PROGRAMA GESTÃO DE RISCOS E DE DESASTRES

Levantamentos, Estudos, Previsão e Alerta de Eventos Hidrológicos Críticos

ATLAS PLUVIONETRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Município: Orlândia/SP

Estação Pluviométrica: Orlândia

Códigos: 02047025 (ANA) e B4-015 (DAEE)

MINISTÉRIO DE MINAS E ENERGIA

Ministro de Estado

Alexandre Silveira de Oliveira

Secretário de Geologia, Mineração e Transformação Mineral

Vitor Eduardo de Almeida Saback

SERVIÇO GEOLÓGICO DO BRASIL (SGB-CPRM)

DIRETORIA EXECUTIVA

Diretor-Presidente

Inácio Cavalcante Melo Neto

Diretora de Hidrologia e Gestão Territorial

Alice Silva de Castilho

Diretor de Geologia e Recursos Minerais

Francisco Valdir Silveira

Diretor de Infraestrutura Geocientífica

Paulo Afonso Romano

Diretor de Administração e Finanças

Cassiano de Souza Alves

COORDENAÇÃO TÉCNICA

Chefe do Departamento de Hidrologia

Andrea de Oliveira Germano

Chefe da Divisão de Hidrologia Aplicada

Emanuel Duarte Silva

Achiles Monteiro (in memoriam)

Chefe do Departamento de Gestão Territorial

Diogo Rodrigues A. da Silva

Chefe da Divisão de Geologia Aplicada

Tiago Antonelli

Coordenação Executiva do DEHID - Projeto Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenação do Projeto - Cartas Municipais de Suscetibilidade

a Movimentos Gravitacionais de Massa e Inundações

Douglas Silva Cabral

SUPERINTENDÊNCIA REGIONAL DE BELO HORIZONTE

Superintendente

Marlon Marques Coutinho

Gerência de Hidrologia e Gestão Territorial

José Alexandre Pinto Coelho Filho

Gerência de Geologia e Recursos Minerais

Julio Cesar Lombello

Gerência de Infraestrutura Geocientífica

Júlio Murilo Martino Pinto

Gerência de Administração e Finanças

Margareth Marques dos Santos

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL (SGB-CPRM)

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL

PROGRAMA GESTÃO DE RISCOS E DE DESASTRES
Levantamentos, Estudos, Previsão e Alerta de Eventos Hidrológicos Críticos

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Estação Pluviométrica: Orlândia

Códigos: 02047025 (ANA) e B4-015 (DAEE)

Município: Orlândia/SP

AUTOR

Eber José de Andrade Pinto

Belo Horizonte 2023

REALIZAÇÃO

Superintendência Regional de Belo Horizonte

AUTOR

Eber José de Andrade Pinto

COORDENADORES REGIONAIS DO PROJETO ATLAS PLUVIOMÉTRICO

José Alexandre Moreira Farias - REFO (in memoriam) Karine Pickbrenner - SUREG/PA

EQUIPE EXECUTORA

Adriana Burin Weschenfelder - SUREG/PA Cristiane Ribeiro de Melo - SUREG/RE Catharina dos Prazeres Campos de Farias - SUREG/BE Osvalcélio Mercês Furtunato - SUREG/SA

SISTEMA DE INFORMAÇÕES GEOGRÁFICAS E MAPA

Ivete Souza do Nascimento - SUREG/BH

PROJETO GRÁFICO/EDITORAÇÃO

Capa (DIEDIG)

Juliana Colussi

Miolo (DIEDIG)

Agmar Alves Lopes Juliana Colussi

Diagramação (SUREG/PA)

Alessandra Luiza Rahel

Referências

Ana Lúcia Borges Fortes Coelho (Organização e Formatação)

Serviço Geológico do Brasil (SGB-CPRM)

www.sgb.gov.br seus@sgb.gov.br

Dados Internacionais de Catalogação-na-Publicação (CIP)

Pinto, Eber José de Andrade

P659

Atlas Pluviométrico do Brasil: Equações Intensidade-Duração Frequência (Desagregação de Precipitações Diárias); estação pluviométrica Orlândia, códigos 02047025 (ANA) e B4-015 (DAEE), município Orlândia, SP / Eber José de Andrade Pinto. – Belo Horizonte: SGB-CPRM, 2023.

1 recurso eletrônico: PDF

Programa de Gestão de Riscos e de Desastres Levantamentos, Estudos, Previsão e Alerta de Eventos Hidrológicos Críticos ISBN 978-65-5664-413-4

1. Hidrologia. 2. Pluviometria - Brasil. 3. Equações IDF I. Título

CDD 551.570981

Ficha catalográfica elaborada pela bibliotecária Ana Lúcia Borges Fortes Coelho – CRB10 - 840

Direitos desta edição: Serviço Geológico do Brasil (SGB-CPRM) Permitida a reprodução desta publicação desde que mencionada a fonte.

APRESENTAÇÃO

o projeto Atlas Pluviométrico é uma iniciativa dentro do programa de Gestão de Riscos e de Desastres que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas as áreas suscetíveis a movimentos de massa e enchentes ou inseridos em sub-bacias monitoradas pelos Sistemas de Alerta Hidrológico e projetos executados pelo Serviço Geológico do Brasil (SGB-CPRM).

Este estudo apresenta a equação IDF estabelecida para o município de Orlândia, onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Orlândia, códigos 02047025 (ANA) e B4-015 (DAEE), localizada no mesmo município.

Inácio Cavalcante Melo Neto
Diretor-Presidente
Alice Silva de Castilho
Diretora de Hidrologia e Gestão Territorial

RESUMO

Este trabalho apresenta a equação Intensidade-Duração-Frequência (IDF) estabelecida para o município de Orlândia/SP. A série de dados utilizada no estudo foi elaborada a partir de registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Orlândia, códigos 02047025 (ANA) e B4-015 (DAEE). A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). A distribuição de frequência ajustada aos dados diários foi a GEV, com os parâmetros calculados pelo método dos momentos-L. A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas de equação IDF estabelecida por Martinez Junior e Piteri (2016 apud DAEE 2018), para o município de Guará/SP. As equações ajustadas para representar a família de curvas IDF podem ser aplicadas para durações entre 10 min e 24 h e são recomendadas para tempos de retorno até 100 anos. A aplicação da equação IDF elaborada para o município de Orlândia permite associar intensidades de precipitação, nas diferentes durações, a frequências de ocorrência, as quais serão utilizadas no dimensionamento de estruturas hidráulicas. Também pode ser utilizada de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido numa determinada duração, definindo se o evento foi raro ou ordinário, de acordo com a caracterização de chuva extrema local.

ABSTRACT

This work presents the Intensity-Duration-Frequency (IDF) equation established to the city of Orlândia/SP. The data series used in the study was prepared from records of maximum daily rainfall per hydrological year of the Orlândia rain station, codes 02047025 (ANA) and B4-015 (DAEE). The methodology for defining the equation by disaggregating daily rainfall is described in detail in Pinto (2013). The frequency distribution adjusted to the daily data was GEV, with the parameters calculated by the L-moment method. The disaggregation coefficients for sub-daily time scales were obtained from the IDF equation established by Martinez Junior e Piteri (2016 apud DAEE 2018), para o município de Guará/SP. The equations fitted to represent the family of IDF curves can be applied for durations between 10min and 24h and are recommended for return period up to 100 years. The application of the IDF equation developed for the city of Orlândia allows the association of precipitation intensities, in different durations, with frequencies of occurrence, which will be used in the design of hydraulic structures. It can also be used in an inverse way, that is, to estimate the frequency of a precipitation event that occurred over a given duration, defining how unusual or ordinary the event was, according to the local extreme rain characterization.

SUMÁRIO

INTRODUÇÃO	
EQUAÇÃO	7
EXEMPLO DE APLICAÇÃO	10
REFERÊNCIAS	10
ANEXO I	11
ANEXO II	13
LISTA DE FIGURAS	
Figura 01 - Localização do Município e da Estação Pluviométrica	. 7
Figura 02 - Curvas intensidade-duração-frequência	. 8
LISTA DE TABELAS	
Tabela 01 - Intensidade da chuva em mm/h	9
Tabela 02 - Altura da chuva em mm	9

INTRODUÇÃO

A equação definida pode ser utilizada no município de Orlândia.

O município de Orlândia está localizado a 371 km de São Paulo, capital do estado de São Paulo e faz divisa com os municípios de São Joaquim da Barra, Nuporanga, Sales Oliveira e Morro Agudo. O município possui área de 291,765 km² (Instituto Brasileiro de Geografia e Estatística - IBGE, 2022) e localiza-se a uma altitude de 703 metros em sua sede. A população de Orlândia, segundo IBGE (2022), é de 38.319 habitantes.

A estação Orlândia, códigos 02047025 (ANA) e B4-015 (DAEE), está localizada na Latitude 20°44'00"S e Longitude 47°53'00"O; na sub-bacia 61, sub-bacia do rio Grande. A estação pluviométrica localiza-se no município de Orlândia, a 1,8 km da sede do município. Esta estação encontra-se em operação desde 1937 e o período utilizado na elaboração da IDF foi de 1937 a 2021. Os dados para definição da equação IDF foram obtidos a partir dos dados diários de precipitação coletados em um pluviômetro operado pelo Departamento de Águas e Energia Elétrica de São Paulo – DAEE.

A Figura 01 apresenta a localização do município e da estação pluviométrica.

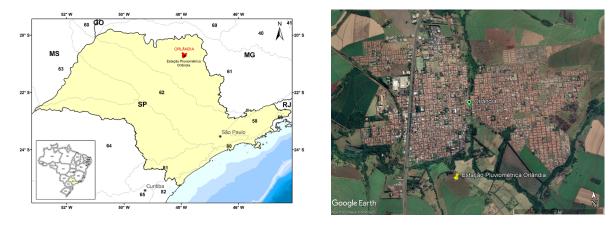


Figura 01 - Localização do Município e da Estação Pluviométrica (Fonte: Google Earth, 2023).

EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Orlândia, códigos 02047025 (ANA) e B4-015 (DAEE), foi utilizada a série de precipitações diárias máximas por ano hidrológico (01/Out a 30/Set), apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Generalizada de Valores Extremos - GEV, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas da equação IDF estabelecida por Martinez Junior e Piteri (2016 *apud* DAEE 2018), para o município de Guará. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

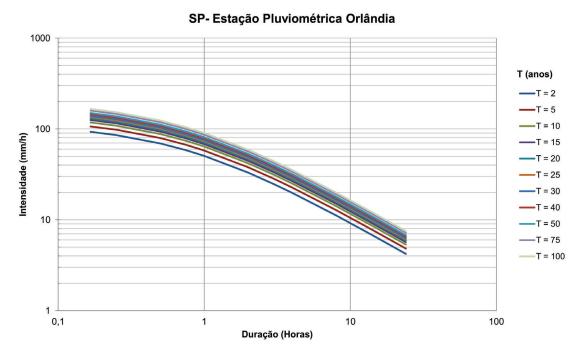


Figura 02 - Curvas intensidade-duração-frequência.

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

Té o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso da estação Orlândia, os parâmetros da equação são os seguintes:

 $10min \le t \le 24h$

$$a = 3545,1$$
; $b = 0,1480$; $c = 44,55$; $d = 0,9364$

$$i = \frac{3545,17^{0,1480}}{(t+44,55)^{0,9364}} \tag{02}$$

A equação acima é válida para tempos de retorno de até 100 anos.

A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 - Intensidade da chuva em mm/h.

DURAÇÃO	TEMPO DE RETORNO, T (ANOS)											
DA CHÚVA	2	5	10	15	20	25	30	40	50	60	75	100
10 Minutos	92,9	106,4	117,8	125,1	130,6	135,0	138,6	144,7	149,5	153,6	158,8	165,7
15 Minutos	85,5	98,0	108,5	115,3	120,3	124,3	127,7	133,3	137,7	141,5	146,3	152,6
20 Minutos	79,3	90,8	100,7	106,9	111,5	115,3	118,4	123,6	127,7	131,2	135,6	141,5
30 Minutos	69,3	79,4	88,0	93,4	97,5	100,7	103,5	108,0	111,6	114,7	118,5	123,7
45 Minutos	58,4	66,9	74,1	78,7	82,1	84,8	87,2	91,0	94,0	96,6	99,8	104,2
1 Hora	50,5	57,8	64,1	68,0	71,0	73,4	75,4	78,7	81,3	83,5	86,3	90,1
2 Horas	33,0	37,8	41,9	44,5	46,4	48,0	49,3	51,5	53,2	54,6	56,5	58,9
3 Horas	24,7	28,3	31,3	33,3	34,7	35,9	36,9	38,5	39,7	40,8	42,2	44,0
4 Horas	19,8	22,6	25,1	26,6	27,8	28,7	29,5	30,8	31,8	32,7	33,8	35,3
5 Horas	16,5	18,9	21,0	22,3	23,2	24,0	24,7	25,8	26,6	27,3	28,3	29,5
6 Horas	14,2	16,3	18,0	19,2	20,0	20,7	21,2	22,2	22,9	23,5	24,3	25,4
7 Horas	12,5	14,3	15,9	16,8	17,6	18,2	18,7	19,5	20,1	20,7	21,4	22,3
8 Horas	11,2	12,8	14,2	15,0	15,7	16,2	16,7	17,4	18,0	18,4	19,1	19,9
12 Horas	7,8	9,0	9,9	10,6	11,0	11,4	11,7	12,2	12,6	13,0	13,4	14,0
14 Horas	6,8	7,8	8,7	9,2	9,6	9,9	10,2	10,7	11,0	11,3	11,7	12,2
20 Horas	5,0	5,7	6,3	6,7	7,0	7,2	7,4	7,7	8,0	8,2	8,5	8,9
24 Horas	4,2	4,8	5,3	5,7	5,9	6,1	6,3	6,6	6,8	7,0	7,2	7,5

Tabela 02 - Altura da chuva em mm.

DURAÇÃO	TEMPO DE RETORNO, T (ANOS)											
DA CHÚVA	2	5	10	15	20	25	30	40	50	60	75	100
10 Minutos	15,5	17,7	19,6	20,9	21,8	22,5	23,1	24,1	24,9	25,6	26,5	27,6
15 Minutos	21,4	24,5	27,1	28,8	30,1	31,1	31,9	33,3	34,4	35,4	36,6	38,2
20 Minutos	26,4	30,3	33,6	35,6	37,2	38,4	39,5	41,2	42,6	43,7	45,2	47,2
30 Minutos	34,7	39,7	44,0	46,7	48,7	50,4	51,7	54,0	55,8	57,3	59,3	61,8
45 Minutos	43,8	50,1	55,6	59,0	61,6	63,6	65,4	68,2	70,5	72,4	74,9	78,1
1 Hora	50,5	57,8	64,1	68,0	71,0	73,4	75,4	78,7	81,3	83,5	86,3	90,1
2 Horas	66,0	75,6	83,8	89,0	92,9	96,0	98,6	102,9	106,4	109,3	112,9	117,8
3 Horas	74,1	84,8	94,0	99,8	104,1	107,6	110,6	115,4	119,2	122,5	126,6	132,1
4 Horas	79,1	90,6	100,4	106,6	111,2	115,0	118,1	123,2	127,4	130,9	135,2	141,1
5 Horas	82,7	94,7	104,9	111,4	116,2	120,1	123,4	128,8	133,1	136,7	141,3	147,5
6 Horas	85,3	97,7	108,3	115,0	120,0	124,0	127,4	133,0	137,4	141,2	145,9	152,3
7 Horas	87,5	100,2	111,0	117,9	123,0	127,1	130,6	136,3	140,9	144,7	149,6	156,1
8 Horas	89,2	102,2	113,2	120,2	125,4	129,7	133,2	139,0	143,7	147,6	152,6	159,2
12 Horas	94,0	107,7	119,3	126,7	132,2	136,7	140,4	146,5	151,4	155,6	160,8	167,8
14 Horas	95,7	109,6	121,5	129,0	134,6	139,1	142,9	149,1	154,1	158,3	163,7	170,8
20 Horas	99,3	113,7	126,0	133,8	139,7	144,3	148,3	154,7	159,9	164,3	169,8	177,2
24 Horas	101,0	115,7	128,2	136,2	142,1	146,8	150,9	157,4	162,7	167,2	172,8	180,3

EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Orlândia foi registrada chuva de 120 mm com duração de 4 horas. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{03}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 120 mm dividido por 4 h (240 min) é igual a 30 mm/h. Substituindo os valores na equação 03 temos:

$$T = \left[\frac{30(240 + 44,55)^{0,9364}}{3545,1}\right]^{1/0,1480} = 33,4 \ anos$$

O tempo de retorno de 33,4 anos corresponde a uma probabilidade de 3,0% que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou

$$P(i \ge 30 \ mm/h) = \frac{1}{T}100 = \frac{1}{33.4}100 = 3.0\%$$

REFERÊNCIAS

DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA - DAEE (São Paulo). **Precipitações intensas no estado de São Paulo.** São Paulo: DAEE; Centro Tecnológico de Hidráulica e Recursos Hídricos da USP, 2018. Disponível em: http://www.daee.sp.gov.br/index.php?option=com_content&view=article&id=743%3Apluviografia&catid=43%3Ahidrometeorologia&Itemid=30. Acesso em: 20 jan. 2023.

GOOGLE EARTH. **Imagem de localização da Estação pluviométrica Orlândia.** Brasil: Google, [2023]. Disponível em: http://www.google.com/earth. Acesso em: 26 out. 2023.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado:** Orlândia. Brasília: IBGE, 2022. Disponível em: https://cidades.ibge.gov.br/brasil/sp/orlandia/panorama. Acesso em: 26 out. 2023.

PINTO, E. J. de A. **Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico**. Belo Horizonte: CPRM, 2013.

ANEXO I

Série de Dados Utilizados — Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Out a 30/Set)

N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)	N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)
1	1937	1938	17/03/1938	90,0	43	1979	1980	02/02/1980	115,1
2	1938	1939	27/10/1938	135,0	44	1980	1981	01/12/1980	65,5
3	1939	1940	03/02/1940	68,4	45	1981	1982	20/10/1981	111,2
4	1940	1941	14/09/1941	52,1	46	1982	1983	04/03/1983	96,5
5	1941	1942	31/10/1941	80,2	47	1983	1984	08/04/1984	69,6
6	1942	1943	13/01/1943	80,7	48	1984	1985	28/02/1985	74,8
7	1943	1944	30/11/1943	68,4	49	1985	1986	06/01/1986	97,1
8	1944	1945	01/02/1945	70,2	50	1986	1987	01/12/1986	76,2
9	1945	1946	12/11/1945	70,5	51	1987	1988	24/10/1987	59,5
10	1946	1947	01/01/1947	178,6	52	1988	1989	22/01/1989	63,2
11	1947	1948	05/10/1947	56,8	53	1989	1990	28/11/1989	68,3
12	1948	1949	14/01/1949	105,1	54	1990	1991	28/01/1991	86,2
13	1949	1950	25/01/1950	111,2	55	1991	1992	02/11/1991	76,7
14	1950	1951	25/11/1950	100,8	56	1992	1993	21/11/1992	85,2
15	1951	1952	09/12/1951	68,5	57	1993	1994	02/10/1993	64,2
16	1952	1953	26/12/1952	56,0	58	1994	1995	01/04/1995	75,1
17	1953	1954	04/12/1953	75,5	59	1995	1996	13/12/1995	99,4
18	1954	1955	27/02/1955	60,1	60	1996	1997	03/01/1997	92,5
19	1955	1956	01/01/1956	62,8	61	1997	1998	14/02/1998	66,5
20	1956	1957	05/02/1957	106,6	62	1998	1999	10/12/1998	77,5
21	1957	1958	16/03/1958	96,0	63	1999	2000	02/02/2000	77,0
22	1958	1959	20/03/1959	143,7	64	2000	2001	17/12/2000	74,2
23	1959	1960	28/02/1960	99,5	65	2001	2002	12/11/2001	120,5
24	1960	1961	05/03/1961	128,4	66	2002	2003	18/01/2003	102,1
25	1961	1962	04/02/1962	66,4	67	2003	2004	05/03/2004	105,2
26	1962	1963	19/02/1963	85,8	68	2004	2005	25/05/2005	80,1
27	1963	1964	30/03/1964	50,9	69	2005	2006	21/10/2005	85,1
28	1964	1965	15/01/1965	90,1	70	2006	2007	05/12/2006	100,5
29	1965	1966	12/01/1966	72,6	71	2007	2008	15/03/2008	69,4
30	1966	1967	21/12/1966	57,2	72	2008	2009	10/11/2008	75,1
31	1967	1968	25/11/1967	105,3	73	2009	2010	16/11/2009	101,0
32	1968	1969	15/12/1968	57,1	74	2010	2011	13/04/2011	51,2
33	1969	1970	18/01/1970	89,5	75	2011	2012	02/01/2012	80,5
34	1970	1971	06/03/1971	96,2	76	2012	2013	30/05/2013	70,0

ANEXO I

Série de Dados Utilizados — Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Out a 30/Set) (continuação)

N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)	N	AI	AF	DATA	PRECIPITAÇÃO MÁXIMA DIÁRIA (MM)
35	1971	1972	03/12/1971	70,1	77	2013	2014	04/11/2013	48,4
36	1972	1973	01/01/1973	72,5	78	2014	2015	06/03/2015	52,5
37	1973	1974	15/01/1974	93,2	79	2015	2016	09/12/2015	118,0
38	1974	1975	06/01/1975	61,3	80	2016	2017	14/11/2016	48,9
39	1975	1976	28/05/1976	75,1	81	2017	2018	02/12/2017	93,0
40	1976	1977	25/12/1976	75,7	82	2018	2019	29/12/2018	91,0
41	1977	1978	09/03/1978	79,9	83	2019	2020	09/01/2020	59,0
42	1978	1979	15/09/1979	61,5	84	2020	2021	13/01/2021	76,6

ANEXO II

As razões entre as alturas de chuvas de diferentes durações obtidas a partir das relações IDF estabelecidas por Martinez Junior e Piteri (2016 *apud* DAEE 2018), para o município de Guará/SP.

Relação 24h/1dia: 1,13

| RELAÇÃO |
|---------|---------|---------|---------|---------|---------|---------|
| 14H/24H | 8H/14H | 6H/8H | 4H/6H | 3H/4H | 2H/3H | 1H/2H |
| 0,94 | 0,93 | 0,96 | 0,93 | 0,94 | 0,89 | 0,76 |

RELAÇÃO 45MIN/1H	,		RELAÇÃO 10MIN/15MIN
0,87	0,79	0,62	0,72

O SERVIÇO GEOLÓGICO DO BRASIL (SGB-CPRM) E OS OBJETIVOS PARA O DESENVOLVIMENTO SUSTENTÁVEL - ODS

Em setembro de 2015 líderes mundiais reuniram-se na sede da ONU, em Nova York, e formularam um conjunto de objetivos e metas universais com intuito de garantir o desenvolvimento sustentável nas dimensões econômica, social e ambiental. Esta ação resultou na *Agenda 2030*, a qual contém um conjunto de *17 Objetivos de Desenvolvimento Sustentável - ODS*.

A Agenda 2030 é um plano de ação para as pessoas, para o planeta e para a prosperidade. Busca fortalecer a paz universal, e considera que a erradicação da pobreza em todas as suas formas e dimensões é o maior desafio global, e um requisito indispensável para o desenvolvimento sustentável.

Os 17 ODS incluem uma ambiciosa lista de 169 metas para todos os países e todas as partes interessadas, atuando em parceria colaborativa, a serem cumpridas até 2030.

O **Serviço Geológico do Brasil (SGB-CPRM)** atua em diversas áreas intrínsecas às Geociências, que podem ser agrupadas em quatro grandes linhas de atuação:

- Geologia;
- · Recursos Minerais;
- · Hidrologia; e
- Gestão Territorial.

Todas as áreas de atuação do SGB-CPRM, sejam nas áreas das Geociências ou nos serviços compartilhados, ou ainda em seus programas internos, devem ter conexão com os ODS, evidenciando o comprometimento de nossa instituição com a sustentabilidade, com a humanidade e com o futuro do planeta.

A tabela a seguir relaciona as áreas de atuação do SGB-CPRM com os ODS.

Áreas de atuação do Serviço Geológico do Brasil (SGB-CPRM) e os Objetivos de Desenvolvimento Sustentável - ODS

ÁREA DE ATUAÇÃO GEOCIÊNCIAS

LEVANTAMENTOS GEOLÓGICOS

AVALIAÇÃO DOS RECURSOS MINERAIS DO BRASIL

LEVANTAMENTOS GEOLÓGICOS MARINHOS

LEVANTAMENTOS GEOQUÍMICOS

LEVANTAMENTOS BÁSICOS **DE RECURSOS HÍDRICOS SUPERFICIAIS**

SISTEMAS DE ALERTA HIDROLÓGICO

AGROGEOLOGIA

LEVANTAMENTOS BÁSICOS DE RECURSOS HÍDRICOS SUBTERRÂNEOS

RISCO GEOLÓGICO

GEODIVERSIDADE

PATRIMONIO GEOLÓGICO **E GEOPARQUES**

ZONEAMENTO ECOLÓGICO-ECONÔMICO

ÁREA DE ATUAÇÃO **SERVIÇOS COMPARTILHADOS**

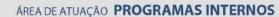
GEOPROCESSAMENTO E SENSORIAMENTO REMOTO

TECNOLOGIA DA INFORMAÇÃO

MUSEU DE CIÊNCIAS DA TERRA

PARCERIAS NACIONAIS E INTERNACIONAIS

REDE DE LITOTECAS


REDE DE BIBLIOTECAS

GOVERNANÇA

SUSTENTABILIDADE

PRÓ-EQUIDADE

COMITÊ DE ÉTICA

O projeto Atlas Pluviométrico é uma iniciativa dentro do programa de Gestão de Riscos e de Desastres que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF). As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

MINISTÉRIO DE MINAS E ENERGIA

