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ABSTRACT: Soil saturated hydraulic conductivity (Ksat) and steady-state infiltration rate 
(SSIR) are essential and necessary soil properties for different geoscience applications. 
Values of these hydraulic properties for the Brazilian territory are difficult to access and 
are dispersed in research efforts carried out around the country. This study developed an 
easy-to-manipulate, freely accessible database of soil saturated hydraulic conductivity, 
comprising field and laboratory analyses, and steady-state infiltration rates for Brazilian 
soils. This database was named Ksat-SSIR-DB. One analysis of the Ksat-SSIR-DB aimed to 
evaluate its coverage in Brazilian territory and in different soil groups. Average values of 
these hydraulic properties were also presented for textural classes, with values compared 
to those reported in international literature, and for other groupings, such as soil class, 
land use class, and porosity class. The variability of Ksat data in these groupings and 
in their combinations were also analyzed. The Ksat-SSIR-DB showed broad national 
coverage, comprising a total of 2,579 records, corresponding to 409 sampling sites, with 
Ksat and/or SSIR data and other associated soil information. A significant difference was 
observed between Ksat values for the vast majority of Brazilian clayey and very clayey 
soils compared to soils from the same textural groups from temperate regions. The two 
groupings that presented the lowest variability in terms of Ksat standard deviation values 
were the combination of textural classes with soil classes at the second category level of 
SiBCS (Brazilian Soil Classification System), and porosity classes with soil classes at the 
second category level of SiBCS. The Ksat-SSIR-DB has enormous potential for developing 
and testing Ksat pedotransfer functions in Brazilian soils, serving as a reference source 
for different geoenvironmental applications and, in particular, for modeling land surface 
processes. It is open access and can be accessed at https://www.sgb.gov.br/ksat-ssir-db-
base-de-dados-de-condutividade-hidraulica-saturada-e-de-taxa-de-infiltracao-basica-em-
solos-brasileiros, which also includes the python script for data analysis.
Keywords: tropical soils, soil hydraulic properties, class pedotransfer functions.
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INTRODUCTION
Saturated hydraulic conductivity (Ksat) is a soil property that expresses the water 
permeability of the saturated soil, defined by the relationship between the flux density 
of percolating water and total potential gradient. The Ksat has been used in hydrological 
(García-Gutiérrez et al., 2018; Bagarello et al., 2020), climatological (Agyare et al., 2007; 
Gupta et al., 2021), and geotechnical applications (Feng and Vardanega, 2019; Bilardi 
et al., 2020), and in agricultural, irrigation, and drainage projects (Duan et al., 2012; 
Gootman et al., 2020), being relevant for the modeling of the partitioning of rainfall into 
runoff and infiltration (Anderson, 2014).

Saturated hydraulic conductivity is strongly affected by pore geometry, particularly by 
pore size, where larger pores (cracks and macropores) play a very important role, through 
which preferential flow may occur (Iversen et al., 2012; Zhang and Schaap, 2019). Spatio-
temporal variability of soils and diversity of land use classes promote varied and complex 
environments, making it very difficult to spatially-represent Ksat, even for small areas.

Direct Ksat determination can be done by laboratory methods, either using constant head 
or falling head permeameters; and by field methods, which use infiltration tests, such as 
the Guelph permeameter. Each method has specificities and limitations (Reynolds and 
Elrick, 1986; Ebrahimi and Moradi, 2015; Thomas et al., 2016).

Indirect methods, such as pedotransfer functions (PTFs) (Bouma, 1989), have also been 
used to estimate Ksat (Cosby et al., 1984; Ahuja et al., 1989; Ottoni et al., 2019; Gupta 
et al., 2021; Szabó et al., 2021; Perreault et al., 2022). One approach to these PTFs, and 
probably the easiest one to use, encompasses those defined for soil textural classes, 
also called class pedotransfer functions. They provide average Ksat values (arithmetic 
mean, median, or geometric mean) in tables for different soil textural classes, such 
as the PTFs of Rawls et al. (1982) and Carsel and Parrish (1988), the most used in soil 
science and vadose zone hydrology (Zhang and Schaap, 2019). Other soil groupings, 
rather than soil texture, have also been used for Ksat representation, such as at the 
study from Pachepsky and Park (2015), which applied textural class and bulk density 
groups for average Ksat computation. Nonetheless, no investigation has been done to 
evaluate which soil groups or combinations among them best represent Ksat values 
in terms of their average values. The estimates of Ksat considering soil groups have 
the advantage of utility in data-poor environments and large-scale projects, but by far 
have comparable accuracy from estimates obtained with detailed soil information using 
sophisticated machine learning techniques (Pachepsky and Park, 2015).

Saturated hydraulic conductivity is sometimes mistaken with the steady-state infiltration 
rate (SSIR), obtained from field infiltration analyses, when infiltration rates asymptotically 
approach a constant value in time. In an unstratified soil, at this infiltration stage, the 
soil profile is practically saturated close to soil surface. The similarity between these 
soil variables is justified by Darcy’s law, in which water inflow through the soil surface 
due to rainfall is close related to the SSIR, while this scenario results in a unit gradient. 
Therefore, Ksat is numerically equal to SSIR, an equality which is only valid when the soil 
is homogeneous, isotropic, with a stable structure (Hillel, 1998), and the flux is vertical. 
This particularly applies to Latossolos (Ferralsols, according to the FAO/WRB system - 
IUSS Working Group WRB, 2022), the dominant soil class in Brazil. Despite the possible 
similarity between these soil variables, their physical nature is distinct: while Ksat 
represents an intrinsic property of the soil horizons, SSIR is an infiltration rate affected 
by soil surface features such as cracks or crusts, the Ksat of the underlying horizons, 
and the soil profile moisture at the beginning of infiltration (Rauber et al., 2024).

The SSIR has been used to plan irrigation systems, conservation practices, and water 
erosion control projects (Pruski et al., 2006). It is determined in the field, often using the 
single- or double-ring infiltrometer method, due to its ease of operation.
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In Brazil and around the globe, there is a growing need to obtain SSIR and, mainly, Ksat 
data for hydrological and land surface modeling applications (Montzka et al., 2017; 
Rahmanti et al., 2018; Centeno et al., 2020; Gupta et al., 2021; Horta et al., 2024). 
HYBRAS version I (Ottoni et al., 2018) was one of the first platforms with easy access 
to hydraulic property data for Brazilian soils, but it contains few Ksat data and a low 
representation of the Brazilian territory. In the platform mentioned above, only 419 
observations contain Ksat data obtained from 10 out of 26 Brazilian states. In addition, 
SSIR data are not available in HYBRAS version I.

Some other databases for Ksat of Brazilian soils are BDSOLOS (Brazilian Soil Information 
System – https://www.bdsolos.cnptia.embrapa.br/consulta_publica.html) and SoilData 
(https://soildata.mapbiomas.org). The BDSOLOS system has information on soil classes 
from soil surveys in Brazil coordinated by Embrapa (Brazilian Agricultural Research 
Corporation), covering 216 samples with Ksat data; however, it lacks information on the 
methods used for its determination. Infiltration data are also not included in this database. 
SoilData (https://soildata.mapbiomas.org) is a general purpose repository for publishing 
studies with Brazilian soil data, containing 838 publication records. In this repository, 
data on many soil properties can be found, but  information on hydraulic properties and 
water infiltration data is scarce. These findings show that Brazil lacks a soil database 
with consistent and comprehensive information on Ksat and infiltration capacity data.

At a global level, Gupta et al. (2021) launched an international Ksat database, compiling 
13,258 records from 1,908 locations, including Brazil. Pachepsky and Park (2015) compiled 
more than 21,000 laboratory experiments with Ksat data for North American soils. Rahmati 
et al. (2018) compiled 5,023 results of infiltration tests and physical hydraulic properties 
of soils from several countries worldwide. Hohenbrink et al. (2023) compiled combined 
water retention and hydraulic conductivity information from 572 soil samples, mainly, in 
Germany using the HYPROP method, with wide application in modeling water flow and 
solute transport. The European HYdropedological Data Inventory (EU-HYDI) (Weynants 
et al., 2013), which collects data from European soils focusing on soil physical, chemical 
and hydrological properties, also contains several Ksat measurements.

This scenario on availability of Ksat and infiltration test data at an international level 
and their lack for Brazilian conditions has stimulated the use of pedotransfer functions 
calibrated for temperate climate soils. However, the literature has shown that these 
models are not efficient in predicting the hydraulic properties of tropical soils, especially 
regarding soils with a highly stable granular structure and clayey and very clayey texture, 
with emphasis on Latossolos (Ferralsols), Nitossolos (Nitisols) and Argissolos (Acrisols), 
which are geographically predominant and significant soils in Brazil (Santos et al., 2018). 
This fact possibly explains the high uncertainties in modeling studies of hydrological 
processes for most Brazilian soils (Mello et al., 2019), with errors in estimates and 
decision-making involving these processes.

Therefore, organizing a database with Brazilian Ksat and SSIR measurements and making 
this information widely available, including details on methodology, is an urgent matter. 
In addition, there is also a need to expand knowledge on the variability of Brazilian soil 
hydraulic properties to support the development of different scientific and practical 
applications in which these data are required.

This study aimed to present and discuss Ksat and SSIR data measured in Brazilian 
soils, compiled in a single comprehensive database. Up to date, this information was 
fragmented in several publications or unpublished. The new database is aimed to serve 
as a reference source. The study also proposes an investigation of different soil groups 
or combinations among them that would best represent Ksat values, aiming to be used 
when soil information is scarce or for large-scale projects.

https://www.bdsolos.cnptia.embrapa.br/consulta_publica.html
https://soildata.mapbiomas.org
https://soildata.mapbiomas.org
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MATERIALS AND METHODS

Working Group of the Brazilian Soil Science Society for Data Collection

A working group (WG-Hydraulic Properties of Brazilian Soils) was created within the scope 
of the Brazilian Soil Science Society (SBCS) to compile Ksat and SSIR data throughout 
the national territory. The WG was composed of 17 members of the SBCS representing 
the 26 Brazilian states. Table 1A of Section A in the Supplementary Material describes 
the members of this WG. More details about the organization of the working group and 
challenges encountered are also provided in section A, that could assist other initiatives 
in planning and executing more effectively similar data compilation.

Throughout the text, soil saturated hydraulic conductivity determined in the field will be 
given the acronym Kfs and, in the laboratory, Kslab. From now on, the term Ksat will be 
used as a generic reference to saturated hydraulic conductivity.

Data Collection and Harmonization

Soil hydraulic property data were collected through online and library research, as 
well as through contact with researchers at universities and institutes. The following 
information was collected: SSIR, Ksat (including field measurements - Kfs and/or laboratory 
measurements - Kslab), geographic coordinates of evaluation sites, soil classes (Brazilian 
Soil Classification System), land use classes, soil horizons, depths, particle size fractions, 
bulk density, particle density, porosity, organic carbon content, pH, CEC (cation exchange 
capacity at pH 7, on a weight or volume basis), volumetric water retention at suctions 
of 0, 6, 10, 33, and 1500 kPa (when available), methods for determining hydraulic 
properties (SSIR, Ksat, and water retention), and the reference source. Data was included 
in a database named Ksat-SSIR-DB, acronym of Saturated Hydraulic Conductivity and 
Steady-State Infiltration Rate Database.

The database structure (section “Data Structure”) was organized in Google Sheets® 
to enable simultaneous data filling and secure storage at Google cloud®. Data were 
filled separately per federation state. After this phase, all spreadsheets from the state 
databases were unified into one for harmonization and data consistency.

Data on soil classes, land use classes were harmonized according to the current national 
classification systems [Brazilian Soil Classification System – SiBCS (Santos et al., 2018) 
and MapBiomas (Project MapBiomas, 2022), respectively]. Brazilian soil classes at the 
first categorical level of SiBCS were also standardized to the FAO/WRB soil classification 
system (IUSS Working Group WRB, 2022), based on a mixing between expert knowledge 
and morphological and laboratory analyses data. Along the text, when necessary, the 
soil classes at the first category level of the SiBCS (Santos et al., 2018) were correlated 
to the FAO/WRB soil classification system (IUSS Working Group WRB, 2022).

Harmonization also took place for publication references using ABNT (Brazilian Association 
of Technical Standards), soil depth, and methods for determining soil properties, the last 
two according to standards described in the Supplementary Material provided in Section 
B. Afterwards, the data were processed and analyzed for consistency, both for geographic 
coordinates and other fields represented by numerical data, considering procedures 
detailed at Supplementary Material (Section B). Soil property data with inconsistent 
values were excluded from the database.

Studies presenting water retention data (on a volumetric basis) at suctions of 33 (TH33) 
and 1500 kPa (TH1500) had the total available water (AW) content calculated by the 
difference between TH33 and TH1500. Effective porosity (EP) was also calculated as the 
difference between saturated water content (TH0) (or total porosity - TP, when the former 
was not available) and TH33. These calculations were carried out to add information on 
soil hydraulic properties in the Ksat-SSIR-DB.

https://www.rbcsjournal.org/wp-content/uploads/articles_xml/1806-9657-rbcs-48-e0240007/1806-9657-rbcs-48-e0240042-suppl01.pdf
https://www.rbcsjournal.org/wp-content/uploads/articles_xml/1806-9657-rbcs-48-e0240007/1806-9657-rbcs-48-e0240042-suppl01.pdf
https://www.rbcsjournal.org/wp-content/uploads/articles_xml/1806-9657-rbcs-48-e0240007/1806-9657-rbcs-48-e0240042-suppl01.pdf
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A total of 2,579 records from 143 publications were compiled in the Ksat-SSIR-DB, the 
majority coming from national and international journals (50 %), master’s dissertations  
(26 %), and doctoral theses (10 %). Table 1 presents the list of publications in the database, 
the Brazilian states of origin of the data, and the number of corresponding records.

Data Structure

The Ksat-SSIR-DB was developed in a Microsoft Excel® spreadsheet (xlsx), containing two 
sheets. The first sheet, named *Metadata*, contains the metadata of this database, as 
detailed in table 2, with a synthetic description of its fields and the corresponding data 
formats (integer, decimal, or text). The second sheet, called *Sample Data*, contains 
records of the fields in table 2. All Ksat-SSIR-DB fields are in English and some of them 
have data reported in English and Portuguese, as was the case involving “Land Use” and 
“Texture”. This was done to potentially expand the use of this database.

Statistical analysis of the data

Average values of Kslab, Kfs, and SSIR were evaluated for textural classes, according to 
Santos et al. (2015), land use classes, according to the MapBiomas collection (MapBiomas 
Project, 2022), and the soil classes, according to the Brazilian Soil Classification System 
(SiBCS) (Santos et al., 2018). These mean values were also recorded for groups of 
textural classes, called fine (clay loam, silty clay, sandy clay, silty clay loam, clay and 
very clay), medium (sandy loam, loam, sandy clay loam, silty loam, silt), coarse (sand, 
loamy sand), as proposed by Cassel et al. (1983), to facilitate discussion of the results. 
These groupings were chosen to represent Ksat and SSIR results because they are the 
most used formats in several applications in which they are required. Average values 
of Kslab, Kfs, and SSIR are the geometric mean, considering the frequent asymmetric 
distribution of Ksat (Warrick, 2001).

In Santos et al. (2015), 13 soil textural classes are proposed and they differ from the 
USDA soil textural classification (USDA, 2017) for the clay class. In Santos et al. (2015), 
the clay class from the USDA classification (USDA, 2017) is subdivided into two groups: 
‘very clayey’ when the clay fraction is higher than 60 % and ‘clay’ when the clay fraction 
is lower than 60 %. We decided to present the results for the Santos et al. (2015) soil 
textural classification, since the Ksat-SSIR-DB classified many soil samples in the very 
clayey textural class, where soil samples from temperate climate databases are usually 
not found. 

Average Ksat and SSIR results were also calculated for porosity classes since porosity 
possibly has a strong relationship with this soil hydraulic property. Porosity class values 
were arbitrarily separated into six intervals, namely <0.3 cm3 cm-3, 0.3-0.4 cm3 cm-3,  
0.4-0.5 cm3 cm-3, 0.5-0.6 cm3 cm-3, 0.6-0.7 cm3 cm-3, and >0.7cm3 cm-3.

Groups with less than five records in any of the analyzed variables (Kfs, Kslab, and SSIR) 
did not have means computed. The Ksat class standards proposed by the Soil Science 
Division Staff (2017) were adapted to three classes in mm h-1: low (<3.6), moderate  
(3.6 – 36), and high (>36), and were used to evaluate the classes of geometric mean 
Ksat and SSIR values at the different groups evaluated.

Average results recorded by textural class from the Ksat-SSIR-DB were compared to 
average values of the corresponding classes in the international saturated hydraulic 
conductivity database compiled by Gupta et al. (2021), which includes Ksat data for 
Brazilian soils. In both datasets, the particle-size limits for clay, silt, and sand content 
are the same (clay <0.002 mm; silt >0.002 and <0.05 mm; sand >0.05 and <2 mm). 
This comparison was only made for the Kslab variable, as it contains a greater number 
of records, although both compilations by Gupta et al. (2021) and Ksat-SSIR-DB contain 
Kfs measurements. In Gupta´s database, Ksat values were measured mostly for soils in 
temperate climates; those from Brazilian soils were excluded in this report to guarantee 
more reliable comparisons of Ksat values between both databases.
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Table 1. Source of Ksat and SSIR data with the Brazilian state where the data were measured, 
and the number of records
References Brazilian states Number of records
Portugal (2009) Acre 20
Maia and Ribeiro (2004) Alagoas 9
Silva and Ribeiro (1997) Alagoas 12
Borkowski and Silva (2021) Amapá 3
Corrêa (1985) Amazonas 12
Coelho et al. (2005) Amazonas 20
Marques et al. (2004) Amazonas 10
Teixeira (2001) Amazonas 6
Teixeira et al. (2014) Amazonas 6
Marques et al. (2008) Amazonas 25
Marques et al. (2010) Amazonas 25
Souza et al. (2004) Amazonas 7
Aquino (2012) Amazonas 3
Tomasella and  Hodnett (1996) Amazonas 3
Eger et al. (2021) Bahia 16
Nacif et al. (2008) Bahia 20
Souza and Souza (2001) Bahia 36
Paiva et al. (2000) Bahia 11
Fontana et al. (2016) Bahia 10
Santana et al. (2006) Bahia 8
Almeida (2013) Ceará 2
Aguiar (2008) Ceará 3
Borges et al. (2009) Distrito Federal 15
Campos (2009) Distrito Federal 4
Cavedon and Sommer (1990) Distrito Federal 5
Oliveira (2005) Distrito Federal 16
Souza et al. (2014) Espírito Santo 24
Mundim et al. (2018) Espírito Santo 16
Amorim et al. (2011) Espírito Santo 1
Sperandio and Cecílio (2017) Espírito Santo 2
Martins et al. (2010) Espírito Santo 9
Ramos (2018) Espírito Santo 24
Guerra et al. (2018) Espírito Santo 8
Andrade et al. (2020) Goiás 6
Silva (2021) Goiás 8
Cunha et al. (2015) Goiás 2
Silva et al. (2003) Goiás 12
Medrado (2021) Goiás 3
Sales et al. (2010) Goiás 10
Mascarenhas et al. (2015) Goiás 14
Oliveira (2009) Goiás 3
Gravina (2021) Goiás 6
Silva et al. (2001) Goiás 1
Andrade and Stone (2009) Goiás 88
Santos et al. (2011) Goiás 32
Rodrigues et al. (1991) Maranhão 5
Teixeira et al. (2020) Maranhão 7

Continue
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Continuation
References Brazilian states Number of records
Martins (2006) Maranhão 1
Moura (1991) Maranhão 4
Lumbreras (1996) Maranhão 19
Valadão et al. (2011) Mato Grosso 4
Scheffler et al. (2011) Mato Grosso 9
Bocuti et al. (2020) Mato Grosso 5
Souza et al. (2014) Mato Grosso 5
Vilarinho et al. (2019) Mato Grosso 2
Silva et al. (2008) Mato Grosso 6
Panachuki et al. (2011) Mato Grosso do Sul 9
Tenfen (2014) Mato Grosso do Sul 5
Sone et al. (2020) Mato Grosso do Sul 8
Tomasini et al. (2010) Mato Grosso do Sul 3
Sone et al. (2019) Mato Grosso do Sul 18
Alves Sobrinho et al. (2003) Mato Grosso do Sul 4
Almeida et al. (2018) Mato Grosso do Sul 24
Pavei et al. (2018) Mato Grosso do Sul 5
Souza et al. (2019) Mato Grosso do Sul 3
Bono et al. (2012) Mato Grosso do Sul 35
Silva (2016) Mato Grosso do Sul 5
Scorza Junior and Silva (2007) Mato Grosso do Sul 21
Panachuki (2003) Mato Grosso do Sul 6
Melo (2020) Minas Gerais 22
Oliveira et al. (2010) Minas Gerais 18
Aguiar (2008) Minas Gerais 3
Amaral (2018) Minas Gerais 20
Sales et al. (1999) Minas Gerais 4
Ribeiro et al. (2007) Minas Gerais 6
Faria and Caramori (1986) Paraná 1
Pruski et al. (1997) Paraná 8
Oliveira et al. (2019) Paraná 5
Polizeli et al. (2009) Paraná 4
Leonardo (2020) Paraná 30
Costa et al. (2003) Paraná 9
Moraes et al. (2016) Paraná 10
Pequeno (2016) Paraíba 12
Silva et al. (2019) Paraíba 10
Oliveira Junior et al. (1998) Pará 9
Oliveira Junior et al. (1997) Pará 2
Rodrigues et al. (1991) Pará 46
Oliveira Junior et al. (1999) Pará 23
Marques (2004) Pernambuco 16
Silva et al. (2012) Pernambuco 16
Ortiz et al. (2020) Pernambuco 3
Melo (2013) Pernambuco 4
Soares et al. (2020) Pernambuco 2
Schossler et al. (2018) Piauí 48
Santos et al. (2021) Piauí 6

Continue
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Continuation

References Brazilian states Number of records
Dias (2018) Rio Grande do Norte 4
Farias (2019) Rio Grande do Norte 17
Costa et al. (2020) Rio Grande do Norte 15
Mendes et al. (2018) Rio Grande do Norte 2
Cavalli (2017) Rio Grande do Sul 28
Rojas (1998) Rio Grande do Sul 28
Avila (2014) Rio Grande do Sul 25
Suzuki et al. (2012) Rio Grande do Sul 24
Mentges et al. (2010) Rio Grande do Sul 8
Facco (2017) Rio Grande do Sul 21
Dalbianco (2009) Rio Grande do Sul 66
Pedron et al. (2011) Rio Grande do Sul 11
Andriollo (2015) Rio Grande do Sul 71
Oliveira (2015) Rio Grande do Sul 12
Gomes (1972) Rio Grande do Sul 14
Boeno (2019) Rio Grande do Sul 15
Silva et al. (2005) Rio Grande do Sul 16
Alves and Cabeda (1999) Rio Grande do Sul 4
Leal (2011) Rio de Janeiro 36
Silva (2011) Rio de Janeiro 48
Bernardes (2005) Rio de Janeiro 69
Sondatécnica (1983) Rio de Janeiro 610
Bhering (2007) Rio de Janeiro 9
Nacinovic (2013) Rio de Janeiro 24
Fabian and Ottoni Filho (1997) Rio de Janeiro 8
Batista et al. (2018) Roraima 1
Bortolini et al. (2016) Santa Catarina 12
Bertol and Santos (1995) Santa Catarina 4
Camargo (2011) Santa Catarina 9
Epagri-Embrapa Solos (2008) Santa Catarina 16
Costa et al. (2016) Santa Catarina 25
Bertol et al. (2001) Santa Catarina 3
Andognini et al. (2020) Santa Catarina 20
Cintra (1997) Sergipe 5
Espírito Santo (1998) São Paulo 11
Toma (2012) São Paulo 12
Cooper et al. (2013) São Paulo 14
Juhász et al. (2007) São Paulo 17
Cooper et al. (2012) São Paulo 19
Cooper database* São Paulo 9
Martíni et al. (2021) São Paulo 4
Angelotti Netto and Fernandes (2005) São Paulo 10
Ghiberto and Moraes (2011) São Paulo 10
Uyeda (2009) São Paulo 3
Berreta (1999) São Paulo 8
Klein (1998) São Paulo 39

Continue
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Continuation

References Brazilian states Number of records
Santos (2020) São Paulo 6
Pott (2001) São Paulo 9
Total 2579

* Soil database of the state of São Paulo was provided by the researcher Miguel Cooper from ESALQ/USP – 
Brazil and first published in HYBRAS (Ottoni et al., 2018). Authorization to disclose this soil database was 
granted in 2014.

Table 2. Description of SSIR-Ksat-DB fields, Brazil
Field Description Format Unit
Code soil sample id Integer -

City Brazilian city, according to IBGE (Brazilian Institute of Geography and 
Statistics) Text -

State Brazilian state, according to IBGE (Brazilian Institute of Geography 
and Statistics) Text -

UF state acronym Text -
LatitudeOR latitude, in decimal degrees, of the study location Decimal decimal degree
LongitudeOR longitude, in decimal degrees, of the study location Decimal decimal degree
Datum coordinate system (e.g., WGS-84; SAD-69) Text -

Comments_coordinates
description of the coordinate origin. E.g., coordinates extracted 

from the original work; coordinates estimated by description of the 
experiment location

Text -

Coordinate_qual
classification of coordinates according to their method of 

determination. 0, when the coordinate was estimated or corrected; 1, 
when obtained from the original work and without changing location

Text -

Elev elevation above sea level (m) Decimal m
Description general description of the experimental area Text -
Description_detail additional description of the experimental area Text -

Original Soil classification soil classification as described in the study (description, according to 
the SiBCS version at the time of the study, when available) Text -

Soil_Class_u2NC reclassification of soils according to SiBCS 5 ed at the first and 
second categorical level Text -

SiBCS 5ed 1NC reclassification of soils according to SiBCS 5 ed at the first categorical 
level Text -

SiBCS 5ed 2NC reclassification of soils according to SiBCS 5 ed at the second 
categorical level Text -

WRB/FAO reclassification of soils according to FAO/WRB system - IUSS Working 
Group WRB (2022) Text -

Land use dominant land use at the experiment site at the time of sample 
evaluation/collection Text -

Land_use_mapbiomas_en
land use system by MapBiomas classes (1st level of classification – 
separating the class farming into agriculture and pasture) - English 

version
Text -

Land_use_mapbiomas_
por

land use system by MapBiomas classes (1st level of classification 
- separating the class farming into agriculture and pasture) - 

Portuguese version
Text -

Horizon nomenclature soil horizon nomenclature (following Brazilian guidelines) Text -

Soil Depth_thickness soil depth in cm or depth range in cm. If the steady-state infiltration 
rate (SSIR) is measured at the surface, soil depth=0 cm Decimal cm

Upper_Hor upper limit of the soil horizon Decimal cm
Lower_Hor lower limit of the soil horizon Decimal cm

Continue
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Continuation
Field Description Format Unit

Class Horizon
horizon classification: topsoil or subsoil. If the average between 

Upper_Hor and Lower_Hor was lower or equal to 30 cm, the Class 
Horizon was defined as topsoil, if not, as subsoil.

Text -

Clay clay percentage - particles < 0.002 mm Decimal %
Silt silt percentage - 0.002 mm < particles < 0.05 mm Decimal %
Fine sand sand percentage - 0.05 mm < particles < 0.20 mm Decimal %
Coarse sand sand percentage - 0.20 mm < particles < 2.00 mm Decimal %
Total sand sand percentage - 0.05 mm < particles < 2.00 mm Decimal %
Sum_textural_fractions sum of total sand + silt + clay Decimal %
Texture_en textural class according to USDA - English version Text -
Texture_detail_en textural class according to Santos et al. (2015) - English version Text -
Texture_por textural class according to USDA - Portuguese version Text -

Texture_detail_por textural class according to Santos et al. (2015) - Portuguese 
version Text -

bulk_den bulk density Decimal kg dm-3  
(or g cm-3)

par_den particle density Decimal kg dm-3  
(or g cm-3)

Porosity total soil porosity Decimal cm3 cm-3

org_carb organic carbon content Decimal g kg-1

pH soil pH Decimal -
CEC weight cation exchange capacity at pH 7 in unit of mass Decimal cmolc kg-1

CEC volume cation exchange capacity at pH 7 in unit of volume Decimal cmolc dm-3

base saturation V base saturation, V=100.S/CEC, where S refers to the sum of 
exchangeable cations Decimal %

Kfs saturated hydraulic conductivity measured in the field Decimal mm h-1

Kslab saturated hydraulic conductivity measured in the laboratory Decimal mm h-1

SSIR steady-state infiltration rate Decimal mm h-1

WRetention_Consistency water retention data inconsistency description Text -

TH0
volumetric water content at suction 0 kPa. If the data was on a 
gravimetric basis, it was converted to a volumetric basis using 

bulk density
Decimal cm3 cm-3

TH6
volumetric water content at suction 6 kPa. If the data was on a 
gravimetric basis, it was converted to a volumetric basis using 

bulk density
Decimal cm3 cm-3

TH10
volumetric water content at suction 10 kPa. If the data was on a 
gravimetric basis, it was converted to a volumetric basis using 

bulk density
Decimal cm3 cm-3

TH33
volumetric water content at suction 33 kPa. If the data was on a 
gravimetric basis, it was converted to a volumetric basis using 

bulk density
Decimal cm3 cm-3

TH1500
volumetric water content at suction 1500 kPa. If the data was on 
a gravimetric basis, it was converted to a volumetric basis using 

bulk density
Decimal cm3 cm-3

AW available soil water (TH33-TH1500) Decimal cm3 cm-3

EP
effective soil porosity [TH0(or TP)-TH33], considering soil 

saturation water content (TH0) or total porosity (TP), if the former 
was not available

Decimal cm3 cm-3

Kfs_Method method of determining saturated hydraulic conductivity in the 
field: Guelph permeameter, well method, other Text -

Kfs_Detail
details of the Kfs determination method. E.g., if it was the Guelph 
method, the diameter of the well, the water head applied, and the 

calculation method (1 or 2 water heads)
Text -

Continue
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To assess the representativeness of the average Ksat values in the different groups 
evaluated, the Ksat data variability was analyzed, using the 10th and 90th percentiles. 
The minimum and maximum values of Ksat were not included as data extreme limits 
to avoid the inclusion of very anomalous magnitudes. Only Kslab data were used in 
this exercise, as it contains a more significant quantity of data in the different studied 
groupings.

Furthermore, the evaluation of soil groups or combinations among them that recorded 
the lowest Ksat weighted mean standard deviation (wstdg) was performed (Equation 1) 
to indicate the best group to be used to represent Ksat:

in which: stdi is the standard deviation of the logarithms of Ksat values, in mm h-1; weighti 
is the number of soil samples contained in the different classes (i) of the groups; and N 
is the maximum number of classes predicted at the groups.

The Ksat weighted mean standard deviation (wstdg) was computed for the following groups:

• Isolated groups: Textural classes (Santos et al., 2015); Soil classes at the first category 
level of SiBCS (Santos et al., 2018) (Soil Class 1CL); Soil classes at the second category 
level of SiBCS (Santos et al., 2018) (Soil Class 2 CL); Land use classes (MapBiomas 
Project, 2022); Porosity classes (defined arbitrarily in this study).

Continuation
Field Description Format Unit

Kslab_Method
method of determining saturated hydraulic conductivity in 
the laboratory: constant head permeameter, falling head 

permeameter, other
Text -

Kslab_Sample_Type type of soil sample used (disturbed or undisturbed) in determining 
Kslab Text -

Kslab_Sample_diameter diameter of the undisturbed sample in cm, when using the 
laboratory determination method Decimal cm

Kslab_Sample_height height of the undisturbed sample in cm, when using the 
laboratory determination method Decimal cm

WR_sample_TP type of sample used to measure the water retention curve: 
undisturbed or disturbed Text -

WR_Method
water retention determination method: Richards pressure plate, 

tension table, porous plate funnel, filter paper, centrifuge, 
psychrometer (WP4)

Text -

TIB_Method infiltration test determination method: double ring, single ring, 
rainfall simulator, cornell Text -

TIB_Surface_Crust Is there a surface seal? Yes or No Text -

Reference publication reference according to ABNT (Brazilian Association of 
Technical Standards) Text -

Reference_simplif simplified reference for in-text citation Text -
Year_Publicn Year of publication Text -
Data_entrance data entry in the WG spreadsheet - hydraulic properties Text -
Typist name or/and email of the person who entered the data Text -

OBS1
additional observations related to the data origin, changes 

made to the data, determination methods not included in the 
publication, etc

Text -

OBS2
additional observations related to the data origin, changes made 
to the data, determination methods not included the publication, 

etc
Text -

wstd =
std weight

 weight
g

i=1

N
i i

i=1

N
i

�
�

�� �
Eq. 1
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• Groups in combination: Textural classes × Porosity classes; Soil Class 1CL × Textural 
classes; Soil Class 1CL × Porosity classes; Soil Class 2CL × Textural Classes; Soil 
Class 2CL × Porosity.

The land use classes grouping did not have its classes combined with those of  other groups 
under investigation, since, in this case, only topsoil samples were used at calculation of 
the Ksat statistics, while in the other groupings the complete database was used.

The weighted t-test hypothesis (similar to the student’s t-test for evaluating similarity 
between means) (Yuen, 1974) was used to investigate the similarity of the weighted mean 
standard deviation among groups (p-value≥0.05 indicates similarity among groups).

RESULTS AND DISCUSSION

Data Coverage

The 2,579 catalogued data cover the 26 Brazilian states and the Federal District, except 
the state of Rondônia (RO). They correspond to 409 sampling sites, as shown in figure 1. 
Figure 1 presents the sampling locations discriminated by the method used to determine 
the geographic coordinates: (1) original, when the coordinates were extracted directly 
from the study; or (2) estimated, when the location of the sampling point was predicted, 
according to the methodology described in the Supplementary Material (Section B). Most 
of the sampling sites (~55 %) had the geographical coordinates extracted as described in 
the original work, which may indicate a higher resolution of their geographic positioning. 
This information can be useful in producing hydraulic property maps at different spatial 
resolutions.

Figure 1. Distribution of Ksat-SSIR-DB’s sampling sites in Brazil (a) and in the federative states of Brazil (b). (AC) - Acre, (AL) - Alagoas, 
(AP) - Amapá, (AM) - Amazonas, (BA) - Bahia, (CE) - Ceará, (DF) - Distrito Federal, (ES) - Espírito Santo, (GO) - Goiás, (MA) - Maranhão, 
(MT) - Mato Grosso, (MS) - Mato Grosso do Sul, (MG) - Minas Gerais, (PA) - Pará, (PB) - Paraíba, (PR) - Paraná, (PE) - Pernambuco, 
(PI) - Piauí, (RJ) - Rio de Janeiro, (RN) - Rio Grande do Norte, (RS) - Rio Grande do Sul, (RO) - Rondônia, (RR) - Roraima, (SC) - Santa 
Catarina, (SP) - São Paulo, (SE) - Sergipe, and (TO) - Tocantins.
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The states of Rio de Janeiro (RJ) and Rio Grande do Sul (RS), alone comprised 44 % of 
the total number of samples (Figure 1). The states of Sergipe (SE), Ceará (CE), Amapá 
(AM) and Tocantins (TO) had low availability of Ksat-SSIR data; in Roraima (RR) only one 
record was observed.

Table 3 presents the quantitative records of soil properties available in the Ksat-SSIR-DB 
and the descriptive statistics: arithmetic mean, minimum, maximum, median, and 
standard deviation. All 2,579 records in the database contained sand, silt, and clay 
contents, of which 1,386 included information on fine sand and coarse sand contents. 
Bulk density data comprised 2,183 records; organic carbon content data totaled 1,494 
records; particle density data totaled 1,068 records; pH values totaled 869 records; base 
saturation data totaled 455 records; and CEC at pH 7 totaled 34 records.

As for soil hydraulic property data, 1,842 soil samples had Kslab measurements, followed 
by 502 Kfs, and 425 SSIR. Simultaneous measurements of these properties at the same 
location were also observed (Kslab and Kfs - 65 samples; Kslab and SSIR - 145 samples; 
Kfs and SSIR - 14 samples; Kslab, Kfs, and SSIR - 9 samples). Among the water retention 
measurements available in the database, total porosity, TH1500, and TH33, showed, in this 
sequence, a greater quantity of data, with 2,065, 1,272, and 947 samples, respectively. 
Total available water values (AW) were represented in a reasonable number of samples 
(944), with only 358 records for effective porosity (EP).

Out of the 1,842 Kslab measurements with particle size fraction information, 1,741 
records include bulk density data, 1,216 records include organic carbon content, 815 
records include TH33, and 1,118 records include TH1500, while 1,178 records include bulk 

Table 3. Descriptive statistics of soil properties from the the Ksat-SSIR-DB

Parameter Count Mean Min Max Median Std
Clay (%) 2579 41 0 96 40 22
Silt (%) 2579 18 0 86 14 13
Fine Sand (%) 1386 22 0 97 16 20
Coarse Sand (%) 1386 18 0 76 14 18
Total Sand (%) 2579 41 0 99 39 27
Bulk Density (g cm-3) 2183 1.27 0.26 2.36 1.27 0.24
Particle Density (g cm-3) 1068 2.60 1.33 3.09 2.60 0.15
Total Porosity (cm3 cm-3) 2065 0.51 0.2 0.87 0.52 0.09
Organic Carbon (g kg-1) 1494 16.6 0.1 233.5 10.4 20.9
pH 869 5.2 2.2 11.6 4.9 1.0
CEC weight (cmolc kg-1) 34 6.2 2.0 18.3 5.9 3.1
CEC volume (cmolc dm-3) 34 8.7 0.1 28.8 7.2 6.4
Base Saturation (%) 455 42 1 100 39 28
Kfs (mm h-1) 502 29.8* 0.1 2784.0 - 6.5**
Kslab (mm h-1) 1842 24.9* 0.1 4038.0 - 7.0**
SSIR (mm h-1) 425 54.4* 0.3 2353.0 - 4.5**
TH0 (cm3 cm-3) 561 0.51 0.26 0.87 0.52 0.1
TH6 (cm3 cm-3) 654 0.34 0.03 0.75 0.36 0.11
TH10 (cm3 cm-3) 754 0.31 0.03 0.72 0.33 0.12
TH33 (cm3 cm-3) 947 0.37 0.04 0.75 0.38 0.14
TH1500 (cm3 cm-3) 1272 0.24 0 0.56 0.24 0.11
AW (cm3 cm-3) 944 0.10 0.01 0.29 0.09 0.05
EP (cm3 cm-3) 358 0.20 0.09 0.44 0.19 0.07

std: standard deviation; * saturated hydraulic conductivity calculated as the geometric mean; ** geometric standard deviation (σg) (σg =10 σ, in 
which σ is the logarithmic standard deviation at base 10); σg is dimensionless.
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density measurements and organic carbon content together, and 672 records include 
data on these last two soil properties in addition to information from TH33 and TH1500 
data. These numbers reveal excellent perspectives for the development of a national 
hierarchical pedotransfer functions for Kslab.

Soil samples in Ksat-SSIR-DB include all soil classes at the first category level of SiBCS 
(Santos et al., 2018). The greatest concentration of data occurred in the Latossolos 
(Ferralsols) and Argissolos (Acrisols, Lixisols, or Alisols) classes, with 54 % of the total 
(Figure 2a). At the second category level of SiBCS, there was a broad representation of 
data in the classes included as Latossolos, Argissolos, Cambissolos (Cambisols), Neossolos 
(Inceptisols and Entisols), and Gleissolos (Gleysols) (Figure 2b).

Figure 3 shows the coverage of Ksat-SSIR-DB on a textural triangle, showing broad data 
coverage over the 13 textural classes. The classes with large numbers of data were very 
clayey, clay, and sandy clay loam, in that order, together accounting for approximately 
58 % of the total. The silt class recorded only one occurrence, in line with its known 
scarcity due to the high degree of weathering of most Brazilian upland soils. Silt and silt 
loam soils are common in temperate soil database of Ksat (Rahmati et al., 2018, Gupta 
et al., 2021). These soil textural classes occur in Brazil, mainly in the soils of the Amazon 
Floodplains (Teixeira et al., 2019).

As for land use classes, the Agriculture and Pasture classes had broad representation, 
concentrating around 63 % of the data, followed by the Forest and Non- Forest Natural 
Formation classes, together making up around 20 % of the total number of records 
(Figure 4).

Figure 2. Distribution of the Ksat-SSIR-DB in the Brazilian Soil Classification System (SiBCS) (Santos et al., 2018) at the first category 
level (a) and at the second categorical level (b). nan indicates that there is no data representation. (AC) - Acre, (AL) - Alagoas, (AP) 
- Amapá, (AM) - Amazonas, (BA) - Bahia, (CE) - Ceará, (DF) - Distrito Federal, (ES) - Espírito Santo, (GO) - Goiás, (MA) - Maranhão, 
(MT) - Mato Grosso, (MS) - Mato Grosso do Sul, (MG) - Minas Gerais, (PA) - Pará, (PB) - Paraíba, (PR) - Paraná, (PE) - Pernambuco, 
(PI) - Piauí, (RJ) - Rio de Janeiro, (RN) - Rio Grande do Norte, (RS) - Rio Grande do Sul, (RO) - Rondônia, (RR) - Roraima, (SC) - Santa 
Catarina, (SP) - São Paulo, (SE) - Sergipe, and (TO) - Tocantins.
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Ksat-SSIR-DB measurement methods

The methods for determining saturated hydraulic conductivity and steady-state infiltration 
rate are presented in table 4. Most Ksat-SSIR-DB records with Kfs data were carried out 
with a Guelph permeameter. For Kslab, the constant head permeameter was the mostly 
used, followed by the falling head method. For SSIR, the double ring method was most 
used (277 records), while the single ring method was used for only 16 records.

Regarding water retention data, the combined methods of tension table for lower suction 
ranges and porous plate pressure chamber for higher suctions prevailed, with only 
around 6 % of the data being measured using the porous plate funnel method for water 
retention measurement at low suctions (Figure 5).

Figure 3. Distribution of the Ksat-SSIR-DB in the textural triangle (a) and its coverage in the 13 textural classes, according to  
Santos et al. (2015) (b).
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Figure 4. Distribution of the Ksat-SSIR-DB in the land use classes, according to MapBiomas (MapBiomas Project, 2022). nan indicates 
that there is no data representation.
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Average values of Kfs, Kslab, and SSIR for classes of different soil groupings

Table 5 shows geometric means of Kfs, SSIR, and Kslab by textural classes, in addition 
to the Kslab data compiled by Gupta et al. (2021), used as reference of Kslab data in 
temperate soils. In this table, as in the others in this section, Kfs, SSIR, and Kslab values 
were highlighted in different colors, with blue representing values considered high, 
orange, moderate, and red, low.

In general, higher values of the three hydraulic properties were recorded in the textural 
classes with the higher sand content, with emphasis on the sandy soil class, with a 
geometric mean of 126 mm h-1 for Kfs and 298 mm h-1 for Kslab. Conversely, regarding 
the Kslab and Kfs results, the fine-textured classes, showed lower average values than 
the coarse and medium textured classes, recording values of 18.9 and 19.5 mm h-1, 
respectively. The expected reduction in Ksat values from coarse-textured soils to medium- 
and fine-textured soils was confirmed.

Despite the similarity observed between average values of Kfs and Kslab in the fine-
textured soils, the average results for Kfs showed greater variability compared to Kslab 
within this textural group (Table 5). For the SSIR variable, no clear trends were observed 
in reducing SSIR values from medium to fine-textured classes. The mean SSIR values in 
these two groups (medium- and fine-textured classes) were similar (~51 mm h-1). The 
similarity of structure functionality may help to explain these findings. 

In the class of very clayey soils, Kfs and SSIR mean values were high and almost twice as 
high as for Kslab (Table 5). In the sandy clay class, SSIR is greater than Kslab approximately 
six times. These results suggest that field tests (Kfs and SSIR) are more sensitive to 
assessing variations in soil macropores arrangement, responsible for high Ksat values 
compared to the small-size samples used to determine Kslab, which usually are not able 
to reproduce the macrospace of the soils adequately. More details about the effect of 
sample size on Kslab determination is described in the section “Laboratory versus Field 
Saturated Hydraulic Conductivity”. However, an opposite trend was also observed, with 
mean Kslab values higher than SSIR values in the clay loam class.

Table 4. Methods used for determining Kfs, Kslab, and SSIR in the Ksat-SSIR-DB and the 
corresponding number of records
Methods Kfs Kslab SSIR
Guelph permeameter 415 - -
Constant head permeameter - 1,584 -
Falling head permeameter - 201 -
Double ring - - 277
Rainfall simulator - - 92
Single ring - - 16
Other 87 57 40
Sum of all records 502 1,842 425

Figure 5. Methods for determining water retention of soil samples from the Ksat-SSIR-DB.

51.2 %

24.3 %

18.1 %

6.3 %
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The findings described above reinforce the difficulty in establishing reference values 
for Ksat by textural classes, considering that the method of determining Ksat presents 
its specificities and methodological uncertainties and that it is not always possible to 
faithfully reproduce the complex physical hydraulic processes inherent to the intricate soil 
porous system. Nevertheless, the results in table 5 show trends of orders of magnitude 
in the values of these properties in the various soil textural classes, which may of use 
for specific purposes.

Regarding the comparison of Kslab results from the Ksat-SSIR-DB to those compiled by the 
international soil database (Gupta et al., 2021), much higher values are observed in the 
medium- and fine-textured groups for the Brazilian soils. In these two textural groups, the Kslab 

Table 5. Geometric mean of Kfs, SSIR, and Kslab values recorded in Ksat-SSIR-DB and compiled by Gupta et al. (2021) by textural 
classes and textural groups

Textural Classes
Ksat-SSIR-DB Gupta et al. (2021)

Kfs SSIR Kslab Kslab
 mm h-1 

sand
126.3

-
298 203.5

(22) (76) (4410)

loamy sand
45.6 91.9 64.9 39.7
(29) (17) (50) (637)

Textural Group COARSE
70.8 135.2 162.7 165.6
(51) (22) (126) (5047)

sandy loam
60.8 54.6 31.9 16
(65) (69) (159) (1054)

loam
- - 40.7 15.8

(44) (226)

silt loam
- - 31.6 11

(36) (373)

sandy clay loam
38.4 49.8 28.4 7.3
(105) (56) (238) (821)

silt
- - - 6.6

(31)

Textural Group MEDIUM
45.8 50.9 30.8 11.6
(174) (130) (477) (2505)

clay loam
53.6 9.6 25.7 7.4
(18) (16) (122) (112)

silty clay loam
- - 30 5.3

(30) (81)

silty clay
6.3 - 25.4 8.5
(7) (35) (57)

sandy clay
15.7 139.8 24.7 4.6
(60) (72) (156) (138)

clay
10.7 36.6 15.8 3
(113) (71.0) (447) (281)

very clayey
50.8 40.4 17.9

-
(74) (104) (449)

Textural Group FINE
19.5 52.1 18.9 4.5
(277) (273) (1239) (669)

Values in parentheses refer to the number of samples recorded in each class. The blue color represents values considered high (>36 mm h-1), orange, 
moderate (3.6-36 mm h-1), and red, low (<3.6 mm h-1).
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results of the Brazilian soil database were around three to five times greater than that recorded 
in the international soil database, a discrepancy not observed for soils in the coarse-textured 
group. In the clayey soil class, it was greater by a factor of 5.3. Presence of silt-sized (Vitorino  
et al., 2003), as well as sand-sized flocculated clays, containing minerals of high 
thermodynamic stability, with emphasis on gibbsite (high flocculating power) (Resende, 
1982; Ferreira et al., 1999), favors clayey and very clayey highly weathered soils, such 
as the Latossolos (Ferralsols) in Brazil, with high values of macroporosity and water flow. 
These results emphasize the need for caution when using data on hydraulic properties 
determined in soils from temperate regions to estimate the hydraulic behavior of Brazilian 
soils with a finer texture (Hodnett and Tomasella, 2002; Teixeira et al., 2014; Ottoni et al., 
2018; Ottoni et al., 2019). Therefore, there is a strong need to develop models for Brazil 
that estimate the hydraulic properties of soils.

Regarding the Ksat results according to soil class at the first category level of SiBCS (Table 
6), there is no defined pattern of ordering the mean values relative to the variables Kfs, 
Kslab, and SSIR. While for Kfs, the highest mean value occurred in the Neossolos (young 
soils) class (278.4 mm h-1), for Kslab, this occurred in the Organossolos (Histosols) class 
(48.6 mm h-1), and for SSIR in the Planossolos (Planosols) class (101.9 mm h-1). Plintossolos 
(Plinthosols) and Nitossolos (Nitisols, Lixisols, or Alisols) classes presented the lowest value 
in one of the three hydraulic variables, with values falling into low to moderate classes 
(3.6 to 8 mm h-1). Furthermore, in the same soil class, values among the three parameters 
may be discrepant. In Neossolos, for example, the mean Kfs was greater than the mean 
for other properties (Kslab and SSIR) by around eight times. A similar result occurred in 
the Gleissolos (Gleysols) class, in which the mean Kfs value was around 92 mm h-1, and 
for Kslab and SSIR it was only 11 and 16 mm h-1, respectively. Even for tests carried out in 
field, as for Kfs and SSIR, the results may be quite variable. Differences of methodologies 
on determining the soil hydraulic properties may explain such variability.

Mean values of Kfs, Kslab, and SSIR by land use classes (according to MapBiomas - MapBiomas 
Project, 2022), only considering the soil samples from the Ksat-SSIR-DB framed as ‘topsoils’, 
are shown in table 7. No deeper interpretation of these results was proposed here, as they 
are possibly biased due to the different soil types and textures within the land use classes. 
Furthermore, installation time and management practices are likely to be different among 
Ksat-SSIR-BD’s soil samples from the same land use class. The results presented below are 
more descriptive, highlighting general trends in hydraulic properties across land use classes.

Table 7 shows a clear distinction in the values recorded for the three hydraulic variables for 
Forest and Pasture classes, the first concentrating higher mean values (blue color) compared 
to those cataloged at the other classes, as usually expected. The Forest Plantation class 
recorded mean results of Kfs, Kslab, and SSIR lower than those presented in the Forest 
class, which is possibly related to human interventions, mainly in the first three years of 
forestry implementation in the first case. The Agriculture class revealed higher values than 
those for Pasture class.

The geometric mean values of Kfs, Kslab, and SSIR are recorded in the porosity 
classes, where the highest values were concentrated in the 0.6-0.7 cm3 cm-3 range, 
representing high porosity values (Table 8). However, at very high porosities (>0.7 cm3 
cm-3) a low mean Kslab value is noted, close to that recorded for lower porosity classes  
(0.3-0.4 cm3 cm-3). The SSIR results were higher than those of Kfs and Kslab in most porosity 
classes. An increase pattern in SSIR values with increasing porosity value ranges was also 
not observed. These results suggest that the total porous space, despite enabling the soil 
to store greater water content, may not be capable of conducting greater water flows under 
saturation conditions, as shown in table 8. The information presented in the Ksat-SSIR-DB 
(such as textural classes, soil class, land use classes, etc.) is not sufficient to explain the 
relationship between porosity and hydraulic conductivity, but we expect that factors such 
as pore connectivity and soil structure may be influencing. Further investigation based 
mainly on macroporosity (e.g.: EP) is necessary to clarify relationships between soil pore 
space and hydraulic conductivity.
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Table 6. Geometric mean values of Kfs, Kslab, and SSIR by soil classes in the first categorical 
level of SiBCS

Soil Classes Kfs Kslab SSIR
mm h-1 

Latossolos 34.2
(267)

46
(510)

79.7
(159)

Nitossolos 7.8
(11)

6.5
(31) -

Argissolos 21.8
(137)

28.3
(345)

43.5
(82)

Cambissolos 8.1
(28)

12.1
(266)

46.7
(51)

Neossolos 278.4
(17)

30.8
(219)

36.3
(36)

Luvissolos - - -

Chernossolos - - -

Planossolos - 18.2
(15)

101.9
(6)

Plintossolos - 3.6
(15) -

Vertissolos - - -

Gleissolos 91.6
(13)

11.4
(218)

15.8
(43)

Organossolos 48.6
(8)

Espodossolos 62.9
(9) - -

Values in parentheses indicate the number of soil samples evaluated. Blue color represents values considered 
high (>36 mm h-1), orange, moderate (3.6-36 mm h-1), and red, low (<3.6 mm h-1).

Table 7. Geometric mean values of Kfs, Kslab, and SSIR for the land use and cover classes of 
MapBiomas

Land Cover Classes Kfs Kslab SSIR 

 mm h-1 

Agriculture 25.0
(98)

39.9
(404)

48.5
(264)

Pasture 9.7
(38)

16.7
(171)

26.1
(45)

Forest 125.6
(43)

78.6
(109)

174.9
(38)

Forest plantation 46.7
(12)

37.7
(35)

112.1
(9)

Non forest natural 
formation

28.7
(32)

36.4
(65)

90.2
(26)

Non vegetated area 23
(6) - 43.8

(10)
Values in parentheses indicate the number of soil samples evaluated. The blue color represents values considered 
high (>36 mm h-1), orange, moderate (3.6-36 mm h-1), and red, low (<3.6 mm h-1).
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The results presented for Kfs, Kslab and SSIR averages by different soil groups  
(Tables 5, 6, 7 and 8) is the first version in Brazil of reference values of such hydraulic 
properties for soil group classes in which these data are commonly required. To date, 
there is no information available on these soil variables for Brazilian soils and, in many 
cases, researchers use data published at international literature (which usually comes 
from temperate soils), that, as already mentioned, may not represent the tropical soils 
of Brazil in terms of hydraulic properties. Some general interpretations of the results 
were made to promote discussion and instigate future investigations, but they are very 
simplistic and descriptive, and should be viewed with caution for more specific studies. 
Moreover, the soil groups classes used to compute average Ksat and SSIR are too generic 
to make very deep interpretations. In the following section, we make a more in-depth 
assessment of Ksat data variability in these soil groups.

Ksat data variability

Box-plots of Kslab data from the Ksat-SSIR-DB are presented by textural classes, soil 
classes at first category level of SiBCS, land use classes, and porosity classes (Figure 
6). The 10th and 90th percentile values are identified at figure, as an indicator of Ksat 
values variation in classes of each grouping. 

Many classes of the different investigated groupings presented Ksat magnitudes that 
varied within two orders of magnitude, considering the extreme limits of values contained 
in each class as 10th and 90th percentiles (Figure 6). The class of very clayey soils, for 
example, the predominant textural class in the Ksat-SSIR-DB, presented these percentiles 
from 2.0 to 380 mm h-1 (Figure 6a). Latossolos and Neossolos classes also recorded wide 
variation, with values of these percentiles between 3.0 and 429 mm h-1, and between 
2.0 and 421 mm h-1, respectively (Figure 6b).

The Forest Plantation class was the land use class that stood out in the Ksat data 
variability (Figure 6c), concentrating values of these percentiles ranging from 4.7 to  
2,597 mm h-1. The Ksat data for soil classes at the second category level of SiBCS (Figure 
7) show a greater homogenization. It is clear when compared to the variability observed 
at groupings in figure 6. For example, it can be seen at figure 7 that many soil classes 
percentile values varied by one order of magnitude (72 % of cases).

Table 8. Geometric mean values of Kfs, Kslab, and SSIR for the porosity classes represented in 
the Ksat-SSIR-DB

Porosity Classes Kfs Kslab SSIR
 mm h-1 

<0.3 cm3 cm-3 - 14.1
(7) -

0.3-0.4 cm3 cm-3 13.1
(50)

17.4
(187)

61.6
(23)

0.4-0.5 cm3 cm-3 38.8
(148)

33.5
(522)

53
(71)

0.5-0.6 cm3 cm-3 30.2
(74)

17.4
(742)

26.7
(120)

0.6-0.7 cm3 cm-3 38
(36)

40.4
(211)

72
(21)

>0.7 cm3 cm-3 - 16.8
(28)

40.4
(7)

Values in parentheses indicate the number of soil samples evaluated. The blue color represents values 
considered high (>36 mm h-1), and the orange, moderate (3.6-36 mm h-1).
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Even so, the data variation ranges (between 10th and 90th percentiles) in soil classes 
at second category level of SiBCS still remain high (Figure 7), suggesting caution when 
adopting a single mean value of Ksat to represent this soil property in the groupings. 
Adoption of value ranges between 25th and 75th percentiles and 10th to 90th percentiles, 
for example, can be investigated in future studies.

Selecting the best soil grouping for estimating Ksat

Figure 8 illustrates the distribution of standard deviation data recorded for each of the 
grouping classes and their combinations. The weighted mean standard deviations were 
smaller when considering the discretization of soil classes at the second category level 
of SiBCS, already expected accordingly to the results previously presented (Figure 7). 
The groupings with the lowest Ksat standard deviation were the combination of textural 
classes and soil classes at second category level of SiBCS, and porosity classes and 
soil classes at second category level of SiBCS. According to the weighted t-test, both 
weighted mean standard deviations were not statistically different from each other 
(0.63 and 0.64, respectively), and they were statistically smaller when compared two 
by two with other groupings. These results indicate that the Ksat values within each of 
the predicted classes in these two combinations tend to be 4 times (100.62 or 100.63 ~ 
4) higher and lower than the mean Ksat values recorded in the corresponding classes. 
For example, the combination of Latossolo Vermelho and clayey texture resulted in a 
geometric mean Ksat of 25.4 mm h-1. From results above, the Ksat values in this group 
would tend to range approximately from 6.3 mm h-1 (25.4/4) to 102 mm h-1 (25.4*4), 
close to that observed for the 10th and 90th percentiles of Ksat recorded in this grouping 
(3 and 122 mm h-1, respectively).

The groupings with the highest standard deviation in Ksat data were always the isolated 
groups. Among these, the worst performing was for the porosity group, and the best 
performing was for the soil class at the second category level of SiBCS. The mean 

Figure 6. Box-plots of Kslab data by textural classes (a), soil classes in the first categorical level of SiBCS (b); and land use and cover 
classes according to MapBiomas (c). Values indicated on the right side of the graphs represent the 10th and 90th percentiles of Kslab 
values (mm h-1) in each grouping (L). Next to these values is indicated the number of soil samples included in each group (N). Groups 
with a number of samples less than or equal to 5 did not have data presented. nan indicates that there is no data representation.

(a)

(c)

(b)
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values (geometric mean) of Ksat for the two best-represented groupings can be found 
at Supplementary Material (Section C).

Laboratory versus field saturated hydraulic conductivity

The records with joint measurements of Kslab and Kfs are presented in figure 9. According 
to this figure, the Kslab values are clearly greater than Kfs, where each pair refers to 
measurements of these properties carried out at the same location in the soil profile 
and, mostly, in clayey soils.

According to de Jong van Lier (2020), greater Kslab values are expected than Kfs values, 
as pores in a soil profile are unlikely to be fully saturated in field tests. In the laboratory, 
the saturation process is more controlled, which favors the total expulsion of air trapped 
in pores. However, this may be time-consuming. In contrast, Gupta et al. (2021), in an 
evaluation of Ksat data from international soils, reported an inverse tendency (Kfs > 
Kslab). The authors justified this trend because field tests are capable of reproducing 
flows in the soil structure in real conditions, a fact that does not occur in laboratory 
environments. Using data reported by Gupta et al. (2021), comparisons between Kslab 

Figure 7. Box-plots of Kslab values for soil classes in the second categorical level of SiBCS. Values indicated on the right side of 
the graphs represent the 10th and 90th percentiles of Kslab values (mm h-1) in each grouping (L). Next to these values is indicated 
the number of soil samples included in each group (N). Groups with a number of samples less than or equal to 5 did not have data 
presented. nan indicates that there is no data representation.

https://www.rbcsjournal.org/wp-content/uploads/articles_xml/1806-9657-rbcs-48-e0240007/1806-9657-rbcs-48-e0240042-suppl01.pdf
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and Kfs were carried out for mean values computed in three groupings of textural classes, 
not considering the measurements of these variables carried out in the same location, 
as investigated in the present study.

In Latossolos in the Cerrado and Forest biomes vertical cracks are common, and in 
Nitossolos in the Forest biome, both vertical and horizontal cracks are frequent, all these 
cracks resulting from drying out in the dry season. Also, in Vertissolos (Vertisols) and 
other soils with high clay activity, cracks are common features in the dry period. These 
aspects add variability to Ksat measurements in the field.

Comparative investigation on methods to obtain Ksat should be considered to guide 
the most suitable methods for different users. For example, if the goal is to develop 
mathematical models for Ksat prediction, Ksat data obtained by laboratory methods 
is possibly the most recommended. Such conclusion comes from the fact that Kslab 
measurements occur in soil samples extracted at the same location as those used to 
measure the predictor properties, allowing direct relationships to be established between 
Ksat and soil properties. These direct relationships between Ksat and predictor properties 
are impaired for Kfs data, since their determination involves the entire soil profile. To 
measure Kslab with the greatest possible reproducibility of the soil structure, sampling 
rings with adequate size must be chosen (Jafari et al., 2017; Kaminski et al., 2023). 
Several research efforts have shown high variability of saturated hydraulic conductivity 
values among samples collected even close to each other. This is partially related to 
the volume of the soil samples, normally 100 cc (5 cm height and 5 cm diameter). This 
is smaller than the representative volume (REV) suggested to measure Kslab for many 
soils (Bear, 1972; Lauren et al., 1998; Teixeira, 2001). For example, Khodaverdiloo et 

Figure 8. Box-plots of Kslab standard deviation values on a logarithmic basis recorded for the tested groupings and combinations 
between them. Full black circle indicates the weighted mean standard deviation value, also reproduced at the top of the graph, 
accompanied by indexes *, **, ***. The same indexes mark significant similarity (p-value≥0.05) between values in the same line, 
according to the weighted t-test. Soil Class 1CL: soil classes in the first categorical level of SiBCS; Soil Class 2CL: soil classes in the 
second categorical level of SiBCS.

** *** ** *** * *
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al. (2017) reported that hydraulic conductivity increased 2.3 times as ring diameter 
varied from 5.5 to 31.8 cm. This variation can be explained by preferential flow of water 
through the space between soil sample and ring wall. The open-ended macropores over 
the length of soil samples may cause piping effects, i.e., soil particles are carried out 
from sample opening space for larger water flow (Mohanty et al., 1994). Anderson and 
Bouma (1973) also demonstrated relationships between Kslab and core height. High 
variability in Kslab reflects not only the true variability of Ksat but also bias introduced 
by the method (Teixeira, 2001; Ghanbarian et al., 2015; Kaminski et al., 2023).

Conversely, if one wants to know the hydrodynamic nature of soil, Kfs measurements are 
very useful, as they involve the entire soil profile. Besides, for many practical problems 
of large-scale significance, an estimation of Ksat relative to the whole soil profile may be 
more useful than a precise estimation of Kslab of one soil horizon. However, the limitations 
of these in situ methods are known, starting with the long time demanded to saturate 
the soil and the various theoretical simplifications in Kfs calculation procedures, such 
as the assumptions of isotropic flow, soil profile homogeneity, and initial water content 
homogeneity along the profile.

Limitations of the Ksat-SSIR-BD

The Ksat-SSIR-BD was developed through the transfer of data by several partners in this 
project, who were not always able to inform the positioning of the soil samples accurately. 
This location accuracy of the database sample points becomes important when one 
intends to interpolate Ksat data in a certain area or region of interest, or to extract 
geoenvironmental information to be used as predictor variables in Ksat prediction models.

Applications of the Ksat-SSIR-BD

The immediate application of this database consists of Ksat and SSIR values being easily 
available. Developing and testing different Ksat prediction models for soils of Brazilian 
territory, using machine learning techniques, as the so-called pedotransfer functions, 
are also important applications. Another relevant application, especially for distributed 
hydrological and climatological modeling studies at the national level, is the generation 
of maps of these hydraulic properties in Brazil, which can be developed based on Ksat 
pedotransfer functions and raster maps of potential predictors, recently (in 2021) made 
available on the Embrapa website (https://geoinfo.dados.embrapa.br/#/). The mean Ksat 
results for the different groupings are also relevant as a source of reference for different 

Figure 9. Comparison between the values of Kslab and Kfs in the Ksat-SSIR-DB.

https://geoinfo.dados.embrapa.br/#/


Ottoni et al. Saturated hydraulic conductivity and steady-state infiltration rate database for Brazlian soils

26Rev Bras Cienc Solo 2025;49:e0240003

geoenvironmental applications and particularly for lumped and semi-distributed land 
surface modeling.

Recommendation for data reusability

A detailed description of the sampling site and the methods of determination of soil 
properties measured in the field and/or in the laboratory is crucial for a comprehensive 
soil investigation and subsequent data reuse. In the case of Kfs and SSIR determinations 
we suggest detail description of the in situ test, including the procedures for installation 
and operation of the equipament at field. Photos of the experiment should also be 
provided to enhance the understanding of field procedures. For Kslab measurements, the 
sample size must be informed along with soil sampling depths and number of replicates, 
if any. Soil sampler driving procedure should also be detailed to provide information on 
soil structure preservation. The Brazilian Soil Science Society (SBCS), along with other 
relevant research institutions like universities, Embrapa, Geological Survey of Brazil, and 
State Research Stations, should consider standardizing these descriptions.

CONCLUSIONS
The Ksat-SSIR-DB presents 2,579 soil records, with information on saturated hydraulic 
conductivity – from laboratory and field experiments – and on steady-state infiltration rate. 
The average values of Ksat and SSIR of soil classes at the first category level of SiBCS, 
as well as textural and porosity classes and land use classes are provided. Variability of 
the Ksat data in these groups (including the soil classes at the second category level of 
SiBCS) was also investigated, showing wide variation in values within classes of these 
groupings. Indication of groupings or combinations among them that best represented 
Ksat data was also presented. The two combinations that recorded less variability in 
Ksat data were soil class at the second category level of SiBCS with textural class, and 
soil class at the second category level of SiBCS with porosity class.

The great difference between the Ksat values in most Brazilian clayey and very clayey 
soils compared to clayey soils from temperate regions is worth noting. The Ksat values are 
consistently much higher in clayey Brazilian soils, possibly due to the strong aggregation 
of clay particles provided by iron and aluminum oxides.

Comparisons between pairs of Kfs and Kslab values from measurements carried out at 
the same location in the soil profile indicate that Ksat is a hydraulic property that must 
be measured according to the hydrological process that is aimed to be reproduced.

Adoption of Ksat values from international literature in irrigation, hydrology, soil 
conservation procedures, and lining of landfill projects in Brazil, for example, is subject 
to high inaccuracy. The Ksat-SSIR-DB has potential for diverse applications, including the 
development and testing of Ksat pedotransfer functions in Brazilian soils, and generation 
of national maps of this soil hydraulic property. Recommendations for researchers on 
how to better document their data for improved reusability were provided.

SUPPLEMENTARY MATERIALS
Supplementary data to this article can be found online at https://www.rbcsjournal.org/
wp-content/uploads/articles_xml/1806-9657-rbcs-48-e0240007/1806-9657-rbcs-48-
e0240003-suppl01.pdf

DATA AVAILABILITY
Ksat-SSIR-DB is an open access database and can be reached at the link https://www.
sgb.gov.br/ksat-ssir-db-base-de-dados-de-condutividade-hidraulica-saturada-e-de-taxa-
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de-infiltracao-basica-em-solos-brasileiros, which also includes the python script for data 
analysis.
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