

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL DEPARTAMENTO DE GESTÃO TERRITORIAL NÚCLEO DE APOIO DE CRICIÚMA

RELATÓRIO DE ATIVIDADES DE CAMPO SEMESTRE 2024/1 MONITORAMENTO DAS ÁGUAS SUBTERRÂNEAS

PROGRAMA DE RECUPERAÇÃO AMBIENTAL DA BACIA CARBONÍFERA DO SUL DE SANTA CATARINA.

CRICIÚMA, ABRIL DE 2024

RELATÓRIO DE CAMPO – Primeiro Semestre de 2024

Programa de Recuperação Ambiental da Bacia Carbonífera do Sul de Santa Catarina.

1. Monitoramento da 29^a Campanha de Águas Subterrâneas

No período de 06/03 à 28/03/2024 foram realizados os trabalhos de campo da 29ª Campanha de Monitoramento das Águas Subterrâneas. Essa campanha é composta por 40 poços, distribuídos conforme a Figura 1 e Tabela 1.

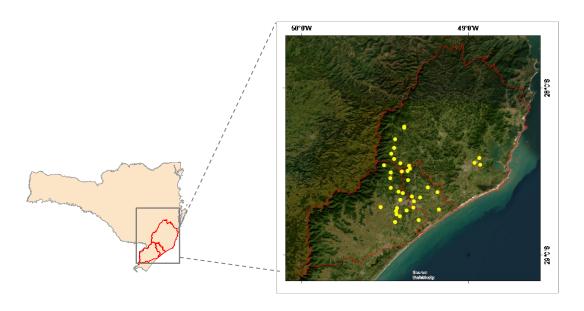


Figura 1: Localização dos pontos monitorados

Tabela 1: Distribuição de	os poços de monitoramento p	nor bacias h	nidrográficas e	tino de coleta.
i abeia i. Distribuição a	os poços de monitoramento p	JUI DUCIUS I	mar of anicas c	upo ac coicia.

Bacia Hidrográfica	Quantidade de poços	Tipo de coleta
	01	Surgente
Araranguá	05	Bailer
	11	Low Flow
Tubarão	12	Low Flow
Urussanga	11	Low Flow

Os trabalhos de campo consistem em amostragem de baixa vazão para os poços de profundidade até 60m, com uso do equipamento da marca *Solinst*, modelo *464 Pump Eletronic*. Para poços com profundidades maiores do que 60m é utilizado para a amostragem o amostrador tipo bailer. Os níveis estáticos dos poços são registrados com uso de medidor manual de nível equipado de sensor sonoro e fita milimetrada.

Nas coletas de água subterrânea são medidos em campo os parâmetros pH, OD (mg.L-1), Potencial REDOX (mV), Condutividade Elétrica (μS/cm) e Temperatura (°C) com o auxílio de

uma sonda multiparâmétrica de marca Aquaread, modelo AP-800, sendo coletados 1000 ml de água nos pontos monitorados (2 frasco de 0,5 L).

Após a coleta, uma das amostras dos frascos de 0,5 L é preservada em campo com 10 ml de ácido clorídrico, onde é colocada uma fita vermelha para destacar. Posteriormente os 1,0 L de água são encaminhados para o Laboratório do CECOPOMIN-SUREG/SP para determinação dos parâmetros abaixo relacionados:

Tabela 2: Parâmetros analisados na última campanha pelo CECOPOMIN.

Parâmetro	Mínimo	Método de Análise	
	Detectável		
pH (23°C)	0,1	Potenciométrico	
Condutividade (Scm ⁻¹ 23°C)	0,001	Condutivimétrico	
Acidez (mgCaCO ₃ L ⁻¹)	1	Potenciométrico	
Alcalinidade (mgCaCO ₃ L ⁻¹)	1,7	Potenciométrico	
Cloreto (mg.L ⁻¹)	0,1	Potenciometria (Eletrodo Íon-Seletivo)	
Sulfato (mg.L ⁻¹)	0,1	Análise Gravimétrica	
Ferro Total (mg.L ⁻¹)	0,01/1	Espectrometria de emissão atômica	
Ferro II (mg.L ⁻¹)	1	Espectrofotometria de UV-Vis	
Alumínio total (mg.L ⁻¹)	0,010	Espectrometria de emissão atômica	
Manganês total (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica	
Cobre (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica	
Chumbo (mg.L ⁻¹)	0,005	Espectrometria de emissão atômica	
Arsênio (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica	
Mercúrio (mg.L ⁻¹)	0,0003	Espectrometria de emissão atômica	
Cádmio (mg.L ⁻¹)	0,002	Espectrometria de emissão atômica	
Zinco (mg.L ⁻¹)	0,005	Espectrometria de emissão atômica	
Cálcio (mg.L ⁻¹)	0,025	Espectrometria de emissão atômica	
Magnésio (mg.L ⁻¹)	0,010	Espectrometria de emissão atômica	
Potássio (mg.L ⁻¹)	0,070	Espectrometria de emissão atômica	
Sódio (mg.L ⁻¹)	0,070	Espectrometria de emissão atômica	

A Tabela 3 apresenta os dados dos parâmetros obtidos em campo durante a 29ª campanha de amostragem de água subterrânea. Importante ressaltar que as amostragens superficiais e subterrâneas ocorram concomitantemente.

Tabela 3: Resultados dos parâmetros analisados em campo durante a 29ª campanha de amostragem de água subterrânea.

Donto	Tino	Data	Tine Dots Town (C) NU OR	Tomp (C)	nU 00	OPD	DO	EC
Ponto	Tipo	Data	Temp (C)	рН	ORP	(mg_L)	(uS_cm)	
PMAPAR08	Subterrânea	06/03/24	23,1	6,98	94,0	3,65	189	
PMAPAR10	Subterrânea	06/03/24	23,3	7,77	-49,0	1,92	380	
PMAPAR01	Subterrânea	07/03/24	24,3	7,40	99,0	2,50	345	
PMAPAR09	Subterrânea	07/03/24	23,3	8,10	62,5	3,95	443	

PMAPAR02	Subterrânea	08/03/24	24,1	5,81	37,1	1,40	89
PMAPAR04	Subterrânea	08/03/24	23,7	8,44	-106,2	0,79	466
PMAPAR03	Subterrânea	11/03/24	22,6	5,23	224,5	3,47	34
PMAPAR05	Subterrânea	11/03/24	23,0	7,26	-74,1	0,00	1582
PMAPAR06	Subterrânea	11/03/24	24,4	6,59	-73,6	-0,02	233
PMAPAR07b	Subterrânea	11/03/24	23,7	6,01	51,3	0,00	131
PMAPAR07	Subterrânea	11/03/24	23,4	6,30	40,0	0,14	106
PMFLTB10	Subterrânea	12/03/24	26,0	6,55	-76,6	-0,22	6019
PMFLTB11	Subterrânea	12/03/24	25,2	5,28	185,1	-0,07	145
PMFLTB09	Subterrânea	12/03/24	26,5	5,19	256,4	1,16	79
PMLAAR01	Subterrânea	13/03/24	24,1	4,40	407,6	2,21	77
PMLAAR04	Subterrânea	14/03/24	21,7	6,14	39,5	0,04	1840
PMLAAR03	Subterrânea	14/03/24	23,3	6,91	-14,4	0,91	212
PMLAAR02b	Subterrânea	14/03/24	24,2	6,80	-31,6	0,05	310
PMLAAR02	Subterrânea	14/03/24	22,7	6,60	178,6	0,15	228
PMAPT01B	Subterrânea	15/03/24	25,5	9,45	55,9	1,35	154
PMAPTB07	Subterrânea	15/03/24	23,0	8,25	-126,3	0,02	246
PMAPTB08	Subterrânea	15/03/24	21,4	6,68	23,6	0,14	135
РМАРТВО6	Subterrânea	18/03/24	22,5	7,21	7,9	0,21	389
PMAPUR03	Subterrânea	18/03/24	21,4	4,36	391,2	0,11	75
PMAPUR01	Subterrânea	18/03/24	27,4	7,80	42,6	0,13	331
PMAPUR02	Subterrânea	18/03/24	21,6	7,30	143,0	0,25	216
PMAPUR04	Subterrânea	18/03/24	21,9	7,90	-142,2	0,06	286
PMAPTB03	Subterrânea	19/03/24	20,8	4,00	234,6	0,21	838
PMAPTB04	Subterrânea	19/03/24	23,8	6,43	-24,3	0,09	1050
PMAPTB05	Subterrânea	19/03/24	21,7	7,90	-140,7	0,15	1262
PMLAUR01	Subterrânea	19/03/24	21,5	7,12	-55,0	0,05	234
PMLAUR02	Subterrânea	19/03/24	22,6	8,01	-189,2	0,04	173
PMAPAR11	Subterrânea	20/03/24	22,3	7,46	-16,2	0,27	7456
PMLAUR03	Subterrânea	20/03/24	24,1	5,07	314,7	3,64	156
PMAPTB02	Subterrânea	21/03/24	20,1	4,32	400,7	3,73	78
PMAPUR05	Subterrânea	28/03/24	24,2	8,98	-230,0	0,44	418
PMAPUR06	Subterrânea	28/03/24	23,8	4,84	219,4	3,86	184

PMAPUR08	Subterrânea	28/03/24	24,2	6,16	41,8	2,14	226
PMAPUR07	Subterrânea	28/03/24	26,3	6,76	-4,7	0,70	258

2. Resumo das atividades de campo do mês de março de 2024

A Tabela 4 apresenta resumo das atividades de monitoramento das águas subterrâneas.

Tabela 4: Resumo das atividades de monitoramento das águas subterrâneas.

Período	Pontos	Monitoramento
06 a 28/03/24	28	Aquífero Profundo
12/03/24	03	Fluvio Lagunar
13 a 14/03/24	05	Leques Aluviais
19 e 20/03/24	03	Leques Aluviais

3. Amostras enviadas para laboratório CECOPOMIN/SP

Na Tabela 5 estão apresentados os lotes enviados com as respectivas datas e quantidade de amostras.

Tabela 5: Envio das amostras enviadas ao CECOPOMIN

Data	Lote	Amostras	Monitoramento	Previsão de entrega
03/04/2024	2º lote	39	Águas subterrâneas	05/04/2024

4. Conclusão:

Após a conclusão dos trabalhos de monitoramento do primeiro semestre de 2024 foram realizados:

- ✓ Coletas de amostras de águas subterrâneas para as bacias dos rios Tubarão, Urussanga e Araranguá, abrangendo os aquíferos profundo, fluvio-lagunar e leques aluviais;
- ✓ As amostragens, no período de 06/03 à 21/03/24 foram realizadas pela equipe composta pelos técnicos Pedro e Bruno (35 poços). No dia 28/03/2024 foram amostrados 5 poços pela equipe Patrícia e Jéssica.
- ✓ O poço PMAPTB01 não foi amostrado, porque foi perfurado novo poço para substituição deste, com mesmas características, não sendo necessário amostrar os dois poços.
- ✓ Todas as amostras de água foram enviadas para o Laboratório CECOPOMIN-CPRM/SP;
- ✓ Os resultados das análises em laboratório, geralmente, são disponibilizados pelo laboratório, em média, após 60 dias após o recebimento das amostras pelo laboratório, ao término deste relatório, ainda não teremos os resultados da análise.

5. Relatório Fotográfico

Amostragem do poço PMAPUR05 profundidade 37m (Low Flow).

6. Equipe Técnica

Chefe do Núcleo de Criciúma: Guilherme Casarotto Troian Estagiária do Núcleo de Criciúma: Bárbara Victória Pazzini Uribe Técnico em Hidrologia no NUMA: Patrícia Wagner Sotério Técnico em Geociências na SUREG/PA: Pedro Cesar de Freitas Técnico em Geociências na SUREG/PA: Bruno Francisco B Schiehl Residente de Geologia: Jéssica Finardi Ramos