PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

ATLAS PLUMETRICO DO BRASIL

Equações Intensidade-Duração-Frequência

Estado: Santa Catarina

Município: Mafra

Estação Pluviométrica: Rio Negro

Código ANA: 02649006

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: Mafra/SC

Estação Pluviométrica: Rio Negro Código: 02649006

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

CARTAS DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Porto Alegre

Copyright @ 2014 CPRM - Superintendência Regional de Porto Alegre Rua Banco da Província, 105 - Bairro Santa Teresa

Porto Alegre - RS - 90.840-030

Telefone: (51) 3406-7300 Fax: (51) 3233-7772 http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias). Município: Mafra. Estação Pluviométrica: Rio Negro Código 02649006. Karine Pickbrenner e Eber José de Andrade Pinto – Porto Alegre: CPRM, 2014.

13p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II – PICKBRENNER, K. e PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Edison Lobão

SECRETÁRIO EXECUTIVO

Márcio Pereira Zimmermann

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Luiz Gonzaga Baião

Jarbas Raimundo de Aldano Matos

Osvaldo Castanheira

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Thales de Queiroz Sampaio

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Eduardo Santa Helena

SUPERINTENDÊNCIA REGIONAL DE PORTO ALEGRE

José Leonardo Silva Andriotti Superintendente

Marcos Alexandre de Freitas Gerente de Hidrologia e Gestão Territorial

João Angelo Toniolo Gerente de Geologia e Recursos Minerais

Ana Claudia Viero
Gerente de Relações Institucionais e Desenvolvimento

Alexandre Goulart Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Cássio Roberto da Silva

Divisão de Hidrologia Aplicada

Achiles Eduardo Guerra Castro Monteiro

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenaçãodo Projeto Cartas Municipais de Suscetibilidade

Sandra Fernandes da Silva

Coordenadores Regionais do Projeto Atlas Pluviométrico

Andressa Macêdo Silva de Azambuja-Sureg/BE José Alexandre Moreira Farias-REFO Karine Pickbrenner-Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder-Sureg/PA
Jean Ricardo da Silvado Nascimento -RETE
Margarida Regueira da Costa-Sureg/RE
Osvalcélio Mercês Furtunato -Sureg/SA
Vanesca Sartorelli Medeiros -Sureg/SP

Sistema de Informações Geográficas e Mapa

Ivete Souza de Almeida-Sureg/BH

Apoio Técnico

Amanda Elizalde Martins – Sureg/PA

Debora Gurgel - REFO

Eliane Cristina Godoy Moreira-Sureg/SP

Jennifer Laís Assano -Sureg/SP

João Paulo Vicente Pereira-Sureg/SP

Juliana Oliveira-Sureg/BE

Fabiana Ferreira Cordeiro-Sureg/SP

Luisa Collischonn – Sureg/PA

Murilo Raphael Dias Cardoso -Sureg/GO

Paulo Guilherme de Oliveira Sousa – RETE

Estagiários de Hidrologia

Caroline Centeno - Sureg/PA

Cassio Pereira - Sureg/PA

Cláudio Dálio Albuquerque Júnior-Sureg/MA

Diovana Daugs Borges Fortes -Sureg/PA

Fernanda Ribeiro Gonçalves Sotero de Menezes -Sureg/BH

Fernando Lourenço de Souza Junior – Sureg/RE

Ivo Cleiton Costa Bonfim -REFO

João Paulo Lopes Chaves Miranda-Sureg/BH

José Érico Nascimento Barros -Sureg/RE

Liomar Santos da Hora-Sureg/SA

Lemia Ribeiro-Sureg/SA

Márcia Faermann -Sureg/PA

Mariana Carolina Lima de Oliveira-Sureg/BH

Mayara Luiza de Menezes Oliveira-Sureg/MA

Nayara de Lima Oliveira-Sureg/GO

Pedro da Silva Junqueira-Sureg/PA

Rosangela de Castro - Sureg/SP

Taciana dos Santos Lima-RETE

Thais Danielle Oliveira Gasparin - Sureg/SP

Vanessa Romero-Sureg/GO

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa Gestão Estratégica da Geologia, da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Mafra onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica de Rio Negro, código 02649006, operada pela AGUASPARANÁ, sob responsabilidade da COPEL (Companhia Paranaense de Energia). Esta estação está localizada a aproximadamente 2 km da sede do município de Mafra.

1 - INTRODUÇÃO

A equação definida pode ser utilizada no município de Mafra e regiões circunvizinhas.

O município de Mafra está localizado no estado de Santa Catarina, na Latitude 26°06'59" S e Longitude 49°48'33" W, a 294 km de Florianópolis, capital do estado. O município possui área de 1.404 Km² e localiza-se a uma altitude de 801 metros. Sua população, segundo o censo de 2010 do IBGE, é de 52.912 habitantes.

A estação de Rio Negro, código 02649006, está localizada na Latitude 26°06'00" S e Longitude 49°48'00" W. Insere-se a leste da sub-bacia 65 (sub-bacia dos rios Paraná, Iguaçu e outros), mais especificamente na sub-bacia do rio Negro. A estação pluviométrica localizase no município de Rio Negro, no estado do Paraná, na divisa com Santa Catarina, aproximadamente a 2 km da sede do município de Mafra. Esta estação encontra-se em operação desde 1922 e os dados para definição da equação IDF foram obtidos a partir dos dados diários de precipitação coletados em um pluviômetro convencional. A Figura 01 apresenta a localização do município e da estação.

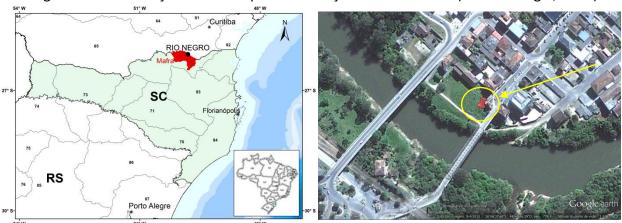


Figura 01 – Localização do Município e da Estação Pluviométrica. (Fonte: Google, 2014).

2 - EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Rio Negro, código 02649006, foi utilizada a série de precipitações diárias máximas por ano hidrológico (01/Set a 31/Ago), apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com as relações IDF estabelecidas por Weschenfelder et al. (2013), para a estação pluviográfica Rio da Várzea dos Lima, código 02549003, localizada no município de Quitandinha, distante aproximadamente 44 km da estação desagregada Rio Negro. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

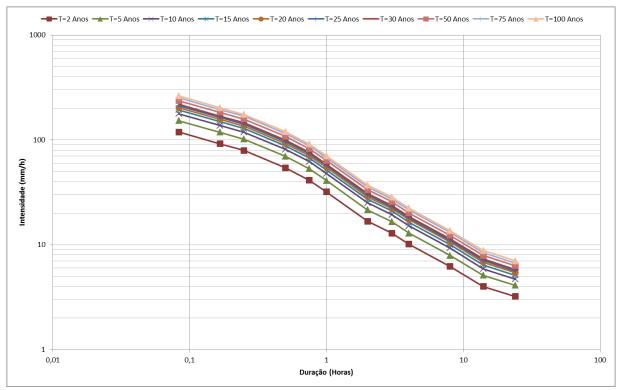


Figura 02 – Curvas intensidade-duração-frequência

As equações adotadas para representar a família de curvas da Figura 02 são do tipo:

i =

$$\frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Rio Negro a IDF foi dividida em 2 equações, sendo os parâmetros da equação os seguintes:

5min ≤ t ≤ 2h

a = 9145,9; *b* =0,2011; *c* =26,8; *d* =1,2937

$$i = \frac{9145,9T^{0,2011}}{(t+26,8)^{1,2937}} \tag{02}$$

2h < t ≤ 24h

a = 372,2; b =0,2011; c =0,0; d =0,6794

$$i = \frac{372,2T^{0,2011}}{(t)^{0,6794}} \tag{03}$$

As equações acima são válidas para tempos de retorno de até 100 anos. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h.

Duração	Tempo de Retorno, T (anos)												
da Chuva	2	5	10	15	20	25	40	50	60	75	90	100	
5 Minutos	119,7	143,9	165,4	179,5	190,2	198,9	218,6	228,7	237,2	248,1	257,4	262,9	
10 Minutos	99,1	119,1	137,0	148,6	157,4	164,7	181,0	189,3	196,4	205,4	213,1	217,6	
15 Minutos	84,0	101	116,1	126,0	133,5	139,6	153,5	160,5	166,5	174,2	180,7	184,5	
20 Minutos	72,6	87,3	100,4	108,9	115,4	120,7	132,6	138,7	143,9	150,5	156,1	159,5	
30 Minutos	56,5	67,9	78,1	84,7	89,8	93,9	103,2	108,0	112,0	117,1	121,5	124,1	
45 Minutos	41,7	50,2	57,7	62,6	66,3	69,4	76,2	79,7	82,7	86,5	89,7	91,7	
1 HORA	32,7	39,3	45,1	49,0	51,9	54,3	59,6	62,4	64,7	67,7	70,2	71,7	
2 HORAS	16,5	19,9	22,9	24,8	26,3	27,5	30,2	31,6	32,8	34,3	35,6	36,3	
3 HORAS	12,6	15,1	17,4	18,8	20,0	20,9	22,9	24,0	24,9	26,0	27,0	27,6	
4 HORAS	10,3	12,4	14,3	15,5	16,4	17,2	18,9	19,7	20,5	21,4	22,2	22,7	
5 HORAS	8,9	10,7	12,3	13,3	14,1	14,8	16,2	17,0	17,6	18,4	19,1	19,5	
6 HORAS	7,8	9,4	10,8	11,8	12,5	13,0	14,3	15,0	15,5	16,3	16,9	17,2	
7 HORAS	7,1	8,5	9,8	10,6	11,2	11,7	12,9	13,5	14,0	14,6	15,2	15,5	
8 HORAS	6,5	7,8	8,9	9,7	10,3	10,7	11,8	12,3	12,8	13,4	13,9	14,2	
12 HORAS	4,9	5,9	6,8	7,3	7,8	8,1	8,9	9,4	9,7	10,2	10,5	10,8	
14 HORAS	4,4	5,3	6,1	6,6	7,0	7,3	8,1	8,4	8,7	9,1	9,5	9,7	
20 HORAS	3,5	4,2	4,8	5,2	5,5	5,8	6,3	6,6	6,9	7,2	7,4	7,6	
24 HORAS	3,1	3,7	4,2	4,6	4,9	5,1	5,6	5,8	6,1	6,3	6,6	6,7	

Tabela 02 - Altura de chuva em mm

Duração		Tempo de Retorno, T (anos)												
da Chuva	2	5	10	15	20	25	40	50	60	75	90	100		
5 Minutos	10	12,0	13,8	15,0	15,8	16,6	18,2	19,1	19,8	20,7	21,4	21,9		
10 Minutos	16,5	19,9	22,8	24,8	26,2	27,4	30,2	31,6	32,7	34,2	35,5	36,3		
15 Minutos	21	25,3	29,0	31,5	33,4	34,9	38,4	40,1	41,6	43,5	45,2	46,1		
20 Minutos	24,2	29,1	33,5	36,3	38,5	40,2	44,2	46,2	48,0	50,2	52,0	53,2		
30 Minutos	28,3	34	39,1	42,4	44,9	47,0	51,6	54,0	56,0	58,6	60,8	62,1		
45 Minutos	31,3	37,6	43,3	46,9	49,7	52,0	57,2	59,8	62,0	64,9	67,3	68,7		
1 HORA	32,7	39,3	45,1	49,0	51,9	54,3	59,6	62,4	64,7	67,7	70,2	71,7		
2 HORAS	33,1	39,8	45,7	49,6	52,6	55,0	60,4	63,2	65,6	68,6	71,1	72,7		
3 HORAS	37,7	45,3	52,1	56,5	59,9	62,6	68,8	72,0	74,7	78,1	81,0	82,8		
4 HORAS	41,3	49,7	57,1	62,0	65,7	68,7	75,5	79,0	81,9	85,7	88,9	90,8		
5 HORAS	44,4	53,4	61,4	66,6	70,5	73,8	81,1	84,8	88,0	92,0	95,5	97,5		
6 HORAS	47,1	56,6	65,1	70,6	74,8	78,2	86,0	89,9	93,3	97,6	101,2	103,4		
7 HORAS	49,5	59,5	68,4	74,2	78,6	82,2	90,3	94,5	98,0	102,5	106,3	108,6		
8 HORAS	51,6	62,1	71,3	77,4	82,0	85,8	94,3	98,6	102,3	107,0	111,0	113,4		
12 HORAS	58,8	70,7	81,2	88,1	93,4	97,7	107,4	112,3	116,5	121,8	126,4	129,1		
14 HORAS	61,8	74,3	85,4	92,6	98,1	102,6	112,8	118,0	122,4	128,0	132,8	135,6		
20 HORAS	69,2	83,2	95,7	103,8	110	115,1	126,5	132,3	137,2	143,5	148,9	152,1		
24 HORAS	73,4	88,3	101,5	110,1	116,6	122	134,1	140,2	145,5	152,1	157,8	161,2		

3 - EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Mafra, foi registrada uma Chuva de 40 mm com duração de 15 minutos, a qual gerou vários problemas no sistema de drenagem pluvial da cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{04}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 40 mm dividido por 0,25 h é igual a 160 mm/h. Substituindo os valores na equação 04 temos:

$$T = \left[\frac{160(15 + 26,8)^{1,2937}}{9145,9}\right]^{1/0,2011} = 49,2 \ anos$$

O tempo de retorno de 49,2 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 2,03%, ou

$$P(i \ge 160mm/h) = \frac{1}{T}100 = \frac{1}{49.2}100 = 2,03\%$$

4 – REFERÊNCIAS BIBLIOGRÁFICAS

GOOGLE EARTH. *Estação pluviométrica de Mafra*. Disponível em: http://www.google.com/earth. Acesso em 25 de abril de 2014.

IBGE - Instituto Brasileiro de Geografia e Estatística, 2010. Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?codmun=421010. Acesso em 25 de abril de 2014.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar., 2013.

SANTA CATARINA. Secretaria do Estado do Desenvolvimento Social, Urbano e Meio Ambiente. *Codificação dos cursos d'água do Estado de Santa Catarina.* Florianópolis: SDS, 2003. 20 mapas.

WESCHENFELDER, A. B.; PICKBRENNER, K.; PINTO, E. J. A. Carta de suscetibilidade a movimentos gravitacionais de massa e inundação: Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência; Município: Quitandinha, Estação Pluviográfica: Rio da Várzea dos Lima, Código 02549003. In: CPRM - SERVIÇO GEOLÓGICO DO BRASIL. *Atlas pluviométrico do Brasil*: metodologia e relatórios. [S.I.]: CPRM, 2013. 1 DVD. Programa Geologia do Brasil. Levantamento da Geodiversidade.

ANEXO I Série de Dados Utilizados – Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Set a 31/Ago)

Al	AF	Data	Precipitação Máxima Diária (mm)	Al	AF	Data	Precipitação Máxima Diária (mm)	Al	AF	Data	Precipitação Máxima Diária (mm)
1927	1928	25/01/1928	64,0	1956	1957	07/06/1957	58,8	1984	1985	26/09/1984	65,81
1928	1929	02/01/1929	48,0	1957	1958	15/03/1958	49,4	1985	1986	01/01/1986	56,0
1929	1930	14/01/1930	54,2	1958	1959	04/12/1958	55,5	1986	1987	08/05/1987	100,8
1930	1931	09/03/1931	65,5	1959	1960	08/01/1960	64,2	1987	1988	23/05/1988	83,3
1931	1932	27/03/1932	63,8	1960	1961	26/12/1960	50,4	1988	1989	26/10/1988	70,7
1932	1933	20/11/1932	64,5	1961	1962	17/03/1962	51,2	1989	1990	28/04/1990	68,3
1933	1934	04/10/1933	50,9	1962	1963	21/03/1963	50,6	1990	1991	21/06/1991	77,3
1934	1935	20/02/1935	97,5	1963	1964	14/02/1964	111,4	1991	1992	29/05/1992	194,3
1936	1937	23/09/1936	72,0	1964	1965	04/07/1965	72,81	1992	1993	14/05/1993	112,2
1937	1938	22/05/1938	121,4	1965	1966	01/10/1965	64,01	1993	1994	12/05/1994	72,7
1938	1939	03/01/1939	46,8	1966	1967	05/03/1967	61,0	1994	1995	18/11/1994	109,0
1939	1940	12/12/1939	83,0	1967	1968	16/01/1968	52,4	1995	1996	09/07/1996	72,2
1940	1941	22/10/1940	65,0	1968	1969	22/04/1969	77,2	1996	1997	21/01/1997	81,4
1941	1942	18/06/1942	80,9	1969	1970	07/06/1970	57,0	1997	1998	24/04/1998	82,8
1942	1943	22/08/1943	60,0	1970	1971	08/06/1971	64,21	1998	1999	03/07/1999	75,2
1943	1944	29/08/1944	68,6	1971	1972	10/10/1971	53,8	1999	2000	08/10/1999	71,0
1944	1945	27/11/1944	79,4	1972	1973	25/06/1973	68,8	2000	2001	12/01/2001	81,6
1945	1946	15/02/1946	73,8	1973	1974	22/07/1974	53,81	2001	2002	01/08/2002	70,71
1946	1947	13/12/1946	72,8	1974	1975	17/05/1975	75,0	2002	2003	20/09/2002	54,8
1947	1948	17/05/1948	89,4	1975	1976	10/04/1976	63,6	2003	2004	31/12/2003	81,01
1948	1949	08/01/1949	85,6	1976	1977	07/02/1977	68,2	2004	2005	31/08/2005	65,2
1949	1950	18/02/1950	59,3	1977	1978	16/05/1978	81,0	2005	2006	29/03/2006	61,6
1950	1951	26/01/1951	82,7	1978	1979	09/05/1979	86,0	2006	2007	08/05/2007	67,4
1951	1952	29/12/1951	54,4	1979	1980	24/01/1980	75,01	2007	2008	29/04/2008	85,3
1952	1953	28/10/1952	66,4	1980	1981	27/12/1980	55,0	2008	2009	05/10/2008	61,3
1953	1954	14/01/1954	87,4	1981	1982	24/06/1982	57,01	2009	2010	26/04/2010	113,9
1954	1955	19/05/1955	73,81	1982	1983	20/05/1983	95,4	2010	2011	02/10/2010	68,21
1955	1956	28/04/1956	86,6	1983	1984	15/06/1984	86,2	2011	2012	26/04/2012	101,9

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir das relações IDF estabelecidas por Weschenfelder et al. (2013) para o munícipio de Quitandinha/PR.

Relação 24h/1dia: 1,13

Relação	Relação	Relação	Relação	Relação	Relação
14h/24h	8h/24h	4h/24h	3h/24h	2h/24h	1h/24h
0,73	0,65	0,53	0,51	0,44	0,42

Relação	Relação	Relação	Relação	Relação
45 min/1h	30 min/1h	15 min/1h	10 min/1h	5 min/1h
0,97	0,85	0,62	0,48	0,31

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Gestão Estratégica da Geologia, da Mineração e da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília – DF – CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca

Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

www.cprm.gov.br

Superintendência Regional de Porto Alegre

Rua Banco da Província, 105 - Santa Teresa Porto Alegre - RS - CEP: 90840-030 Tel.: 51 3406-7300 - Fax: 51 3233-7772

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495 E-mail: ouvidoria@cprm.gov.br

Serviço de Atendimento ao Usuário – SEUS Tel: 21 2295-5997 - Fax: 21 2295-5897 E-mail: seus@cprm.gov.br

