

NEW FINDINGS USING NOBLE GASES ISOTOPES IN THE GUARANI AQUIFER SYSTEM IN SOUTH AMERICA

Isadora Kuhn, Roberto Kirchheim

WHO WE ARE

Headquarter

Brasília

Main Headquarter

Rio de Janeiro

8 Regional headquarters

Belém, Belo Horizonte, Goiânia, Manaus, Porto Alegre, Recife, Salvador e São Paulo

3 RESIDENCES

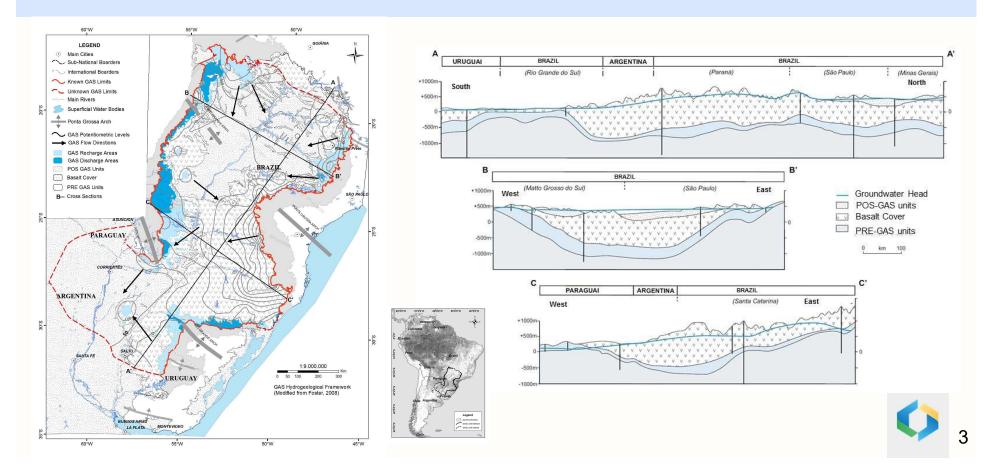
Fortaleza, Porto Velho e Teresina

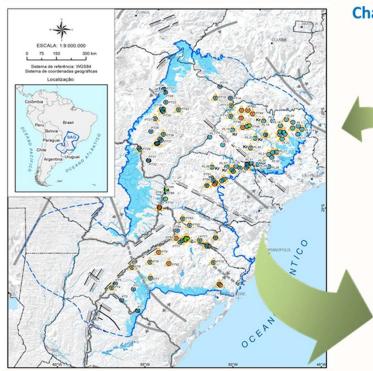
7 Technical Offices

Curitiba, Criciúma, Natal, Cuiabá, Roraima, Palmas e São Luís

CONTEXT

- GAS is a major transbounday aquifer system;
- Target for many national research initiatives;
- First GEF Project on Groundwater
 Management (World Bank/OAS);
- Treaty ratified by the 4 Countries;
- Intensification of the use;
- IAEA target for aplication of Innovative Isotope Techniques.





THE GUARANI AQUIFER SYSTEM

METHODOLOGY

Characterization of fossil groundwater systems using long-lived radionuclides

2010-2015

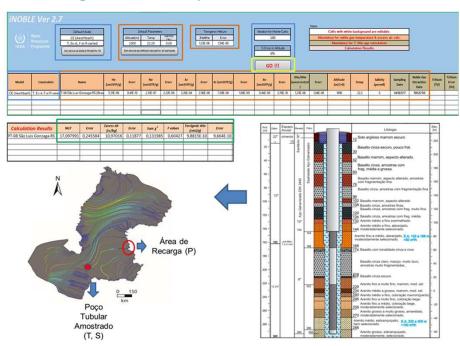
Research Project: Complementary Isotopic Studies in the Northern Compartment of the Guarani Aquifer System (Brazil) – Groundwater Dating Along Defined Flow Paths

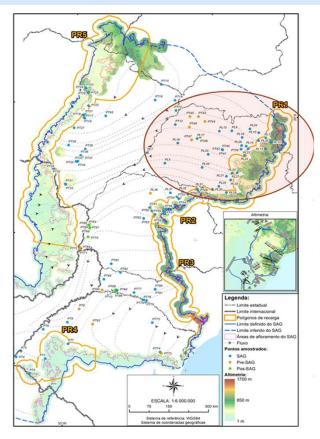
2017-2020

CRP Title: Complementary Isotopic Studies in the Southern, Western and Eastern Compartments of the Guarani Aquifer System (Brazil) - Groundwater Dating Along Defined Flow Paths'

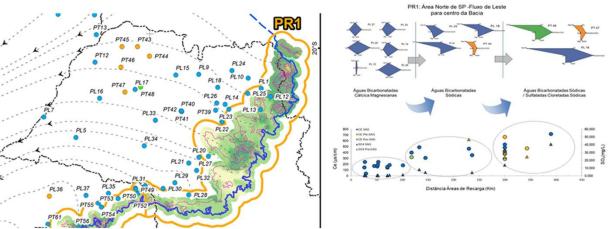
Improve ⁴He/⁸¹Kr chronometer

100 NG + 11 ⁸¹Kr + Stable Isotopes + Hydrochemistry


Step 1: Sampling of representative and documented GAS deep wells

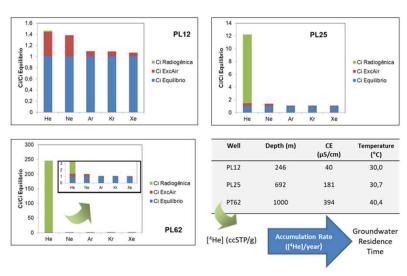

Constructive heterogeneity and uncertainties; difficulties in obtaining laminar flow; shipment challenges

Step 2: NG analysis # INOBLE2.7 modeling # GAS regional conceptual model

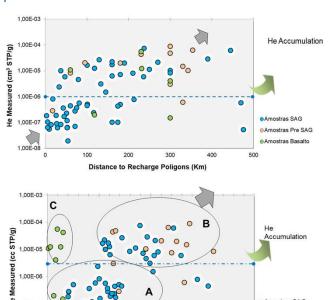


TDS, T, Altitude, NG concentrations

METHODOLOGY


Step 3: Delineation of recharge polygons

Hydrochemical evolution of the GAS waters >Na, SO4, Cl, CE, Temp



Step 4: NG Component Separation

Significant gradients in ⁴He rad concentrations, proportional to residence time.

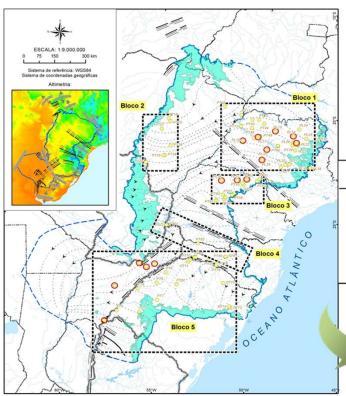
Step 5: ⁴He distribution across the SAG

Increase of ⁴He rad and accumulation trends

1000

Depth of the Wells (m)

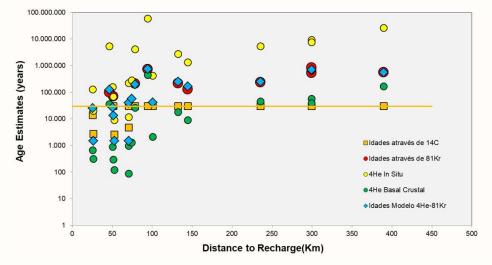
₽ 1,00E-07


1,00E-08

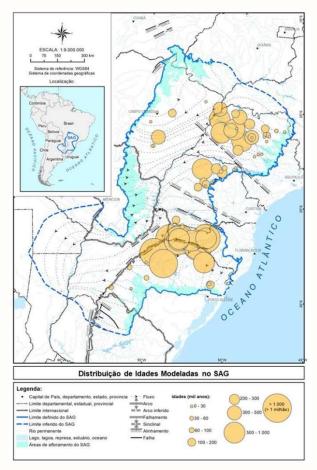
Amostras SAGAmostras Pre SAG

Amostras Basalto

Step 4: Estimate residence time: use of the chronometer 81 Kr-4 He rad.


Block Discretization in order to find the best fit for the **Basal Fluxes** and **Vertical Diffusion**

Blocos	Agrupamentos de Blocos	F - Fluxo Basal (cm³/cm-²ano-1)	D _{He} - Difusão Vertical (m²/s)
1	Aggarval et al., 2014	$2,3x10^{-7}$	1,0x10 ⁻⁹
1 e 2	Norte	1,8x10 ⁻⁷	$5,3x10^{-10}$
3	Central	$(2,0x10^{-7})$	$1,6x10^{-10}$
4 e 5	Sul	4,1x10 ⁻⁸	2,6x10 ⁻¹⁰


GAS block discretization to find best fit with ⁸¹Kr absolute ages (basal fluxes and vertical difusion (Torgersen & Ivey (1985)

Validating ⁴He dating method using ⁸¹Kr

Modeled residence tomes with the ⁸¹Kr-⁴He rad chronometer

CONCLUSIONS

- ✓ Agreement of 20% between the modeled ages ⁴He/⁸¹Kr and the absolute ⁸¹Kr ages;
- ✓ He in situ accumulation rates proved to produce overestimated groundwater ages;
- ✓ Reference values for He crustal flows at craton areas resulted in underestimate ages;
- ✓ The dating technique with ⁴He can be considered a quantitative approach when model parameters can be calibrated with an absolute dating. In this case, the He- Kr chronometer proved to be efficient and sufficiently robust.
- ✓ The differences between NGT at the LGM and current temperatures shows average cooling (△t) on the order of 4°C.
- ✓ The new modeled age distribution, therefore, may be a huge step towards the sound management of this common transboundary aquifer.

Apresentação

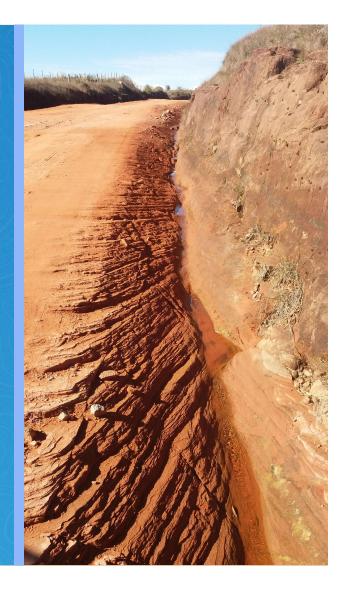
Hidrologia

O Serviço Geológico do Brasil - SGB, através do Programa Nacional de Hidrologia do Departamento de Hidrologia - DEHID, realiza atividades de levantamento básico, administração de base de dados, estudos interpretativos e difusão de conhecimento hidrológico e hidrogeológico. Com atuação em todo o território nacional, proporciona, através de ações extensivas, o suporte à gestão dos recursos hídricos e a prevenção de desastres naturais.

O DEHID é composto por três unidades técnicas e executoras, conforme a seguir:

Divisão de Hidrologia Básica - DIHIBA Divisão de Hidrologia Aplicada - DIHAPI Divisão de Hidrogeologia e Exploração - DIHEXP

Hidrologia e Hidrogeologia


THANK YOU OBRIGADA!

isadora.kuhn@sgb.gov.br

