PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

ATLAS PLUMETRICO DO BRASIL

Equações Intensidade-Duração-Frequência

Estado: São Paulo

Município: Santana de Parnaíba

Estação Pluviométrica: Santana de Parnaíba

Código ANA: 02346033 Código DAEE: E3-020

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: Santana de Parnaíba/SP

Estação Pluviométrica: Santana de Parnaíba Códigos 02346033 (ANA) e E3-020 (DAEE)

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Porto Alegre

Copyright @ 2013 CPRM - Superintendência Regional de Porto Alegre Rua Banco da Província, 105 - Bairro Santa Teresa Porto Alegre - RS - 90.840-030

Telefone: (51) 3406-7300 Fax: (51) 3233-7772 http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias). Município: Santana de Parnaíba. Estação Pluviométrica: Santana de Parnaíba, Códigos 02346033 (ANA) e E3-020 (DAEE). Karine Pickbrenner e Eber José de Andrade Pinto – Porto Alegre: CPRM, 2013.

12p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II - PICKBRENER, K. e PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DEMINASE ENERGIA

MINISTRO DE ESTADO

Edison Lobão

SECRETÁRIO EXECUTIVO

Márcio Pereira Zimmermann

SECRETÁRIO DEGEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DEPESQUISA DERECURSOSMINERAIS SERVIÇO GEOLÓGICO DO BRASIL(CPRM/SGB)

CONSELHO DEADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Luiz Gonzaga Baião

Jarbas Raimundo de Aldano Matos

Osvaldo Castanheira

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Thales de Queiroz Sampaio

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Eduardo Santa Helena

SUPERINTENDÊNCIA REGIONAL DE PORTO ALEGRE

José Leonardo Silva Andriotti Superintendente

Marcos Alexandre de Freitas Gerente de Hidrologia e Gestão Territorial

João Angelo Toniolo Gerente de Geologia e Recursos Minerais

Ana Claudia Viero
Gerente de Relações Institucionais e Desenvolvimento

Alexandre Goulart Gerente de Administração e Finanças

PROJETO ATLASPLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento deGestão Territorial

Cássio Roberto da Silva

Divisão de HidrologiaAplicada

Achiles Eduardo Guerra Castro Monteiro

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenaçãodo Projeto Cartas Municipais de Suscetibilidade

Sandra Fernandes da Silva

Coordenadores Regionais do Projeto Atlas Pluviométrico

Andressa Macêdo Silva de Azambuja-Sureg/BE José Alexandre Moreira Farias-REFO Karine Pickbrenner-Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder-Sureg/PA

Jean Ricardo da Silvado Nascimento -RETE

Margarida Regueira da Costa-Sureg/RE

Osvalcélio Mercês Furtunato -Sureg/SA

Vanesca Sartorelli Medeiros -Sureg/SP

Sistema de Informações Geográficas e Mapa

Ivete Souza do Nascimento-Sureg/BH

Apoio Técnico

Amanda Elizalde Martins – Sureg/PA

Debora Gurgel – REFO

Douglas Sanches Soller – Sureg/PA

Eliane Cristina Godoy Moreira-Sureg/SP

Jennifer Laís Assano -Sureg/SP

João Paulo Vicente Pereira-Sureg/SP

Juliana Oliveira-Sureg/BE

Fabiana Ferreira Cordeiro-Sureg/SP

Luisa Collischonn – Sureg/PA

Estagiários de Hidrologia

Murilo Raphael Dias Cardoso -Sureg/GO Paulo Guilherme de Oliveira Sousa – RETE

Caroline Centeno – Sureg/PA

Cassio Pereira - Sureg/PA

Cláudio Dálio Albuquerque Júnior-Sureg/MA

Diovana Daugs Borges Fortes -Sureg/PA

Fernanda Ribeiro Gonçalves Sotero de Menezes -Sureg/BH

Fernando Lourenço de Souza Junior - Sureg/RE

Ivo Cleiton Costa Bonfim -REFO

João Paulo Lopes Chaves Miranda-Sureg/BH

José Érico Nascimento Barros -Sureg/RE

Liomar Santos da Hora-Sureg/SA

Lemia Ribeiro-Sureg/SA

Márcia Faermann - Sureg/PA

Mariana Carolina Lima de Oliveira-Sureg/BH

Mayara Luiza de Menezes Oliveira-Sureg/MA

Nayara de Lima Oliveira-Sureg/GO

Pedro da Silva Junqueira-Sureg/PA

Rosangela de Castro - Sureg/SP

Taciana dos Santos Lima-RETE

Thais Danielle Oliveira Gasparin - Sureg/SP

Vanessa Romero-Sureg/GO

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa de Gestão Estratégica da Geologia, da Mineração e da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Santana de Parnaíba onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica de Santana de Parnaíba, códigos 02346033 (ANA) e E3-020 (DAEE), operada pela FCTH/DAEE-SP . Esta estação está localizada junto à sede do município.

1 - INTRODUÇÃO

A equação definida pode ser utilizada no município de Santana de Paranaíba e regiões circunvizinhas.

O município de Santana de Parnaíba está localizado no estado de São Paulo, na região metropolitana, a 31 km de São Paulo, capital do estado. O município possui área de 181 km² e o distrito sede localiza-se a uma altitude aproximada de 751 m.

A estação de Santana de Parnaíba, códigos 02346033 (ANA) e E3-020 (DAEE), está localizada na Latitude 23°27'00" S e Longitude 46°55'00" W, e insere-e na sub-bacia 62. A sub-bacia 62 (rios Paraná, Tietê e outros) tem como curso d'água principal o rio Tietê. Este rio nasce em Salesópolis na serra do Mar, a 1120m de altitude, atravessa o estado de São Paulo de sudeste a noroeste até desaguar no lago formado pela barragem de Jupiá, no rio Paraná, entre os municípios de Itapura e Castilho.

A estação pluviométrica localiza-se na sede do município de Santana de Parnaíba, próximo ao rio Tietê, a jusante do município de São Paulo. Esta estação encontra-se em operação desde 1956 e os dados para definição da equação IDF foram obtidos a partir dos dados diários de precipitação coletados em um pluviômetro.

A Figura 01 apresenta a localização do município e da estação.

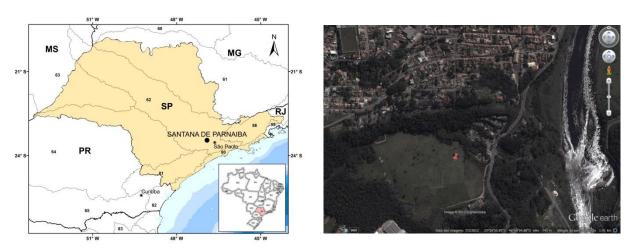


Figura 01 – Localização do Município e da Estação Pluviométrica (Fonte: Google, 2013).

2 - EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Parnaíba do Sul, códigos 02346033 (ANA) e E3-020 (DAEE), foi utilizada a série de precipitações diárias máximas por ano hidrológico (01/Out a 30/Set), apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Generalizada de Valores Extremos (GEV), com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com as relações IDF estabelecidas por Martinez Junior e Magni (1999), para a estação Observatório do IAG, códigos 02346059 (ANA) e E3-035 (DAEE), localizada no município de São Paulo, distante aproximadamente 36 km de Santana de Paranaíba. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II. A Figura 02 apresenta as curvas ajustadas.

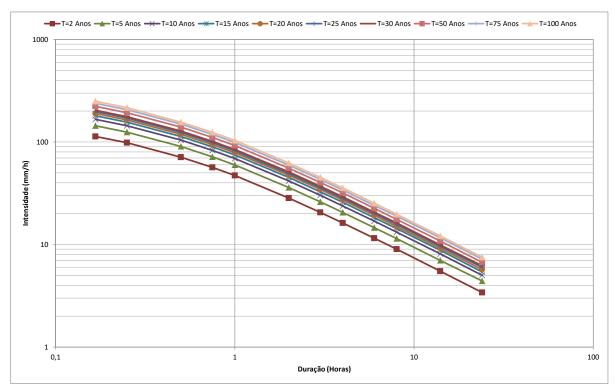


Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \{ [(aLn(T) + b).Ln(t + (\delta/60))] + cLn(T) + d \}/t$$
(01)

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (horas)

 a, b, c, d, δ são parâmetros da equação

No caso de Santana de Parnaíba, para durações de 10 minutos a 1 hora, os parâmetros da equação são os seguintes:

$$a$$
 = 5,5160; b =13,8247 ; c =14,1957; d =35,4802 e δ = 3,1

$$i = \{ [(5,5160Ln(T) + 13,8247).Ln(t + (3,1/60))] + 14,1957Ln(T) + 35,4802 \}/t (02)$$

Para durações superiores a 1 hora até 24 horas, os parâmetros da equação são os seguintes:

$$a = 3,3417$$
; $b = 8,3655$; $c = 14,9842$; $d = 37,4503$ e $\delta = 0,0$
 $i = \{[(3,3417Ln(T) + 8,3655).Ln(t)] + 14,9842Ln(T) + 37,4503\}/t$ (03)

As equações acima são válidas para tempos de retorno até 100 anos. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h

Duração da Tempo de Retorno, T (anos)													
chuva	2	5	10	15	20	25	30	40	50	60	75	90	100
10 Minutos	110,8	142,7	166,8	180,9	190,9	198,7	205,1	215,1	222,8	229,2	237,0	243,3	247,0
15 Minutos	96,7	124,5	145,5	157,8	166,5	173,3	178,8	187,6	194,3	199,9	206,6	212,2	215,4
20 Minutos	85,4	110,0	128,5	139,4	147,1	153,1	158,0	165,7	171,7	176,5	182,5	187,4	190,2
30 Minutos	69,6	89,6	104,8	113,6	119,9	124,8	128,8	135,0	139,9	143,9	148,8	152,7	155,0
45 Minutos	55,2	71,1	83,1	90,1	95,1	98,9	102,1	107,1	110,9	114,1	117,9	121,1	122,9
1 Hora	46,2	59,5	69,5	75,4	79,5	82,8	85,4	89,6	92,8	95,4	98,7	101,3	102,8
2 Horas	27,6	35,5	41,5	45,0	47,5	49,5	51,0	53,5	55,5	57,0	59,0	60,5	61,5
3 Horas	19,9	25,6	29,9	32,4	34,2	35,6	36,7	38,5	39,9	41,0	42,4	43,5	44,2
4 Horas	15,7	20,2	23,6	25,5	27,0	28,0	28,9	30,4	31,4	32,3	33,4	34,3	34,8
5 Horas	13,0	16,7	19,6	21,2	22,4	23,3	24,0	25,2	26,1	26,9	27,8	28,5	28,9
6 Horas	11,2	14,4	16,8	18,2	19,2	20,0	20,6	21,6	22,4	23,1	23,8	24,5	24,8
7 Horas	9,8	12,6	14,7	16,0	16,9	17,6	18,1	19,0	19,7	20,2	20,9	21,5	21,8
8 Horas	8,8	11,3	13,2	14,3	15,1	15,7	16,2	17,0	17,6	18,1	18,7	19,2	19,5
12 Horas	6,2	8,0	9,3	10,1	10,7	11,1	11,5	12,0	12,4	12,8	13,2	13,6	13,8
14 Horas	5,4	7,0	8,2	8,9	9,3	9,7	10,0	10,5	10,9	11,2	11,6	11,9	12,1
20 Horas	4,0	5,1	6,0	6,5	6,9	7,1	7,4	7,7	8,0	8,2	8,5	8,7	8,9
24 Horas	3,4	4,4	5,1	5,6	5,9	6,1	6,3	6,6	6,8	7,0	7,3	7,5	7,6

Tabela 02 – Altura de chuva em mm

Duração da	Tempo de Retorno, T (anos)												
chuva	2	5	10	15	20	25	30	40	50	60	75	90	100
10 Minutos	18,5	23,8	27,8	30,2	31,8	33,1	34,2	35,8	37,1	38,2	39,5	40,5	41,2
15 Minutos	24,2	31,1	36,4	39,5	41,6	43,3	44,7	46,9	48,6	50,0	51,7	53,0	53,8
20 Minutos	28,5	36,7	42,8	46,5	49,0	51,0	52,7	55,2	57,2	58,8	60,8	62,5	63,4
30 Minutos	34,8	44,8	52,4	56,8	60,0	62,4	64,4	67,5	70,0	71,9	74,4	76,4	77,5
45 Minutos	41,4	53,3	62,3	67,6	71,3	74,2	76,6	80,3	83,2	85,6	88,4	90,8	92,2
1 Hora	46,2	59,5	69,5	75,4	79,5	82,8	85,4	89,6	92,8	95,4	98,7	101,3	102,8
2 Horas	55,2	71,1	83,1	90,1	95,1	98,9	102,1	107,1	110,9	114,1	117,9	121,1	122,9
3 Horas	59,6	76,7	89,6	97,2	102,5	106,7	110,1	115,5	119,6	123,0	127,2	130,6	132,6
4 Horas	62,6	80,6	94,2	102,2	107,8	112,2	115,8	121,4	125,8	129,4	133,7	137,3	139,4
5 Horas	65,0	83,7	97,8	106,1	111,9	116,5	120,2	126,0	130,6	134,3	138,8	142,5	144,7
6 Horas	67,0	86,2	100,7	109,2	115,3	119,9	123,8	129,8	134,5	138,3	143,0	146,8	149,0
7 Horas	68,6	88,3	103,2	111,9	118,1	122,9	126,8	133,0	137,8	141,7	146,5	150,4	152,7
8 Horas	70,0	90,1	105,3	114,2	120,6	125,4	129,4	135,8	140,6	144,6	149,5	153,5	155,9
12 Horas	74,4	95,7	111,9	121,3	128,0	133,2	137,4	144,1	149,3	153,6	158,8	163,0	165,5
14 Horas	76,0	97,8	114,3	124,0	130,8	136,1	140,5	147,3	152,6	157,0	162,3	166,6	169,1
20 Horas	79,8	102,7	120,1	130,2	137,4	143,0	147,5	154,7	160,3	164,8	170,4	175,0	177,6
24 Horas	81,8	105,2	123,0	133,4	140,7	146,5	151,1	158,5	164,2	168,9	174,6	179,3	181,9

3 – EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Santana de Paraníba, foi registrada uma Chuva de 83 mm com duração de 45 minutos, a qual gerou vários problemas no sistema de drenagem pluvial da cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = exp\left[\frac{it - bLn(t + (\delta/60)) - d}{aLn(t + (\delta/60)) + c}\right]$$
(04)

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 83 mm dividido por 0,75 h é igual a 110,7 mm/h. Substituindo os valores na equação 04 temos:

$$T = exp\left[\frac{110,7.0,75 - 13,8247Ln(0,75 + (3,1/60)) - 35,4802}{5,5160Ln(0,75 + (3,1/60)) + 14,1957}\right] = 49,3 \ anos$$

O tempo de retorno de 49,3 anos corresponde a uma probabilidade de 2,03% que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou

$$P(i \ge 110,7mm/h) = \frac{1}{T}100 = \frac{1}{49,3}100 = 2,03\%$$

4 – REFERÊNCIAS BIBLIOGRÁFICAS

GOOGLE EARTH. *Estação pluviométrica de Santana de Parnaíba*. Disponível em: http://www.google.com/earth. Acesso em 10 de junho de 2013.

MARTINEZ JUNIOR, F.; MAGNI, N. L. G. Equações de chuvas intensas do estado de São Paulo. São Paulo: DAEE;USP, 1999. 141 p. Disponível em: https://docs.google.com/file/d/0B4t5iKKyDAByZmllVS0wemNqQVE/edit?pli=1>. Acesso em: 10 jun. 2013.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar., 2013.

ANEXO I

Série de Dados Utilizados – Altura de Chuva diária (mm)

Máximo por Ano Hidrológico (01/Out a 30/Set)

AI	AF	Data	Precipitação Máxima Diária (mm)	AI	AF	Data	Precipitação Máxima Diária (mm)
1956	1957	15/06/1957	98,0	1984	1985	23/02/1985	71,9
1957	1958	04/07/1958	71,6	1985	1986	27/01/1986	47,9
1960	1961	18/12/1960	96,5	1986	1987	14/02/1987	139,6
1961	1962	13/03/1962	66,3	1987	1988	18/03/1988	60,7
1968	1969	05/04/1969	48,5	1988	1989	14/01/1989	86,9
1969	1970	19/11/1969	86,6	1989	1990	03/01/1990	51,2
1970	1971	14/01/1971	69,2	1990	1991	13/12/1990	85,3
1971	1972	23/01/1972	92,3	1991	1992	07/10/1991	68,2
1972	1973	04/10/1972	53,7	1992	1993	31/05/1993	71,9
1973	1974	20/12/1973	73,5	1993	1994	11/03/1994	95,4
1974	1975	05/02/1975	74,5	1994	1995	28/12/1994	112,5
1975	1976	30/11/1975	85,3	1995	1996	04/02/1996	54,9
1976	1977	09/10/1976	96,0	1996	1997	27/01/1997	65,9
1977	1978	22/01/1978	76,4	1997	1998	14/02/1998	64,1
1978	1979	27/12/1978	103,5	1998	1999	21/02/1999	77,6
1979	1980	26/01/1980	63,9	1999	2000	18/03/2000	67,2
1980	1981	27/12/1980	70,3	2000	2001	14/11/2000	62,4
1981	1982	06/02/1982	78,4	2001	2002	20/10/2001	84,9
1982	1983	02/02/1983	161,9	002	2003	28/01/2003	70,0
1983	1984	22/11/1983	55,0	2003	2004	23/02/2004	47,5

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir das relações IDF estabelecidas por Martinez Junior e Magni (1999) para o munícipio de São Paulo/SP.

Relação 24h/1dia: 1,13

Relação	Relação	Relação	Relação	Relação	Relação
14h/24h	8h/14h	6h/8h	4h/6h	3h/4h	2h/3h
0,94	0,93	0,96	0,94	0,95	0,92

Relação	Relação	Relação	Relação	Relação		
1h/2h	45 min/1h	30 min/45 min	15 min/30 min	10 min/15 min		
0,83	0,90	0,84	0,69	0,77		

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Gestão Estratégica da Geologia, da Mineração e da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília – DF – CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca

Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

www.cprm.gov.br

Superintendência Regional de Porto Alegre

Rua Banco da Província, 105 - Santa Teresa Porto Alegre - RS - CEP: 90840-030 Tel.: 51 3406-7300 - Fax: 51 3233-7772

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495 E-mail: ouvidoria@cprm.gov.br

Serviço de Atendimento ao Usuário – SEUS Tel: 21 2295-5997 - Fax: 21 2295-5897

E-mail: seus@cprm.gov.br

