PROGRAMA GESTÃO DE RISCOS E RESPOSTA A DESASTRES

INFORMAÇÕES DE ALERTA DE CHEIAS E INUNDAÇÕES

ATLAS: PLUVIONETRICC DO BRASIL

Equações Intensidade-Duração-Frequência

Estado: Rio de Janeiro

Município: Angra dos Reis

Estação Pluviográfica: Vila Mambucaba

Código ANA: 02344016

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GESTÃO DE RISCOS E RESPOSTA A DESASTRES INFORMAÇÕES DE ALERTA DE CHEIAS E INUNDAÇÕES

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL
EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Município: Angra dos Reis/RJ

Estação Pluviográfica: Vila Mambucaba Código 02344016

> SÃO PAULO 2015

PROGRAMA GESTÃO DE RISCOS E RESPOSTA A DESASTRES INFORMAÇÕES DE ALERTA DE CHEIAS E INUNDAÇÕES

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de São Paulo

Copyright @ 2015 CPRM - Superintendência Regional de São Paulo

Rua Costa, 55 - Bairro Cerqueira César

São Paulo - SP - 01304-010 Telefone: (11) 3775-5101 Fax: (11) 3256-8430

http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência. Município: Angra dos Reis. Estação Pluviográfica: Vila Mambucaba, Código 02344016. Vanesca Sartorelli Medeiros; Karine Pickbrenner e Eber José de Andrade Pinto – São Paulo : CPRM, 2015.

15 p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II - MEDEIROS, V. S.; PICKBRENER, K. e PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil

É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Carlos Eduardo de Souza Braga

SECRETÁRIO EXECUTIVO

Márcio Pereira Zimmermann

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Demetrius Ferreira e Cruz

Jarbas Raimundo de Aldano Matos

Janaina Gomes Pires da Silva

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Thales de Queiroz Sampaio

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Eduardo Santa Helena

SUPERINTENDÊNCIA REGIONAL DE SÃO PAULO

José Carlos Garcia Ferreira Superintendente

Vanesca Sartorelli Medeiros Gerente de Hidrologia e Gestão Territorial

Elizete Domingues Salvador Gerente de Geologia e Recursos Minerais

Lauro Gracindo Pizzatto

Gerente de Relações Institucionais e Desenvolvimento

Marcos Evaristo da Silva Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Cássio Roberto da Silva

Divisão de Hidrologia Aplicada

Achiles Eduardo Guerra Castro Monteiro

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenaçãodo Projeto Cartas Municipais de Suscetibilidade

Sandra Fernandes da Silva

Coordenadores Regionais do Projeto

Andressa Macêdo Silva de Azambuja - Sureg/BE José Alexandre Moreira Farias - REFO Karine Pickbrenner - Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder-Sureg/PA

Albert Teixeira Cardoso – Sureg/GO

Caluan Rodrigues Capozzoli-Sureg/SP

Catharina Ramos dos Prazeres Campos – Sureg/BE

Jean Ricardo da Silvado Nascimento – RETE

Luana Késsia Lucas Alves Martins – Sureg/BH Osvalcélio Mercês Furtunato – Sureg/SA

Sistema de Informações Geográficas e Mapa

Ivete Souza do Nascimento - Sureg/BH

Apoio Técnico

Augusto Cezar Gessi Caneppele – Sureg/PA

Betania Rodrigues dos Santos – Sureg/GO

Celina Monteiro – Sureg/BE

Danielle Cutolo – Sureg/SP

Douglas Sanches Soller – Sureg/PA

Edna Alves Balthazar – Sureg/SP

Eliamara Soares Silva – RETE

Priscila Nishihara Leo – Sureg/SP

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa Gestão de Riscos e de Resposta a Desastres tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Angra dos Reis onde foram utilizados os registros contínuos da estação pluviográfica Vila Mambucaba, código 02344016, localizada entre Angra dos Reis e Parati.

1 - INTRODUÇÃO

A equação definida pode ser utilizada no município de Angra dos Reis e regiões circunvizinhas.

O Município de Angra dos Reis está situado no litoral fluminense, tendo sido uma das primeiras povoações em terras brasileiras. Angra dos Reis pertence à Região da Costa Verde, composta pelos municípios de: Angra dos Reis, Mangaratiba e Parati.

O município possui área de 825 Km² e localiza-se na Latitude 23°00'25" S e Longitude 44°19'04" W, a uma altitude de 3,3 metros. Sua população, segundo o censo de 2010 do IBGE, é de 169.270 habitantes.

A estação de Vila Mambucaba, código 02344016, está localizada na Latitude 23°01'33" S e Longitude 44°31'05" W, acesso pela rodovia BR 101 entre Angra dos Reis e Parati. Os dados para definição da equação IDF foram obtidos a partir dos pluviogramas de um pluviógrafo IH, modelo 4 (PLG 4). A Figura 01 apresenta a localização do município e da estação.

Figura 01 – Localização do Município e da Estação Pluviográfica

2 - EQUAÇÃO

A metodologia para definição da equação está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Vila Mambucaba, código 02344016, foram utilizadas séries de duração parcial e os dados utilizados constam do Anexo I. A distribuição de frequência ajustada aos dados foi a Exponencial. O Anexo II apresenta as relações entre as alturas de chuvas de diferentes durações calculadas com os resultados das análises de frequência.

A Figura 02 apresenta as curvas ajustadas.

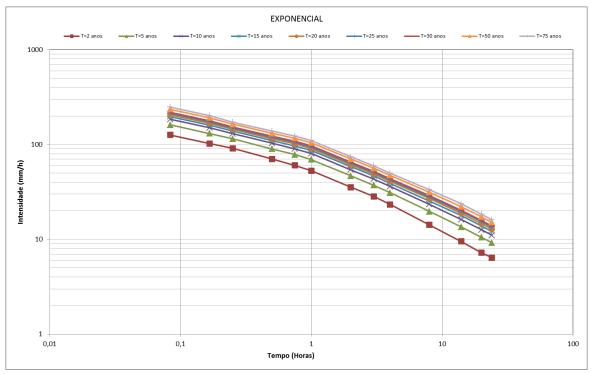


Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Vila Mambucaba, os parâmetros da equação são os seguintes:

a = 230,3; b = 0,2019; c = 2,0 e d = 0,3937, para as durações de 5 minutos a 45 minutos e

a = 1155,2 ; b = 0,2211 ; c = 33,1 e d = 0,7210, para as durações maiores que 45 minutos até 24 horas;

$$i = \frac{230,3T^{0,2019}}{(t+2,0)^{0,3937}} \text{ para 5 minutos} \le t < 45 \text{ minutos}$$
 (02)

e

$$i = \frac{1155,2T^{0,2211}}{(t+33,1)^{0,7210}} \text{ para 45 minutos } \le t \le 24 \text{ horas}$$
 (03)

Estas equações são válidas para tempos de retorno até 75 anos.

A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h

Duração						Tempo	de Ret	orno, T (anos)					
da Chuva	2	5	10	15	20	25	30	40	50	55	60	65	70	75
5 Minutos	123,1	148,1	170,4	184,9	196,0	205,0	212,7	225,4	235,8	240,4	244,7	248,7	252,4	255,9
10 Minutos	99,6	119,8	137,8	149,6	158,5	165,8	172,0	182,3	190,7	194,4	197,9	201,1	204,1	207,0
15 Minutos	86,8	104,5	120,2	130,4	138,2	144,6	150,0	159,0	166,3	169,5	172,5	175,3	178,0	180,5
20 Minutos	78,4	94,4	108,6	117,8	124,9	130,6	135,5	143,6	150,2	153,2	155,9	158,4	160,8	163,1
30 Minutos	67,7	81,4	93,7	101,7	107,7	112,7	116,9	123,9	129,6	132,2	134,5	136,7	138,8	140,7
45 Minutos	58,2	71,2	83,0	90,8	96,8	101,7	105,8	112,8	118,5	121,0	123,4	125,6	127,6	129,6
1 HORA	51,2	62,7	73,1	80,0	85,3	89,6	93,2	99,4	104,4	106,6	108,7	110,6	112,5	114,2
2 HORAS	35,8	43,8	51,1	55,9	59,6	62,6	65,1	69,4	72,9	74,5	75,9	77,3	78,6	79,8
3 HORAS	28,2	34,5	40,3	44,0	46,9	49,3	51,3	54,7	57,5	58,7	59,8	60,9	61,9	62,9
4 HORAS	23,6	28,9	33,7	36,8	39,2	41,2	42,9	45,7	48,1	49,1	50,0	50,9	51,8	52,6
5 HORAS	20,4	25,0	29,2	31,9	34,0	35,7	37,2	39,6	41,6	42,5	43,4	44,1	44,9	45,5
6 HORAS	18,1	22,2	25,9	28,3	30,2	31,7	33,0	35,2	37,0	37,7	38,5	39,2	39,8	40,4
7 HORAS	16,4	20,0	23,4	25,6	27,2	28,6	29,8	31,8	33,4	34,1	34,7	35,3	35,9	36,5
8 HORAS	15,0	18,3	21,4	23,4	24,9	26,2	27,2	29,0	30,5	31,1	31,8	32,3	32,9	33,4
12 HORAS	11,4	13,9	16,2	17,7	18,9	19,8	20,7	22,0	23,1	23,6	24,1	24,5	24,9	25,3
14 HORAS	10,2	12,5	14,6	15,9	17,0	17,8	18,6	19,8	20,8	21,2	21,6	22,0	22,4	22,7
20 HORAS	8,0	9,7	11,4	12,4	13,2	13,9	14,5	15,4	16,2	16,6	16,9	17,2	17,5	17,7
24 HORAS	7,0	8,6	10,0	10,9	11,6	12,2	12,7	13,6	14,3	14,6	14,8	15,1	15,4	15,6

Tabela 02 - Altura de chuva em mm

Duração						Tempo	de Ret	orno, T ((anos)					
da Chuva	2	5	10	15	20	25	30	40	50	55	60	65	70	75
5 Minutos	10,3	12,3	14,2	15,4	16,3	17,1	17,7	18,8	19,7	20,0	20,4	20,7	21,0	21,3
10 Minutos	16,6	20,0	23,0	24,9	26,4	27,6	28,7	30,4	31,8	32,4	33,0	33,5	34,0	34,5
15 Minutos	21,7	26,1	30,0	32,6	34,6	36,1	37,5	39,7	41,6	42,4	43,1	43,8	44,5	45,1
20 Minutos	26,1	31,5	36,2	39,3	41,6	43,5	45,2	47,9	50,1	51,1	52,0	52,8	53,6	54,4
30 Minutos	33,8	40,7	46,8	50,8	53,9	56,4	58,5	62,0	64,8	66,1	67,3	68,3	69,4	70,3
45 Minutos	43,6	53,4	62,3	68,1	72,6	76,2	79,4	84,6	88,9	90,8	92,5	94,2	95,7	97,2
1 HORA	51,2	62,7	73,1	80,0	85,3	89,6	93,2	99,4	104,4	106,6	108,7	110,6	112,5	114,2
2 HORAS	71,6	87,7	102,2	111,8	119,1	125,1	130,3	138,8	145,9	149,0	151,9	154,6	157,1	159,5
3 HORAS	84,6	103,6	120,8	132,1	140,8	147,9	154,0	164,1	172,4	176,1	179,5	182,7	185,7	188,6
4 HORAS	94,3	115,5	134,7	147,3	157,0	164,9	171,7	183,0	192,2	196,3	200,1	203,7	207,1	210,2
5 HORAS	102,2	125,1	145,9	159,5	170,0	178,6	186,0	198,2	208,2	212,6	216,8	220,6	224,3	227,7
6 HORAS	108,8	133,3	155,3	169,9	181,1	190,2	198,0	211,1	221,7	226,4	230,8	235,0	238,8	242,5
7 HORAS	114,6	140,3	163,6	178,9	190,7	200,3	208,6	222,3	233,5	238,5	243,1	247,4	251,5	255,4
8 HORAS	119,7	146,6	170,9	186,9	199,2	209,3	217,9	232,2	244,0	249,2	254,0	258,5	262,8	266,9
12 HORAS	136,2	166,8	194,4	212,6	226,6	238,1	247,9	264,1	277,5	283,4	288,9	294,1	298,9	303,5
14 HORAS	142,8	174,9	203,9	223,0	237,6	249,7	259,9	277,0	291,0	297,2	303,0	308,4	313,5	318,3
20 HORAS	159,1	194,8	227,1	248,4	264,7	278,1	289,5	308,5	324,1	331,0	337,5	343,5	349,2	354,5
24 HORAS	167,9	205,6	239,7	262,2	279,4	293,5	305,6	325,7	342,1	349,4	356,2	362,6	368,6	374,2

3 – EXEMPLO DE APLICAÇÃO

No dia 16 de novembro de 1997, em Vila Mambucaba, foi registrada uma chuva de 146 mm com duração de 2 horas. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{04}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 146 mm dividido por 2 h é igual a 73 mm/h. Substituindo os valores na equação 04 temos:

$$T = \left[\frac{73(120 + 33,1)^{0,7210}}{1155,2} \right]^{1/0,2211} = 50,2 \ anos$$

O tempo de retorno de 50,2 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 1,99%, ou

$$P(i \ge 73mm/h) = \frac{1}{T}100 = \frac{1}{50.2}100 = 1,99\%$$

Nos dias 02 e 03 de janeiro de 2013, em Vila Mambucaba, foi registrada uma chuva de 376 mm com duração de 24 horas, que gerou vários problemas de inundação no município. O registro gráfico deste evento pode ser observado na Figura 03. Qual é o tempo de retorno dessa precipitação?

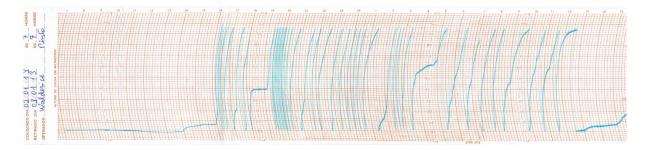


Figura 03: Pluviogramas unidos de Precipitação em Vila Mambucaba: dias 02 e 03 de janeiro de 2013.

Resp: A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 376 mm dividido por 24 h é igual a 15,7 mm/h. Substituindo os valores na equação 04 temos:

$$T = \left[\frac{15,7(1440 + 33,1)^{0,7210}}{1155,2} \right]^{1/0,2211} = 76,6 \ anos$$

O tempo de retorno de 76,6 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 1,31%, ou

$$P(i \ge 15,7mm/h) = \frac{1}{T}100 = \frac{1}{76,6}100 = 1,31\%$$

O tempo de retorno de 76,6 anos está fora do limite de aplicação da equação, o que indica a excepcionalidade do evento.

4 - REFERÊNCIAS BIBLIOGRÁFICAS

Banco de Dados de Registro de Desastres – Sistema Integrado de Informações sobre Desastres – S2ID – Disponível em: http://150.162.127.14:8080/pngr/pngr.html. Acesso em: Julho de 2013.

Altitude de Angra dos Reis. Disponível em: http://altitude.cidademapa.com.br/altitude-de/angra-dos-reis/3149/. Acesso em: julho de 2013.

GeoHack – Angra dos Reis. Disponível em: http://toolserver.org/~geohack/geohack.php?language=pt&pagename=Angra dos Reis¶ms=23 00 25 S 44 19 04 W type:city region:BR scale:75000. Acesso em: julho de 2013.

IBGE – Instituto Brasileiro de Geografia e Estatística, 2010. Cidades. Disponível em: http://www.ibge.gov.br/cidadesat/painel/painel.php?codmun=330010. Acesso em dezembro de 2012.

IBGE - Instituto Brasileiro de Geografia e Estatística, 2010. Disponível em: <a href="http://www.ibge.gov.br/home/estatistica/populacao/censo2010/tabelas pdf/total populacao/censo2010/tabelas pdf/total pdf/to

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar, 2013.

SEBRAE, 2011. Informações sócio-econômicas do município de Angra dos Reis. Disponível em:

http://www.biblioteca.sebrae.com.br/bds/bds.nsf/3008FA1520D1801B8325794B0069BA21/ \$File/Angra%20dos%20Reis.pdf. Acesso em: dezembro de 2012.

WIKIPEDIA, 2012. Ficheiro – Rio de Janeiro - Município de Angra dos Reis. Disponível em: http://pt.wikipedia.org/wiki/Ficheiro:RiodeJaneiro Municip AngradosReis.svg. Acesso em: dezembro de 2012.

ANEXO I

Série de Dados Utilizados por Duração – Altura de Chuva (mm)

DATA	5 MIN	DATA	10 MIN	DATA	15 MIN	DATA	30 MIN	DATA	45 MIN	DATA	1 HORA
16/11/1997	11,3	08/01/1997	14,0	08/01/1997	20,4	16/11/1997	48,5	16/11/1997	70,5	16/11/1997	89,1
12/03/1998	12,2	16/11/1997	19,3	16/11/1997	26,3	22/02/1998	29,4	11/03/1998	47,4	11/03/1998	47,5
12/10/1998	8,9	11/03/1998	14,5	22/02/1998	20,0	11/03/1998	36,1	12/03/1998	55,5	12/03/1998	62,6
15/12/1998	14,5	12/03/1998	22,0	11/03/1998	21,3	12/03/1998	47	15/12/1998	37,0	15/12/1998	40,6
23/02/1999	15,7	15/12/1998	20,8	12/03/1998	30,5	15/12/1998	30,4	23/02/1999	72,0	23/02/1999	74,8
03/02/2002	8,1	23/02/1999	28,3	15/12/1998	23,3	23/02/1999	60,9	29/03/1999	37,4	29/03/2001	41,7
02/12/2002	12,3	03/02/2002	13,5	23/02/1999	39,9	29/03/1999	31,9	29/03/2001	37,1	02/12/2002	55,3
09/10/2003	8,3	02/12/2002	16,6	22/03/1999	17,5	29/03/2001	27,8	02/12/2002	45,8	28/11/2003	50,5
03/03/2004	12,1	03/03/2004	20,5	29/03/1999	17,2	02/02/2002	29,3	28/11/2003	42,5	03/03/2004	82,2
05/05/2004	9,8	20/04/2004	13,7	03/02/2002	18,4	02/12/2002	32,9	03/03/2004	69,2	05/05/2004	54,0
27/01/2006	14,2	05/05/2004	17,9	02/12/2002	21,0	28/11/2003	28,3	05/05/2004	49,1	11/01/2005	49,9
10/02/2006	15,6	27/01/2006	23,9	03/03/2004	27,1	03/03/2004	48,2	11/01/2005	40,7	04/04/2005	38,8
27/12/2006	8,7	10/02/2006	22,4	05/05/2004	25,4	05/05/2004	40,7	27/01/2006	44,4	27/01/2006	45,9
11/02/2007	8,6	05/04/2007	13,5	11/01/2005	18,2	11/01/2005	31	13/01/2008	43,3	13/01/2008	56,8
05/04/2007	10	17/11/2008	13,6	27/01/2006	30,7	26/01/2006	27,5	30/03/2008	37,8	30/03/2008	47,8
06/12/2007	8,4	02/02/2009	17,1	10/02/2006	26,0	27/01/2006	40,3	17/11/2008	36,91	17/11/2008	43,3
02/02/2009	10,4	15/11/2009	13,3	13/01/2008	18,2	10/02/2006	27,6	02/02/2009	34,5	20/01/2009	39,9
10/03/2009	8,4	24/01/2010	17,3	17/11/2008	19,7	13/01/2008	29,7	29/03/2009	36,2	02/02/2009	40,2
02/04/2009	8,4	17/02/2010	15,0	02/02/2009	21,3	02/02/2009	27,9	28/05/2009	36,4	29/03/2009	41,8
24/01/2010	9,4	14/03/2010	20,1	15/11/2009	19,4	28/05/2009	29,5	15/11/2009	33,8	28/05/2009	44,8
17/02/2010	8,0	27/03/2010	13,0	24/01/2010	21,9	15/11/2009	30	08/01/2010	38,1	08/01/2010	42,0
14/03/2010	11,3	11/01/2011	13,0	17/02/2010	20,5	24/01/2010	28,9	24/01/2010	34,4	17/02/2010	40,6
27/03/2010	9,4	11/02/2011	19,5	14/03/2010	26,8	17/02/2010	30,8	17/02/2010	35,7	26/12/2010	59,9
11/01/2011	8,5	16/02/2011	14,2	11/01/2011	18,8	14/03/2010	31,3	14/03/2010	34,7	11/01/2011	54,7
11/02/2011	10,9	22/02/2011	18,6	11/02/2011	26,1	26/12/2010	31,2	26/12/2010	46,2	15/01/2011	40,7
16/02/2011	10,2	24/04/2011	15,4	22/02/2011	21,4	11/01/2011	33,71	11/01/2011	44,3	11/02/2011	66,4
22/02/2011	15,3	25/04/2011	17,7	24/04/2011	22,3	11/02/2011	44,3	11/02/2011	57,7	24/04/2011	60,2
24/04/2011	8,2	19/01/2012	14,3	25/04/2011	23,4	24/04/2011	35,2	24/04/2011	42,6	25/04/2011	54,7
25/04/2011	10,9	04/03/2012	13,8	19/01/2012	20,4	25/04/2011	39,3	25/04/2011	49,5	19/01/2012	50,2
19/01/2012	8,0	04/04/2012	17,5	04/04/2012	23,4	19/01/2012	33,7	19/01/2012	43,2	02/01/2013	87,7
04/03/2012	10,5	02/01/2013	23,2	02/01/2013	31,4	04/04/2012	30,3	02/01/2013	75,0	10/01/2013	59,9
04/04/2012	9,6	10/01/2013	13,9	10/01/2013	19,3	02/01/2013	56,7	10/01/2013	48,1	26/01/2013	45,9
02/01/2013	12,1	09/03/2013	14,2	09/03/2013	19,3	10/01/2013	34,7	26/01/2013	36,9	10/02/2013	39,0
09/03/2013	8,5	17/03/2013	13,6	17/03/2013	18,9	17/03/2013	31,4	17/03/2013	39,2	17/03/2013	46,6

DATA	2 HORAS	DATA	3 HORAS	DATA	4 HORAS	DATA	8 HORAS	DATA	14 HORAS	DATA	24 HORAS
16/11/1997	146,0	16/11/1997	179,9	16/11/1997	183,4	16/11/1997	197,9	16/11/1997	238,1	16/11/1997	266,3
12/03/1998	79,5	12/03/1998	89,8	12/03/1998	95,8	12/03/1998	103,7	12/03/1998	108,3	12/03/1998	108,4
23/02/1999	81,2	26/12/1998	70,5	26/12/1998	82,2	26/12/1998	88,7	26/12/1998	89,2	02/01/2000	115,4
20/01/2001	58,5	23/02/1999	82,0	23/02/1999	82,0	23/02/1999	82,0	16/02/2000	101,7	16/02/2000	131,4
29/03/2001	56,4	22/03/1999	66,7	22/03/1999	66,7	02/02/2002	127,7	02/02/2002	175,9	02/02/2002	110,7
03/02/2002	55,9	20/01/2001	64,7	20/01/2001	68,2	22/06/2002	82,0	22/06/2002	95,9	22/06/2002	178,5
02/12/2002	60,9	29/03/2001	63,1	29/03/2001	68,1	17/03/2003	85,7	17/03/2003	104,6	17/03/2003	104,7
28/11/2003	64,7	02/02/2002	69,8	02/02/2002	79,7	28/11/2003	143,1	28/11/2003	211,8	28/11/2003	129,3
06/02/2004	53,4	02/12/2002	63,6	22/06/2002	66,1	06/02/2004	90,4	06/02/2004	100,7	06/02/2004	217,3
03/03/2004	104,3	28/11/2003	80,0	28/11/2003	99,4	03/03/2004	107,2	03/03/2004	107,2	03/03/2004	126,9
05/05/2004	55,6	06/02/2004	66,1	06/02/2004	71,2	11/01/2005	103,0	11/01/2005	107,5	11/01/2005	113,8
11/01/2005	73,3	03/03/2004	106,9	03/03/2004	107,2	21/06/2005	78,4	04/04/2005	105,8	04/04/2005	120,4
04/04/2005	52,7	11/01/2005	85,6	11/01/2005	91,7	27/01/2006	80,5	21/06/2005	92,7	25/04/2005	114,3
27/01/2006	56,5	04/04/2005	62,8	21/06/2005	66,8	11/02/2007	78,1	07/11/2005	89,1	21/06/2005	106,9
30/11/2006	54,2	27/01/2006	78,3	27/01/2006	80,1	23/10/2007	105,7	30/11/2006	112,9	07/11/2005	111,9
24/10/2007	53,1	24/10/2007	74,0	24/10/2007	94,8	24/10/2007	123,2	11/02/2007	105,9	30/11/2006	123,6
13/01/2008	94,6	13/01/2008	103,9	13/01/2008	106,1	13/01/2008	109,3	24/10/2007	161,8	11/02/2007	150,4
30/03/2008	64,5	30/03/2008	70,0	30/03/2008	74,8	30/03/2008	93,5	13/01/2008	110,1	23/10/2007	108,6
17/11/2008	53,5	16/11/2008	72,0	16/11/2008	77,0	29/03/2009	146,9	29/03/2008	101,0	13/01/2008	287,8
29/03/2009	74,4	29/03/2009	91,3	29/03/2009	109,9	28/05/2009	209,2	29/03/2009	147,1	29/03/2008	113,8
28/05/2009	85,1	28/05/2009	124,8	28/05/2009	156,4	30/12/2009	81,7	28/05/2009	233,6	16/11/2008	128,1
08/01/2010	62,0	08/01/2010	78,9	31/12/2009	68,4	31/12/2009	108,5	31/12/2009	148,0	29/03/2009	147,1
26/12/2010	76,5	14/03/2010	72,8	08/01/2010	96,9	08/01/2010	102,9	08/01/2010	103,4	28/05/2009	239,7
11/01/2011	73,8	26/12/2010	111,3	14/03/2010	80,5	14/03/2010	82,3	25/02/2010	89,0	30/12/2009	126,8
15/01/2011	53,7	10/01/2011	87,3	26/12/2010	113,8	10/11/2010	80,4	10/11/2010	91,9	31/12/2009	193,8
11/02/2011	75,4	11/02/2011	75,4	10/01/2011	92,9	26/12/2010	114,3	26/12/2010	114,3	08/01/2010	114,31
27/02/2011	59,8	27/02/2011	64,8	11/02/2011	75,4	10/01/2011	95,4	10/01/2011	95,4	26/12/2010	117,9
24/04/2011	79,1	24/04/2011	100,0	27/02/2011	69,5	15/03/2011	92,1	15/03/2011	112,4	15/03/2011	128,1
25/04/2011	65,5	25/04/2011	87,5	24/04/2011	108,7	24/04/2011	112,1	24/04/2011	112,3	24/04/2011	124,2
19/01/2012	60,7	19/01/2012	62,8	25/04/2011	101,5	25/04/2011	149,4	25/04/2011	175,6	25/04/2011	179,4
02/01/2013	102,4	02/01/2013	121,3	02/01/2013	139,3	02/01/2013	221,1	02/01/2013	302,9	02/01/2013	376,9
10/01/2013	88,1	10/01/2013	94,0	10/01/2013	98,2	10/01/2013	111,2	10/01/2013	128,9	10/01/2013	135,0
26/01/2013	70,0	26/01/2013	90,4	26/01/2013	106,3	26/01/2013	171,8	26/01/2013	184,8	26/01/2013	200,3
17/03/2013	58,9	17/03/2013	66,2	17/03/2013	78,0	17/03/2013	97,6	17/03/2013	126,9	17/03/2013	152,6

ANEXO II

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd1/Pd2) Tempos de Retorno de 2 a 75 anos

	Relação	Relação	Relação	Relação	Relação	
	5 min/10 min	10 min/15 min	15 min/30 min	30 min/45 min	45 min/1h	
Máxima	0,62	0,78	0,65	0,78	0,85	
Mínima	0,61	0,75	0,62	0,75	0,83	
Média	0,61	0,77	0,63	0,76	0,84	
Mediana	0,61	0,78	0,63	0,76	0,84	

	Relação						
	1h/2h	2h/3h	3h/4h	4h/8h	8h/14h	14h/20h	20h/24h
Máxima	0,75	0,83	0,91	0,82	0,85	0,92	0,96
Mínima	0,74	0,83	0,90	0,75	0,81	0,90	0,94
Média	0,74	0,83	0,90	0,76	0,82	0,90	0,95
Mediana	0,74	0,83	0,90	0,76	0,81	0,90	0,95

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd/P1hora) Tempos de Retorno de 2 a 75 anos

	Relação	Relação	Relação	Relação	Relação
	5 min/1h	10 min/1h	15 min/1h	30 min/1h	45 min/1h
Máxima	0,20	0,32	0,43	0,67	0,85
Mínima	0,19	0,30	0,39	0,63	0,83
Média	0,19	0,31	0,40	0,64	0,84
Mediana	0,19	0,31	0,40	0,63	0,84

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd/P24horas) Tempos de Retorno de 2 a 75 anos

	Relação						
	1h/24h	2h/24h	3h/24h	4h/24h	8h/24h	14h/24h	20h/24h
Máxima	0,34	0,46	0,55	0,61	0,74	0,87	0,96
Mínima	0,29	0,39	0,46	0,52	0,69	0,86	0,94
Média	0,30	0,40	0,48	0,53	0,70	0,86	0,95
Mediana	0,29	0,39	0,47	0,53	0,70	0,86	0,95

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa Gestão de Riscos e Resposta a Desastres que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília – DF – CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca

Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

www.cprm.gov.br

Superintendência Regional de São Paulo

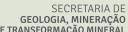
Rua Costa, 55 - Cerqueira César São Paulo - SP - CEP: 01304-010 Tel.: 11 3775-5101 - Fax: 11 3775-5165

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br


Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495 E-mail: ouvidoria@cprm.gov.br

Serviço de Atendimento ao Usuário – SEUS Tel: 21 2295-5997 - Fax: 21 2295-5897 E-mail: seus@cprm.gov.br

