

(IoT), Industrial Internet of Things (IIoT), cyber-physical systems, big data, and artificial 

intelligence have been pointed out as the best solutions to circumvent the problems 

of modern industry (Sishi and Telukdarie, 2020). 

Also known as the fourth industrial revolution, industry 4.0 is a strategy 

developed by the German government in 2013. After steam engines, electricity, and 

electronics, Industrie 4.0 consists of the implementation of technologies for process 

automation, real-time monitoring of processes, and more assertive decision making 

based on large volumes of data, which allow normal factories to be transformed into 

smart factories. The German concept is formulated in the report "Recommendations 

for implementing the strategic initiative Industrie 4.0 - Final report of the Industrie 4.0 

Working Group" (Kagermann et al., 2013). Other nations have adopted similar 

concepts, such as Made in China 2025 (Wübbeke et al., 2016) promoted by the Chinese 

government, and Society 5.0 (Fukuda, 2020) promoted by the Japanese government. 

The concepts of Industry 4.0 are also applicable to the mining industry. In 

fact, some mines have taken important steps in this direction, and already use the 

technologies involved in this concept. Gradually, the mineral industry is approaching 

the concept of Industry 4.0 and fully automated mines, with more technologically 

sophisticated ore processing facilities, as well as more precise mineral exploration 

campaigns driven by big data. Despite this, the minerals industry is behind other 

industries when it comes to employing Industry 4.0 technologies in its endeavors (Sishi 
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and Telukdarie, 2020). One of the key technologies involved in Industry 4.0 is artificial 

intelligence. The use of artificial intelligence techniques such as machine learning 

(ML) algorithms to solve problems in the mining industry has been gaining prominence 

in recent years. 

1.2 Overview of technologies for mineral exploration 

Mineral exploration and production activities present multiple risks of being 

unsuccessful, which derive from geological, technological, environmental, social, 

political and economic uncertainties (Eggert, 2010; Singer and Kouda, 1999). During 

the exploration process, efficient prospecting technologies are required to minimize 

uncertainties about the presence of mineralized zones. Similarly, during production, 

the employment of technologies for modeling the ore body, and identifying undesirable 

contaminants for the metallurgical processing is of critical importance to mitigate 

risks. The most used technologies for these purposes are presented in this section. 

1.2.1 Mineral prospectivity mapping 

One important advance on the identification of regions of ore accumulation 

is the development of techniques and technologies for the integration of large 

quantities of spatial geoscientific data via Mineral-Prospectivity Mapping (MPM). The 

MPM, first proposed in the late 1980s by Bonham-Carter et al. (1988), consists of a 

statistical method for the recognition and parameterization of spatial patterns and 

features in geoscience data which are indicative of a particular style of mineralization. 

The recognized parameters and patterns are used to predict the likelihood of 

mineralization with similar characteristics occurring in another region. In this way, 

MPM can significantly reduce the area to be investigated by companies of mineral 

exploration, minimizing operation costs. The MPM is fundamental for the 

implementation of Industry 4.0 concepts in mineral exploration, as it allows target 

selection to be done in an efficient and automated way, based on data, enabling the 

systematization of the exploration activity. Although MPM has contributed to 

advances in mineral exploration data integration, existing methods for producing 

prospectivity maps have some important limitations that can be circumvented by 

modern data analysis methods that use ML algorithms to find complex patterns in the 

data. 



15 
 

1.2.2 Integration of hyperspectral and geochemical data 

In addition to advances in prospectivity modeling, another important 

advance in mineral exploration is the use of ultraspectral data for the mineralogical 

characterization of mineralized zones. Ultraspectral sensors measure reflected light in 

many narrow, contiguous bands across the visible and near-infrared (VNIR; 350-1000 

nm), shortwave infrared (SWIR; 1000-2500 nm) and thermal infrared (TIR; 6000-14500 

nm) wavelengths. When interacting with minerals, light is preferably absorbed at 

certain wavelengths, while it is transmitted at other wavelengths. The position 

(wavelength) of these absorption features is determined by the crystal structure and 

chemical composition of minerals (Adams, 1975, 1974; Burns, 1993; Hunt, 1977). 

Ultraspectral sensors provide the necessary spectral resolution to resolve diagnostic 

absorption features of many minerals, including iron oxyhydroxide, clays, carbonates, 

and silicates.  

The spectra absorption features can be directly correlated to the chemical 

composition and crystal structure of minerals (Van der Meer, 2004). Therefore, the 

correlation between the information obtained by ultraspectral data and geochemistry 

can be used to infer the concentration of certain elements from ultraspectral data. This 

correlation can be used to: (1) assist ore body modeling and ore grade mapping 

systems; (2) detect undesirable minerals (that affects milling and/or metallurgical 

processing or have occupational health implications); (3) classify ore and waste during 

loading operations at the mine face; and (4) detect and map hydrothermal alteration 

patterns that may be used to vector further mineralization. All these can provide inputs 

to assist in the control of autonomous mining equipment (Fraser et al., 2006). 

Drilling during mineral exploration to identify new mineralized zones and to 

modeling the ore body often requires an expert to characterize the mineralized 

intervals through core description, and geochemical analysis to quantify the presence 

of the element of interest at the selected locations. Ore quantification using 

ultraspectral data enables non-destructive identification and quantification of 

mineralized zones and hydrothermal alteration patterns to be performed soon after 

core sampling, allowing faster and more assertive decision making at a lower cost. 

During ore mining, it is common that the collected material comes with a significant 

volume of non-mineralized or low-grade material, usually containing mineral phases 
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undesirable for processing plants. The use of ultraspectral data for mineralogical 

characterization and quantification of mineralized zones, allows the ore mining to be 

more selective, discarding the material with contaminants, and provides the ore 

processing plant with important information, such as the mineralogical composition 

of the collected material. This technology increases the efficiency of the mine and 

decreases its environmental impact. Therefore, the characterization of mineralized 

zones using ultraspectral data is also essential for the implementation of Industry 4.0 

concepts in the minerals industry. 

1.3 Machine Learning: an emerging tool for mineral exploration and 

production 

Recent advances in ML algorithms are driving profound changes in data 

analysis and integration in various areas of the mineral industry. However, the 

application of ML algorithms in mineral exploration is still restricted. Classic ML 

algorithms as artificial neural networks, support vector machines, decision trees and 

random forest (Burkov, 2019; Friedman et al., 2001) and deep learning (DL) algorithms 

as Convolutional Neural Networks (CNN; Lecun and Bengio, 1995) have gained a lot of 

attention in geoscientific journals over the last 20 years, especially in papers on MPM 

and classification of hyperspectral images (CHI). Despite the considerable number of 

publications using these algorithms, many advances still need to be made to improve 

the performance of these techniques and allow their application in the mineral 

industry. 

Given the ability of ML algorithms to extract complex patterns, which may 

be difficult for conventional statistical methods, these algorithms are able to 

circumvent the limitations of classical methods in MPM. For this reason, currently, 

most of the methods used for produce prospectivity maps are based on ML models 

(Abedi et al., 2012; Brown et al., 2000; Carranza and Laborte, 2015a; Chen et al., 2014; 

Chen and Wu, 2017a; Leite and de Souza Filho, 2009a; Oh and Lee, 2010; Rodriguez-

Galiano et al., 2014; Zuo and Carranza, 2011a). However, one of the main problems in 

applying ML algorithms to MPM is to deal with imbalanced dataset. 

Also, ML algorithms have shown accurate results in the classification of 

hyperspectral images in recent years due to their ability to learn complex relationships 
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between the spectrum obtained in each pixel and the imaged material (Gewali et al., 

2018). In addition, DL algorithms as CNN can recognize patterns related to the spatial 

relationship between the image pixels (Castelluccio et al., 2015; Krizhevsky et al., 

2012). Recently, the number of publications applying ML methods, especially DL 

algorithms, in CHI has increased considerably, with many journals publishing special 

issues in the subject (Alavi et al., 2016; Camps-valls and Bioucas-dias, 2016; Chi et al., 

2015; Tuia et al., 2014). However, most of these studies have focused on classification 

of spectral data rather than correlating them with geochemical data. 

1.4 Current limits of machine learning for mineral prospectivity 

mapping 

ML algorithms assumes a balanced number of classes on the training 

dataset. However, the number of mineralized sites is naturally much larger than the 

number of non-mineralized sites. The huge imbalance between known mineralized 

sites (minority class) and known non-mineralized sites (majority class) makes it 

difficult for ML algorithms to learn the classification rules between majority and 

minority classes during training compromising the performance of the models. 

Recent studies involving MPM have attempted to deal with the problem of 

unbalanced data by using the synthetic minority over-sampling technique (SMOTE) for 

synthetic oversampling of the mineralized sites (Hariharan et al., 2017a; Li et al., 2019). 

These studies suggest that using SMOTE can improve the performance of mineral 

prospectivity models trained on imbalanced data. However, none of these studies has 

made a systematic analysis of the influence of SMOTE on the performance of mineral 

prospectivity models. 

1.5 Current limits of machine learning for integration of hyperspectral 

and geochemical data 

Most algorithms used for integration of spectral and geochemical data are 

based on classical statistical methods. Generally, a polynomial regression is 

calculated to find the fit function between spectral parameters and chemical analyses 

for a given element (Clark and Roush, 1984; T. Cudahy et al., 2009; Haest and Cudahy, 

2012; Prado, 2016). However, polynomial regression is not able to handle some of the 
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complexities of hyperspectral data.  The variability of illumination within and between 

data acquired under different conditions or on uneven surfaces and the presence of 

impure spectra, formed by mixtures of minerals, considerably decreases the 

performance of these methods. Furthermore, for accurate results, these methods 

require large spectral libraries and prior knowledge to identify and map zones of 

interest. Implementing ML algorithms for processing and interpreting hyperspectral 

data can circumvent many of these problems. Although some approaches based on 

ML techniques, recently, have been applied to correlate drill-core geochemical data 

with hyperspectral data (Acosta et al., 2020), as far as we are aware, deep learning 

algorithms have not been used to predict element concentration by means of 

hyperspectral data. 

1.6 Organization of the Thesis 

The organization of this thesis is as follows. This chapter introduces the 

main concepts of our work and presents a brief description on the technologies and 

methods used.  Chapter 2 provides the main objectives and contributions of our work. 

Chapters 3 and 4 outlines a review of the current knowledge and limits in the research 

topic and introduces the approach adopted in the thesis. The following chapters are 

structured around scientific articles resulting from the thesis and submitted to or 

published in peer-reviewed journals. These articles describe the results obtained at 

each step of the approach. The article “Modeling of Cu-Au prospectivity in the Carajás 

mineral province (Brazil) through machine learning: Dealing with imbalanced training 

data” presented in chapter 5 was published in the journal Ore Geology Reviews in 

September 2020, and the article “Ore Grade Estimation from Hyperspectral Data Using 

Convolutional Neural Networks: A Case Study at The Olympic Dam IOCG Deposit, 

Australia” presented in chapter 6 was submitted for publication in the journal 

Economic Geology in June 2022. The article “Clustering of Hyperspectral Drill Core 

Measurements Using Deep Autoencoders and Self-Organizing Maps” presented in 

Chapter 7 is intended to be submitted for publication in the journal Computers & 

Geosciences in  2023. Chapter 8 gives a summary of the main achievements of this 

thesis as well as discusses on directions for future work. Appendix 1 contains the code 
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to compute the fractal dimension of geological features (geological complexity), 

written in python.  
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2 OBJECTIVES OF THE THESIS 

Intended to contribute to the implementation of industry 4.0 concepts in 

mineral exploration and production, the present PhD thesis aims to develop new 

workflows based on machine learning and deep learning algorithms for identify and 

quantify mineralized zones in IOCG deposits.  The use of machine learning algorithms 

for MPM was explored and a systematic analysis on the influence of imbalanced 

datasets in the performance of mineral prospectivity models was conducted. The use 

of deep neural networks for the integration of spectral and geochemical data was 

explored and a new method to quantify Cu ore grade using hyperspectral reflectance 

data was developed. This work resulted in the following key contributions: 

• A code to compute the fractal dimension of geological features 

(geological complexity) was written in python which is based in raster 

arithmetic to speed up processing time. 

• A systematic analysis on the use of synthetic minority over-sampling 

(SMOTE) technique for mineral prospectivity mapping. 

• A mineral prospectivity map for IOCG deposits in the Carajás mineral 

province, Brazil. 

• Convolutional neural networks were applied to quantify Cu grade using 

hyperspectral reflectance data for the first time. 

• Development of a new method for mapping Cu ore grade using 

hyperspectral data in the Olympic Dam IOCG deposits. 

• Development of a new method based on Deep autoencoders, self-

organizing maps and agglomerative clustering for detection of lithological and 

alteration boundaries in drill-cores using hyperspectral data. 
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3 STATE-OF-THE-ART OF MINERAL PROSPECTIVITY 

MAPPING 

3.1 Introduction 

MPM was first proposed in the late 1980s by geoscientists as a statistical 

method for the integration and interpretation of spatial patterns in geoscience data 

(Bonham-Carter et al., 1988). The concept was to determine the link between various 

geoscience datasets (ie: geology, geophysics, geochemistry) and the existence or 

absence of economic mineralization in an objective way. 

The mineral potential mapping methods can be classified into data-driven, 

knowledge-driven, and hybrids of the two methods. Data-driven methods make use of 

the relationship between discovered mineral deposits and their surrounding map 

patterns to set up a mineral potential mapping model (Carranza, 2011). Knowledge-

driven methods, however, are estimated based on the expert knowledge of the 

processes that resulted in the formation of mineral deposits in the given geological 

setting (Abedi et al., 2013a; Carranza, 2008). 

3.2 Previous works 

One of the original formulations of MPM, termed Weights of Evidence 

(WofE) (Agterberg et al., 1990), used posterior probability as the mapping function, 

which is calculated by counting the relative number of occurrences within and without 

a series of binary thematic layers (ie: Granite Contact). Other authors have explored 

using logistic regression (Harris and Pan, 1999), wherein weights are calculated for a 

series of geological variables using least-squares regression on the probability of 

mineralization and the binary presence or absence of mineralization. To address the 

inherent uncertainty in geoscience data, handle categorical variables, and incorporate 

some expert knowledge, some authors have used fuzzy logic (Porwal et al., 2003a), in 

which a membership function acts in the place of uncertainty to quantify the degree to 

which statements are true. 

In the last 20 years more sophisticated algorithms have been borrowed 

from the ML field. Feed forward neural networks, now present in all forms of artificial 

intelligence, started with few works in the early 1990s and by the 2000s were being 
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applied in simple architectures for MPM (Barnett and Williams, 2009; Brown et al., 

2000; Harris and Pan, 1999; Porwal et al., 2003b; Rodriguez-Galiano et al., 2015; Singer 

and Kouda, 1997). Support vector machines, a maximum margin classifier which 

gained prominence in the 1990s as a favored algorithm with strong theoretical 

background, has been applied by several authors (Abedi et al., 2012; Porwal et al., 2010; 

Rodriguez-Galiano et al., 2015; Zuo and Carranza, 2011a). 

Weights of evidence, fuzzy logic and neural networks are some of the more 

commonly adopted methods (Partington and Sale, 2004; Raines et al., 2010). The 

popularity of these methods can be attributed to ease of use, flexibility, and successful 

application in other fields. 

3.3 Machine learning for mineral-prospectivity mapping 

In the last decades, the use of ML algorithms in geosciences, for both 

supervised and unsupervised learning, was predominantly concentrated on 

classification of lands and vegetation, and mapping using remote sense images 

(Huang et al., 2002; Rogan et al., 2008; Wulder et al., 2004). Only recently, state of art 

ML methods has become more commonplace in other fields of geosciences (Barnet 

and Williams, 2006; Caté et al., 2017; Cracknell and Reading, 2014; Davidson, 2017; 

Lary et al., 2016; Poulton, 2002; Zhu et al., 2017). The increase in available data, 

computational power, and availability of new algorithms are creating opportunities for 

the application of ML algorithms to more complex problems. The development of 

open-source libraries dedicated to making ML more accessible in high-level 

programming languages has helped popularize these techniques. A good example of 

such libraries are scikit-learn (Pedregosa et al., 2011) and tensorflow (Abadi et al., 

2015). Both are open-source modules for the Python programming language. Scikit-

learn implements the most used ML algorithms and tensorflow implements deep 

learning algorithms. 

A range of method by which ML techniques can be applied to MPM have 

begun to be explored in several recent studies. Carranza and Laborte (2015b) used 

Random Forest (RF) algorithm for predictive mapping of gold prospectivity in Baguio 

district, Philippines. The spatial datasets used include a geological map, map of 

faults/fractures, and locations of gold deposits. Their results shown that RF modeling 
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is a much more potentially useful method compared to other methods that are 

currently used for data-driven mapping of mineral prospectivity, given its stability in 

training and its ability to yield predictive maps with high success- and prediction-rates. 

Similarly, Rodriguez-Galiano et al. (2015) evaluated the performance of neural 

networks (NN), RF, regression trees (RT) and support vector machine (SVM) for MPM 

of gold in Rodalquilar mining district, southeast Spain. The algorithms were trained 

with physical–chemical data such as a geochemical survey, gravity and magnetic 

survey, geological information regarding fractures and lithology and hyperspectral 

EO1-Hyperion image. Their results showed that decision-tree-based algorithms (RT 

and RF) involve a lesser difficulty in their training, additionally the greatest accuracy of 

classifications was achieved by RF and SVM, but the performance of RF for all the 

parameter combinations was better than that of the rest in terms of stability and 

accuracy. 

More recently, a data driven approach using CNN was undertaken by Granek 

et al. (2016) for MPM of copper-gold porphyry mineralizations on QUEST (QUesnelia 

Exploration STrategy) project in central British Columbia, Canada. Authors used 

airborne gravity, magnetic and electromagnetic data, inductively coupled plasma mass 

spectrometry (ICP-MS) analysis of stream and sediment samples (providing 

compositional information for 35 elements), geological era, period, rock class and rock 

type, for training the deep learning architecture. The same dataset was used to train a 

SVM model. Results showed that the main advantages of CNNs over SVM in MPM is 

the ability to recognize anomalous structure in the data rather than simply anomalous 

values. Comparably, Chen and Wu (2017) used extreme learning machine (ELM) 

regression for mapping polymetallic prospectivity in Lalingzaohuo district, China. Their 

data-driven approach used geochemical analysis of stream and sediment samples, 

regional geological entities, contact zones, faults, magnetic data, and linear features 

for training the ELM algorithm. Results from this study shown that the ELM algorithm 

is stable and reproducible, and that the learning speed of the ELM regression is much 

faster than that of logistic regression, and the ELM regression algorithm slightly 

outperforms logistic regression in mapping polymetallic prospectivity. Additionally, 

Cracknell and Caritat (2017) used unsupervised ML clustering method, specifically 

Self-Organizing Maps (SOM), for catchment-based gold prospectivity analysis in 
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northern Australia. The SOM was trained with geochemical analysis of stream and 

sediment samples, airborne gravity and magnetic data, terrain slope and surface 

geology. 

3.4 Dealing with imbalanced datasets 

The application of ML algorithms assumes a balanced number of sites with 

known mineral occurrences and sites where there are no occurrences of the type/style 

of mineralization of interest. However, mineralization, being a singular event, is rare 

(Carranza and Laborte, 2015a, 2015b; Cheng, 2007; Granek et al., 2016; Granek and 

Haber, 2015). Therefore, the number of non-mineralized sites is naturally much larger 

than the number of mineralized sites. The huge imbalance between known mineralized 

sites (minority class) and known non-mineralized sites (majority class) makes it 

difficult for ML algorithms to learn the classification rules between majority and 

minority classes during training. This leads to biased estimation of decision 

boundaries for the majority (non-mineralized) class and a higher misclassification rate 

(false negative) of the minority (mineralized) class based on the test sites (Japkowicz 

and Stephen, 2002a). High rates of false negatives (i.e., mineralized sites incorrectly 

classified as non-mineralized) in MPM can result in missed opportunities for the 

discovery of a new mineral deposit. 

Most of the papers using ML and DL algorithms for MPM attempts to solve 

the imbalanced data problem in a naive way, selecting an amount of non-mineralized 

sites equal to the amount of known mineralized sites to train the algorithms. However, 

generally the number of known mineralized sites is small, a few tens of points, resulting 

in models trained with less than 100 samples, in some extreme cases trained with less 

than 20 samples (adding mineralized and non-mineralized sites). Models trained with 

such a small amount of data are not statistically meaningful. In addition, they are prone 

to overfitting because the ability to generalize is compromised by the lack of statistical 

representativeness of the data.  

Recently, some studies have explored in depth how to address the problem 

of imbalanced data for both majority and minority classes. Xiong and Zuo (2017) 

proposed a cost-sensitive neural network to minimize the error of classification of 

known mineralized sites. The proposed algorithm incorporates into a neural network 
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the cost of misclassification of known negative and positive classes. To decrease the 

bias of the model towards the majority class, Xiong and Zuo (2018) proposed a rare 

event logistic regression algorithm, which incorporate corrections in the sampling and 

decision threshold of the original logistic regression algorithm. Wang et al. (2020) 

proposed a semi-supervised random forest algorithm to deal with the small number of 

known mineralized sites in MPM. The proposed classifier exploits the unclassified 

data to improve the performance of the classification model. At the data level, the use 

of Synthetic Minority Over-sampling Technique (SMOTE) for synthetic oversampling of 

the non-mineralized class was proposed by Hariharan et al. (2017) to improve the 

prospectivity model produced by a random forest classifier. Li et al. (2019) recently 

demonstrated the usefulness of SMOTE in MPM based on random forest models. 

These studies suggest that using SMOTE to oversample the minority class and 

undersample the majority class can improve the performance of mineral prospectivity 

models trained on unbalanced data. 

3.5 Conclusion 

This section outlines the current knowledge in MPM. Recently, many 

authors reported success cases on the application of ML and DL algorithms for MPM. 

However, the imbalanced nature of MPM problems makes training the ML and DL 

algorithms difficult, as it usually results in biased models with high misclassification 

rates of the minority class (mineralized locations in MPM problems). Many 

publications deal with this problem in a naive way, training the models with balanced 

datasets that are not statistically meaningful given their small number of samples. In 

the last five years, some authors delved in solve this problem using better approaches. 

Based on these studies, SMOTE seams to be an effective approach, which showed to 

improve the MPM models and is easier to implement. Although this approach has been 

used by some authors, a systematic analysis of the influence of SMOTE on MPM has 

never been performed in previous studies. This analysis is developed in this thesis. 
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4 STATE-OF-THE-ART OF INTEGRATION OF SPECTRAL AND 

GEOCHEMICAL DATA 

4.1 Introduction 

The analysis of spectral data consists of observing and analyzing the light 

spectrum reflected by different materials. In geology this analysis is used for the 

identification of minerals and rocks. When interacting with minerals, light is preferably 

absorbed at certain wavelengths, while it is transmitted and/or reflected at other 

wavelengths. The position of the absorption features in the visible and near-infrared 

(VNIR) are determined by the presence of some transition metals such as Cr, Ti, Fe, 

etc., in the mineral structure (Adams, 1975, 1974; Burns, 1993; Hunt, 1977; Laukamp et 

al., 2021). In the short-wave infrared (SWIR) region, vibration processes related to H2O, 

OH– and CO3 bounds also produce characteristic absorption features in minerals 

(Hunt, 1977; Laukamp et al., 2021). Also, fundamental vibrational frequencies of 

silicates (Si-O), carbonates (CO3
2-), sulfates (SO4

2-), and phosphates (PO4
3-) show 

spectral features in the thermal infrared (TIR) region (Hunt, 1976; Hunt and Salisbury, 

1974, 1970; Laukamp et al., 2021; Lyon, 1965; Lyon and Burns, 1963; Riley and Hecker, 

2013; Vincent et al., 1975). 

The crystalline structure and chemical composition of the minerals control 

the position, shape, and depth of the absorption features. In this way, the spectral 

analysis, in addition to identifying the minerals, can be used to estimate the chemical 

composition and degree of crystallinity of the minerals. The macroscopic 

characteristics of the sample can also affect the depth and shape of the absorption 

features, such as grain size and surface roughness (Clark et al., 1990; Murray and 

Lyons, 1955; Van der Meer, 2004).  

Spectral data is acquired by spectroradiometers, a tool with sensors that 

measure reflected light in the VNIR, SWIR and TIR wavelengths. These tools are 

classified according to the spectral resolution of their sensors into multispectral, 

hyperspectral and ultraspectral. Multispectral sensors collect information at a few 

(<100) discrete bands, commonly at an interval larger than 20 nm, therefore, do not 

produce the “spectrum” of a mineral. Hyperspectral sensors measure the reflected 
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light in many (between 100-350) narrow, contiguous bands, commonly at an interval 

smaller than 10 nm, providing a continuous spectrum. At this work, we also refer to 

ultraspectral data as data acquired by sensors that similarly to hyperspectral ones, 

provide continuous spectrum, however, has a better spectral resolution and a wider 

spectrum coverage, collecting information in the VNIR-SWIR (350-2500 nm) and TIR 

(6500-14500 nm) regions at narrow intervals (6-4 nm in VNIR-SWIR and 25 nm in TIR), 

resulting in spectra data with more than 800 bands. 

Multi- and hyperspectral data is normally acquired from airborne and 

satellite imaging platforms and has provided new insights into the structure and 

functioning of the Earth’s systems (Goetz, 2009; Goetz et al., 1985; van der Meer et al., 

2012). Recently, uncrewed aerial vehicles (UAVs) (also referred as drones) are also 

been used to acquire multi- and hyperspectral data at a high spatial resolution (cm 

scale) (Booysen et al., 2020; Fairley et al., 2018; Jackisch et al., 2018; Padró et al., 

2019). Hyperspectral sensors mounted on field-based platforms capable to provide 

images with high spectral and spatial resolution (mm scale) are also available, thanks 

to the recent advances in scanning technology (Kurz et al., 2011, 2008; Monteiro et al., 

2009; Murphy and Monteiro, 2013).  

Laboratory hyperspectral scanning systems, which became available in the 

late- 2000s, made possible to scan and to analyze drill core samples at a high 

resolution and to detail spectral variations over the entire sample. Because of a fine 

spatial resolution (commonly 0.5 mm/pixel) of these systems, it is possible to acquire 

the spectral signature of the mineral network (rock texture), providing picture elements 

that are smaller than many of the mineral grains and veins of interest. The spatial 

resolution of these scanners minimizes the effects of mixtures, and the mineral maps 

generated from these data can provide information about the sample structure, such 

as foliation, bedding, and veining that can be present in the core samples. In addition, 

these maps provide detailed mineralogical mapping, allowing the characterization of 

zones of hydrothermal alteration, and the characterization of the mineral assemblage 

present in the ore zones (Mathieu et al., 2017). 

Ultraspectral sensors, different from multi- and hyperspectral, usually are 

not imaging systems, and are only capable to acquire punctual measurements. These 

sensors can be used both in laboratory and field. Its advantage is the possibility to 
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acquire the measurement at a short distance from the sample (a few mm when using 

the contact probe), enabling a high signal-to-noise ratio. In addition, as already 

mentioned, these sensors have high spectral resolution covering a wide range of the 

spectrum. Core logging systems mounted with ultraspectral sensors are also 

available, as the HyLogger-3TM system (Schodlok et al., 2016). As hyperspectral 

scanners, these systems also have a high spatial resolution (< 8 mm), however, as the 

measurements are taken punctually, these core logging systems do not produce 

images. 

4.2 Previous works 

The concentration of certain elements is significantly correlated to the 

spectral response of certain rocks and minerals. The absorption intensity of a 

particular mineral in relation to the background (usually considered the continuum of 

the spectrum) is a function of the absorption coefficient and abundance of a mineral; 

thus, when the mineral is identified, its abundance may be determined by the 

absorption intensity (Clark and Roush, 1984; Hunt and Ashley, 1979). Additionally, 

crystal chemistry of a particular mineral determines the wavelength of its diagnostic 

absorption feature (Clark et al., 1990; Cudahy and Ramanaidou, 1997; Hunt and 

Salisbury, 1970). Whole rock geochemical analysis is strictly related to the abundance 

and composition of minerals, and therefore it is also related to the spectral response 

of rocks and minerals. 

Several publications use these principles to correlate the depth and position 

of absorption features to geochemical data. Generally, these studies combine multiple 

spectral features to identify and quantify minerals. For mineral quantification, the 

depth of the main absorption feature of certain minerals are correlated with 

geochemical analysis to produce a linear or polynomial regression to estimate the 

concentration of elements by means of the spectral features. Some of the products 

developed in these studies include: estimation of wt % Fe using the depth of iron 

(oxyhydr-)oxides (hematite, goethite) feature (~900 nm) (Ducart et al., 2016; Haest and 

Cudahy, 2012; Prado et al., 2016); estimation of wt % Al2O3 using the depth of Al clays 

(kaolinite group, white micas, and Al smectites) feature (~2200 nm) (Haest and 

Cudahy, 2012; Prado et al., 2016; Silversides and Murphy, 2017); estimation of wt % 
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MgO using the depth of Talc feature (~2310 nm) (Prado et al., 2016); estimation of wt 

% K2O using the depth carnallite feature (~1200 nm) (J.-T. Qiu et al., 2017). 

4.3 Machine Learning for spectral data analysis 

To date, many ML techniques have been used for hyperspectral images 

classification (Bioucas-Dias et al., 2013; Plaza et al., 2009). The ability of ML 

algorithms to identify complex patterns on high dimensionality data, the ability to 

generalize, and the computational efficiency of these algorithms, makes them suitable 

for hyperspectral image classification. 

Remote sensing researchers have developed numerous deep learning 

based remote sensing data analysis methods which has produced top performances. 

A popular deep learning architecture for vision tasks is a convolutional neural network 

(CNN; Krizhevsky et al., 2012). Inspired by the mammalian visual system, these neural 

networks contain layers for learning low-level to high-level features. Networks with one 

dimensional (Hu et al., 2015), two dimensional (Romero et al., 2015), and three 

dimensional (Chen et al., 2016) convolutional layers have been developed for analyzing 

hyperspectral data in some papers. Results of these studies show that deep neural 

networks outperform classical spectra classification methods as spectral angle 

mapper, as well as classic ML algorithms as support vector machines and random 

forest. 

Recurrent neural networks (RNN) are popular architectures for modeling 

sequential data. They contain feedback loops in their computation allowing the current 

output to be dependent on the current input and the previous input. Mou et al., (2017) 

proposed using RNN to model pixel spectra in a hyperspectral image as a 1-D 

sequences for classification. They experimented with architectures based on two 

kinds of recurrent units, namely, long short-term memory (LSTM; Graves and 

Schmidhuber, 2005) and gated recurrent unit (GRN; Mou et al., 2017). They found that 

the GRN worked better than the LSTM for modeling hyperspectral data and both of the 

recurrent networks outperformed traditional approaches and baseline CNN. Similarly, 

Wu and Prasad (2017) showed that a convolutional RNN (a network that has few 

convolutional layers followed by RNN; Zuo et al., 2015) is better choice for spectra 

classification than LSTM and baseline CNN. 
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Most of the studies using ML algorithm for spectral data analysis have 

focused on mineral classification rather than correlating them with geochemical data. 

Recently, some approaches based on ML techniques have been applied to correlate 

drill-core geochemical data with spectral data. Barker et al. (2021) developed a ML 

model for quantitative mineral mapping of drill core surfaces. Authors used micro-X-

ray fluorescence analysis and TIR spectra collected by hyperspectral drillcore 

scanners to train a ML model to predict minerals in each image pixel.  Acosta et al. 

(2020) proposed a new ML-based technique for the integration of drill-core 

geochemical and hyperspectral data. The algorithm is trained to classify the spectral 

data into classes defined by the geochemical analysis; Therefore, it can be used to 

upscale the information obtained from the geochemical assays to the entire borehole. 

Although these works use ML techniques to integrate geochemical and spectral data, 

as far as we are aware, ML algorithms have not been used to predict element 

concentration by means of spectral data.   

4.4 Conclusion 

This section outlines the current knowledge in the integration of spectral 

and geochemical data. Spectral data is a powerful tool in mineral exploration, as it can 

be used to identify and quantify the mineralogy of rocks. Many authors reported 

success cases on the application of ML and DL algorithms for the classification of 

spectral data, especially in remote sensing applications. However, these techniques 

based on artificial intelligence were only used recently for mineral quantification and 

correlation of spectral and geochemical data. Despite these recent advances, as far 

as we are aware, ML and DL algorithms have not been used to predict element 

concentration by means of spectral data. Therefore, a deep neural network model was 

developed in this thesis with the aim to explore the use of DL algorithms to predict ore 

concentration by means of spectral data. 
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5 MODELING OF CU-AU PROSPECTIVITY IN THE CARAJÁS 

MINERAL PROVINCE (BRAZIL) THROUGH MACHINE LEARNING: 

DEALING WITH IMBALANCED TRAINING DATA 

5.1 Introduction 

As the volume and complexity of geoscience data increase, the need for 

effective means of analysis and integration of such “big data” also increases. This 

difficulty of finding new mineral deposits is addressed by increasing the amount and 

type of suitable data for analysis and synthesis to derive exploration targets (Bergen 

et al., 2019; Karpatne et al., 2017; Yousefi et al., 2019). Methods for mineral 

prospectivity mapping (MPM) provide objective tools for the integration of large 

quantities of geoscientific data. 

The procedure of MPM using a geographic information system (GIS) was 

first demonstrated in the late 1980s by Bonham-Carter et al. (1988) to facilitate data 

analysis and synthesis. It consists of statistical analysis for the recognition and 

parameterization of spatial patterns in geoscience data layers. The spatial patterns 

are deemed meaningful proxies of processes associated with the occurrence of a 

particular type/style of mineralization. They are also used to predict the existence of 

areas where there is a likelihood for the occurrence of the same type/style of 

mineralization, with an implicit assumption that predicted areas have similar 

characteristics as the known mineralized locations. Therefore, parts of predicted areas 

with no known occurrence of the same type/style of mineralization are targets for 

mineral exploration. In this way, MPM can significantly reduce the size of a region to 

be investigated, with the corresponding minimization of operational costs. 

Methods of GIS-based MPM can be classified as either data- or knowledge-

driven, as well as hybrids of these two end-members. Data-driven methods make use 

of quantified spatial relationships between discovered mineral deposits and individual 

layers of spatial patterns of interest in the region being investigated (Bonham-Carter, 

1994; Carranza, 2011; Ford et al., 2016; Liu et al., 2014; Pan and Harris, 2000). 

Knowledge-driven methods, however, are based on subjective evaluations of spatial 

patterns of interest based on expert knowledge of processes that might have operated 
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during the formation of mineral deposits in the geological setting of the region under 

analysis (Abedi et al., 2013b; An et al., 1991; Carranza, 2008; Ford et al., 2016; Pan and 

Harris, 2000). Data-driven methods of MPM need a significantly large number of 

mineralized locations to produce statistically accurate results (Bonham-Carter et al., 

1988). In contrast, knowledge-driven methods can be applied in areas with few or no 

known mineralized locations; however, their drawbacks are the subjective bias and the 

cost and difficulty to have access to relevant expert knowledge. Regardless of the 

method used, the main challenge nowadays is to extract and parameterize the spatial 

patterns of interest from large volumes of suitable data that are available for MPM. 

The ability of MLalgorithms to recognize complex spatial patterns 

circumvents the limitations of classical, statistical methods of MPM. Currently, many 

data-driven methods of MPM are based on ML algorithms such as artificial neural 

network (Brown et al., 2000; Harris and Pan, 1999; Leite and de Souza Filho, 2009b; 

Porwal et al., 2003b; Rodriguez-Galiano et al., 2015; Singer and Kouda, 1996; Xiong and 

Zuo, 2017), support vector machine (SVM) (Abedi et al., 2012; Granek et al., 2016; 

Porwal et al., 2010; Rodriguez-Galiano et al., 2015; Shabankareh and Hezarkhani, 2017; 

Zandiyyeh et al., 2016; Zhang et al., 2018; Zuo and Carranza, 2011a), random forest 

(Carranza and Laborte, 2016, 2015c, 2015b; Gao et al., 2016; Hariharan et al., 2017b; 

McKay and Harris, 2016; Person et al., 2008; Radford et al., 2018; Rodriguez-Galiano et 

al., 2015, 2014; Zhang et al., 2016), decision tree (Chen et al., 2014) and extreme 

learning machine (Chen and Wu, 2017a). The application of any of these ML algorithms 

assumes a balanced number of locations of known mineral occurrences and number 

of locations where occurrences of the type/style of mineralization of interest definitely 

do not exist. However, mineralization, being a singular event, is rare (Carranza and 

Laborte, 2015c, 2015b; Cheng, 2007; Granek et al., 2016; Granek and Haber, 2015). 

Therefore, the number of mineralized locations is naturally outnumbered to a large 

extent by non-mineralized locations. The huge imbalance between known mineralized 

locations (i.e., the minority and positive class) and known non-mineralized locations 

(i.e., the majority and negative class) makes it difficult for ML algorithms to learn the 

classification rules between the majority and minority classes during training (i.e., 

learning). This leads to biased estimation of the decision boundaries towards the 

majority (i.e., non-mineralized) class and a higher misclassification (false negative) 
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rate of the minority (i.e., mineralized) class based on testing locations (Japkowicz and 

Stephen, 2002b; Sun et al., 2009). High false negative rate (i.e., mineralized locations 

incorrectly classified as non-mineralized) in MPM will result in a missed opportunity 

for discovery of a new mineral deposit. 

Reported solutions for handling the learning difficulties of ML algorithms 

when trained with imbalanced data regarding the majority and minority classes were 

previously proposed at data and algorithm levels (e.g., Chawla et al., 2004; Sun et al., 

2009). Solutions at data level consist of re-sampling methods developed to rebalance 

data for the majority and minority classes, namely by over-sampling or under-sampling 

of a relevant class and by a combination of both methods (Chawla et al., 2002, 2004; 

Jiang et al., 2013; Sun et al., 2009; Zhi-Hua Zhou and Xu-Ying Liu, 2006). Over-sampling 

methods increase the number of minority class samples, whereas under-sampling 

methods decrease the number of majority class samples, to balance the amount of 

sample data before training. At algorithm level, solutions try to improve the learning 

ability of ML algorithm to correctly classify the minority class (Quinlan, 1991; Zadrozny 

and Elkan, 2001), such as cost-sensitive learning, one-class learning and ensemble 

learning. Cost-sensitive learning solutions attempt to assume higher misclassification 

cost to samples of the minority class, reducing the bias toward the majority class on 

the estimation of the decision (i.e., classification) boundaries (Domingos, 1999; 

Drummond and Holte, 2003; Elkan, 2001; Zadrozny et al., 2003; Zhi-Hua Zhou and Xu-

Ying Liu, 2006). One-class learners are ML algorithms trained only with the target class 

(i.e., mineralized class in MPM) by recognition-based learning. Different from 

discrimination learning are models that attempt to define boundaries between classes, 

whereas recognition-based learning attempts to define a classification boundary that 

surrounds the target class. The classification by one-class learning is done by 

measuring the similarity between a query object and the target class, and defining a 

threshold on the similarity value (Chen and Wu, 2017b; Japkowicz, 2001; Manevitz and 

Yousef, 2001; Schölkopf et al., 2001; Tax, 2001; Xiong et al., 2018; Xiong and Zuo, 

2016). Ensemble learning algorithms combine multiple classifiers and aggregate their 

predictions in order to improve the generalization ability of the model. Most ensemble 

algorithms are based on Boosting (Freund, 1995) and Bagging (Breiman, 1996) 

methods. The Bagging method creates multiple classifiers by training a classification 
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model several times with different training datasets. The training data is obtained by 

randomly sampling the original dataset with replacement. The performance gain 

obtained by Bagging methods is usually the result of a reduction in the variance of 

model predictions. Different from Bagging, where the classifiers are trained 

independently to each other, in Boosting the classifiers are trained in sequence in a 

very adaptative way. The classification models are adjusted to give more importance 

to observations in the dataset that were poorly handled by previous models in the 

sequence. In such way, the Boosting method creates a stronger learner with lower bias 

than the initial classifier. 

Recent studies on MPM have attempted to deal with the problem of 

imbalanced data for both the majority and minority classes. Xiong and Zuo (2017) 

proposed a cost-sensitive neural network to minimize misclassification of known 

mineralized locations. The proposed algorithm incorporates the cost of 

misclassification of known negative and positive classes in a neural network algorithm 

to learn the mineral prospectivity model. To address the bias toward the majority and 

negative class, Xiong and Zuo (2018) proposed a rare event logistic regression 

algorithm, which embeds sampling and decision threshold corrections into the original 

logistic regression algorithm. Wang et al. (2019) proposed a semi-supervised random 

forest algorithm to deal with the lack of known mineralized locations in MPM. The 

proposed classifier exploits the unlabeled data to enhance the performance of the 

classification model. At data level solutions, the use of SMOTE for synthetic over-

sampling the non-mineralized class was proposed by Hariharan et al., (2017) to 

enhance prospectivity modeling by a random forest classifier. Li et al. (2019) recently 

further demonstrated the usefulness of SMOTE in random forest-based modelling of 

mineral prospectivity. These studies suggest that the use of SMOTE to over-sample 

the minority class and under-sample the majority class can improve the performance 

of mineral prospectivity models trained with unbalanced data. 

In this context, here the effects of SMOTE on MPM are explored. We aim to 

evaluate if SMOTE can significantly improve the performance of ML algorithms in 

MPM. To achieve this objective, the original training dataset was modified. Using 

SMOTE, the mineralized locations were over-sampled and the non-mineralized 

locations randomly under-sampled at different ratios. Some 400 training datasets 
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were produced with ratios of mineralized-to-non-mineralized samples ranging from 

20:1 to 1:20. This strategy was used to evaluate the performance of an SVM algorithm 

under different ratios of mineralized-to-non-mineralized samples for modeling 

prospectivity of Cu-Au deposits in the Carajás Mineral Province (CMP), Brazil. The SVM 

algorithm was chosen because, unlike other ML algorithms, it is less sensitive to class 

imbalance, as class boundaries are calculated with respect to only a few data points 

and the class size may not affect the class boundary excessively (Japkowicz and 

Stephen, 2002b; Sun et al., 2009). 

5.2 Study area 

The CMP, located in northern Brazil, was chosen as a case study region (Fig. 

1). It is the largest polymetallic mineral province in Brazil, hosting giant, enriched iron 

and manganese deposits and a world-class cluster of Cu-Au deposits (Grainger et al., 

2008). The geology of the CMP has been mapped by the Geological Survey of Brazil 

(GSB/CPRM) at 1:250,000 scale. It is also covered by airborne magnetic, gamma-

spectrometric and gravimetric surveys. The shape and size of the study area (Fig. 1) 

were defined by the airborne gravimetric survey coverage. 

 Geology and Cu-Au mineralization  

The CMP is in the oldest part of the Amazonian craton, with 

Archean/Paleoproterozoic age (Cordani and Teixeira, 2007; Gibbs et al., 1986; 

Machado et al., 1991). Two tectonic blocks are distinguished in the CMP, namely the 

Rio Maria greenstone terrain to the south and the Itacaiúnas shear belt to the 

north(Santos et al., 2000; Tassinari and Macambira, 1999; Vasquez and Rosa-Costa, 

2008). The basement of the northern block is composed of granulites, gneisses, and 

migmatites with age ranging from ∼3.0 Ga to ∼2.8 Ga (Althoff et al., 2000; de Oliveira 

et al., 2009; de Souza et al., 2001; Feio et al., 2013; Machado et al., 1991; Pidgeon et 

al., 2000). The Archean metavolcanic-sedimentary sequences, called Rio Novo Group 

and Itacaiúnas Supergroup ∼2.75Ga (Martins et al., 2017), overlie the Itacaiúnas shear 

belt basement (DOCEGEO, 1988). These sequences are composed of iron formations, 

clastic sediments and both mafic and felsic volcanic rocks (DOCEGEO, 1988; Machado 

et al., 1991; Wirth et al., 1986). Between ∼2.76 and ∼2.56 Ga, these rocks were intruded 

by layered mafic-ultramafic complexes, gabbro dikes and sills, and by syn-tectonic 
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alkaline granites (Barros et al., 2001; Dall’Agnol et al., 1997; Ferreira Filho et al., 2007; 

Galarza et al., 2007; Machado et al., 1991; Pimentel et al., 2003; Souza et al., 1996). 

Within-plate A-type granites and alkaline to sub-alkaline granites also intruded the 

metavolcanic-sedimentary sequences at ∼1.88 Ga (Dall’Agnol et al., 2005, 1994; 

Tallarico et al., 2004). 

The rocks of the Itacaiúnas Supergroup host the main Cu-Au mineralization 

in the CMP, which are generally associated with granites and rocks with hydrothermal 

alteration (Grainger et al., 2008; Xavier et al., 2012). The metal associations in these 

mineralization are iron oxide-Cu-Au-(Mo-Ag-U-REE) and Cu-Au-(W-Sn-Bi) (Grainger et 

al., 2008; Xavier et al., 2012). The former represents the largest Cu-Au deposits in the 

CMP, most of which are word-class (>200 Mt) deposits, such as Salobo, Cristalino, 

Sossego and Igarapé Bahia, Cento e Dezoito (118), Alemão, Breves, Águas Claras, 

Gameleira, and Estrela. The largest of them, Salobo, hosts 789 Mt @ 0.96 % Cu and 

0.86 g/t Au (Craveiro et al., 2019; deMelo et al., 2017; Farias and Saueressig, 1982; 

Grainger et al., 2008; Huhn et al., 1999; Lindenmayer, 2003; Lindenmayer et al., 2005; 

Requia et al., 2003; Tallarico et al., 2017; Torresi et al., 2012; Vieira et al., 1988).  

The iron oxide-Cu-Au-(Mo-Ag-U-REE) mineralization is commonly hosted by 

brecciated lower volcanic to volcano-sedimentary rocks and display intense Fe-K±Na 

metasomatism with chloritization and carbonatization. The ore minerals are mainly 

chalcopyrite, bornite and chalcocite. All the deposits are typically highly enriched in 

LREE with variable enrichments in Co, Ni, Pb, As, Mo, P, Th and U. The deposits are all 

located within shear zones, and the orebodies appear to be structurally controlled 

(Grainger et al., 2008; Haddad-Martim et al., 2017; Requia and Fontboté, 2000; Ronzê 

et al., 2000; Soares et al., 1999; Souza and Vieira, 2000; Tazava, 2000)  

The Cu-Au mineralization with Cu-Au-(W-Sn-Bi) metallic association shares 

some characteristics with the iron oxide-Cu-Au group of deposits such as enrichment 

in As, Co, F, LREE, P, Th and U; Fe-K hydrothermal alteration with associated 

chloritization; and spatial association with faults and shear zones. However, this 

mineralization has distinct characteristics such as additional enrichment in Bi, Sn, and 

W; absence of Mo; abundance of quartz rather than Fe-oxides and silicates; and spatial 

association with Proterozoic granite stocks and/or dikes. The Cu-Au deposits in this 

group are smaller, generally <50 Mt in size (Grainger et al., 2008; Pollard et al., 2019).  



37 
 

 

Fig. 1 Simplified geological map of the study area (modified from Vasquez and Rosa-Costa, 2008) and 

locations of Cu-Au deposits in the Carajás Mineral Province. (see Appendix B for mineralized location 

names). 

5.2.1 Conceptual model for prospectivity of Cu-Au deposits 

The spatial recognition criteria for prospectivity modeling of Cu-Au deposits 

in the CMP can be defined based on the mineral system approach to exploration 
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targeting (Mccuaig et al., 2010). Table 1 lists the mineral system processes used to 

define the targeting model and their correspondent targeting elements and mappable 

criteria in the CMP. Based on the current knowledge of the CMP geology discussed 

above and the similarities of the Cu-Au mineralization with the class of iron oxide-

copper-gold (IOCG) deposits, the processes considered critical for Cu-Au 

mineralization include (i) source of Cu and Au, (ii) active metal-carrying pathways, (iii) 

physical throttles that promote fluid flow and (iv) chemical scrubber that act as traps 

for the precipitation of metals.  

Deep alkaline magma derived from melted metal-rich metasomatized 

subcontinental lithospheric mantle  are important sources of Cu and Au for IOCG 

deposits (Groves et al., 2010, 2005; Groves and Vielreicher, 2001). The presence of 

alkaline, basic and ultrabasic lithologies and the proximity to contact between 

Mesoarchean, Neoarchean, and Paleoproterozoic lithologies were used here as 

proxies of possible metasomatized subcontinental lithospheric mantle zones. The 

latter targeting criterion represents trans-crustal structural zones (e.g., Motta et al., 

2019), where subcontinental lithospheric mantle could have been metasomatized 

during previous tectonic events. These zones in the CMP are represented by the 

contact between Mesoarchean granulites, gneisses and migmatites of the basement 

and the Neoarchean meta-volcano-sedimentary sequences (Rio Novo Group and 

Itacaiúnas Supergroup), which are near or defined by regional shear zones (Vasquez 

and Rosa-Costa, 2008). The contact between Paleoproterozoic and Archean also likely 

represents one of these metal enriched zones, because Paleoproterozoic rocks are 

mainly represented by alkaline to sub-alkaline granites in the CPM, which are spatially 

associated with Cu-Au-(W-Sn-Bi) mineralization (Grainger et al., 2008). Most of the Cu 

deposits in the CMP occur near or within regional structures, such as the Cinzento and 

Carajás shear zones (Haddad-Martim et al., 2017; Xavier et al., 2012). Some of these 

regional structures likely acted as metal pathways that connected the deep metal 

source to the mineralized sites. Multi-scale edge algorithms, also known as worms 

(Fedi and Florio, 2001; Hornby et al., 1999), were applied to gravity and magnetic data 

to map deep-seated structures in the CMP. Suture zones between terrains of distinct 

ages also represent favorable regions for the presence of trans-crustal fault zones and 

ore-forming fluid transit. Therefore, proximity to the contact between Archean-
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Paleoproterozoic and Proterozoic lithologies was also considered as a mappable 

targeting criterion for pathways for ore-forming fluids. 

A map of faults and lithological boundaries, as a function of scale, known 

as geological complexity (Hodkiewicz, 2003), can be used as a proxy of strain 

accommodation zones, which permit significant fluid flow, as well as a proxy of 

important physical throttle for fluids (Ford and Blenkinsop, 2008). Therefore, 

geological complexity and proximity to Archean-Paleoproterozoic magmatism were 

used as mappable targeting criteria to define decompression zones with a high 

geothermal gradient; hence, zones with potential to transport large volumes of fluid to 

form the Cu-Au mineralization.  

Fluid mixing and reaction within wall rocks are essential in the genesis of 

IOCG deposits (Groves et al., 2010, 2005; Groves and Vielreicher, 2001). The presence 

of certain alteration minerals can indicate the occurrence of these processes. In the 

CMP, the Cu-Au deposits generally exhibit alteration zones enriched in Fe-K and REE. 

Proxies for these alteration styles derived from the gamma-ray spectrometric data and 

the magnetic data were used for mapping zones with high concentrations of K, U, and 

magnetite, where Cu-Au deposition possibly occurred. 

Considering the conceptual model for prospectivity of Cu-Au deposits in the 

CMP, only some stratigraphic units are associated with the IOCG Cu-Au mineral 

system (i.e., alkaline, basic and ultra-basic lithologies). However, in this work, all 

stratigraphic units (Fig. 1) were considered as model inputs, and the importance or 

weight of each stratigraphic unit in the prospectivity modeling was determined during 

the training of the SVM algorithm. 
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Table 1 Processes, targeting elements and mappable features comprising the conceptual model for prospectivity of Cu-Au deposits in the Carajás Mineral 

Province.  

Critical Process Source (magma, metals) Active Pathway Physical Throttle Chemical Scrubber 

Constituent Processes Deep alkaline magmatic source Trans-crustal and/or craton-scale 

fault zones 

Decompression evidenced by 

brecciation zones  

Fluid mixing 

 
Metasomatized subcontinental 

lithospheric mantle 

Lithospheric craton margins High geothermal gradient Reaction with wall rocks 

Targeting Elements Alkaline magmatism associated 

with ultrabasic to basic rocks 

Suture zones between terrains of 

distinct ages 

Occurrence of large brecciation 

zone 

Key alteration minerals (hematite, biotite, 

sericite, albite, Na amphibole, chlorite, 

uranium and/or REE rich minerals) 

 
Suture zones with multiple 

orogeny events 

 
Volume of magmatic activity Rocks with favorable chemistry 

(magnetite rich alteration zones) 

Mappable Targeting 

Criteria 

Geologic map (alkaline, basic and 

ultrabasic lithologies) 

Deep structures mapped by 

gravity and magnetic worms 

Geological Complexity map Gamma Th/K, eU 

 
Contacts between Mesoarchean, 

Neoarchean Paleoproterozoic  

Contacts between Mesoarchean, 

Neoarchean Paleoproterozoic  

Geologic map (proximity to 

magmatism with the same age of 

mineralization) 

Magnetic highs 

 

 

 



41 
 

 

5.3 Spatial data input 

The spatial datasets used to produce the model input features include a 

geological map, map of faults/fractures, airborne geophysical data and locations of 

known Cu-Au deposits, which were provided by the GSB/CPRM. These datasets were 

pre-processed using GIS and Python libraries to extract the relevant proxy information. 

The datasets and the methodologies used to generate the input features for the 

prospectivity modeling are described in the following sections. 

Geochemical data, such as those obtained from regional stream sediment 

surveys, are commonly used in MPM (e.g. Chen and Wu, 2016; Gao et al., 2016; 

Nykänen et al., 2008; Zuo and Carranza, 2011b; Zuo and Xiong, 2018). The 

geochemical data acquired at the CMP by the GSB/CPRM is rather voluminous but do 

not cover the study area homogenosly. In some specific sectors, the data display a 

good sample density, but for most of the study area the sample density is low or the 

data not acquired. This is largely due to the difficulty of access in the region imposed 

by the high density of forest and rivers. For this reason, we do not use geochemical 

data in this work. 

Spatial pattern analysis of the known Cu-Au deposits was conducted first 

to calculate a suitable pixel size based on the spatial distribution of the deposits 

(Carranza, 2009). The analysis suggested that a 350 m pixel size is suitable for 

prospectivity modeling in the study area. However, because the airborne geophysical 

data have a smaller spatial resolution of 125 m, this was adopted as the spatial 

resolution for the prospectivity modeling in order not to lose information in the re-

sampling of these data. Other raster inputs were re-sampled, and vector inputs were 

rasterized to this pixel size.  

Before combining the spatial inputs into a set of feature vectors for SVM 

model training, a linear transformation was applied to all continuous spatial data in 

order to encode each evidential layer with values varying from 0 to 1, using the 

following normalization equation: 

𝑥𝑛𝑜𝑟𝑚 = 𝑥/𝑥𝑚𝑎𝑥 
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where 𝑥𝑛𝑜𝑟𝑚 is the transformed value, 𝑥 is the original data value, and 𝑥𝑚𝑎𝑥 

is maximum value of the original data (Burkov, 2019; Juszczak et al., 2002). 

Normalization of input data, also known as feature scaling, is an important step to 

avoid instability in the training of ML models that use gradient descent optimization 

techniques, as SVMs do. The weights of features with higher values will update much 

faster than others, causing the model to learn incorrect patterns. 

 Geological map 

The digital 1:1,000,000 scale geological map of Pará state, Brazil (Vasquez 

and Rosa-Costa, 2008) was subjected to vector map operations to produce the 

following inputs: the presence of a specific stratigraphic unit (for all stratigraphic units 

in the work area; Fig. 1), proximity to contact between Mesoarchean, Neoarchean and 

Paleoproterozoic units, and geological contacts (all contacts). Prior to processing, the 

geologic map was simplified; that is, empty spaces corresponding to river paths were 

filled with the underlying stratigraphic units while Quaternary stratigraphic units were 

replaced with the underlying bedrock (Fig. 1). 

The geologic map is categorical data, but SVM requires all input variables 

to be numerical. Therefore, one-hot encoding was adopted to transform it into a 

numerical input. In this method, each category is mapped to a vector that contains 1 

and 0, denoting the presence or absence of a feature, respectively. Thus, each 

stratigraphic unit of the geologic map was individually rasterized into a binary raster, 

which has values 1 inside the stratigraphic unit and 0 outside it. Consequently, the 

presence of a stratigraphic unit was represented by 38 input features in the final model, 

each representing an independent stratigraphic unit. 

The contacts between Mesoarchean and Proterozoic stratigraphic units, 

Neoarchean and Proterozoic stratigraphic units, as well as the contacts between 

Paleoproterozoic and Proterozoic stratigraphic units were extracted from the geologic 

map. Then, they were rasterized and a map of Euclidean distance from these contacts 

was generated as another input feature for the prospectivity modeling (Fig. 2). This 

feature was used as a proxy of possible metal sources and fluid pathways (Table 1). 
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Fig. 2 Spatial data input used in SVM modeling. (a) Target variables, showing deposits (training and 

testing) and non-deposits locations. (b) Total gradient of anomalous magnetic field map derived from 

airborne magnetic data. (c) Simple Bouguer anomaly map derived from airborne gravity data. (d) eTh/K 

ratio map derived from airborne gamma-ray spectrometric data. (e) eU concentration map derived from 

airborne gamma-ray spectrometric data. (f) Gravity worms derived from 10km upward continuation of 

Bouguer data. (g) Magnetic worms derived from 5km upward continuation of magnetic data. (h) 

Proximity to Mesoarchean/Proterozoic, Neoarchean/Proterozoic and Paleoproterozoic/Proterozoic 

stratigraphic units contacts. (i) Geological complexity map. 

5.3.1 Geological Complexity 

Fractal analysis of faults and lithological boundaries (Ford and Blenkinsop, 

2008; Hodkiewicz, 2003) was performed to produce a map of geological complexity of 

the CMP (Fig. 2) and used as a proxy of physical throttle (Table 1). The map of 

faults/fractures was produced by interpretation of shaded-relief images derived from 

the 30 m resolution Shuttle Radar Topographic Mission digital elevation model. This 

map indicates both shallow structures and deep structures that reach the surface. The 
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map of faults/fractures and the map of lithological contacts of interest, extracted from 

the geological map (Vasquez and Rosa-Costa, 2008), were used to represent these 

features in the fractal analysis. 

Geological complexity was then quantified by calculating the fractal 

dimension of the spatial distribution of faults/fractures and lithological contacts in the 

CMP using the box-counting method (Hirata, 1989; Mandelbrot, 1983). This method 

consists of superimposing grids with square cells of size 𝑑, and counting the number 

of cells, 𝑁𝑑 , containing any of the analyzed features (faults/fractures and/or 

lithological contacts). This counting process is repeated 𝑛 times, with grids of cell size 

𝑑𝑛 =  
𝑑

2𝑛−1. To calculate the fractal dimension, 𝐷, the slope of a line on a log-log plot of 

𝑁𝑑𝑛
 vs 𝑑𝑛 is measured, such that: 

 

𝑁𝑑𝑛
∝ 𝑑𝑛

−𝐷 

 

where 𝐷 is a value between 1 and 2 for a two-dimensional map and it is directly 

proportional to geological complexity.  

To calculate geological complexity in this study, a grid of points 𝑝 regularly 

spaced at 5 km was defined in the whole of the CMP, and fractal dimension 𝐷 was 

measured for each point. It was considered appropriate to adopt 5 km grid spacing for 

the level of detail according to the 1:1,000,000 scale CMP geological map, and based 

on the methodologies of previous publications on geological complexity using the box-

counting method (Gillespie et al., 1993; Hodkiewicz, 2003; Walsh and Watterson, 

1993). The maximum cell size 𝑑 adopted to compute 𝐷 at each point was 5 km, equal 

to the spacing between the points, resulting in four cells centered at 𝑝 when 𝑛 = 1. The 

box-counting process was repeated five times at each point, counting 𝑁𝑑𝑛
 for cell grids 

with size 𝑑𝑛 equal to 5, 2.5, 1.25, 0.625 and 0.3125 km, respectively. Finally, the grid 

with computed 𝐷 was interpolated to generate the geological complexity surface 

raster using a two-dimensional minimum curvature spline function.  

The algorithm used in this study to calculate the geological complexity was 

written as part of this work and it is based on the methodology outlined in Ford and 

Blenkinsop (2008) and Hodkiewicz (2003). The code is available online (Prado, 2020). 
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5.3.2 Airborne geophysics 

The airborne geophysical dataset consists of magnetic, gamma-ray 

spectrometric and gravity data provided by the GSB/CPRM. The aeromagnetic and 

gamma-ray spectrometric data are a compilation of four surveys: Rio Maria, Oeste de 

Carajás, Tucuruí and Anapu-Tuerê (GSB/CPRM - Geological Survey of Brazil, 2015a, 

2015b, 2010, 2004), acquired between 2004 and 2015. These surveys had N-S flight 

lines 500 m apart, E-W control lines 10 km apart and a mean sensor clearance of 100 

m above surface. The data were interpolated into a grid using the bi-directional line 

gridding method with a 125 m cell size. 

The aeromagnetic data are available as total magnetic intensity values. To 

center magnetic anomaly values above their magnetic source, the total gradient (or 

analytic signal amplitude; Roest et al., 1992) of the anomalous magnetic field was 

calculated. The total gradient was used to identify magnetic highs as a proxy of 

chemical scrubber (Fig. 2b; Table 1). 

Regions of K and/or U enrichment were mapped from the gamma-ray 

spectrometric data. Given the high geochemical mobility of K, the K concentrations 

were normalized to Th, which is less mobile than K and U. The ratio eTh/K was used 

to map K enriched zones (Shives et al., 2000) (Fig. 2d). U enriched zones were mapped 

directly with eU concentrations (Fig. 2e). Both eTh/K and eU maps were used as 

proxies of chemical scrubber (Table 1).  

Airborne gravity data comprise measurements from the aerogravimetric 

Carajás survey (GSB/CPRM - Geological Survey of Brazil, 2015c), with N-S flight lines 

3 km apart, E-W control lines 12 km apart and a mean sensor clearance of 900 m above 

surface. The Bouguer anomaly values provided by the survey were interpolated into a 

grid using the bi-directional line gridding method with a 600 m cell size.  

The interpretation and modeling of this Bouguer gravity anomaly map 

carried by Motta et al. (2019) and Oliveira (2018) suggests that the main regional NNE-

striking gravity high (Fig. 2c) have a strong correlation with the oldest part of the 

Amazonian Craton, which corresponds to the Rio Maria, Carajás and Bacajá tectonic 

domains, according to the tectonic subdivision proposed in Vasquez and Rosa-Costa 

(2008). Almost all known Cu-Au mineralization are located in this region. The regional 

gravity lows at NW and SE of the gravity high (Fig. 2c) are correlated with younger rocks 
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of the Iriri-Xingu domain and the Araguaia belt, respectively, according to the same 

tectonic subdivision. The Iriri-Xingu domain is composed by a volcano-plutonic 

association of Orosirian age; the Araguaia belt is a Neoproterozoic fold belt composed 

mainly of metasedimentary rocks (Cordani and Teixeira, 2007; Fonseca et al., 2004; 

Vasquez and Rosa-Costa, 2008). The linear gravity highs to the NE of the Bouguer 

anomaly map, oriented mainly in E-W and WNW-ESE direction (Fig. 2c), are correlated 

with outcrops of Itacaíunas Supergroup metavolcano-sedimentary rocks, composed 

by the Parauapebas and Carajás Formation. Most of the known Cu-Au mineralization 

is related or hosted by the Parauapebas Formation. The spatial resolution of the 

aerogravimetric survey allows only regional-scale interpretations, therefore 

gravimetric variations at deposit scale are not identifiable.  

An algorithm for detecting multi-scale edges, also known as worms (Fedi 

and Florio, 2001; Hornby et al., 1999), was used to automatically extract the positions 

of gradients in the Bouguer gravity data and the total gradient of magnetic data. These 

gradients represent the contacts or edges between bodies of contrasting density or 

magnetic susceptibility and can provide additional information about the location of 

deep-seated structures. The worms (gradient strings) were derived from the 10 km 

upward continuation of the Bouguer gravity data, and from the 5 km upward 

continuation of the total gradient of magnetic data. The upward continuation level was 

empirically determined based on the analysis of the proximity of Cu-Au deposits to 

worms generated at different levels. The levels chosen were those where the largest 

number of deposits were close to the worms. Structures mapped with worms have 

depth estimated as half the level of the upward continuation (Hornby et al., 1999; 

Jacobsen, 1987); thus, the computed worms represent structures that may persist 

roughly 5 km below surface. After this processing, the worms were rasterized with 125 

m cell size, and Euclidean distance from such features was calculated and used as a 

proxy of possible fluid pathways (Figs. 2f and 2g; Table 1). 

5.3.3 Target variable 

SVM algorithms are binary classifiers; therefore, they require that a training 

dataset comprises data of two distinct classes. As MPM attempts to distinguish 

prospective zones from non-prospective ones, mineralized and non-mineralized 

locations were used in the analysis. Mineralized locations were labeled as 1 and non-



47 
 

mineralized locations as -1. The locations of discovered Cu-Au deposits used for the 

modeling were obtained from a compilation of GSB/CPRM datasets and data provided 

in Haddad-Martim et al. (2017) and Motta et al. (2019). The data include locations of 

38 known Cu-Au deposits. To measure the performance of the model and ensure that 

the model can deal with new data, 30 (or ~80%) of the mineralized locations were 

randomly selected for training the model and the remaining 8 (or ~20%) were used as 

an independent set for testing the model. (Figs. 1 and 2). According to previous 

publications, the proportion of 80%/20% for training/testing is suitable for the 

development of ML models (Shahin et al., 2004; Swingler, 1996). 

The non-mineralized locations were randomly selected, with the restriction 

of being at a distance greater than 12.5 km from known deposits and a minimum 

distance of 5 km between them. Point pattern analysis of the deposit locations was 

performed using the pair correlation function  (Boots and Getis Arthur, 1988; Diggle, 

1983) 𝑔(𝑟) to determine the first restriction. The pair correlation function calculates 

the probability of finding a deposit at a given distance from another deposit. According 

to the point pattern analysis, the known Cu-Au deposits in the CMP are arranged in 

clusters that have two main grouping distances (Fig. 3). At deposit scale, deposits are 

clustered within 2.7 km from each other, and at district scale, deposits are clustered 

within 8.5 km from each other. The analysis also suggested that at distances greater 

than 12.5 km from a known deposit, the probability of finding another deposit is 

considerably reduced. Hence, the non-mineralized locations were sampled from areas 

beyond 12.5 km of every known Cu-Au deposit location. The second restriction was 

imposed to force non-mineralized locations to sample a greater diversity of input 

features, avoiding clustering of non-mineralized locations at regions with similar 

patterns. Given these restrictions, 600 non-mineralized locations were randomly 

generated for use in training the prospectivity model (Fig. 2a). 

The mineral system proposed in section 2.2 states that Cu-Au 

mineralization in the CMP is related to certain lithostratigraphic units. Here, these units 

were not used to restrict non-mineralized sites. Such restriction could create a bias in 

the model. As such, the lithostratigraphic units with mineralization in would be 

overweighted by the model, hiding the potential of areas that have characteristics 
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similar to those found in the mineralized zones, but are located in other stratigraphic 

units.  

 

Fig. 3. Pair correlation function curve of CMP Cu-Au deposits. Values of g(r) > 1 indicate that the 

deposits are more clustered than expected under completely spatial randomness, with g(r) < 1 indicating 

that the deposits are more dispersed than expected under completely spatial randomness. 

5.4 Methodology 

 Support vector machines classification algorithm 

Proposed in the late 1960s, SVMs are learning algorithms based on 

maximum margin strategy (Vapnik, 1963, 2000). When firstly proposed, SVMs were for 

linear two-class classification. That is, if data are linearly separable, SVMs will try to 

find the equation of the optimal separating hyperplane that best separates the classes, 

where the distance from the separating hyperplane to the closest data point (margin) 

is minimal. The SVM algorithm considers only data points at the margin for learning 

the optimal hyperplane; these data points are called support vectors. 

Mathematically, a training dataset is given by (𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙), 𝑥 ∈ 𝑅𝑛, 𝑦 ∈

{+1, −1}, where 𝑥𝑙 is a vector of 𝑛 input-features with label 𝑦𝑙 being 1 (e.g., mineralized 

class) or -1 (e.g., non-mineralized). The hyperplane function has the equation 𝒘⊺𝑥𝑙 + 𝑏, 

where 𝒘 is a weight vector that is normal to the hyperplane, and 𝑏 is the bias that 

moves the hyperplane away from the origin. This function is defined so that, for all data 

points of class 𝑦𝑙 = −1, 𝒘⊺𝑥𝑙 + 𝑏 ≤  −1, and for data points of class 𝑦𝑙 = 1, 𝒘⊺𝑥𝑙 +

𝑏 ≥  1, both of which are the same as 𝑦𝑙(𝒘⊺𝑥𝑙 + 𝑏) ≥ 1. The region between the 

hyperplanes 𝒘⊺𝑥𝑙 + 𝑏 ≤  −1 and 𝒘⊺𝑥𝑙 + 𝑏 ≥  1 should have no data points and is 

called the “margin”. The function 𝒘⊺𝑥𝑙 + 𝑏 = 0 defines the dividing plane. The class of 
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a vector 𝑥𝑙 is defined by it sign; that is, 𝑦𝑙̂ = 𝑠𝑖𝑞𝑛(𝒘⊺𝑥𝑙 + 𝑏), where 𝑦𝑙̂ is the predicted 

class of a data point (Vapnik, 1963).  

Considering two support vectors that lie on opposite margins ( 𝑥+ and 𝑥−) 

and are as close as possible to one another, the vector that connects these two vectors 

will be perpendicular to the hyperplane defining the margins 𝒘⊺𝑥+ + 𝑏 = 1 and  𝒘⊺𝑥− +

𝑏 = −1. Subtracting the equations of the two margins generates  𝒘⊺(𝑥+ − 𝑥−)  =  2. 

Because the vectors  𝒘 and 𝑥+ − 𝑥− are perpendicular to the hyperplane, and are 

parallel to each other, the equation can be written as ||𝒘|| ∗ ||𝑥+ − 𝑥−|| = 2, where ||𝒘|| 

is the length of vector 𝒘. Simplifying this equation, by dividing both sides by ||𝒘||, gives 

||𝑥+ − 𝑥−|| = 2/||𝒘||, which is the distance between the hyperplanes. In order to 

maximize the margin, the SVM algorithm tries to find the minimum ||𝒘|| that maintains 

the relationship 𝑦𝑙(𝒘⊺𝑥𝑙 + 𝑏) ≥ 1 for all vectors in the training dataset. To solve the 

problem, Vapnik (1963) proposed to transform ||𝒘|| into the equivalent function 

1

2
||𝒘||

2
 in order to use quadratic programming optimization to get the solution. The 

saddle point of the Lagrange function corresponds to the solution of the optimization 

problem, and the Lagrange multipliers 𝛼 are determined by maximizing the output of 

𝑤(𝛼) = ∑ 𝛼𝑖

𝑙

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖𝑥𝑗)

𝑙

𝑖𝑗=1

 

while satisfying the constraints that all 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖𝑦𝑖 = 0𝑙
𝑖=1 . The optimal 

multipliers 𝛼 are composed mostly of zeros. The vectors 𝑥𝑖 that have non-zero 𝛼𝑖 are 

those that fall on the margin, satisfying 𝑦𝑖(𝒘⊺𝑥𝑖 + 𝑏) = 1, and are the only vectors that 

contribute to the calculation of 𝒘. These are the support vectors for the model. 

To deal with non-linearly separable datasets, a kernel function 𝒌(𝑥𝑖𝑥𝑗) is 

used to capture a non-linear hyperplane, and the multipliers 𝛼 are determined by 

maximizing the kernel function (Vapnik, 2000):  

𝑤(𝛼) = ∑ 𝛼𝑖

𝑙

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒌(𝑥𝑖 , 𝑥𝑗)

𝑙

𝑖𝑗=1

 

The objective of this kernel function is to project the data into a transformed 

space, with higher dimension, where a linear dividing hyperplane can be found. The 

kernel function for a linear SVM is 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
⊺𝑥𝑗. The most used non-linear kernels 
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are the polynomial k (𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
⊺𝑥𝑗 + C)

d
, the radial basis function 𝑘 (𝑥𝑖 , 𝑥𝑗) =

𝑒𝑥𝑝(−𝛾||𝑥𝑖−𝑥𝑗||2), and the sigmoid 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
⊺𝑥𝑗  +  𝐶), where 𝛾, 𝐶 and 𝑑 are 

hyperparameters known, respectively, as kernel coefficient, kernel independent term, 

and degree of polynomial kernel.  

After training, and then computing the optimal Lagrange multipliers 𝛼 that 

maximize 𝑤(𝛼), the SVM algorithm computes the class of a new data point by utilizing 

the output of the function 

𝑦̂ = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖,𝑥)

𝑙

𝑖=1

+ 𝑏) 

where 𝑦̂ is the predicted class for vector 𝑥. 

5.4.1 Synthetic minority over-sampling technique (SMOTE) 

There are ways to enhance the performance of a SVM classifier when 

trained with an imbalanced number of control data points. Chawla et al. (2002) 

proposed SMOTE to over-sample the minority class by generating “synthetic” training 

samples or points. The technique to generate the synthetic training points involves 

taking the difference between a feature vector (sample) and its nearest neighbor, 

multiplying the difference by a random number between 0 and 1, and adding the result 

to the feature vector under consideration. This technique generates a random feature 

vector along the line segment between the sample and its nearest neighbor. The 

minority class is over-sampled by taking each minority class data point and calculating 

the random synthetic sample that lies between any or all the k minority class nearest 

neighbors. The number of nearest neighbors used is proportional to the amount of 

over-sampling needed (Chawla et al., 2002). The synthetic samples modify the 

decision boundaries for the minority class space by spreading it further into the 

majority class space, creating more general regions for the minority class and 

preventing majority class over-fitting. The effect is a classifier that generalizes the 

training data and improves the classification performance (Batista et al., 2004; Chawla 

et al., 2002; He and Garcia, 2009). 
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5.4.2 Sampling of training data  

The original training dataset (30 mineralized locations and 600 non-

mineralized locations) was interactively re-sampled using SMOTE. A Python package 

called imbalanced-learn (Lemaître et al., 2017), which implements the SMOTE 

algorithm, was used to produce the synthetic samples. The code is available online 

(https://github.com/Eliasmgprado/GeologicalComplexity_SMOTE; Prado, 2020). The 

class of mineralized locations was over-sampled at a rate 𝑁 varying from 100% to 

2000% at increments of 100 to generate synthetic samples. The class of non-

mineralized locations was randomly under-sampled at a rate 𝑁 varying from 100% to 

5% at steps of 5. The total number of samples generated at each re-sampling 

interaction was calculated as 
𝑁

100
∗ 𝐷, where 𝑁 is either over-sampling or under-

sampling rate and 𝐷 is the corresponding total number of mineralized or non-

mineralized locations in the original training dataset. That is, the interaction with 300% 

over-sampling of the mineralized class and 100% under-sampling of the non-

mineralized class, produced a training dataset with 90 mineralized samples 

(30*300/100; 30 original locations and 60 synthetic samples) and 600 non-mineralized 

samples (600*100/100). In this way, 400 training datasets with different ratios of 

mineralized to non-mineralized samples were obtained, one per over-sampling/under-

sampling rate pair, including the original dataset, which corresponds to the 100%/100% 

pair.  

It is emphasized here that the increase in the number of samples of 

mineralized class by over-sampling the known mineralized locations does not 

represent an increase in the number of mineralized locations in the work area. The 

over-sampling only increases the number of training vectors of the mineralized class, 

generating synthetic vectors, in feature or vector space but not in geographic space. 

That is, these vectors do not have geographical coordinates, so they do not represent 

locations on the map, but the samples (both original and synthetic) exist only in the 

vector space of the model. Assuming that the 30 known mineralized locations used 

for training have similar characteristics in the input vector space, SMOTE increases the 

importance of features related to these locations. To assess the changes in model 

performance produced by re-sampling the original dataset, an SVM model was trained 

for each one of the 400 training datasets, and then the performance for each model 

https://github.com/Eliasmgprado/GeologicalComplexity_SMOTE
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was compared. Details on the training methodology adopted and the performance 

metrics used are provided in the next session.  

5.4.3 Performance Metrics 

When dealing with imbalanced training data, care should be taken in the 

selection of the performance metric used for assessing the classification performance 

and guiding the classifier modeling. Some metrics are not suitable, like accuracy, given 

by the ratio of number of correct predictions (true positives + true negatives) to the 

total number of predictions made (total number of samples classified). The issue is 

that the minority (or positive) class has very little impact on the accuracy as compared 

to that of the majority (or negative) class. The performance metric selection needs to 

consider which class has the higher misclassification cost (the weight the model will 

give for misclassifying a determined class) according to the model objectives. In MPM, 

although both mineralized and non-mineralized classes have a high cost of being 

misclassified, misclassifying a mineralized area as non-mineralized (i.e., false 

negative) has a higher cost than misclassifying a non-mineralized area as mineralized 

(i.e., false positive), as the focus of MPM is to make the ML model learn to identify 

patterns associated with mineralized areas. Consequently, the chosen performance 

metric should evaluate the prospectivity model according to its ability to identify 

patterns associated with mineralized areas. The model’s ability to identify non-

mineralized areas is of lesser importance. 

Therefore, in order to evaluate the prospectivity model performance 

appropriately, the F1 score (Van Rijsbergen, 1979) was used here to assess the 

classification performance and guide the selection of model hyperparameters. The 

metric is obtained by calculating the harmonic mean between recall and precision. 

Recall, also known as true positive rate, is defined as the percentage of samples from 

the positive (or mineralized) class that were correctly classified as positive; that is, the 

ratio of true positives to the total number of positive class samples (i.e., true positives 

+ false negatives): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Precision is defined as the percentage of samples classified by the model 

as belonging to the positive class, which were correctly classified as positive. In other 



53 
 

words, it is the ratio of true positives to the total number of samples classified as 

positive (i.e., true positives + false positives): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Mathematically, the F1 score can be expressed as: 

F1 Score = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙

precision + recall
 

The F1 score is the harmonic mean of the precision and recall. It considers 

only the performance of the positive class to evaluate a model. It evaluates the 

precision of the model in the classification of positive samples; that is, how many 

samples were correctly classified as positive (or mineralized), as well as how robust 

the classification is, measuring the capability of the model not to classify a negative 

sample (non-mineralized) as positive (or mineralized). 

It is important to note that these metrics assume that the classes assigned 

to the training and validation data are correct. Therefore, if a non-mineralized location 

used for training is, in fact, a mineralized location, the number of false positives used 

for the metric calculation will be wrong, distorting the precision value, and 

consequently the F1 score. In this work, the non-mineralized locations were randomly 

selected, assuming some restrictions (see section 3.4) that do not prevent the 

occurrence of mineralization, only decreasing their probability. So, the absolute value 

of the F1 score for some models may be underestimated. However, for performance 

comparison purposes between the models, this distortion can be disregarded, since it 

affects all models in the same proportion. 

5.4.4 Application of SVM 

The Scikit-learn (Pedregosa et al., 2011) python library, which implements 

ML algorithms, including SVM, was used for the ML model generation and prediction. 

The hyperparameters needed to be set for the SVM implementation are the penalty of 

the error term C, the kernel function k, and the kernel coefficient λ. The radial basis 

function was used as the kernel function k for training the models. The kernel 

coefficient λ determines the width of the radial basis function. The penalty of the error 

term C determines the influence of the misclassification on the estimation of 

hyperplane. To determine the optimal hyperparameter C and λ for each model an 
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exhaustive search was performed using the grid search algorithm available in the 

Scikit-learn library.  

The grid search algorithm was configured to obtain the best parameter 

based on the F1 score of a stratified 3-fold cross validation. The k-fold cross-validation 

method (Plutowski et al., 1994) consists of subdividing the training dataset into k 

subsets (folds) of approximately equal size. In the stratified variation of the k-fold 

cross-validation, k subsets are made by preserving the original percentage of samples 

for each class. After splitting, the ML model is trained k times, each using the samples 

in k-1 subsets for training and the samples in the remaining subset for model 

validation. Also, the algorithm was configured to search for the following values of C: 

0.001, 0.01, 0.1, 1, 10, 100, 1000, and for the following values of λ: 1, 0.1, 0.001, 0.0001. 

A flowchart of the model construction process is shown in Fig. 4. 

 

Fig. 4. Flowchart of the model construction process. 

 

5.5 Results and discussion 

By following the methodology described above, a SVM model was trained 

using each one of the 400 training datasets. After training, the F1 scores against 
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training and testing sets were computed for individual models for measuring their 

performance. The values obtained are shown in Figs. 5 and 6.  

 

Fig. 5. Training F1 scores of SVM models. The scores are arranged by over-sampling/under-sampling 

rates used to generate the training data points. Models with a tendency to over-fit and under-fit are 

highlighted inside dashed contours. Models trained with the same number of mineralized and non-

mineralized samples are highlighted in purple. 

The models with the lowest training and testing F1 scores are those trained 

with low mineralized over-sampling rates and high non-mineralized under-sampling 

rates (bottom right of Figs. 5 and 6). The models with the highest F1 scores are those 

trained with high mineralized over-sampling rates and low non-mineralized under-

sampling rates (top left of Figs. 5 and 6). The SVM model trained with 2000% over-

sampling rate of mineralized class (600 deposits, of which 570 were generated 

synthetically) and 5% under-sampling rate of non-mineralized class (30 non-deposits) 

achieved the highest F1 score (99.4%) against testing. Although most models trained 
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with over-sampling rates above 500% (150 mineralized samples) and under-sampling 

rates below 40% (240 non-mineralized samples) present F1 scores equal to 100 on the 

training set, the testing F1 scores for these models vary widely from 93 to 99. This 

behavior indicates that models trained with imbalanced training datasets, which have 

high mineralized to non-mineralized ratios, tend to over-fit. In contrast, models trained 

with over-sampling rates below 500% (150 mineralized samples) exhibit the lowest 

training and testing F1 scores. These models have some testing F1 scores below 50, 

indicating that models trained with imbalanced training datasets, which have low 

mineralized to non-mineralized ratios, tend to under-fit. The SVM models trained with 

balanced training datasets, i.e., trained with the same number of mineralized and non-

mineralized samples (highlighted diagonal of Figs. 5 and 6), exhibit F1 scores varying 

from 85.1 to 96.6. The F1 scores for these models consistently increase as the over-

sampling rate of mineralized class increases and as the under-sampling rate of non-

mineralized class decreases; that is, as the total number of training samples increases 

(from bottom left to top right of Figs. 5 and 6). This behavior suggests that models 

trained with balanced training datasets tend to be more stable, being less prone to 

over-fitting or under-fitting. 

The variations in F1 scores caused by changes in sampling of the training 

data behaved logically. Models trained with a much larger number of mineralized 

samples compared to the number of non-mineralized samples will tend to learn only 

patterns associated with the former samples used for training. Therefore, such models 

struggle to generalize and classify new locations as non-mineralized. In contrast, 

models trained with a much larger number of non-mineralized samples compared to 

the number of mineralized samples will tend to learn only patterns associated with 

former samples used for training, making it difficult for such models to identify new 

locations as mineralized. However, models trained with balanced training datasets do 

not suffer from these problems generated by the asymmetry in the number of samples 

of each class, tending to generalize better without reducing performance.  
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Fig. 6 Testing F1 scores of SVM models. The scores are arranged by over-sampling/under-sampling 

rates used to generate the training data points. Models with a tendency to over-fit and under-fit are 

highlighted inside dashed contours. Models trained with the same number of mineralized and non-

mineralized samples are highlighted in purple. 

Although the F1 score assessments of the SVM models provide some 

indication of their classification performances, they do not provide information about 

the spatial context of the prospectivity models. In order to examine the spatial 

efficiency of classification by the SVM models, the success-rate curve for each 

prospectivity model was calculated by plotting the cumulative prospective (i.e., 

predicted mineralized) area against the cumulative number of training mineralized 

locations delineated in predicted mineralized zones, as described in Agterberg and 

Bonham-Carter (2005).  

The change in success-rate curves due to changes in over-sampling/under-

sampling rates are shown in Figure 7. The wide differences among success-rate 
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curves obtained illustrate the sensitivity of prospectivity modeling to the number of 

samples and distribution of classes in the training set. Models trained with variable 

mineralized over-sampling rates and a fixed non-mineralized under-sampling rate of 

5% (i.e., trained with only 30 non-deposits samples), exhibit similar success-rate 

curves, keeping the spatial efficiency of the models practically unchanged even when 

trained with a larger number of mineralized samples (Fig. 7a). Most of these models 

obtained the maximum F1 score of 100 on the training set, and testing F1 scores above 

99. However, the success-rate curves show that they are less efficient than the models 

trained with a larger number of non-mineralized samples, reinforcing the over-fitting of 

these models discussed above.  

In contrast, models trained with fixed mineralized over-sampling rates of 

100% (i.e., without over-sampling mineralized samples) clearly show a variation in the 

success-rate curves (Fig. 7b). Models trained with a higher number of non-mineralized 

samples (under-sampling rates near 100%) exhibit better spatial efficiency, correctly 

classifying 80% of training mineralized locations in less than 4% of the study area. 

However, models trained with a small number of non-mineralized samples (under-

sampling rates near 5%) were less efficient, needing approximately 17% of the study 

area to correctly classify 80% of the mineralized training locations. These models, 

trained without over-sampling the mineralized class, were the ones that obtained the 

lowest F1 scores on training and testing sets, with most of the models having F1 

scores below 50. For this reason, although the models trained with a larger number of 

non-mineralized samples have better spatial efficiency, the F1 scores are very low, 

indicating under-fitting as discussed above.  

Success-rate curves for the prospectivity models derived by using nearly 

balanced training datasets (Fig. 7c) show that models trained with a larger number of 

mineralized and non-mineralized samples are more spatially efficient than models 

trained with a smaller number of mineralized samples. As seen in Figure 6, the testing 

F1 scores of models derived by using nearly balanced training datasets also increase 

with increasing number of mineralized samples. This means that models trained with 

nearly the same number of mineralized and non-mineralized samples increase their 

performance, both in terms of classification and the spatial efficiency of the 
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classification, as the number of synthetically generated mineralized samples in the 

training dataset increases.  

 

Fig. 7. Success-rate curves of SVM-based prospectivity models derived using training data (a) with fixed 

under-sampling rate of 5% for non-mineralized samples and variable over-sampling rates for mineralized 

samples ranging from 100-2000%, (b) with fixed over-sampling rate of 100% for mineralized samples 

and variable under-sampling rates for non-mineralized samples ranging from 5%-100%, and (c) with 
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same number of mineralized and non-mineralized samples. The rate between mineralized and non-

mineralized locations for each model is shown in the legend in brackets. 

Based on the success-rate curves, the best prospectivity map is the one 

obtained from the model trained with 2000% over-sampling of the mineralized class 

(600 mineralized samples, of which 570 were synthetically generated by SMOTE) and 

100% under-sampling of the non-mineralized class (600 non-mineralized samples). 

This prospectivity model is not the one with the highest F1 score, showing F1 scores 

of 99.7 and 96.6 against the training and testing sets, respectively. However, the 

highest spatial efficiency obtained by this model together with its high F1 score against 

the testing set (the highest F1 score among the models derived using balanced training 

datasets), indicate that this is the model with the best performance. The use of a 

balanced training dataset avoids model over-fitting, which occurs with models trained 

with non-mineralized samples under-sampling rates near 5%. Such condition also 

increases the performance of the model for identifying true negatives (non-mineralized 

areas), significantly reducing the prospective area mapped by the model to classify the 

training set correctly.  

The model trained without mineralized class over-sampling (100% 

sampling; 30 samples) and without non-mineralized class under-sampling (100% 

sampling; 600 samples), that is, without using SMOTE, is one of the models that 

obtained the worst F1 scores (i.e., 77.9 and 38.6 against the training and testing sets, 

respectively). The model trained without over-sampling of the mineralized class (100% 

sampling, 30 samples) and with 5% under-sampling of the non-mineralized class (30 

samples) is also one of the models that obtained the worst F1 scores (i.e., 96.5 and 

85.1 against the training and testing sets, respectively). These results show that 

instead of training models for MPM without over-sampling the mineralized class (i.e., 

without using SMOTE), it is better to produce a balanced training dataset (i.e., to use 

the same or nearly the same number of samples for the mineralized and non-

mineralized class). It is clear from the results that using SMOTE to over-sample the 

mineralized class significantly increases the F1 scores of the models. 

Again, it is important to emphasize that the 570 samples of the mineralized 

class generated synthetically for the training of the best performance model do not 

represent geographical locations, but vectors of the mineralized class. Therefore, as 
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600 mineralized locations within an area being explored are geologically improbable, 

the synthetic samples exist only in the vector space of the model and cannot be 

interpreted in this way. Synthetic vectors represent only a mathematical tool to 

improve the performance of the model. 

The success-rate curves measure the spatial efficiency of the prospectivity 

model to identify locations of known deposits; i.e., the ones used for training. To 

quantify the spatial efficiency of a model for finding undiscovered prospects, the 

mineralized samples reserved for testing were used as independent data to create a 

prediction-rate curve for every model. The prediction-rate curve is computed similarly 

as the success-rate curve, as described in Agterberg and Bonham-Carter (2005). The 

difference is that the prediction-rate curve computes the cumulative prospective area 

against the cumulative number of testing mineralized samples delineated in predicted 

prospective zones, instead of training mineralized samples.  

The success- and prediction-rate curves for the model with the best 

performance (based on F1 scores) are shown in Figure 8a. The curves illustrate that 

the model trained with 2000%/100% over-sampling/under-sampling rates, 

respectively, is the best predictive model for Cu-Au prospectivity in the CMP because 

with only 7% of the study area being prospective, it correctly classifies 100% (30) of 

the training mineralized locations and almost 80% (6) of the testing mineralized 

locations. The prospectivity map derived from this model is shown in Figure 9. This 

map can be used to guide further exploration of Cu-Au prospects in the CMP. 

According to the interpretation of the prospectivity map, six zones in the study area 

should be prioritized for Cu-Au exploration (polygons with dashed outlines in Figure 9). 

Although these zones are near known deposits and exhibit high likelihood values in the 

prospectivity map, no Cu-Au mineralization have been found inside them so far.  

The modeled prospective map can be an essential tool for the exploration 

of Cu-Au prospects; However, it is important to understand the uncertainties 

associated with it. There are uncertainties associated with training data, such as those 

related to the detection limits of geophysical instruments and data processing 

procedures, as well as qualitative uncertainties related to expert interpretation and 

sampling bias that occur in geological mapping. Another source of uncertainty is 

related to training data labels, especially those associated with non-mineralized sites.  
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Besides, there are uncertainties related to the proposed mineral system, such as how 

well the targeting criteria reflect the targeting elements; how well the targeting 

elements reflect the constituent processes; and whether these processes are critical 

to the genesis of the mineral deposit.  

 

 

Fig. 8. Success-rate and prediction-rate curves of CMP Cu-Au prospectivity models. (a) SVM model 

trained with 2000% over-sampling rate of mineralized class and 100% under-sampling rate of non-

mineralized class (balanced class distribution). (b) SVM model trained without over-sampling of 

mineralized class (100% over-sampling rate) and without under-sampling non-mineralized class (100% 

under-sampling rate). (c) SVM model trained without over-sampling of mineralized class (100% over-

sampling rate) and 5% under-sampling rate of non-mineralized class (balanced class distribution). (d) 

weight of evidence (WofE) model trained with the same input features of the SVM models and the 

original training mineralized locations. Vertical lines highlight which proportion of Carajás area 

predicted as prospective for Cu-Au deposits covers 100% of training/test (success-rate/prediction-rate) 

Cu-Au mineralized locations. 

To evaluate further the added value of using SMOTE, the success- and 

prediction-rate curves of the prospectivity models trained without using SMOTE are 

shown in Fig. 8, as well as for a weight of evidence (WofE) model (Bonham-Carter, 

1994) trained with the same input features using in SVM modeling and the original 
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mineralized locations. The SVM model without SMOTE (i.e., trained without over-

sampling the mineralized class and without under-sampling the non-mineralized class 

(100%/100% over/under-sampling rate; Fig. 8b) needed 60% of the study area as 

prospective to correctly classify 100% of the training mineralized locations, and about 

25% of the study area as prospective to correctly classify 36 mineralized locations (the 

number of mineralized locations correctly classified as prospective using 7% of the 

study area by the model trained with 2000%/100% over/under-sampling rate). The 

SVM model trained with a balanced training data and without using SMOTE, 

represented by the model trained with 100%/5% over/under-sampling rate (Fig. 8c), 

correctly classified 100% of the training mineralized locations within 40% of the study 

area, and needed about 22% of the study area to correctly classify 36 mineralized 

locations. The WofE model (Fig. 8d; Supplementary Material) outperformed the SVM 

models trained without SMOTE, correctly classifying 100% of the training mineralized 

locations with 26% of the study area, and 36 mineralized locations with about 20% of 

the study area. These results show that not using SMOTE to balance the training data 

for MPM significantly reduces the spatial efficiency of SVM modeling for the 

classification of training mineralized locations, as can be deduced from Fig. 8. 

However, the prediction-rate curves show that the model with the best spatial 

efficiency for the classification of testing mineralized locations is the SVM model 

trained with 100%/5% over/under-sampling rate, that is, without SMOTE and with a 

balanced class distribution, classifying 100% of the mineralized test sites within 15% 

of the study area (Fig. 8c). Despite this, the model with the best spatial efficiency to 

classify both training and testing mineralized location is the SVM model trained with 

2000%/100% over/under-sampling rate, because it is the model that correctly 

classified the largest number of mineralized locations in only 7% of the study area. 

To qualitatively determine the most influential features to the prospective 

potential of the CMP, the variance-based sensitivity analysis approach introduced by 

Sobol (2001) was carried on the best performing SVM model (trained with 

2000%/100% over/under-sampling rate). The Sobol sensitivity analysis was performed 

using the SALib package (Herman and Usher, 2017). The method aims to quantify the 

relative influence of input features to the model output. The influence of each input is 

given by the sensitivity indices. The total-order sensitivity indices measure the 



64 
 

contribution to the output variance caused by a model input, including both the effects 

of each input individually and the effects of interactions between the inputs. The 

second-order sensitivity indices measure the contribution to the output variance 

caused by the interaction of two model inputs.  

 

Fig. 9. (a) Predictive map for Cu-Au prospectivity obtained by a SVM model trained with 2000% over-

sampling rate and 100% under-sampling rate of mineralized and non-mineralized samples, respectively. 

The map is colored according to the hyperplane distance (distance from the feature vector to the 

surface computed by the SVM model that defines the boundaries between classes), which is directly 

proportional to the predicted likelihood of finding a Cu-Au deposit. Dashed polygons in red highlight 
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zones that could be prioritized for Cu-Au exploration according to the interpretation of the prospectivity 

map. (b) The same predictive map with the target variables used to train and test the model plotted. 

The Fig. 10 shows the total and second-order sensitivity indices for the ten 

most critical input features for the SVM model according to the total-order sensitivity 

indices. The most relevant input is the magnetic worms, followed in order of relevance 

by the Xingu Complex, the fractal dimension, the proximity to contacts between 

Mesoarchean, Neoarchean and Paleoproterozoic, and the gamma-ray eU (Fig. 10a). 

Therefore, these inputs are the main targeting criteria for the SVM model. The second-

order sensitivity indices indicate that the most relevant input pair is gravimetric worms 

and fractal dimension, followed by pairs Parauapebas Formation and gamma-ray eU, 

and fractal dimension and Xingu Complex (Fig. 10b).  These results suggest that the 

relationship between deep structures outlined by the gravimetric/magnetic worms and 

their connectivity to shallow structures mapped with the fractal dimension is the 

strongest control on the modelled prospectivity of Cu-Au mineralization. Also, the 

second-order sensitivity indices indicate that the uranium enrichment outlined by the 

gamma-ray eU is more relevant for modeling the prospectivity of mineralization related 

with the Parauapebas Formation, and that the fractal dimension, which outline the 

connectivity of the structures, is more relevant for modelling the prospectivity of 

mineralization related with the Xingu Complex. 

The relationship between the mappable targeting criteria, according to the 

sensitivity analysis, with their respective targeting elements and constituent processes 

proposed in section 2.2 (Table 1), suggests that the main processes related to the Cu-

Au mineral system at CMP are the migration of metal-enriched fluids in trans-crustal 

and/or craton-scale structural zones located between Meso/Neoarchean-

Paleoproterozoic contacts. These structures are outlined by the magnetic/gravimetric 

worms and by the proximity to contacts between Mesoarchean, Neoarchean and 

Paleoproterozoic, respectively. This relationship also suggests that the deposition of 

the metals is commonly associated with brecciated zones and uranium enriched 

alteration zones, outlined by the fractal dimension map and by gamma-ray eU, 

respectively. The uranium enriched zones are more relevant for Cu-Au mineralization 

related to the Parauapebas Formation, and the structural controls are more critical for 

mineralization related to other lithostratigraphic units. 
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Fig. 10. (a) Total-order sensitivity indices and (b) second-order sensitivity indices for the ten most 

critical input features for the SVM model trained with 2000% over-sampling rate and 100% under-

sampling rate of mineralized and non-mineralized samples, respectively. *Proximity to contacts 

between Mesoarchean and Proterozoic stratigraphic units, Neoarchean and Proterozoic stratigraphic 

units, as well as contacts between Paleoproterozoic and Proterozoic stratigraphic units. 

5.6 Conclusion 

Over the years, ML has become a primary tool for data-driven mineral 

prospectivity mapping (MPM). One of the major challenges in the use of ML methods 

is the need for large volumes of labeled data (i.e., locations of known deposit 

occurrences), which are difficult and expensive to obtain in most cases, as well as in 

mineral exploration problems where commonly few deposits are known. The small 

number of deposit locations and the large number of non-deposit locations inherent in 

the nature of mineralized regions is an obstacle to the efficient performance of a ML 

method in data-driven MPM. That is, the commonly used ML methods have difficulty 

in learning when trained with imbalanced training datasets. However, as shown in this 

study, the synthetic generation of mineralized samples using the SMOTE algorithm can 

significantly increase the classification performance and the spatial efficiency of data-

driven MPM through ML. However, care should be taken when increasing the number 

of mineralized samples and without changing the number of non-mineralized samples. 

According to the results, prospectivity models derived using balanced training 

datasets are more stable on training and have better spatial efficiency. Therefore, the 

performance of prospectivity models derived by a ML method can be increased using 
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SMOTE only if the model is trained with the same or nearly the same number of 

mineralized and non-mineralized samples. Nevertheless, this result needs further 

verification by testing this approach using other ML methods, and in other regions with 

different numbers of known deposits. Also, other sampling techniques need to be 

trialed and compared with SMOTE. 

The advantage of using spatial sampling techniques to deal with the 

imbalanced training data problem in MPM is that they are easy to implement and does 

not require in-depth knowledge of ML architectures, which is necessary when 

implementing algorithm level solutions. The use of these techniques can lower the risk 

in mineral exploration and should allow exploration geologists to make spatially-

informed decisions. 
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6 ORE GRADE ESTIMATION FROM HYPERSPECTRAL DATA 

USING CONVOLUTIONAL NEURAL NETWORKS: A CASE STUDY 

AT THE OLYMPIC DAM IOCG DEPOSIT, AUSTRALIA 

6.1 Introduction 

The acquisition of information on the spatial distribution of chemical 

properties of subsurface rocks is required during exploration and mining of mineral 

resources. The concentration of elements in the subsurface outlines the volume with 

commercially viable ore, being essential to verify the economic viability of a deposit, 

as well as to design ore mining and to guide mine operation. To acquire this 

information, drilling machines are used to collect subsurface rock samples, known as 

drill-cores.  Commonly, a few equally spaced small sections along the drill-cores are 

selected and sampled for geochemical analysis. X-ray fluorescence, inductively 

coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical 

emission spectrometry (ICP-OES) are the analytical techniques typically employed in 

most cases. This strategy has been used widely by mining companies over the past 

decades; however, in most cases the high analytical cost involved does not allow for 

adequate sampling (large sampling intervals;  1 m) of the drill-cores leading to low 

spatial resolution data. Usually, the geochemical analysis needs to be combined with 

drill-core descriptions (lithological boundaries and units) performed by geologists and 

other analytical techniques to increase the precision of the modeled ore body. 

The spatial distribution of minerals in the subsurface is also an important 

information to be acquired during exploration and mining operations.  Recognition and 

spatialization of minerals in drill-cores aid the delineation of an ore body and the 

identification of ore accumulations. Optical microscopy and X-ray diffraction are 

examples of techniques typically employed to obtain information about the ore 

mineralogy of drill-cores. In addition to these techniques, the use of hyperspectral 

imaging systems to collect mineralogy information of drill-cores has grown in recent 

years (Acosta et al., 2019; Calvin and Pace, 2016; Kruse, 1996; Taylor, 2000). 

Hyperspectral sensors are noninvasive and nondestructive tools capable of scanning 

drill-cores in a short time. These sensors acquire images in hundreds of continuous 
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spectral bands, capturing detailed spectral information for each image pixel. Certain 

minerals absorb electromagnetic radiation at specific wavelengths as a result of the 

fundamental electronic and vibrational processes of their molecular bonds (Clark, 

1999; Van der Meer, 2004). Therefore, the analysis of spectral absorption features can 

be used for mineral identification, allowing hyperspectral sensors to collect detailed 

information (centimetric to millimetric spatial resolution) on the spatial distribution of 

different minerals, assisting the identification of ore zones and associated gangue.  

Several studies have shown that concentrations of certain elements are 

significantly correlated to the spectral responses of certain rocks and minerals (Clark 

and Roush, 1984; T. J. Cudahy et al., 2009; Dalm et al., 2017, 2014; Ducart et al., 2016; 

Haest and Cudahy, 2012; Prado et al., 2016; J. T. Qiu et al., 2017; Silversides and 

Murphy, 2017). Therefore, hyperspectral data can potentially be used to predict ore 

grade distribution across drill-holes at centimetric to millimetric scale. However, unlike 

conventional images with only few bands, hyperspectral images have hundreds of 

bands, resulting in high volume and high complexity data. For this reason, the analysis 

of hyperspectral data is rarely performed visually; rather, algorithms are developed to 

extract the desired information from the images, such as mineral abundance, 

composition, and crystallinity. Most of the algorithms used to correlate these spectral 

parameters with geochemical data are based on classical statistical methods such as 

linear and polynomial regression algorithms, which are not able to handle some of the 

complexities of hyperspectral data. Furthermore, to obtain accurate results, these 

methods require the constant interaction of specialists to interpret the spectra and 

fine-tune the acquisition of spectral parameters. 

Given the ability of machine learning (ML) algorithms to extract complex 

patterns, which may be difficult for conventional statistical methods, these algorithms 

are able to circumvent the limitations of classical methods in hyperspectral data 

analysis. ML algorithms have yielded satisfactory results in the analysis of drill-core 

hyperspectral data in recent years (Acosta et al., 2019; Khodadadzadeh and Gloaguen, 

2019; Koirala et al., 2019; Schneider et al., 2014; Tusa et al., 2019; Wang et al., 2016) 

due to their ability to learn complex relationships between the spectrum obtained in 

each pixel and the imaged material (Gewali et al., 2018). However, most of these 
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studies have focused on mineral classification of spectral data rather than correlating 

them with geochemical data. 

Recent advances in ML algorithms are driving profound changes in data 

analysis and integration in various aspects of the mineral industry. Recent 

technological advances have promoted a significant increase in the processing power 

of computers, made possible by the development of graphic processing unit (GPU) in 

recent times. GPUs enable the training of larger neural networks with more complex 

architectures, leading to the development of ML algorithms based on deep 

architectures, called deep learning (DL) algorithms. These algorithms overcome many 

of the limitations present in traditional ML techniques, which resulted in major success 

stories in a wide range of commercial applications, such as computer vision, speech 

recognition, and natural language translation (Lecun et al., 2015). Deep architectures 

can learn exclusively from data, removing the need for manual extraction of features 

in the input data. This ability makes DL algorithms suitable for solving problems with 

complex data structure, data acquired by different sensors, or big data. Usually, 

manual extraction of features in these problems is difficult and requires the knowledge 

of an expert to be performed adequately. 

Although ML models are to overcome the inadequacy of classical statistical 

methods in the analysis of hyperspectral data, these algorithms depend on the 

preliminary extraction of features and are not able to analyze the spatial relations in 

the input data. The advances made by the DL architectures in the data analysis can 

contribute significantly to the improvement of the methods currently used. One of the 

recent DL algorithms that deserve prominence is known as convolutional neural 

networks (CNN; Lecun and Bengio, 1995). These networks can recognize patterns 

related to the spatial location of data, that is, considering that the training data are 

images (data with strong spatial correlation), unlike other architectures that analyze 

the pixels of an image individually, CNNs are able to identify patterns related to the 

neighboring pixels in an image (Castelluccio et al., 2015; Krizhevsky et al., 2012). Thus, 

CNNs incorporate in their analysis the spatial structure of hyperspectral data, besides 

being able to learn to extract automatically the best features for classification of data, 

even in complex databases. However, one of the major challenges in the training of 

deep architectures is the need for large volumes of labeled data, which are difficult and 
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expensive to obtain in most cases, as in mineral exploration problems. Although some 

approaches based on ML techniques, recently, have been applied to correlate drill-core 

geochemical data with hyperspectral data (Acosta et al., 2020), as far as we are aware, 

DL algorithms have not been used to predict element concentration by means of 

hyperspectral data.  

Based on the motivations described above and the need to develop an 

understanding of the capabilities of CNNs for the integration of geochemical and 

hyperspectral data, this work investigates the applicability of CNN architectures to 

predict copper grade in drill-cores from the Olympic Dam deposit (ODD) by means of 

hyperspectral data. Applicability, in this context, is constrained by the fact that DL 

architectures can learn exclusively from data, removing the need for manual extraction 

of features in the input data, and that CNN can recognize complex patterns, including 

those related to the spatial location of absorption features in the hyperspectral data. 

6.2 Study area 

The ODD in South Australia was chosen as a case study region. It is one of 

the largest Cu–U–Au–Ag deposits in the world (Kathy Ehrig et al., 2012), with a total 

resource (open pit + underground) of 11.680 Gt @ 0.70 % Cu, 0.31 g/t Au, 1.3 g/t Ag, 

0.23 kg/tonne U3O8 (BHP Annual Report, 2022). The Australian government provides a 

large amount of information about the ODD deposit in a free access database, which 

contains lithological description, as well as geochemical and hyperspectral data of 

several boreholes (most of them intercepted the ore zone). Furthermore, the ODD has 

a well-known geology and mineralization style with a well-described hydrothermal 

alteration zonation. 

 Geology and Cu mineralization 

The ODD is the largest deposit of the Olympic Cu–Au Province, located on 

the eastern margin of the Archean to Mesoproterozoic Gawler Craton. The 

mineralization is spatially and temporally associated with the formation of the bimodal 

Gawler Silicic Large Igneous Province (SLIP) at ~1.6 Ga (Allen et al., 2008). This 

province comprises felsic and mafic volcanic rocks assigned to the Gawler Range 

Volcanics and granitoid intrusions of the Hiltaba Suite. The deposit is located within a 

hematite-rich hydrothermal breccia complex, known as Olympic Dam Breccia Complex 
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(ODBC; Reeve, 1990), hosted by the Roxby Downs Granite (RDG), part of the Hiltaba 

Suite (Creaser, 1989). Felsic and mafic–ultramafic volcanic rocks assigned to the 

Gawler Range Volcanic and clastic sedimentary rocks are also described in the ODBC 

(Kathy Ehrig et al., 2012). Neoproterozoic to Cambrian sedimentary rocks of the Stuart 

Shelf overlies the Olympic Dam Breccia Complex and the Roxby Downs Granite 

(Dmitrijeva et al., 2019; Kathy Ehrig et al., 2012). 

The RDG is a coarse to medium-grained, quartz-poor syenogranite with A-

type affinities (Creaser, 1989; Reeve, 1990). It is composed mainly of alkali feldspar 

(~45%), quartz (~30%), and sodic plagioclase (~20%), with minor biotite and 

amphibole, and accessory to trace amounts of igneous magnetite, sphene, apatite, 

zircon, allanite, fluorite, ankerite, synchysite and uranothorite (Kathy Ehrig et al., 2012). 

The ODBC exhibit a well-defined hydrothermal alteration zonation as documented by 

Ehrig et al. (2012). The outer margins of the ODBC are defined by the complete 

replacement of igneous biotite from RDG to chlorite (biotite ‘out’ in Figs. 1 and 2). The 

brecciated zones inside the ODBC are divided into granite-rich breccias (5% Fe outline 

in Figs. 1 and 2) and hematite-rich breccias (20% Fe outline in Figs. 1 and 2). The rocks 

between the granite-rich breccias and the ODBC outer margins exhibit hematite 

alteration of igneous magnetite and sericite alteration of igneous plagioclase and 

orthoclase. The hematite and sericite alterations increase towards the geographic 

center of the deposit. 

The granite-rich breccias consist of fractured and veined granites with the 

presence of hematite as matrix, clasts, or veins. Within these breccias, the igneous 

plagioclase is completely replaced by sericite and the sericite alteration of orthoclase 

intensifies (Fig. 2). Pyrite is the predominant sulfide with minor chalcopyrite. Siderite 

often occurs as fragments or veins. The contact between granite-rich breccias and 

hematite-rich breccias defined by the 20% Fe outline (Fig. 1) is marked by the increase 

in abundance of hematite, with hematite becoming the most abundant component in 

the breccia. The orthoclase is completely altered to sericite inside hematite-rich 

breccias, and sericite is altered to hematite toward deposit center. These breccias are 

the main host rocks of Cu mineralization, containing economic concentrations of Cu– 

(Fe)–sulphides as chalcopyrite, bornite, and chalcocite, with fluorite, barite and minor 

siderite typically associated.  As the hematite alteration intensifies towards the deposit 
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center the abundance of quartz, hematite and barite increases, and the abundance of 

aluminosilicate and sulfide minerals decreases, defining the hematite–quartz–barite 

hydrothermal assemblage. The Cu mineralization does not occur within this alteration 

assemblage.  

 

 

Fig. 1 Simplified geologic map of Olympic Dam deposit (modified from Dmitrijeva et al., 2019) projected 

at 350 m below surface showing collar locations of drillholes selected for training, validation and test 

of the CNN models. Coordinate system: WGS 1984 UTM Zone 53S. 

Three hydrothermal alteration assemblages within the granite- and 

hematite-rich breccias were defined by Ehrig et al. (2012) according to the Fe and S 

oxidation states, namely reduced Fe oxide (magnetite + apatite + siderite + chlorite + 

quartz), oxidized Fe oxide (hematite + sericite + fluorite), and hematite–quartz–barite 

assemblages (Fig. 2). The main sulfide within the reduced Fe oxide assemblage is 
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pyrite with less amounts of chalcopyrite. Chalcopyrite, bornite and chalcocite are the 

predominant sulfides within the oxidized Fe assemblage, with less amounts of pyrite. 

 

Figure 2 Schematic diagram of hydrothermal alteration and mineral zonation of the Olympic Dam 
deposit (as described in Ehrig et al., 2012). 

6.3 Methods 

 Hyperspectral data and geochemical analysis 

The datasets used to train the model include point spectra and geochemical 

data collected from 14 drill cores (with average length of 1275 m) from the ODD. The 

spectral data were provided by the AuScope National Virtual Core Library (NVCL), and 

the geochemical data by the South Australian Resources Information Gateway 

(SARIG). Both spectral and geochemical datasets can be downloaded free of charge 

at AuScope Discovery Portal (http://portal.auscope.org/). 

The drill cores were profiled with the CSIRO Hylogger-3: a visible, near 

infrared (VNIR) to shortwave (SWIR) and thermal (TIR) infrared reflectance 

spectrometer system for drill core logging. The spectral data were collected 

continuously throughout the drill cores at a sampling interval of 8 mm. The field of 

view of the spectrometers was 10 mm across the track (across the drill hole extension) 

and 18 mm along the track (along the drill hole extension) (Schodlok et al., 2016). The 

VNIR–SWIR data were acquired for a wavelength range of 380–2500 nm (4 nm 

http://portal.auscope.org/
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bandwidth; 531 bands) and the TIR data for a wavelength range of 6000–14500 nm 

(25 nm bandwidth; 341 bands). 

The cores were also sampled to obtain geochemical elemental analyses for 

Ag, Al, As, Au, Ba, CO2, Ca, Ce, Co, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Ti, U3O8, 

Zn, Zr, Cr, Sr, V, Y, Sb, and Sc. The concentrations of most of these elements were 

determined by inductively coupled plasma mass spectrometry (ICP-MS) and 

inductively coupled plasma optical emission spectrometry (ICP-OES) techniques, 

except for all the Au and CO2 analyses, and most of the U3O8 analysis, which were 

determined by fire assay, combustion, and X-ray fluorescence (XRF) techniques, 

respectively. 

The sample spacing for geochemical analysis was variable, but most 

samples were obtained at a spacing of 1 m (~85% of the samples) and 5 m (~11% of 

the samples), totaling 8868 samples with geochemical analysis. The average 

reflectance spectrum was calculated for the spectra that encompass the interval 

where a sample was collected for geochemical analysis (typically 1–5m long; average 

of 200 spectra). The obtained reflectance spectra and respective Cu data were used 

to train deep neural networks regression models. 

6.3.1 Dataset pre-processing 

6.3.1.1 Dataset verification and correction 

The hyperspectral data were provided as normalized reflectance spectra, 

consisting of 1,814,569 spectra. Some of these spectra (4,931; 0.27% of total) have 

anomalous reflectance values (i.e., > 1), and were discarded because it is expected 

that reflectance values fall in the range [0,1].  In addition, some spectra (30,882; 1.7% 

of total) have reflectance values lower than 0, which are also anomalous; negative 

values close to zero (<0.01) were replaced with 0 to keep the reflectance values in the 

[0,1] range. After this procedure, the average of the spectra, which encompass each 

sampled interval for geochemical analysis, was calculated, reducing the hyperspectral 

data to 8868 spectra, one for each Cu analysis. 
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6.3.1.2 Continuum removal 

Normally, during spectral analysis, the continuum is removed (Clark and 

Roush, 1984) to isolate absorption features of the spectrum from other effects, such 

as level changes and slopes generated by other materials. These effects can cause 

shifts of the local minimum in the spectra and can significantly reduce absorption 

depths. When the continuum is removed, the minima show more stable positions. In 

addition, the effects of illumination geometry, as well as the effects of contaminants 

and grain size are reduced because the continuum removal normalizes the spectra 

(Clark et al., 2003). 

The continuum removal algorithm from the pysptools python’s package 

(Therien, 2018) was used. This algorithm computes the convex hull of the signal and 

removes it by hull quotient. Example results of continuum removal are shown in Fig. 

3. 

 

Fig. 3 Examples of continuum removal. Top panels: original spectra as solid lines with respective convex 

hull continuum as dashed lines. Bottom panels: continuum removed spectra. Left panels: VNIR–SWIR 

data. Right panels: TIR data. 

6.3.1.3 Spectrogram 

Spectrograms are typically used to represent signals, such as audio data, in 

2D space (e.g., time–frequency for audio; wavelength–frequency for reflectance 

spectra) raster, where the magnitude of a signal with a given frequency at a given 

position (time for audio; wavelength for reflectance spectra) is represented by the 
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value of a pixel. The spectrograms were computed using SciPy library (Virtanen et al., 

2020) for the Python programming language. The algorithm decomposes the signal 

into overlapping segments of equal length, and then applies the short-time fast Fourier 

transformation to each segment (Griffin and Lim, 1984; Oppenheim, 1999). To 

generate the spectrograms, we used the Hann window (Blackman and Tukey, 1958), a 

segment length of 20, with 10 observations of overlap, and a sampling frequency of 

0.25 (1/4) for the VNIR–SWIR spectra and 0.04 (1/25) for the TIR spectra. After 

computation, the spectrograms values were transformed to logarithmic scale in order 

to normalize the distribution of pixel values. 

The spectral data were transformed to spectrograms, generating a raster 

representation of the spectrum, which is more appropriate for CNN models based on 

2D convolutions to process. The original hyperspectral data samples consist in vectors 

of length 872 (VNIR–SWIR + TIR available bands), which were transformed to matrices 

of 11 x 85 (frequency x wavelength) after transformation. Examples of the original data 

and the resulting spectrograms are shown in Fig. 4. The drops in reflectance can be 

identified in the spectrogram as large (yellow) values. 

 

Fig. 4 Example of spectral data encoded as spectrograms. Top panels: original spectral data. Bottom 

panels: spectrograms with amplitude (color) in log scale. Left panels: VNIR–SWIR data. Right panels: 

TIR data. 
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6.3.1.4 Standardization 

Before model training, the mean of each feature (reflectance value of each 

band for spectra data, or magnitude of each pixel for spectrogram data) was 

subtracted from the feature values and divided by the standard deviation of the feature, 

thus: 

𝑧 = (𝑥 − 𝜇)/𝜎 

where x is the feature value, µ and σ are the mean and standard deviation of the feature, 

respectively, in the training samples, and z is the standardized feature value (Grus, 

2015; Pal and Sudeep, 2016). This procedure centralizes the data distribution at 0 

mean and sets the standard deviation to 1. Standardization of input data is an 

important step to avoid instability in the training of neural networks models, as it scales 

the features into unit variance facilitating the updating of weights during gradient 

descent. Dataset standardization avoids the weighting of features with higher values, 

which update much faster than those with lower values and cause a model to learn 

incorrect patterns. 

6.3.2 Dataset analysis 

To better understand the relationship between the Cu data and the spectra 

data, the samples were grouped according to their Cu % so that the non-mineralized 

samples (statistically low values of Cu) were grouped together (bin 1) and the 

mineralized samples were subdivided into three groups, lower grade ore (bin 2), 

moderate grade ore (bin3), high grade ore (bin 4), resulting in the creation of four bins. 

The number of bins and the ranges per bin were defined by box plot statistics. The 

minimum and the median define the first bin (0.00–0.30% Cu), the median and the third 

quartile define the second bin (0.30–1.01% Cu), the third quartile and the upper whisker 

define the third bin (1.01–2.44% Cu), and finally the upper whisker and the maximum 

define the fourth bin (2.44–8.4% Cu). The upper whisker was calculated as 1.5*(Q3 - 

Q1), where Q3 and Q1 are the third and first quartiles, respectively. The number of 

samples per bin is shown in Fig. 5. 
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Figure 5 Number of samples in each Cu % bin. 

The averages of spectra obtained per geochemical sample are shown in 

Figs. 6 and 7, grouped by their Cu % as defined above. The decrease in reflectance was 

the most prominent pattern associated with the increase in Cu %, in both VNIR–SWIR 

and TIR spectra (Fig. 6). The samples of the first bin (0.0–0.3% Cu) had VNIR–SWIR 

reflectance values of 0–0.86, and most samples had a reflectance value of 0.3. The 

reflectance values decreased as one moves to bins with higher Cu %. In bins 3 and 4, 

the maximum VNIR–SWIR reflectance values for most samples were less than 0.20. 

The same pattern was true with TIR spectra, which had reflectance values of 0–0.54 

in the first bin, decreasing progressively in maximum reflectance value on reaching bin 

4, which had a maximum reflectance of 0.36. 

By analyzing the continuum removed average spectra of the VNIR–SWIR 

(Fig. 7), it was observed that a broad absorption feature in the range 650–1600 nm, 

centered at 1250 nm, often occurred in the samples of the first bin, and it gradually 

disappeared in samples with higher Cu %. This absorption feature is characteristic of 

reduced iron (hydro-)oxide as magnetite, and its depth is proportional to the Fe2+ 

content (Hunt and Salisbury, 1970). Likewise, it was observed that some absorption 

features decreased their depth and/or the number of samples with increase in Cu %, 

as in a double absorption feature in the range 2250–2320 nm, centered at 2270 nm 

and 1310 nm, which is characteristic of chlorite (Hunt and Salisbury, 1970), and an 

absorption feature in the range 2150–2250 nm, centered at 2200 nm, which is 

characteristic of white micas as muscovite, illite, paragonite and phengite (Hunt and 

Salisbury, 1970). It was also noted that the absorption feature in the range 750–1050 

nm, centered at 900 nm, which is characteristic of hematite and goethite (Curtiss, 

1985; Morris et al., 1985), was usually deeper for samples with higher Cu %. 
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Fig. 6 Average spectra for each geochemical sample grouped by Cu %. N = number of samples. 

The continuum removed TIR spectra (Fig. 7) also showed some absorption 

features that were more notable in samples with lower Cu %, such as the absorption 

feature in the range 6400–8200 nm, which presented a flat pattern in the range 7200–

7800 nm only up to bin 3. The absorption feature in the range 9300–12500 nm 

changed its symmetry as the Cu % increased, by decreasing the depth of absorption at 

12250 nm. In addition, the absorption feature in the range 12800–14500 nm gradually 

became less notable for samples with higher Cu %. 
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Fig. 7 Continuum removed average spectra for each geochemical sample grouped by Cu %. N = number 

of samples. 

The original hyperspectral data acquired from AuScope were provided as 

TSG™ software (CSIRO Earth Science and Resource Engineering - CESRE - Division, 

Sydney, Australia) file format. In these files, in addition to the spectral curves, the 

automatic mineral interpretation obtained by "The Spectral Assistant™" (TSA) module 

was provided, for both VNIR–SWIR and TIR spectra. The percentage of samples 

identified for each mineral is shown in Figure 8, either for all data or data grouped by 

Cu %. When we analyzed the relationship between the identified minerals and the Cu 

%, it was observed that some minerals were identified in a similar percentage of 

samples in all bins, and others were identified in a large or smaller number of samples 

as the Cu % increases. Quartz, muscovite, phengite, microcline, siderite, calcite, 

hematite, and montmorillonite were the minerals mostly identified in the samples (all 
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data in Fig. 8). The most identified minerals in samples with higher Cu % (bins 3 and 

4) were quartz, muscovite, phengite, calcite, siderite, and hematite, with quartz being 

the most frequently identified mineral (identified in 65% of the samples of bin 4). The 

percentage of samples with calcite, siderite, hematite, goethite, gypsum, biotite, 

kaolinite-WX and dolomite increased as the Cu % increased. However, for some of 

these minerals (e.g., siderite, biotite, and dolomite), the percentage of samples 

decreased in bin 4. Moreover, the percentage of samples with quartz, muscovite, 

phengite, albite,  orthoclase, and microcline decreased as the Cu % increased. 

 

Fig. 8 Percentage of samples in which a given mineral has been identified, for each mineral identified 

by the TSA module of the TSG software (only minerals identified in more than 0.5% of the total samples 

in all Cu bins are shown), computed for all the spectral data and for data in each Cu % bin. 

The variation in mineralogy of the samples obtained from the hyperspectral 

data is the same variation observed/described by Ehrig et al. (2012) in the 

hydrothermal alteration zones of the ODD, where feldspar (microcline, orthoclase) and 

plagioclase (albite) are altered to sericite (muscovite, phengite) as the alteration 

intensifies. The relation between the increase of Cu % and the decrease of feldspar 

and plagioclase identified in the samples indicates that the intervals sampled for 

geochemical analysis intercepted hydrothermal zones with progressively increasing 
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alteration intensity as the Cu % increases. Samples with Cu % higher than 1.01% (bins 

3 and 4) probably mostly intercepted altered rocks, in which almost all feldspars and 

plagioclase are altered to sericite, being composed mainly of quartz and sericite. This 

correlation observed for variations in spectral behavior and Cu content of the samples 

reaffirms the spatial distribution and relationship among alteration minerals and 

mineralized zones observed by Ehrig et al. (2012) and Tappert et al. (2013), and 

supports the use of hyperspectral data to estimate Cu content. 

6.3.3 Model data input 

Twelve different input datasets were generated from the original 

hyperspectral data (Fig. 9). First, the original data were divided into three datasets, 

namely VNIR–SWIR data, TIR data, and VNIR–SWIR + TIR data (blue color in Fig. 9). 

These three datasets consist of the raw spectra, without preprocessing. Another set 

of three datasets were generated by removing the continuum from the raw spectra 

datasets (green color in Fig. 9). The other six datasets were generated from these, 

transforming the spectra of the three raw datasets and the three datasets with 

continuum removal into spectrograms (yellow and red colors in Fig. 9). All the datasets 

were standardized before model training (see Section 2.5.). Data not transformed into 

spectrograms consist of 1D vectors, and transformed data consist of 2D vectors. Two 

CNN architectures based on convolutional neural networks, one for 1D data and one 

for 2D data, were developed and trained with the generated input datasets. Then, the 

performances of models obtained per input dataset were compared to investigate 

which spectrum region, VNIR–SWIR, TIR or both, is the best for model training, as well 

as to investigate which pre-processing is more adequate, continuum removal, 

transformation to spectrogram, both, or none. 
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Fig. 9 Model input datasets. 

6.3.4 CNN Model 

Developing a CNN model is highly interactive. The number and type of layers 

used, kernel and filters size at each layer, dropout rate, regularization constant, and 

learning rate are some of the hyperparameters that need to be defined to design the 

model. In this section, we introduce the 1D and the 2D CNN models and present the 

networks with the best performing combination of hyperparameters. 

6.3.4.1 Introduction to CNN 

Convolutional neural networks (LeCun et al., 1989) are deep learning 

algorithms specialized in processing data with known grid-like topology, as image 

data. These networks have been tremendously successful in practical applications. 

CNNs employ a mathematical operation called convolution, which is a specialized kind 

of linear operation (Goodfellow et al., 2016). CNNs are composed of three basic layers, 

known as convolutional layers, nonlinearity layers, and pooling layers. These layers, 

when connected, establish a network architecture designed to take advantage of the 

spatial structure of the input data (Zhang and Goh, 2016). 

The convolutional layers consist in a set of 𝑛 rectangular matrices, also 

called filter, where 𝑛 is the number of filters. Each filter is slid over the entire input data 

to produce an output, or feature map. At each iteration, the algorithm computes the 

inner product between a patch of the input data 𝑥𝑖 and a filter 𝑘𝑗
𝑖 , where 𝑖 is the data 

patch index and 𝑗 is the filter index. This operation can be expressed as a single matrix 

multiplication of the form 𝐾𝑗 ∗ 𝑋 where 𝐾𝑗 is the large Toeplitz matrix of convolution 

operations and 𝑋 is a matrix of vectorized inputs concatenated together. The result of 

this operation is then passed as input to a nonlinearity layer, where it is combined with 

an activation function 𝑓(∙) and a bias, 𝑏𝑗 , thus: 

𝑍𝑗 = 𝑓(𝐾𝑗 ∗ 𝑋 +  𝑏𝑗) 

where 𝑍𝑗 is the feature map produced by the convolution of filter 𝑗. A commonly chosen 

activation function is the rectified linear unit (ReLU) function 𝑓(𝑥) = max (0, 𝑥). The 

output of the convolutional layer is a matrix of 𝑛 feature maps concatenated together.   

The pooling layer function reduces the size of the input, replacing the values 

of the input matrix with a summary statistic of the nearby values. The max pooling 
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(Zhou and Chellappa, 1988) is a commonly chosen pooling operation; it calculates the 

maximum value P within a rectangular neighborhood 𝑆 of each feature map 𝑗, thus: 

𝑃𝑗
𝑆 =  max

𝑖 ∈ 𝑆
𝑍𝑗 

The last component in any CNN is a final layer that takes as input the feature 

maps derived from all previous layers and it outputs a predicted value. To solve for the 

numerous parameters in the network, some objective function must be defined that 

penalizes poor performance during training. In general, the objective function has the 

form: 

𝜙 = ‖𝑓(𝜃; 𝑋) − 𝑦‖𝑝 

where 𝑦 represents the true labels, 𝑓(∙) is some function of the input data 𝑋 (the 

images), which the network is trying to learn, 𝜃 represents the parameters of the 

function (in this case this would include all the convolution kernels and biases of the 

CNN), and ‖∙‖𝑝 is some p-norm of the misfit. The parameters are then optimized 

iteratively using the back-propagation algorithm (LeCun et al., 1989), which in most 

cases is some form of (stochastic) gradient descent. As the network is optimized, the 

convolution kernels are “learned” to provide the best set of feature maps from which 

to minimize the error expressed by the objective function. 

6.3.4.2 Network architecture 

Two CNN architectures were developed, one composed of 1D convolutional 

and max-pooling layers, and the other composed of 2D convolutional and max-pooling 

layers. The architecture of both models was based on the image recognition VGG 

model (Simonyan and Zisserman, 2014), which is one of the state-of-art CNN models 

for image classification. 

The input of the 1D CNN architecture is a fixed size 1xN vector, built from 

normalized reflectance or continuum removed reflectance data, where N is the number 

of spectral bands in the input data (531 for VNIR–SWIR data, 341 for TIR data, and 872 

for VNIR–SWIR + TIR data). The only preprocessing applied to these data besides 

continuum removal was standardization, computed on the training set (Section 2.5.). 

The input 1D vector was passed through a stack of convolutional layers. The first two 

layers had 1x1 and 1x3 kernel sizes, respectively, and 64 filters each, which were 

followed by a stack of three convolution blocks. Each block was composed of two 
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convolutional layers, with 1x1 and 1x3 kernel sizes, respectively, followed by a dropout 

regularization. The filter sizes of the convolutional layer inside the convolutional block 

were the same, starting with 128 filters in the first block and doubling at each block, 

going to 256 and 512, in the second and third blocks, respectively.  In all these 

convolutional layers, the convolution stride was fixed to 1 and the spatial padding was 

set to preserve the spatial resolution after convolution. After the convolutional layers, 

spatial pooling was carried out by a max-pooling layer with a 1x2 window size and 

stride of 2, which follow the convolution block. Then, the output was flattened 

(transformed into a 1D vector) and passed through two fully-connected layers, with 32 

channels each. The final layer was a fully-connected layer with 1 channel (prediction 

value) and a linear activation function (Fig. 10a). All convolutional and fully-connected 

layers were followed by a rectification (ReLU) non-linearity (Krizhevsky et al., 2012), 

with the exception of the last fully connected layer. 

The 2D CNN architecture took as input a fixed size 11xN image, derived by 

the transformation of the normalized reflectance or continuum removed reflectance in 

a spectrogram, where N is the number pixels in the wavelength (spectral band) 

dimension of the spectrogram (52 for VNIR–SWIR data, 33 for TIR data, and 85 for 

VNIR–SWIR + TIR data), which varies according to the number of input data spectral 

bands. As in the 1D CNN architecture, before training, the input data were standardized 

against the training data (Section 2.5.). The image was passed through a stack of two 

convolutional blocks, each block with two convolutional layers, with 1x1 and 3x3 kernel 

size, respectively. The filter sizes of both convolutional layers inside the block were 

equal, being 32 in the first block and 64 on the second. The stride of all convolutional 

layer was set to 1 and the padding was set to preserve the spatial resolution. A max-

pooling layer with a 2x2 window size and stride of 2 was applied to the output of the 

last convolutional layer. The result of the pooling operation was flattened and passed 

through two fully-connected layers, with 16 channels each. The final layer was a fully-

connected layer with 1 channel (prediction value) and a linear activation function (Fig. 

10b). All convolutional and fully-connected layers were followed by a rectification 

(ReLU) non-linearity, with the exception of the last fully connected layer. 
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Fig. 10 CNN architectures: (a) 1D and (b) 2D. 

6.3.4.3 Training the network 

Before training, the datasets were divided into a training set, a validation set 

and a test set. The validation set was used to evaluate the model performance during 

training for parameter selection, and the test set was used as an independent set for 

measuring model performance after parameter selection. The samples of the drill-core 

RD2785 (Fig. 1), which had 1,479 samples with Cu data (~16% of the total number of 

samples), were selected and used as test set. From the remaining samples, 20% (1,478 

samples) were randomly selected and used as validation set, and the other 80% (5,911 

samples) were used as training set. 

The training of both networks was conducted using Adam optimizer 

(Kingma and Ba, 2014) with mini-batch gradient descent and root mean squared error 

(RMSE) as the loss function. The batch size was set to 128. Dropout regularization was 

used in both networks (Srivastava et al., 2014). In the 1D CNN, the last convolutional 

layer of the convolution block and the max-pooling layer were followed by dropout 

layers with dropout ratio set to 0.5 (Fig. 10a). Similarly, in the 2D CNN, the last 

convolutional layer and the max-pooling layer were followed by dropout layers with 

dropout ratio set to 0.1 (Fig. 10b). It is important to note that, despite the similarity, the 

1D CNN had four dropout layers, one for each of the three convolution blocks, and one 

for the max-pooling layer, while the 2D CNN had only two dropout layers. In both 

networks, the convolutional layer regularized with dropout also had weight decay 

regularization (Ng, 2004), with L2 penalty multiplier set to 0.0003. The learning rate was 



88 
 

initially set to 10-2 in the 1D CNN, and to 7.5x10-4 in the 2D CNN. In both networks, these 

initial values were set to decrease by a factor of 10 when the validation RMSE stopped 

improving (i.e., the validation RMSE did not drop 10-4 units during 100 epochs). Early 

stopping was used on both architectures, and the training was set to stop when the 

validation RMSE did not drop 10-4 units during 120 epochs. The weights in both 

networks were initialized using the random uniform initialization procedure of Glorot 

and Bengio (2010), also known as Xavier uniform initialization. The CNN models were 

implemented in Python programming language using the packages Keras (Chollet and 

others, 2015) and TensorFlow (Martín et al., 2015). 

6.3.5 Synthetic minority over-sampling technique for regression with gaussian 

noise (SMOGN) 

When analyzing the distribution of samples by the Cu % (Fig. 5), it was 

observed that the number of samples with low Cu % (< 1.98%; 5,452 samples) was 

much larger than the number of samples with high Cu % (>= 1.98%; 459 samples), 

indicating that the dataset had imbalanced domains (~1:12 ratio of samples in 

minority/majority classes). Machine learning algorithms, including neural networks, 

commonly have problems when trained with imbalanced datasets, both for 

classification and regression task (Branco et al., 2017; He and Garcia, 2009; López et 

al., 2013; Prado et al., 2020; Torgo et al., 2013). Usually, models trained with 

imbalanced dataset present a tendency to output values associated to the majority 

class (target values with many samples); that is, a bias towards the majority class. 

Therefore, these models commonly are not good for predicting samples of the minority 

class (target values with few samples).  

To address the problem of imbalanced domains in the training dataset and 

to enhance the performance of the CNN model, the Synthetic Minority Over-Sampling 

Technique for Regression with Gaussian Noise (SMOGN) proposed by Branco et al. 

(2017) was used. This technique combines random under-sampling of the majority 

class with SmoterR (Torgo et al., 2013) and introduction of Gaussian Noise (Branco et 

al., 2016) to over-sample the minority class.  As suggested by the authors of the 

SMOGN algorithm, the relevance function proposed by Ribeiro (2011) was used to 

select the minority class (rare/extreme target values) and majority class (normal target 

values) samples.  
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The relevance function maps the target variable domain to the range [0,1], 

where 1 represents the maximum relevance. The method proposed by Ribeiro (2011) 

automatically estimates the relevance function from the target variable boxplot 

statistics. The median and the outlier threshold (𝑂𝑇 =  𝑄3 + 𝑂𝑐𝑜𝑒𝑓 𝑥 𝐼𝑄𝑅, where 𝑄3 is 

the third quartile, 𝑂𝑐𝑜𝑒𝑓 is the outlier coefficient (commonly set to 1.5), and 𝐼𝑄𝑅 is the 

inter-quartile range) were used to compute the relevance function with the piecewise 

cubic Hermite interpolation method (Dougherty et al., 1989; Ribeiro, 2011), which maps 

to 0 the target values below the median, to 1 the target values above the 𝑂𝑇, and to the 

range (0,1) the target values between the median and the 𝑂𝑇. A threshold 𝑡𝑅 on the 

relevance values must be defined by the user, whereby values of the target variable 

with relevance below  𝑡𝑅  are assigned to the majority class, and values of the target 

variable with relevance above  𝑡𝑅  are assigned to the minority class.  

The SMOGN algorithm takes the samples assigned to the majority class 

and applies a random under-sampling procedure. Samples assigned to the minority 

class are over-sampled using either SmoteR or the introduction of Gaussian Noise 

strategy to generate new cases. The distances in the dataset vectorial space between 

the minority class samples and its nearest neighbors are used to determine which 

over-sampling strategy the SMOGN algorithm will apply. When the distance between 

the samples is considered “safe” (short enough) to perform interpolation through 

SmoteR, the SmoteR strategy is used, otherwise the SMOGN algorithm generates new 

cases by introducing Gaussian Noise to the samples. 

The Python implementation of SOMGN algorithm, provided in 

https://github.com/nickkunz/smogn, was used for resampling the original dataset. 

This implementation provides two strategies to obtain the under-/over-sampling rates 

used by the SMOGN algorithm, called “balance” and “extreme”. The “extreme” strategy, 

used in this work, first calculates a scale factor by the formula 𝑆 = 2𝑏/ ∑
𝑏2

𝑁𝑐𝑙𝑎𝑠𝑠
, where 

𝑏 = 𝑛/𝑁𝑐𝑙𝑎𝑠𝑠 , 𝑛 is the total number of training samples (5,911) and  𝑁𝑐𝑙𝑎𝑠𝑠 is the number 

of classes obtained by the relevance function (2 in this work, corresponding to the 

minority and majority classes). Then calculates the resampling rates by the formula 

%𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =  𝑆𝑐𝑙𝑎𝑠𝑠/𝑁𝑐𝑙𝑎𝑠𝑠, where 𝑆𝑐𝑙𝑎𝑠𝑠 = 𝑏2 𝑆 𝑥 𝑁𝑐𝑙𝑎𝑠𝑠⁄ . This strategy generates a 

larger number of synthetic samples, resulting in a resampled dataset with a larger 

number of samples than the original training dataset. In addition, two other parameters 

https://github.com/nickkunz/smogn
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must be set by the user in this SMOGN implementation, namely the boxplot outlier 

coefficient 𝑂𝑐𝑜𝑒𝑓 and the relevance threshold 𝑡𝑅 , which were set to 1.5 and 0.8, 

respectively. Both the 𝑂𝑐𝑜𝑒𝑓 and 𝑡𝑅 were selected based on performance (RMSE) on 

validation set by doing an exhaustive search over these hyperparameters values. 

During this procedure, all possible combinations for the values of 𝑂𝑐𝑜𝑒𝑓 =

[1, 1.2, 1.5, 2, 3]  and  𝑡𝑅 = [0.5, 0.6, 0.7, 0.8, 0.9, 1] were used to generate different 

training datasets by the SMOGN algorithm. Then, a model was trained for each 

dataset. The RMSE obtained on validation data by each model was used to select the 

best combination of hyperparameters. With these hyperparameters the Cu % threshold 

obtained by the relevance function was 1.98 %, therefore, samples with Cu % less than 

this threshold belong to the majority class (being undersampled), and samples with Cu 

% larger than or equal this threshold belong to the minority class (being oversampled). 

After applying the SMOGN algorithm to the training set, the number of samples of the 

majority class changed from 5,452 to 4,955 samples, and the number of samples of 

the minority class changed from 459 to 5,414 samples, balancing the training dataset 

to approximately 1:1 ratio of samples in the minority and majority classes.  

6.4 Results and discussion 

 Model performance 

As mentioned, 12 regression models were developed, one per training data 

(Fig. 9); six models for training the 1D CNN architecture (Fig. 10a) with the 1D data 

(reflectance curve) and six models for training the 2D CNN architecture (Fig. 10b) with 

the 2D data (spectrograms). To measure the performance of each model, the RMSE 

against the training, validation and test sets were computed for individual models. The 

values obtained are show in Table 1. The 2D CNN model trained with the Raw VNIR–

SWIR+TIR Spectrogram dataset obtained the best performance, with RMSE of 0.065 

on the training set, 0.495 on the validation set, and 0.494 on the test set. The SMOGN 

algorithm was then used to resample the Raw VNIR–SWIR+TIR spectrogram dataset 

(best performing dataset) to increase the performance of the CNN model. The 2D CNN 

model trained with the resampled dataset obtained a RMSE of 0.051, 0.487, and 0.482 

on the training, validation, and test datasets, respectively, performing slightly better 

than the model trained without SMOGN. 
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Table 1 Absolute RMSE obtained per training dataset.  

 RMSE 

Dataset Train Validation Test 

2D Raw VNIR–SWIR+TIR Spectrogram 

with SMOGN 
0.051 0.487 0.482 

2D Raw VNIR–SWIR+TIR Spectrogram 0.065 0.495 0.494 

2D CR VNIR–SWIR+TIR Spectrogram 0.092 0.511 0.537 

2D Raw TIR Spectrogram 0.090 0.524 0.572 

2D CR TIR Spectrogram 0.088 0.528 0.613 

2D Raw VNIR–SWIR Spectrogram 0.074 0.608 0.492 

2D CR VNIR–SWIR Spectrogram 0.085 0.610 0.516 

1D CR VNIR–SWIR+TIR 0.670 0.705 0.480 

1D CR TIR 0.734 0.751 0.567 

1D Raw VNIR–SWIR 0.777 0.798 0.550 

1D Raw VNIR–SWIR+TIR 0.886 0.896 0.744 

1D CR VNIR–SWIR 0.886 0.896 0.743 

1D Raw TIR 0.886 0.896 0.740 

 

The 1D CNN models trained both with raw and continuum removed 

reflectance spectra were the worst performing models, obtaining higher RMSE than 

those obtained by the 2D CNN models, indicating that the CNN architectures perform 

better with the 2D spectrogram data.  Models trained with all available spectral bands 

(VNIR–SWIR+TIR) performed better than models trained with only part of the spectral 

bands (VNIR–SWIR or TIR), as expected, reinforcing the importance of using the VNIR-

SWIR spectral bands together with the TIR bands for a more accurate quantitative 

analysis of the spectral data. The best performance of 1D models was obtained with 

the continuum removed VNIR–SWIR+TIR data, and the second-best performance with 

the continuum removed TIR data, showing that the continuum removal played an 

important role in reducing the RMSE of 1D models. However, by analyzing the RMSE 

of 2D models it can be seen that models trained with continuum removed datasets 

performed worse than their correspondent pair; that is, the model trained with the 

same spectral bands but without continuum removal. The improvement in the RMSE 

of 2D CNN models when using the dataset without continuum removal is probably 

because the 2D CNNs can extract important information from raw spectra, as albedo, 

which is lost when continuum removal is applied.  

To better visualize the results, the predictions of Cu % obtained by the best 

performing model were compared to the measured values along the drill-cores for 
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training, validation, and test samples. Fig. 11 shows the measured and predicted Cu % 

of the training and validation samples along the interval 450–750 m in all drill-cores 

used for training. The values of predicted Cu % were remarkably close to the measured 

values. The less accurate predictions were those obtained for samples with high 

measured Cu %, especially for the validation samples (not used for training), and 

commonly are related to the underestimation of Cu. However, despite this, the model 

was very precise in distinguishing qualitatively and quantitatively the high-grade in the 

low-grade zones represented in the training drill-cores. The measured and predicted 

values of Cu % of the test samples are shown in Fig. 12. The predictions obtained for 

the test samples simulate the behavior of the model in a production environment, 

where hyperspectral data were acquired for a drill-core that had no geochemical 

analysis and the model was used to predict the Cu % by means of hyperspectral data. 

The predictions for the test samples were far from the measured values compared to 

those obtained for the training and validation samples, which is expected as the test 

samples were not used for training the model, and the training dataset do not have any 

samples from the test drill-core. As for the training/validation samples, the less 

accurate predictions were those obtained for samples with high measured Cu %, and 

commonly were related to the underestimation of Cu %.  Predictions made in the high-

grade zones, between the intervals 490–510 m and 650–700 m (Fig. 12), were quite 

distant from the measured values. In the 650–700 m interval, for example, the 

measured values were mostly in the 2–4% range, but the predictions were close to 1%, 

underestimating the Cu % by 1–3%. Despite this, the model prediction can be used to 

qualitatively distinguish between high-grade and low-grade zones, because the 

predicted values for the high-grade zones (close to 1%) were higher compared to those 

predicted for the low-grade zones, which are close to 0%. 



93 
 

 

Fig. 11 Measured and predicted Cu % of training and validation samples for the interval between 450–

750m of all drill-cores used for training. Predictions are obtained from the best performing model (2D 

CNN trained with raw VNIR–SWIR+ TIR spectrogram data). 
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Figure 12 Measured and predicted Cu % of the drill-core reserved for test. Predictions were obtained by 

the best performing model (2D CNN trained with raw VNIR–SWIR+ TIR spectrogram data). 

As can be seen from the results, the model shows a clear bias towards the 

lower Cu values, tending to underestimate the higher Cu values. This behavior 

suggests that, although the SMOGN technique improved the performance of the 

model, balancing the data by creating synthetic samples was not effective in reducing 

bias towards the minority class. Recent work (Yang et al., 2021) shows that this 

approach has some intrinsic drawbacks, as it does not take the distance between 

targets into account, it makes a simplified division of the data into rare and frequent, 

and the synthetic samples generated from high dimensional data are generally not 

meaningful to the model. Therefore, other solutions that can deal with imbalanced 

regression problems need to be tested in future work, such as the one proposed by 

Yang et al. (2021). 

The model can be improved further in a production environment by 

collecting a few samples of the drill-core of interest, send them for geochemical 

analysis and use these data to update the model weights. To simulate this procedure, 

we randomly selected 10% of the test samples (148 samples) and used them to update 

the weights of the best performing model (2D CNN trained with raw VNIR–SWIR+TIR 

dataset). This experiment was repeated 100 times (each time with a different 
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randomly picked sample set) and the RMSE obtained by the updated model on the test 

samples was recorded for each iteration. The mean RMSE on the test data of the 

updated models was of 0.394, with standard deviation of 0.04. The predictions for the 

test samples after the update of the model weights obtained in one of these 

experiments are shown in Fig. 13, as well as the measured values.  The model had 

significantly enhanced the performance in the test samples after this procedure, 

especially in the high-grade zones, as in the 650–700 m interval. Therefore, we 

recommend this procedure when applying the model in a production framework, which 

not only eliminates the needs for collecting geochemical analysis from the drill-cores 

but also considerably reduces the number of samples to be analyzed, thus reducing 

costs.  

 

Fig. 13 Measured and predicted Cu % of the drill-core reserved for test obtained by the best performing 

model after updating the weights with test samples. The samples used to update the model weights are 

highlighted in pink circles. 

Given the high spatial resolution (0.8 mm) of hyperspectral data, the trained 

model can be used to predict Cu % at a higher spatial resolution than the one used in 

geochemical sampling. To qualitatively evaluate the model performance in predicting 

the Cu % at a more detailed spatial resolution, a dataset was built by computing the 
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average spectrum every 20 cm of test drill-core. Then, the best performing model with 

weights updated (explained above) was used to predict the Cu % of this dataset (Fig. 

14). The predicted values were, in general, nearby the measured values, with the high-

grade zones being clearly distinguished from the low-grade zones. As for the other 

datasets, the model tends to underestimate the Cu % in the high-grade zones, although 

that the predicted values in these zones were sufficiently higher enough to identify 

these zones.  

 

Fig. 14 Predicted Cu % at 20 cm spatial resolution of the drill-core reserved for testing, plotted with 

measured Cu %. Predictions were obtained by the best performing model (2D CNN trained with raw 

VNIR-SWIR+ TIR spectrogram data) after updating the weights with test samples. 

6.4.1 Shapley Additive Explanations (SHAP) 

The Shapley Additive Explanations (SHAP) approach to explain model 

predictions introduced by Lundberg and Lee, (2017) was carried on the best 

performing model (2D CNN trained with raw VNIR–SWIR+TIR dataset). The SHAP is 

based on the coalitional game theory. It assumes that each input feature of a model is 
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a member of a coalition ('player’) in a game where the model prediction is the coalition 

output or payout. The Shapley value method (Shapley, 1953) was used to fairly allocate 

the payout (model prediction) among the members of the coalition (features). The 

contributions of the input features to the model output for each sample are indicated 

by the Shapley values, also known as SHAP values, returned by the SHAP algorithm. A 

SHAP value is proportional to the contribution of a feature to the change in the 

expected value of a model’s output (the mean value of a model output over training 

samples); a positive SHAP value corresponds to an increase in model output and a 

negative value to a decrease in model output.  

To compute SHAP values in this study, we used the Deep SHAP explainer 

to compute the SHAP values, which is a model explainer function made for deep neural 

networks provided in the SHAP python library (version 0.40.0; Lundberg and Lee, 

2017). To identify the features that drive the predictions of the CNN model, the SHAP 

values were computed for each feature of all test samples, using as background 1000 

samples randomly selected from the training set. After that, we also calculated the 

maximum absolute SHAP value (MAXSHAP) for each column of each sample using 

the following equation: 

𝑀𝐴𝑋𝑆𝐻𝐴𝑃𝑗 =  {
max

1≤𝑖≤𝑚
𝑥𝑖𝑗  max

1≤𝑖≤𝑚
|𝑥𝑖𝑗| ≥ min

1≤𝑖≤𝑚
|𝑥𝑖𝑗|

min
1≤𝑖≤𝑚

𝑥𝑖𝑗  max
1≤𝑖≤𝑚

|𝑥𝑖𝑗| < min
1≤𝑖≤𝑚

|𝑥𝑖𝑗|
 

where 𝑀𝐴𝑋𝑆𝐻𝐴𝑃𝑗 is the maximum SHAP value for the column 𝑗 of the input sample, 

𝑥𝑖𝑗 is the SHAP value for the feature at row 𝑖 and column 𝑗, and 𝑚 is the total number 

of rows (11 in this study). As the input data of the CNN model were spectrograms, the 

columns of the input data represent a wavelength range. Therefore, the MAXSHAP 

values can be used as a proxy for the importance of these wavelength ranges (or 

spectral bands) to the model output (i.e., Cu %). 

Figure 15a shows the mean of the absolute MAXSHAP values for all the test 

samples obtained for the best performing model. The importance of each spectral 

band used by the model for the prediction of Cu % is proportional to the height of the 

bars. The four spectral bands most critical for increasing the predicted Cu % were 

14250 (14125–14375), 620 (600–640), 12500 (12375–12625), and 11500 (11375–

11625), and the four spectral bands most critical for reducing the predicted Cu % were 

12750 (12625–12875), 900 (880–920), 9500 (9475–9625), 860 (840–880). These 
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spectral bands must be related to absorption features of minerals that differentiate 

the high grade from lower grade zones, i.e., the presence and/or shape and/or 

intensities of these features influences the Cu content. It is worth mentioning that 

these wavelengths correspond to the center of the most sensitive pixels of the 

spectrogram, but each pixel comprises a range of wavelengths, and the pixel widths 

for the VNIR–SWIR and TIR spectrograms are different, being 40 and 250 nm, 

respectively. 

To better understand the relationship between the MAXSHAP values and 

the spectrogram values (feature values), we calculated the sum of each column of the 

spectrogram and used these values as the feature values related to the MAXSHAP 

values obtained for a sample. Figure 15b shows the MAXSHAP and the feature values 

obtained per test sample. The bars indicate the MAXSHAP values obtained for all test 

samples at a certain wavelength (column) of the spectrograms and are colored 

according to the variation of the feature values in relation to the MAXSHAP values. 

Bars that have higher features values (spectrogram values) associated with higher 

MAXSHAP values suggest that the presence of spectra features at these wavelengths 

are associated with higher Cu % compared to the mean Cu % of the background 

samples (0.76 %). In contrast, bars that have lower feature values associated with 

higher MAXSHAP values, suggests that the absence of spectra features at these 

wavelengths are associated with high Cu % higher than the mean Cu % of the 

background samples.    
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Fig. 15 SHAP analysis of the best performing model. (a) Mean MAXSHAP value per wavelength. Red 

bars indicate positive values and blue negative. (b) MAXSHAP values for all test samples at each 

wavelength. Bars are colored according to the feature values of each sample, where blueish colors are 

associated with low values and reddish colors with high values. The mean MAXSHAP value per 

wavelength is shown as a black horizontal solid line. (c) Mean SHAP value per input feature 

(spectrogram pixel). The pixels are colored according to their values, which if next to zero have lighter 

colors, with 0 corresponding to the white color, blueish colors are assigned to negative values and 

reddish to positive values. (d) Mean reflectance spectra obtained for samples with similar Cu % (i.e., 

difference of Cu % less than 0.1), covering the entire range of Cu %, colored by the measured Cu % (e) 

The same reflectance spectra with continuum removal. The position of the eight most significant 

wavelengths to the model output are shown in (a) and are highlighted as dashed lines in (d) and (e). 
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Figure 15c shows the mean SHAP value per spectrogram pixel (input 

feature) of the test samples. Pixels with higher absolute SHAP values (blueish/reddish 

pixels) has a greater impact on the model output. Therefore, spectra features located 

in the wavelength and frequency range of these pixels are the main drivers of the 

predictions made by the model. 

The spectra of all the (training, validation, and test set) samples used in this 

work were grouped according to their Cu %, and the mean spectra of each group was 

calculated. The minimum and maximum Cu % of each group 𝑖 were defined as 

min (𝐶𝑢%)𝑖 = (𝑖 − 1)0.1 and max(Cu %)𝑖 = 𝑖0.1, respectively, for 𝑖 varying from 1 to 85, 

Figure 15d shows these spectra colored by the mean Cu % of the group. Figure 15e 

shows the same spectra with the removal of continuum.  

Considering the hyperspectral dataset used in this work, the 900, 860, and 

620 nm wavelengths correspond to the absorption features of hematite/goethite.  The 

first two wavelengths coincide with the main absorption feature of hematite/goethite 

between 850 and 1000 nm (Curtiss, 1985; Morris et al., 1985). Both of them had  

negative mean MAXSHAP values (Fig. 15a) and the feature values were inversely 

proportional to the MAXSHAP values (Fig. 15b). As can be seen in Figure 15c, the 

spectrogram pixels with higher absolute mean SHAP value at these wavelengths (blue 

pixels) were in the last two rows of the spectrogram, corresponding to spectral 

features with frequency lower than 0.025 Hz (> 40 nm wide). Therefore, the presence 

of wider absorption features at these wavelengths has a high impact on reducing the 

predicted Cu %.  As can be seen in Figure 15e, the spectra of samples with higher Cu 

% tend to have the position of the 900 nm absorption feature at shorter wavelengths 

(~880nm), resembling hematite spectra. In contrast, spectra associated with lower Cu 

% have this feature positioned at longer wavelengths (~900nm), as in goethite spectra. 

Beyond that, the spectra associated with low Cu % present a wide absorption feature 

between 800 and 1700 nm, which is commonly associated with the presence of Fe2+ 

and magnetite (Hunt and Salisbury, 1970). Both the position of the 900 nm absorption 

feature and the presence of the wide absorption feature between 800 and 1700 nm, 

can be associated with changes in the spectrogram pixels indicated by the SHAP 

values (pixels with frequency lower than 0.025 Hz between 800 and 920 nm). 

Therefore, this indicates that rocks with high abundances of goethite and magnetite 



101 
 

are associated with lower Cu % and the Cu mineralization is related to the 

predominance of hematite as the iron (hydro-)oxide phase. As reported in previous 

studies, hematite is strongly associated with ore zones in the ODD (see Section 2.1), 

its abundance increases toward the deposit center as magnetite decreases (K Ehrig et 

al., 2012; Mauger et al., 2016; Reynolds, 2001).  

The 620 nm wavelength had a positive mean MAXSHAP value (Fig. 15a) and 

most of the feature values were proportional to the MAXSHAP values (Fig. 15b). 

Hematite also had an absorption feature near 620 nm (feature between 600 and 740 

nm, centered at ~660 nm), which can be used to distinguish pure hematite spectra 

from spectra with mixtures of hematite and other minerals that have absorption 

features at the VNIR region, as goethite, limonite and siderite (Cudahy and 

Ramanaidou, 1997; Curtiss, 1985; Morris et al., 1985). This absorption feature is more 

prominent in pure hematite spectra, and thus it is indirectly related to hematite 

abundance and Cu content. 

In TIR the 9500, 12500 and 12750 nm wavelengths must be associated with 

quartz, which has diagnostic spectral features at these regions (Spitzer and Kleinman, 

1961). A broad absorption feature between 9500 and 12250 nm is typical of quartz 

spectra. The 9500 nm wavelength with a negative mean MAXSHAP value (Fig. 15a), 

and the feature values were inversely proportional to the MAXSHAP values (Fig. 15b). 

Therefore, the presence of the quartz absorption feature between 9500 and 12250 nm 

can be related with changes in the spectrogram pixels at 9500 nm, where samples with 

higher quartz abundance have higher pixel values at this wavelength and lower Cu %. 

Near 12500 and 12750 nm, quartz has two characteristic peaks. The high impact of 

these two wavelengths to the model output must also be related to the abundance of 

quartz in the samples. As can be seen in Figures 15d and 15e, samples with low Cu % 

have deeper absorption features between 9500 and 12250 nm, with the onset (near 

9500 nm) better defined. Also, the peaks near 12500 and 12750 nm are more 

prominent in samples with low Cu %. These observations are consistent with the 

mineral assemblage of the Cu mineralization at ODD, which is composed 

predominantly of hematite (> 95%; Reynolds, 2001), thus having a low abundance of 

quartz. It is important to note that, although the Cu mineralization at ODD is associated 

with a hematite-quartz breccia, quartz is more abundant in low Cu rocks. 
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Carbonates have diagnostic spectral features near 11500 and 14250 nm. Siderite, 

which is associated with the Cu mineralization at ODD (K Ehrig et al., 2012; Reynolds, 

2001), has a characteristic peak near 11500 nm and a less prominent trough-peak 

feature near 14250 nm (Green and Schodlok, 2016; Lane and Christensen, 1997). Both 

these wavelengths had a positive mean MAXSHAP value (Fig. 15a), and the feature 

values are proportional to the MAXSHAP values (Fig. 15b).  As can be seen in Figure 

15e, the spectra associated with higher Cu % had a peak near 11500 nm and the trough 

near 14250 nm was more symmetric than in the low Cu % spectra. Therefore, the 

spectral features of siderite must be related to changes in the spectrogram pixels at 

these wavelengths, where samples with siderite features had high pixel values and 

high Cu %. Although siderite is also associated with rocks with low Cu content as 

reported in previous works (K Ehrig et al., 2012; Reynolds, 2001), the minor amount of 

quartz in high Cu samples and, thus, the weaker quartz spectra features contribute to 

the enhancement of the siderite spectra features.  

6.5 Conclusions 

This study examined the use of DL algorithms for the estimation of Cu 

content based on drill-cores hyperspectral data. An open-source dataset of the ODD 

obtained from the AuScope database (http://portal.auscope.org/) was used for 

training two CNN models. The dataset was composed of Cu concentrations and 

hyperspectral data in VNIR–SWIR–TIR collected by the HyLogger system. Some data 

preprocessing strategies were tested, such as continuum removal and spectrogram 

transformation. In addition, we investigated which spectral range (VNIR–SWIR, TIR, or 

VNIR-SWIR-TIR) is best suited for addressing this problem.  Results showed that the 

best performing models were those trained with the VNIR–SWIR–TIR spectrograms, 

generated from the reflectance spectra without continuum removal. The proposed 

approach can estimate Cu % in drill-cores scanned by the HyLogger system and it 

allows the upscaling of the Cu % information obtained by geochemical assays to the 

spatial resolution of the hyperspectral data (centimetric scale). 

Results show that the proposed approach can be used effectively to 

estimate Cu concentrations along drill-cores at a centimetric spatial resolution.  

Commonly, the methods used in the literature to correlate geochemical and 

http://portal.auscope.org/
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hyperspectral data need prior extraction of spectral features, which is usually a time-

consuming task performed only by specialists (T. J. Cudahy et al., 2009; Dalm et al., 

2017; Ducart et al., 2016; Haest and Cudahy, 2012; Prado et al., 2016; J. T. Qiu et al., 

2017; Silversides and Murphy, 2017). In contrast, the only data pre-treatment needed 

for the application of the proposed method is to transform the reflectance spectra into 

spectrogram representation, which is done automatically by the algorithm. Moreover, 

the experimental results show that the best performing model provides an accurate 

tool to distinguish between low grade and high grade ore zones, which can be used to 

assist and support decisions during mining and mineral exploration. By mapping the 

ore grade in detail, the method (a) supports the selection of zones of interest where 

more detailed analyses are appropriate, (b) reduces the number of samples needed to 

characterize and identify the ore zones, and (c) assists in the estimation of the volume 

with commercially viable ore. In addition, the developed model can be used in 

autonomous sensor-based sorting systems to discriminate ore and waste. 

Nevertheless, these findings need further verification by testing the approach using 

other DL methods, and in other regions with different datasets.  

Neural networks are changing many industries, increasing their 

performance, and reducing operational costs, making their activities more sustainable. 

This paper shows how neural networks has the potential to change the way we model 

drill-core hyperspectral data, conduct drill-core geochemistry surveys, and distinguish 

ore and waste during mining operation. 
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7 CLUSTERING OF HYPERSPECTRAL DRILL CORE 

MEASUREMENTS USING DEEP AUTOENCODERS AND SELF-

ORGANIZING MAPS 

7.1 Introduction 

During exploration and mining of mineral resources, the identification of 

lithological and alteration boundaries is critical to managing operations. This 

information is necessary for the understanding of the mineral system and can be used 

from planning to the control of various process. For example, it can be used to 

estimate the continuity of a mineralized zone during exploration, or to control mill feed 

and speed during mining. Acquiring this information is usually done visually by 

geologists and mineralogists, supported by laboratory tests and sensor 

measurements.  

Hyperspectral drill core sensing systems are noninvasive and 

nondestructive tools capable to characterize in detail (centimetric to millimetric spatial 

resolution) the mineral assemblages along drill-cores, assisting the identification of 

lithological and alteration boundaries. The use of these sensors to support the 

description of drill-cores is becoming more frequent due to their cost-effectiveness 

(Calvin and Pace, 2016; Kruse, 1996; Kruse et al., 2012; Littlefield et al., 2012; Tappert 

et al., 2013; Taylor, 2000). However, the high spatial and spectral resolution of these 

systems led to datasets comprised of millions of reflectance spectra, each one with 

hundreds of features (spectral bands). Due to the large volume and complexity of 

these datasets, the development of workflows to automate the extraction of the 

desired information from the reflectance spectra, such as the lithological and 

alteration boundaries, is of extreme importance.  

The methods used for mineral classification of drill holes by means of 

hyperspectral data can vary from algorithms that utilize libraries of spectral signatures, 

to those that make use of specific absorption features for a given mineral target. The 

formers usually are based on supervised classification algorithms which measure 

similarity between acquired spectra and reference spectra. These algorithms were 

improved by researchers from traditional algorithms such Euclidean distance (Gower, 
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1985), spectral angle mapper (Kruse et al., 1993), and spectral information divergence 

(Chang, 1999), to algorithms based on machine learning, such as support vector 

machines (Melgani and Bruzzone, 2004), random forest (Acosta et al., 2020), artificial 

neural networks (Adep et al., 2017; Paya et al., 1997), and convolutional neural 

networks (Liu et al., 2021).  The limitation of these algorithms is that the results are 

highly dependent on the quality of the spectra library used. That is, the spectral libraries 

must reflect the diversity of minerals on the analysed samples, as well as the variability 

of mineral mixtures on them, to make the model perform well (Davis et al., 1978). The 

collection of such libraries is difficult, expensive, and time-consuming (Li et al., 2009). 

Methods that make use of specific absorption features to identify a given mineral are 

based on the acquisition of spectra features parameters, which has as downside the 

need for constant interaction with specialists to interpret the spectra and fine-tune the 

acquisition.  

Unsupervised classification algorithms, known as clustering algorithms, 

such as k-means clustering (Hartigan and Wong, 1979; Steinhaus and others, 1956) 

and agglomerative clustering (Dubes and Jain, 1976; Jain et al., 1999), also has been 

used for mineral classification of drill-cores (Guo et al., 2013; Ren et al., 2019; Rodger 

et al., 2021). These methods group the data such that similar spectra are within one 

cluster, and dissimilar ones are assigned to different clusters. The main advantage of 

these methods over supervised methods is that they do not require labeled data for 

training, such as spectral libraries. However, these models are sensitive to high-

dimensional data, and in general fail to find meaningful clusters in such datasets 

(Assent, 2012; Beyer et al., 1999). Beyond that, the computational cost of these 

algorithms increases fast with the increase of the dataset. Hierarchical clustering 

algorithms for example, such as agglomerative clustering, in general require memory 

space of the order of 𝑂(𝑁2), in which 𝑁 is the number of records in the dataset (Xu and 

Wunsch, 2005). A common approach to deal with that is to reduce the dimensionality 

of the dataset before clustering. Algorithms like the Principal Component Analysis 

(PCA) (Pearson, 1901), diffusion maps (du Plessis et al., 2009) or Minimum Noise 

Fraction (MNF) (Green et al., 1988) have been traditionally applied to reduce data 

dimensionality.  
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Recently, works in computer sciences have shown that deep neural 

networks such as Deep Autoencoders (DAEs) (Kingma and Welling, 2013; Lecun et al., 

2015) and variational autoencoders, have been used in combination Self-Organizing 

Map (SOM) (Kohonen, 2012) to substantially increase the performance of clustering 

methods (Forest et al., 2019; Manduchi et al., 2019; Tao et al., 2018). Both, 

autoencoders and SOM can be considered dimensionality reduction techniques that 

are based on neural networks, which has as advantage the ability of neural networks 

to identify complex patterns on high dimensionality data. Although there are some 

studies in the literature that uses DAE and SOM in combination with clustering 

algorithms for hyperspectral data classification, most of them are for remote sensing 

applications. Goncalves et al., (2008), proposed an unsupervised method for 

classifying remotely sensed images using SOM and agglomerative clustering. Some 

authors proposed the use of DAE for clustering hyperspectral images (Gao et al., 2021; 

Zhang et al., 2022). However, we are not aware of any work that has evaluated the use 

of both DAE and SOM for clustering drill hole hyperspectral data. 

 In this study we propose a novel workflow for clustering high-dimensional 

drill hole hyperspectral data, which uses both DAE and SOM for dimensionality 

reduction of the dataset before clustering. Our model uses the DAE network to reduce 

the dimensionality of the hyperspectral dataset in the feature space, encoding the input 

spectra to a lower number of features. Then a Maximum Data Variance Power 

Transform (MDVPT) is applied to the encoded features to enhance their variance. The 

dimensionality of the transformed encoded features is then reduced in the samples 

space using the SOM algorithm. The SOM results are finally clustered using the 

agglomerative clustering algorithm. In addition, a voting strategy is used to aggregate 

the clusters along the drill holes, smoothing the results. Hyperspectral data collected 

from drill holes of the Prominent Hill IOCG deposit, South Australia, were used to 

evaluate the proposed workflow. The substantial reduction in dimensionality, and 

therefore in the size of the dataset, provided by the proposed workflow allows the 

clustering of large volume hyperspectral datasets (with high spatial and spectral 

resolution) to be performed effectively in permissive times. The obtained clusters map 

regions in the drill holes with same mineralogical composition, and thus can be used 

to identify lithological and alteration boundaries. Furthermore, the distance between 
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the clusters centers and labeled spectra from the JPL spectra library, were used to 

predict the predominant minerals in each cluster. 

7.2 Study Area 

The dataset used in this study were collected from drill cores of the 

Prominent Hill iron oxide copper-gold (IOCG) deposit in central South Australia. The 

publicly available information provided by the Australian government about these drill 

cores contains hyperspectral and geochemical data, accompanying downhole 

lithology log. The existence of these three types of information in the drill cores provide 

an ideal case study as the clustering results can be compared with lithology log and 

ore grade (geochemical data), providing a way to measure the performance of the 

clustering workflow, and highlight lithologies and alteration zones that were not 

discriminated during visual drill core logging. 

7.2.1 Geology and Cu-Au mineralization 

The Prominent Hill deposit is one of the numerous IOCG deposits (e.g. 

Olympic Dam, Carrapateena) and prospects (e.g. Oak Dam East, Emmie Bluff) hosted 

by the Olympic IOCG province, located in the eastern and northern Archean to 

Mesoproterozoic Gawler Craton of South Australia (Fig. 1). The deposit is hosted by 

metasedimentary rocks of the Wallaroo Group, deposited between ~1760 and ~1730 

Ma in the Mountain Woods domain, filling a rifting-related extensional system 

(Chalmers, 2007; Conor, 1995; Cowley et al., 2003; Freeman and Tomkinson, 2010). As 

other deposits in the province, the Cu-Au mineralization and hematite-rich alteration is 

temporally and spatially associated with a major tectonothermal and magmatic event 

between 1.60-1.58 Ga which formed the bimodal Gawler Silicic Large Igneous Province 

(SLIP), composed of felsic and mafic volcanic rocks of the Gawler Range Volcanics 

and granitoid intrusions of the Hitalba Suite (Allen et al., 2008; Belperio et al., 2007; 

Schlegel and Heinrich, 2015). Mesozoic to paleozoic sedimentary rocks overlies the 

mineralized Paleo- to Mesoproterozoic rocks of the Mountain Woods Domain, 

concealing the basement rocks by basin cover sediments having up to 400 m 

thickness (Belperio et al., 2007; Drexel and Preiss, 1995). 
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Fig. 1 Interpreted subsurface geology of the southern Mount Woods domain, modified from (Schlegel and Heinrich, 2015) 
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Fig 1 Interpreted subsurface geology of the southern Mount Woods domain, 

modified from (Schlegel and Heinrich, 2015). Basement rocks at the Mountain Woods 

Domain include mafic, intermediate and felsic volcanics and intrusives, and 

metasedimentary rocks, with metamorphism ranging from greenschist to granulite 

facies (Belperio et al., 2007; Belperio and Freeman, 2004; Forbes et al., 2012, 2011; 

Skirrow et al., 2002). Argillaceous, calcareous and siliciclastic metasediments, and 

banded iron formations from the Skylark metasedimentary rocks are the dominant 

rocks in the northern and central parts of the Mount Woods domain (Betts et al., 2003; 

Chalmers, 2007; Freeman and Tomkinson, 2010). These metasedimentary rocks are 

metamorphosed and intruded by the synorogenic Engenina Adamelite at 1692 Ma, 

during the Kimban oregeny (1730-1690 Ma) (Betts et al., 2003; Daly et al., 1998; 

Fanning, 1997; Freeman and Tomkinson, 2010). Gabbroic rocks of the White Hill mafic 

igneous complex (~1585 Ma), contemporaneous to the Hiltaba Suite, also intrude 

these metasedimentary rocks to the north of the Mountain Woods Domain (Chalmers, 

2007; Freeman and Tomkinson, 2010). At north and northeast of Prominent Hill, 

metasedimentary rocks from the Wallaroo Group (Paleoproterozoic metasedimentary 

rocks in Fig. 1), metamorphosed to amphibolite facies, are separated from 

unmetamorphosed sedimentary rocks (Prominent Hill sedimentary rocks in Fig. 1) of 

potentially 1590 to 1580 Ma depositional age by a reverse fault (hanging wall fault 

zone) (Belperio et al., 2007; Freeman and Tomkinson, 2010). Basaltic to andesitic 

volcanic rocks of the Gawler Range Volcanics occur south of Prominent Hill (Carter et 

al., 2003; Harris et al., 2013).  

The hanging wall fault zone is represented by a E-W-trending, variable 

steeply N-dipping chlorite breccia (Schlegel and Heinrich, 2015). North of the fault 

zone, in the hanging wall, the metasedimentary rocks are intruded by undeformed 

granitoids (~1585 Ma) (Belperio et al., 2007). In the footwall, at south of the fault zone, 

the sedimentary rocks are structurally overlaying mafic to intermediate composition 

lower Gawler Range Volcanics (Belperio et al., 2007). The Cu and Au mineralization at 

Prominent Hill are hosted by these sedimentary and volcanic rocks in the footwall and 

are characterized by the overprinting of earlier hydrothermal hematite replacement 

zones. The sedimentary host rocks consist of interbedded and brecciated, 

argillaceous, calcareous, and siliciclastic sediments. Breccias are strata bound and 
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exhibit a variable brecciation intensity, which resulted in the formation of both clast- 

and matrix-supported breccia sheets. The hematite breccias, hosting the Cu 

mineralization, are predominately altered calcareous sedimentary rocks, formed by the 

hematite replacement of calcareous and siliciclastic breccia and rock components. 

Beyond hematite, the hydrothermal alteration includes carbonates (i.e., siderite, 

ankerite, and dolomite), sericite (likely phengite), chlorite, fluorite, barite, quartz, 

fluorapatite, REE minerals (including monazite), uraninite, coffinite, and Cu-(Fe) 

sulfides (Schlegel and Heinrich, 2015).  

The Prominent Hill hematite breccia body is represented by two types of 

hematite breccia. The hematite-quartz breccia result of hematite and quartz 

replacement, and the hematite-aluminosilicate breccia, result of hematite, chlorite, and 

sericite replacement (Schlegel and Heinrich, 2015). Most of the Au mineralization is 

within the margins of the hematite-quartz alteration zone, and within the transition to 

the surrounding hematite- aluminosilicate breccia (Belperio and Freeman, 2004; 

Schlegel and Heinrich, 2015). The hematite-quartz-altered rocks and breccias display 

only week Cu mineralization. The hematite-chlorite-sericite alteration is associated 

with Cu mineralization in the hematite-aluminosilicate breccia matrix. Cu-(Fe) sulfide 

minerals including chalcocite, digenite, bornite, idaite, and chalcopyrite are abundant 

in the breccia matrix. Locally, chalcopyrite-pyrite mineralization is spatially associated 

with intense hematite-fluorite-barite alteration. Typically, the high-grade Cu 

mineralization is confined to areas of the breccia matrix that contain fine- to coarse-

grained crystalline hematite and visible sericite (Schlegel and Heinrich, 2015). 

7.3 Methods 

7.3.1 Data 

The datasets used in this study include point reflectance spectra, 

geochemical data, and lithology logs, collected from 4 drill cores (with average length 

of ~500 m) from the Prominent Hill deposit and surrounding areas. The spectral data 

were provided by the Australian National Virtual Core Library, and the geochemical 

data and lithology logs by the South Australian Resources Information Gateway 

(SARIG). All this data is publicly available and can be downloaded through AuScope’s 

Discovery Portal (http://portal.auscope.org/). 
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The spectral data were collected by the CSIRO Hylogger-3 system: an 

automated system for drill core logging that combines a X-Y translation table and a 

reflectance spectrometer with sensor at visible, near infrared (VNIR), shortwave 

infrared (SWIR), and thermal (TIR) infrared spectral region. The spectral data were 

collected continuously throughout the drill cores at a sampling interval of 8 mm. The 

field of view of the spectrometers was 10 mm across the track (across the drill hole 

extension) and 18 mm along the track (along the drill hole extension) (Schodlok et al., 

2016). The VNIR–SWIR data were acquired for a wavelength range of 380–2500 nm 

(4 nm bandwidth; 531 bands) and the TIR data for a wavelength range of 6000–14500 

nm (25 nm bandwidth; 341 bands). These reflectance spectra were used as inputs to 

the proposed clustering workflow. 

From the 4 drill cores used in this study, two are located north of the 

Prominent Hill deposit (DD08WTH004 and DD08WTH005), intercepting rocks from the 

White Hill mafic igneous complex, one is located west of the deposit (DD92EN64), 

intercepting metasedimentary rocks of the Wallaroo Group, and the last one is located 

at the Prominent Hill deposit (DDHURN1), intercepting the mineralized breccias (Fig.  

1). 

7.3.2 Hyperspectral Data Clustering Workflow 

The proposed workflow is carried out using a two-level approach (Fig. 2). 

The dataset is first passed through a dimensionality reduction stage where a deep 

autoencoder network and a SOM were trained to reduce the dimensionality of the 

dataset both in the feature and sample space, respectively, and then, the transformed 

spectra were partitioned into clusters using the agglomerative clustering method and 

a segmentation strategy.  Reducing the dimensionality of the dataset before clustering 

is a well-known approach, due to the considerable decrease in computational load, 

making it possible to cluster large data sets in a reasonable time. Beyond that, 

dimensionality reduction methods generally increase the signal to noise ratio of the 

dataset, decreasing the importance of noisy features and/or samples to the clustering 

result (Affeldt et al., 2020; Banijamali and Ghodsi, 2017; Goncalves et al., 2008; Tian et 

al., 2014; Vesanto and Alhoniemi, 2000).   
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Fig. 2 Proposed hyperspectral data clustering workflow. 

In the dimensionality reduction stage, before training the deep autoencoder, 

the continuum was removed from the reflectance spectra. The continuum removal 

decreases the effect of less prominent features in the learning process, which normally 

has lower signal to noise ratios. Furthermore, this step ensures that the autoencoder 

input data is scaled between the interval 0↔1. Data scaling is a common approach 

adopted when training neural networks, as deep autoencoders, to avoid instability on 

training. The deep autoencoder network was then trained with the continuum removed 

spectra. After trained, the network is used to encode the continuum removed 

reflectance spectra from 872 features (VNIR-SWIR and TIR spectral bands) to 16 

features. The contrast of the encoded data is then enhanced by applying the maximum 

data variance power transform function before training the SOM. This transformation 

increases the standard deviation of the encoded features, assisting in training the 

SOM. After this, the data is used to train the SOM, which reduces the data into 2500 

vectors with 16 features each.  

The distance between the vectors returned by the SOM were then used to 

cluster the data using the agglomerative clustering method. A segmentation strategy 

is then employed to aggregate the clusters along the drillholes, smoothing the 

clustering results. 

7.3.3 Dataset Verification and Correction  

The hyperspectral data were provided as normalized reflectance spectra, 

consisting of 220,160 spectra. It is expected that reflectance values fall in the range 

[0,1], therefore, spectra with reflectance values greater than 1 were discarded (797; 

0.13% of total), and spectra with reflectance values lower than 0 were clamped 

(19,929; 9% of total), i.e.  negative values close to zero (<0.01) were replaced with 0 to 

keep the reflectance values in the range [0, 1]. 
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7.3.4 Continuum removal 

Normally, during spectral analysis, the continuum is removed (Clark and 

Roush, 1984) to isolate absorption features of the spectrum from other effects, such 

as level changes and slopes generated by other materials. These effects can cause 

shifts of the local minimum in the spectra and can significantly reduce absorption 

depths. When the continuum is removed, the minima show more stable positions. In 

addition, the effects of illumination geometry, as well as the effects of contaminants 

and grain size are reduced because the continuum removal normalizes the spectra 

(Clark et al., 2003).   

The continuum removal algorithm from the pysptools python’s package 

(Therien, 2018) was used. This algorithm computes the convex hull of the signal and 

removes it by hull quotient. Example results of continuum removal are shown in Figure 

3. 

 

Fig. 3 Examples of continuum removal. Top panels: original spectra as solid lines with respective convex hull continuum as 
dashed lines. Bottom panels: continuum removed spectra. Left panels: VNIR–SWIR data. Right panels: TIR data. 

 

7.3.5 Deep Autoencoder Network 

An autoencoder network is a type of feedforward neural network designed 

to reproduce the input data. The network is trained using the same data as input and 

target, and thus the size of the output layer is always the same as the input layer. 

Autoencoders can be used for dimensionality reduction when the number of neurons 
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in the hidden layers is smaller than the input/output size, resulting in a bottleneck 

structure which can be visualized as containing two parts an encoder and a decoder. 

The encoder, which can be represented by the function 𝑒 = 𝑓(𝑥) where 𝑥 is the input 

and e is the encoded input, is used to reduce the size of the input, decreasing the 

number of neurons in each layer. On the other hand, the decoder produces a 

reconstruction 𝑟 =  𝑔(𝑒) of the encoder output, increasing the number of neurons in 

each layer until it reaches the size of the input data. After trained the network learns to 

encode the input to a lower dimension and decode it back returning an approximate 

copy of the input. This way, the model is forced to prioritize which aspects of the input 

should be copied, leading it to capture the most salient features of the training data 

(Lecun et al., 2015). 

Autoencoders may be trained with all the same techniques as feedforward 

neural networks, typically minibatch gradient descent following gradients computed 

by back-propagation. The network is trained by minimizing the loss function 

𝐿(𝑥, 𝑔(𝑓(𝑥))) 

where 𝐿 is a loss function penalizing 𝑔(𝑓(𝑥)) for being dissimilar from 𝑥, such as the 

mean squared error. 

Autoencoders architectures can have a single hidden layer or multiple hidden 

layers. When these networks have more than one hidden layer, they are called deep 

autoencoders. Using deep networks offers many advantages, as reducing the 

computational cost of representing some functions and decreasing the amount of 

training data needed to learn some function. Moreover, experimental results show that 

deep autoencoders yield much better compression than corresponding shallow or 

linear autoencoders (Hinton and Salakhutdinov, 2006). Deep autoencoders with 

nonlinear encoder functions f and nonlinear decoder functions g can learn more 

powerful nonlinear generalization of the training data than Principal Component 

Analisis (PCA) (Lecun et al., 2015). For this reason, we choose deep autoencoders for 

dimensionality reduction of the hyperspectral data. 

7.3.5.1 Network architecture 

The developed deep autoencoder consists of a stack of fully connected layers 

followed by rectification non-linearity (ReLU) (Krizhevsky et al., 2012) or linear 
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activation functions. Developing deep neural networks is highly interactive, as the 

number of layers and neurons on each layer, as well as the activation functions, 

regularization constant, and learning rate are some of the hyperparameters that need 

to be defined to design the model. In this section, we present the network with the best 

performing combination of hyperparameters. 

The encoder network receives as input a fixed size 1x872 vector, build from the 

continuum removed hyperspectral data, where 872 is the number of spectral bands of 

the concatenated VNIR-SWIR + TIR spectra. The input vector is than passed through a 

stack of four fully connected layers having 256, 128, 64, 32 neurons respectively, all of 

them followed by a ReLU activation function. The output of the encoder is a fully 

connected layer with 16 neurons and a linear activation function. 

The output of the encoder network is provided as input to the decoder network. 

The encoded input in than passed through a stack of four fully connected layers having 

32, 64, 128, and 256 neurons respectively, all of them followed by a ReLU activation 

function. The output of the decoder is a fully connected layer with 872 neurons and a 

linear activation function. 

7.3.5.2 Training the network 

The training was conducted using Adam optimizer (Kingma and Ba, 2014) with 

mini-batch gradient descent and root mean squared error (RMSE) as the loss function. 

The batch size was set to 256. The fully connected layers had weight decay 

regularization (Ng, 2004), with L2 penalty multiplier set to 0.00001. The learning rate 

was initially set to 10-3. This initial value was set to decrease by a factor of 10 when 

the validation RMSE stopped improving (i.e., the validation RMSE did not drop 10-4 

units during 10 epochs). Early stopping was also used, and the training was set to stop 

when the validation RMSE did not drop 10-5 units during 10 epochs. The weights in 

both networks were initialized using the random uniform initialization procedure of 

Glorot and Bengio (2010) also known as Xavier uniform initialization. The model was 

implemented in Python programming language using the PyTorch (Paszke et al., 2019) 

package. 
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7.3.6 Self-organizing Maps 

Self-organizing maps (SOM) (Kohonen, 2012) is a type of artificial neural 

network, which is designed to map the input samples to vectors with the same 

topological structure of the input space, where the number of vectors is less than the 

number of input samples, and each vector has the same number of features as the 

input data. Therefore, SOM can also be considered a dimensionality reduction method, 

but unlike PCA and autoencoders which are used to reduce the dimensionality in 

feature space, SOM reduce the dimensionality in sample space and is thus also 

considered a clustering method. As each vector returned by the SOM can be 

considered a cluster.   

SOM are composed of two layers, an input layer, and an output layer. 

Different from others artificial neural networks, SOM are not trained using 

backpropagation and stochastic gradient descend, this network uses competitive 

learning to update its weights. During training the network modify the weights of the 

output vectors to reposition them to match the distribution and structure of the original 

input data using measures of vector similarity. After training, these vectors are known 

as “best matching units” (BMUs). The BMUs are then projected into a two-dimensional 

grid and the Euclidean distance between the BMUs are computed to produce the 

“unified distance matrix” (U-Matrix). 

Training the network: After encoding the continuum removed spectra, and 

apply the MDVP transformation, the transformed encoded spectra were used as input 

for the SOM model. To train the network we used a Python implementation of SOM 

named quicksom (Mallet et al., 2021). After some experimentation, a map size of 50 x 

50 was chosen for this exploratory study. The weights were randomly initialized. A 

batch size of 256 was used and the network was trained for a total of 30 epochs. 

7.3.7 Agglomerative Clustering 

Clustering methods aim to partition a data set into a set of clusters 𝑄𝑖, 𝑖 =

1, ⋯ , 𝑁. The main two method used are hierarchical and partitive methods. Partitive 

clustering algorithms produce one partition of the data set into 𝑁 clusters, generally 

by optimizing an objective function. The number of clusters is usually predefined, but 

it can also be part of the objective function. Hierarchical clustering algorithms produce 
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a nested series of partitions, which can be generated using two approaches, 

agglomerative or divisive. In the agglomerative method the algorithm is initialized with 

each sample being a distinct cluster, and successively merges clusters together until 

a stopping criterion is satisfied. In the other hand, a divisive approach begins with all 

samples in a single cluster and performs splitting until a stopping criterion is met. A 

commonly used stopping criterion is the number of clusters 𝑁, i.e., when the number 

of clusters N is reached the algorithm stops merging or splitting the clusters (Jain et 

al., 1999).  

Partitive methods are considered better than hierarchical ones, because 

they do not depend on previously found clusters. However, partitive methods assumes 

that the clusters have a predefined shape. One of the most used partitive methods, k-

means (Steinhaus and others, 1956), tries to find spherical clusters. This assumption 

is generally not in line with the intended segmentation of the data. Among the 

hierarchical methods, agglomerative clustering techniques are more understandable 

and more commonly used than divisive methods. Considering this, after some 

experimentation we found that the agglomerative clustering technique was the most 

suitable for clustering the SOM results in this work. 

In agglomerative clustering, a distance function D is used to determine the 

pair of distinct clusters (𝐶𝑖, 𝐶𝑗) that will be merged to form a new cluster 𝐶𝑘 , i.e. 𝐶𝑘 =

𝐶𝑖 ∪ 𝐶𝑗 , so that: 

𝐷(𝐶𝑖, 𝐶𝑗) =  min
1≤𝑚,𝑙≤𝑁

𝑚≠𝑙

𝐷(𝐶𝑚, 𝐶𝑙) 

after this the algorithm calculate the new distance, 𝐷(𝐶𝑘, 𝐶𝑙), between the new cluster 

𝐶𝑘 and the others that are left. These steps are repeated until a stopping criterion is 

satisfied or all the samples are in a single cluster. 

In this work we used the Euclidean distance as distance metric and the average linkage 

(Sokal, 1958) as the distance function 𝐷, which defines the new distance 𝐷(𝐶𝑘, 𝐶𝑙),  as 

the average distance between samples in 𝐶𝑘 and 𝐶𝑙 , that is: 

𝐷(𝐶𝑘, 𝐶𝑙) = ∑
𝐷(𝐶𝑘[𝑖], 𝐶𝑙[𝑗])

|𝐶𝑘||𝐶𝑙|
𝑖𝑗

 

where 𝑥[𝑖] represent a sample 𝑖 in cluster 𝑥, and |𝑥| represents the number of samples 

in cluster 𝑥. 
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 In this work, a fixed number of clusters 𝐾 was defined as the stopping criterion 

for the agglomerative clustering algorithm. The number of clusters 𝐾 was obtained by 

applying a peak detection function to the U-Matrix values computed by the SOM 

multiplied by -1. Peaks are local maxima separated by at least a minimum distance 𝑑, 

in pixels. Therefore, the obtained peaks represent BMUs or U-Matrix pixels, where the 

distance between the samples and the BMU are locally the minimum ones. The 

peak_local_max function provided in the scikit-image library for Python (van der Walt 

et al., 2014) was used as the peak detection function, and the number of clusters 𝐾 

was set to the number of peaks obtained by using a minimum distance 𝑑 of 2 pixels. 

7.3.8 Cluster Segmentation 

Generally, conventional clustering methods, which do not consider the 

spatial correlation of samples, as the one adopted in this work, are affected by salt-

and-pepper noise (Zhai et al., 2021), mainly due to small variations in illumination 

intensity and the roughness of the analyzed surface, and thus cannot accurately model 

the spatial neighborhood of samples along the drillholes. Although the clustering 

results are consistent when viewed in feature space, the high frequency of cluster 

changes along the drillholes makes interpretation difficult and is usually not consistent 

with the expected geological variations. 

The clusters produced by the agglomerative clustering algorithm were 

aggregated according to their location along the drillholes, enhancing the spatial 

homogeneity of the clustering result. For this we segmented each drillhole H at a 

regular interval d (~2 m), creating a unidimensional vector of depths 𝑃𝐻 =

[𝑝1,  𝑝2, ⋯ , 𝑝𝑧], where  𝑝1 is the minimum depth for drillhole 𝐻, 𝑝𝑧 is the maximum depth 

for drillhole 𝐻, and 𝑝𝑖+1 − 𝑝𝑖 = 𝑑. Then, we applied the voting strategy: 

𝑉𝑘[𝑝𝑖] =  𝑆𝑘[𝑝𝑖] 

where 𝑉𝑘[𝑝𝑖] is the voting for cluster 𝑘 at depth 𝑝𝑖 , and 𝑆𝑘[𝑝𝑖] is the number of samples 

assigned to cluster 𝑘 between the depths 𝑝𝑠 and 𝑝𝑒 , defined as: 

𝑝𝑠 = {
𝑝𝑖, 𝑓𝑜𝑟 𝑖 = 1

𝑝𝑖 − 𝑑, 𝑓𝑜𝑟 𝑖 > 1
 

𝑝𝑒 = {
𝑝𝑖 + 𝑑, 𝑓𝑜𝑟 𝑖 < 𝑧

𝑝𝑖, 𝑓𝑜𝑟 𝑖 = 𝑧
 

The wining cluster  𝑘’ is then assigned to each depth 𝑝𝑖 , according to the equation: 
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𝑘’[𝑝𝑖] =  max
1≤𝑘≤𝑁

𝑆𝑘[𝑝𝑖] 

where 𝑁 is the number of clusters. Finally, the wining clusters 𝑘’[𝑝𝑖] are assigned to 

the neighborhood samples of 𝑝𝑖 , defined as the samples between the depths 𝑝𝑚 and 

𝑝𝑙 , according to the equations: 

𝑝𝑚 = {

𝑝𝑖, 𝑓𝑜𝑟 𝑖 = 1

𝑝𝑖 −
𝑑

2
, 𝑓𝑜𝑟 𝑖 > 1

 

𝑝𝑙 = {
𝑝𝑖 +

𝑑

2
, 𝑓𝑜𝑟 𝑖 < 𝑧

𝑝𝑖, 𝑓𝑜𝑟 𝑖 = 𝑧
 

 

7.4 Results and Discussion 

Firstly, the clustering performance of the proposed workflows to the four 

drill cores was compared with the performance of simpler clustering strategies. The 

clustering performance was evaluated by comparing the results with the provided 

down hole lithology. Then, the results obtained by the proposed workflow were 

detailed. Lastly, the mineral assemblages of each cluster were estimated and 

compared with the alteration assemblages described at Prominent Hill deposit. 

7.4.1 Comparison with other clustering strategies 

The proposed workflow is characterized by a twostep dimensionality 

reduction stage, where the dataset passes through stacked DAE and SOM networks. 

The clustering performance of this strategy was compared with the performance of 

simpler strategies, which have a single dimensionality reduction step or directly cluster 

the dataset without reducing the dimensionality, been them: (1) encoding the 

continuum removed spectra with a DAE and then clustering; (2) training a SOM with 

the continuum removed spectra and then clustering; (3) directly clustering the 

continuum removed spectra. In all the experiments agglomerative clustering was used 

as the clustering method. The DAE and SOM networks are all trained with the same 

hyperparameters. The results are shown in Figure 4. 
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Fig. 4 Clustering results plotted with the logged lithology and Cu analysis for all the four drill cores.   

All the clustering strategies, with exception of the second one (SOM 

clustering), were able to identify most of the lithologic boundaries. However, it can be 

observed that our proposed workflow (DAE + SOM clustering) results in smoother 

cluster distribution along the drill cores then the other strategies. The second strategy, 

which uses a SOM for dimensionality reduction before clustering, had by far the worst 

clustering performance. The clustering algorithm for this strategy assigned almost all 

the samples to cluster 8, resulting in a lack of correlation between the cluster 

distribution and the lithologic descriptions. These results indicate that the SOM 

network of this strategy failed to fit the data set adequately. The large number of 

features in the dataset makes training the SOM network difficult, leading to an under-

fitting of the network. For this reason, we do not consider this strategy in the analysis 

bellow. 

According to the logged lithologies, drill holes DD08WTH004 and 

DD08WTH005 are mainly composed of two lithologies, gabbronorite and gabbro, 

intercalated with thin layers of volcanic rocks and ironstones. As can be seen in Figure 

4, clustering strategies other than the proposed workflow assigned six or more cluster 

labels along this drill holes, resulting in a more complex distribution of the labels, 
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making it difficult to relate them with the described lithologies. The proposed workflow 

assigned just four cluster labels along this drill holes (same number of different 

lithologies in the logs), with most of the samples been assigned to one of them (cluster 

8). When compared to the others, this cluster distribution is closer to the lithological 

descriptions provided, facilitating the correlation with the lithologies. Cluster 8 for 

examples, can be easily correlated to the gabbronorite lithology, which is extensively 

described along these drill holes. It is worth mentions that, in all the clustering 

strategies, the predominant cluster labels assigned to the samples in these drill holes 

(dark and light green in Fig. 4) were not assigned to samples in other drill holes. 

According to the lithological descriptions, these clusters represent the gabbro and 

gabbronorites, which were also not described in the other drill holes. This shows that 

all the clustering strategies were able to effectively differentiate these samples from 

the others. 

Drill hole DD92EN64 intercepts calcsilicate rocks, marbles, skarns, and 

schists, according to the logs (Fig. 4). The performance between the different 

clustering strategies for this drill hole was similar. In the logs most of the samples of 

this drill hole were described as calcsilicate rocks. In the same way, all the clustering 

strategies assigned most of the samples of this drill hole to the same cluster (cluster 

16). The lithological boundaries of this drill hole can be identified in most of the 

clustering results. Despite the clustering performance of the proposed workflow is not 

clearly better then the others in this drill hole, when comparing the distribution of 

cluster with the Cu analysis, the clusters obtained by the proposed workflow showed 

a better correlation with the Cu grade. 

Lastly, the logs of drill hole DDHURAN1, which intercepts the mineralization 

at Prominent Hill deposit, are composed mainly of metasediments and 

undifferentiated breccias, with minor intercalations of dolerite, volcanic rocks and 

volcanic breccias (Fig. 4). Most clustering strategies correctly identified the 

lithological boundaries logged in this drill hole. However, in general the number of 

clusters are higher than the number of logged lithologies, resulting in a more complex 

distribution of classes. Despite that, some clusters obtained by the DAE + SOM 

clustering strategy showed a high correlation with the logged lithologies, as cluster 4 

and the sedimentary rocks, cluster 3 and the undifferentiated breccias, and clusters 12 
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and 17 and the dolerite. Between 200 and 300 m approximately, mineralized 

undifferentiated breccias were logged. In this interval, none of the samples were 

assigned to cluster 3 by the proposed method. Cluster 3, is the cluster assigned to 

most of the samples of the mineralized interval bellow, also logged as undifferentiated 

breccia.  Beyond that, the cluster distribution provided by the proposed workflow 

showed a better correlation with the Cu grades in this interval than the logged 

lithologies, where the presence of some clusters was correlated with high Cu grades, 

as clusters 0 and 12. Mineralized undifferentiated breccias were also logged between 

420 and 600 m approximately. In this interval, the cluster distribution provided by the 

proposed workflow also showed a good correlation with the Cu grades. Furthermore, 

it can be noted that some clusters which occur in these mineralized intervals are 

strongly correlated with high Cu grades, as cluster 0 (~300m and ~460 m).   

7.4.2 Clustering results of the proposed workflow 

In this section, the clustering results obtained by the proposed workflow are 

evaluated. The U-matrix computed by the SOM network (Fig. 5a) shows the distance 

of nodes from their neighbors. Larger values (pixels in yellowish colors in Fig. 5a) imply 

larger spectral differences. The given U-matrix shows that the spectra of samples near 

to the nodes of the upper right are significantly separated from the rest. Most of this 

samples were assigned to cluster 8 (Fig. 5b), which has a high correlation with the 

gabbronorite logged in drill holes DD08WTH004 and DD08WTH005. Mafic igneous 

rocks have a distinct mineralogical assembly from sedimentary rocks and felsic 

igneous rocks.  Therefore, it is expected that the spectra of these samples are 

considerably distinct from the others. It is also possible to observe other well-defined 

boundaries in the U-matrix (yellowish pixels Fig. 5a), showing that spectra of samples 

from drill holes DD92EN64 and DDHURAN1 present a relevant distinction. Most of 

these boundaries were preserved after clustering, as can be seen in Figure 5b, 

indicating good clustering performance. 
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Fig. 5 SOM network results. (a) U-matrix. (b) Clusters assigned to each node of the U-matrix. (c) Maximum Cu analysis of 
samples assigned to each node of the U-matrix. 

The maximum Cu analysis of the sample of each node of the U-matrix are 

plotted in Figure 5c. As can be seen, some regions exhibit a grouping of high Cu values, 

indicating that some spectra are strongly correlated with high Cu grades. Furthermore, 

the clusters were able to distinguish between non-mineralized and mineralized 

samples, as well as differentiating the higher-grade samples. Most of the non-

mineralized samples were assigned to clusters 5, 6, 8, 11, 14, and 16, and most of the 

higher-grade samples were assigned to clusters 0, 1, 3, 9, 10, and 12.  

To visualize the clusters distributions across all the samples, the first two 

principal components (PC1 and PC2) of the SOM network input dataset (continuum 

removed spectra encoded with DAE and transformed with MDVPT method) were 

computed using Principal Component Analysis (PCA) and used to visualize the 

multidimensional dataset in 2D (Fig. 6). The clusters have varied shapes and their 

distribution follows the major trends formed by the clouds of samples with similar 

lithologies (Fig. 6a and 6b). When the Cu analyses of the samples are plotted on the 

same chart (Fig. 6c), it is possible to notice that the mineralized samples are grouped 

in three well-defined point clouds. The first is located at the bottom of the chart, with 

an almost horizontal trend, the second is located a little above and to the right of the 

first, with a more accentuated positive trend, and the third is in the upper left corner of 

the chart, with a slight vertical trend. Furthermore, some high-grade samples were 

grouped in the lower left corner of the chart. The recorded lithologies and the predicted 

clusters show a clear correlation with these groups. Samples logged as 

metasediments, volcanics and volcanic breccias are distributed mainly along the first 
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Cu point-cloud. The high-grade samples in the lower left corner were logged as 

undifferentiated breccias, as well as most of the samples along the second Cu point-

cloud. Samples in the third point-cloud were mainly logged as volcanics, volcanic 

breccias, and dolerite. Also, it is important to notice that almost all the samples logged 

as gabbronorite and gabbros are associated with the low Cu value point cloud in the 

upper right of the chart. The clusters obtained by the proposed workflow, in addition 

to preserving these relationships, were able to distinguish the high content samples, 

assigned to cluster 0, from the undifferentiated breccia, generally assigned to cluster 

3. 
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Fig. 6 Plots of the first two principal components of the dataset. (a) Samples colored by the clusters predicted with the 
proposed workflow. (b) Samples colored by the logged lithologies. (c) Samples colored by Cu analysis. (d) Same as (a) but with 
the selected minerals from the ASTER version 2 spectral library plotted together. 

7.4.3 Clusters mineral assemblage 

To better understand the relationship between the clusters and the 

lithologic and alteration boundaries, the minerals associated with the average 

spectrum of each cluster were estimated. For this, we used the spectra from the 

ASTER version 2 spectral library (Baldridge et al., 2009), which provides spectra of 

minerals collected in the same spectral region as the spectra used for the clustering 
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(VNIR-SWIR + TIR). From this library we selected 142 spectra of minerals (Fig. 6d) 

which could be associated with the logged lithologies and the alteration zones 

according to previous works.  The Euclidean distance between these spectra and the 

average spectra of each cluster were then calculated. The minerals with the smallest 

distances for each cluster are shown in Figure 7.

 

Fig. 7 Euclidean distance between spectra of minerals from the ASTER version 2 spectral library (Baldridge et al., 2009) 
and the average spectra of each cluster obtained by the proposed workflow. Only the ten nearest minerals of each cluster 
are shown. 

Hematite, pyrite, and quartz are the minerals closest to the cluster 

associated with the mineralized zones, such as clusters 1, 3, 12, 13 and 15. Cluster 0, 

which is associated with the high-grade samples, is closer to calcite, smectite and 

muscovite spectra.  These results agree with the alteration assemblies recorded in 

previous work at Prominent Hill (see Section 7.2.1), where Cu mineralization is 
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associated with Fe and Cu sulfides, and intense iron oxide alteration, composed 

predominantly of hematite and quartz. Furthermore, the Cu mineralization at 

Prominent Hill is also strongly associated with pervasive replacement of calcareous 

lithologies by hematite, producing skarnlike assemblages.  

Clusters 0, 1, 3 and 15 occur predominantly in the second mineralized 

interval of drill hole DDHURAN1, between 420 and 600 m, approximately (Fig. 4). As all 

samples from this interval were described as undifferentiated breccias, these clusters 

represent alteration boundaries rather than lithologic boundaries. According to the 

results, the main difference between these clusters is the abundance of hematite, 

feldspars, phyllosilicates, and carbonates. The alteration zones rich in carbonates are 

associated with cluster 0. Cluster 1 is associated with alteration zones where hematite, 

quartz and feldspars predominate. Cluster 3 is closer to muscovite than the others, 

being associate with an alteration assembly richer in sericite. Lastly, cluster 15 seem 

to be associated with an assemblage richer in hematite than the others.  

 

7.5 Conclusions 

In this work, an unsupervised method of extracting lithological and 

alteration boundaries from hyperspectral drill core data that exploit the properties of 

DAE and SOM together with hierarchical clustering methods was presented. The key 

point of the proposed method is to significatively reduce the dimensionality of the 

dataset before performing the cluster analysis, without losing important information. 

This approach reduces the complexity of data clustering, allowing it to be applied to 

large datasets in a reasonable time.  

The proposed workflow has advantages that make it a promising alternative 

to automate the identification of lithologic and alteration boundaries of drill cores. 

These include: (1) the method does not require labeled data to be applied; (2) the 

method produces smoother cluster distribution along the drill cores, strongly 

correlated to the logged lithologies; (3) the clusters were able to differentiate 

mineralized and non-mineralized samples, as well as distinguish high-grade zones. 

The cluster distribution obtained by the proposed workflow provide a more 

detailed allocation of lithologies and alteration boundaries than the visual drill core 
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logging and can be used to further refine and spatially locate potential downhole 

changes. Therefore, the workflow is an important tool to support the decision process 

during mining and exploration, where potential regions of change that may not be 

readily apparent in visual inspections can be find or confirmed. For example, 

potentially significant alteration zones in the intervals logged as mineralized breccias 

were identified. In this way, the proposed workflow highlights composition differences 

between visually similar rocks, providing significant information about the distribution 

of lithologies, alteration zones, and even ore grades of the drill cores.  

The clustering results obtained in a semi-automated manner by the 

proposed workflow enables the fast extraction of valuable information from large 

hyperspectral datasets, assisting in the definition of large-scale lithologic boundaries 

and characterization of small-scale variations associated with alteration mineral 

zonation. The latter is a powerful tool that can be used by the mining industry to guide 

operation and find new deposits. This workflow can be applied to other deposit types 

since most of the alteration minerals associated with mineral deposits are normally 

recognizable with hyperspectral sensors. In future works the use of recurrent 

autoencoders based on long short-term memory networks need to be explored for 

extracting spatial-spectral information during clustering, as well as other clustering 

strategies need to be evaluated. 
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8 GENERAL CONCLUSION 

This thesis aimed to solve challenges required to implement machine 

learning techniques in mineral exploration targeting. This works describes the 

development and benefits of using machine learning for mineral prospectivity 

mapping. It has been shown what are the drawbacks of dealing with unbalanced 

training data sets, and how to solve them. This was achieved by demonstrating how 

imbalanced dataset affects model performance, and how the creation of synthetic 

samples can overcome this issue, resulting in more assertive prospectivity models. In 

addition, this work describes the development and benefits of a novel machine 

learning approach to estimate ore grade by means of ultraspectral data. The proposed 

approach can be used in autonomous systems to not only improve mining operations 

but also decrease environmental impacts.  

The current state of the art in the application of machine learning algorithms 

for mineral prospectivity mapping and integration of spectral and geochemical data 

are presented in Chapters 3 and 4.   

Chapter 5 explores the use of machine learning algorithms for mineral 

prospectivity mapping of IOCG deposits in the Carajás mineral province, Brazil. 

Prospectivity maps are important tools for mineral exploration targeting, as it 

contributes to the identification of new mineralized locations. It was demonstrated 

that the creation of synthetic mineralized samples allowed to effectively enhance the 

performance of prospectivity models based on machine learning techniques. 

In the other study, described in Chapter 6, a novel approach based on deep 

neural networks was developed for the prediction of Cu grade by means of spectral 

data in the Olympic Dam IOCG deposit, Australia.  The development of techniques 

capable to estimate ore grade of rocks using non-invasive and non-destructive 

methods are crucial for the implementation of autonomous systems in the mining 

industry. Ore grade estimation using ultraspectral cameras enables automatic ore 

detection and selective mining. Using state of the art deep learning techniques it was 

demostrated that ultraspectral data combined with geochemical data allow the 

development of a regression model which is able to predict the Cu grade along 

drillholes with good precision (+/- ~0.4 %). 
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Chapter 7 shows a novel approach based on deep autoencoders, self-

organizing maps and agglomerative clustering for unsupervised classification of 

hyperspectral data collected from drill-cores. The proposed method significatively 

reduces the dimensionality of the dataset before performing the cluster analysis. This 

approach makes computing clusters faster, allowing it to be applied to large datasets 

in a reasonable time. The technique assists in the identification of lithological and 

alteration boundaries, improving the lithological description of the cores. 

 

The results of this thesis indicate that machine learning techniques 

overperform traditional techniques used for mineral exploration targeting. The 

developed methods can be seamlessly used in the exploration of other deposits as 

well. Furthermore, techniques which can be used to integrate Industry 4.0 technologies 

into the mining industry, such as those proposed in this work, corroborate to a solid 

and sustainable development of mineral exploration.
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APÊNDICE A - GEOLOGICAL COMPLEXITY ALGORITHM 

The algorithm used for calculating geological complexity in this study is 

given below. It was written in Python 3 by Elias Martins Guerra Prado. The algorithm is 

based on the program developed by Stephan Gardoll, published in Hodkiewicz (2003), 

to compute fractal dimension, which is based on the box-counting methodology of 

Hirata (1989). The advantage of this implementation compared to others is that the 

box-counting calculus is done using matrices (rasters) instead of spatial vectors, 

considerably reducing the time to compute the fractal dimension for each pixel. 

The following Python libraries were used: 

• Arcpy 1.4.1 (ArcGIS Pro 2.2.4) 

• Geopandas 0.3.0 

• Numpy 1.15.4 

• Scipy 1.1.0 

A brief description of the input parameters is given below: 

1. Polygon shapefile with work area boundaries. This polygon defines the 

limits of the geological complexity map. 

2. Grid spacing. Distance between the points of the fractal dimension grid. 

The location of each point of the grid defines the center of a fractal box. In this study, 

there is a 5 km spacing between grid points. 

3. Polyline shapefile with geological contacts and/or faults/fractures. 

These linear features are sampled by the box-counting method to measure the fractal 

dimension. In this study, both geological contacts and faults/fractures were used. 

4. Initial box size around each grid point. The initial pixel size used to 

rasterize the input line features. In this study, a 5 km initial box size was used. 

5. Number of box count levels calculated. The number of times the initial 

pixel size will be halved. In this study, a five-level box count was used, resulting in box 

sizes of 5 km, 2.5 km, 1.25 km and 0.625 km 

The program output is a raster produced by the interpolation of the fractal 

dimension for each grid point. The interpolation is done using a two-dimensional 

minimum curvature spline technique (the resulting surface passes precisely through 

the input points).  
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To compute the geological complexity the algorithm uses the following 

procedure: 

1. First, the work area shapefile (input #1) is transformed into a raster with 

a pixel size equal to the grid spacing (input #2). 

2. The work area raster is then converted to a point shapefile, where each 

point is placed in the center of each pixel. This shapefile is used as the grid for 

computing the fractal dimensions. 

3. Then, the input line features (input parameter #3) is transformed into a 

binary raster, where pixels with value 1 indicate the presence of a feature. One raster 

is created for each box count level (input #5). The pixel size of the first raster is equal 

to the initial box size parameter (input #4). The pixel size of the other raster files is 

calculated by halving the initial pixel size N-1 times, where N is the number of box count 

levels (input #5).  

4. The fractal dimension for each point of the grid is then determined by 

computing the sum of the pixels inside a square window, with side equal to two times 

the initial box size (input #4), centered at the grid point.  

5. To determine the fractal dimension at each pixel, the slope of the line on 

a log-log plot of box size (pixel size) and box count result (sum of pixels for each pixel 

size). The value of the fractal dimension is then assigned to the corresponding grid 

point. 

6. Finally, the fractal dimension grid is interpolated using a spline function.  
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# import Python libraries  

import arcpy 

from arcpy import env 

from arcpy.sa import * 

import geopandas as gpd 

import numpy as np 

from scipy import stats 

 

#configure arcpy environment 

env.overwriteOutput = True 

env.extent="Default" 

 

#input parameters 

#1 SHAPE WITH WORK AREA: 

work_area = 'path/to/shape' 

 

#2 GRID SPACING SIZE (M) 

grid_size = 5000 

 

#3 FEATURES TO BE ANALYSED 

input_shape = 'path/to/shape'  

 

#4 Initial Fractal Size 

init_size = 5000 

 

#5 GET NUMBER OF RECURSIONS  

Dimlimit = 5 

 

#6 Output Fractal_dimension Raster 

out_folder = 'path/to/output/folder' 

output_fd_raster = out_folder + 'output_name.tif' 

 

#7 temp files  

out_work_area_raster = out_folder + 'work_area_raster.tif'  # work area raster 

out_work_grid = out_folder + 'FD_grid.shp' # fractal dimension grid 

 

# Function to calculate the slope of the fractal dimension line 

def calc_Fractal_Dimension(x,y): 

slope, intercept, r_value, p_value, std_err = stats.linregress(np.log(x), np.log(y)) 
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fit_line = slope*np.asarray(np.log(x)) + intercept 

if math.isnan(slope): 

slope = 0 

return -1*slope 

 

#Create grid 

work_area_raster = arcpy.PolygonToRaster_conversion( 

work_area, 

  "FID",  

out_work_area_raster,  

"MAXIMUM_AREA",  

"", 

grid_size) 

 

work_grid = arcpy.RasterToPoint_conversion( 

work_area_raster,  

out_work_grid) 

 

# Get work area limits 

x_limits = [] 

y_limits = [] 

 

with arcpy.da.SearchCursor(work_area, ['SHAPE@']) as cursor: 

for row in cursor: 

array1 = row[0].getPart() 

for vertice in range(row[0].pointCount): 

pnt = array1.getObject(0).getObject(vertice) 

x_limits.append(pnt.X) 

y_limits.append(pnt.Y) 

       

x_min = min(x_limits) 

x_max = max(x_limits) 

y_min = min(y_limits) 

y_max = max(y_limits) 

x_size = x_max - x_min 

y_size = y_max - y_min 

 

# Get grid limits 

work_grid_gdf = gpd.read_file(out_work_grid) 
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grid_max_x = work_grid_gdf.geometry.x.max() 

grid_min_x = work_grid_gdf.geometry.x.min() 

grid_max_y = work_grid_gdf.geometry.y.max() 

grid_min_y = work_grid_gdf.geometry.y.min() 

 

box_xsize = init_size 

box_ysize = init_size 

 

#Add temporary field to the input features shape to generate a binary raster 

arcpy.CalculateField_management( 

input_shape, 

"temp", 

1) 

#Create raster for each dimension 

for dimension in range(Dimlimit): 

np_arr = np.zeros((math.ceil(((grid_max_y + init_size)-(grid_min_y - init_size)) / grid_size),  

      math.ceil(((grid_max_x + init_size) - (grid_min_x - init_size)) / grid_size))) 

 

outConstRaster = arcpy.NumPyArrayToRaster( 

np_arr,  

arcpy.Point(grid_min_x - init_size, grid_min_y - init_size),  

grid_size, 

  grid_size,  

0) 

 

env.snapRaster = outConstRaster 

env.extent = outConstRaster 

out_raster = out_folder + 'input_rasterized_{}.tif'.format(dimension + 1) 

 

arcpy.PolylineToRaster_conversion( 

Input_shape, 

"temp", 

out_raster, 

"", 

"", 

init_size*2/math.pow(2, dimension + 1)) 

 

#Calculate fractal dimension 

grid_vals_ = [] 
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for gi, row in enumerate(arcpy.da.SearchCursor(work_grid, ["SHAPE@XY"])): 

x, y = row[0] 

   final_box_coord = [] 

   point_counts = [] 

   

   box_coord = [[[x - box_xsize, y - box_ysize], 

[x + box_xsize, y - box_ysize], 

          [x + box_xsize, y + box_ysize], 

[x - box_xsize, y + box_ysize]]] 

    

   coord_arr = [arcpy.Point(*coords) for coords in box_coord[0]] 

   box_poly = arcpy.Polygon(arcpy.Array(coord_arr)) 

 

   for dimension in range(Dimlimit): 

    out_raster = out_folder + 'input_rasterized_{}.tif'.format(dimension + 1) 

    g_array = arcpy.RasterToNumPyArray( 

out_raster,  

arcpy.Point(*box_coord[0][0]),  

math.pow(2, dimension + 1),  

math.pow(2, dimension + 1),  

0) 

    point_counts.append(g_array.sum()) 

   x_sizes = [box_xsize / math.pow(2, x) for x in range(Dimlimit)] 

   F_dimension = print_Fractal_Dimension_curve(x_sizes, point_counts) 

   grid_vals_.append(F_dimension)   

 

#Assign fractal dimension values to grid shape file 

work_grid_gdf = gpd.read_file(out_work_grid) 

work_grid_gdf['FD'] = grid_vals_ 

work_grid_gdf.to_file(out_work_grid) 

 

#Interpolate fractal dimension grid and save as raster 

arcpy.CheckOutExtension("spatial") # check for spatial analyst extension 

out_fd_cell_size = 125 # output geological complexity raster cell size 

 

 

#Spline function parameters 

sline_type = "REGULARIZED" # 

spline_weights = 0.1 
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n_points = 12 

outSpline = Spline(out_work_grid, "FD", out_fd_cell_size, sline_type, spline_weights, n_points) 

outSpline.save(output_fd_raster) 
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APÊNDICE B – NAMES OF MINERALIZED LOCATIONS AT 

CARAJÁS MINERAL PROVINCE 

Names of mineralized locations used for training the prospectivity model at 

Chapter 5. 
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