

Número: 307/2003 UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE GEOCIÊNCIAS PÓS-GRADUAÇÃO EM GEOCIÊNCIAS ÁREA DE METALOGÊNESE

JULIANO ALVES DE SENNA

CARACTERIZAÇÃO DE ARGILAS DE UTILIZAÇÃO NA INDÚSTRIA CERÂMICA POR ESPECTROSCOPIA DE REFLECTÂNCIA

Dissertação apresentada ao Instituto de Geociências como parte dos requisitos para obtenção do título de Mestre em Geociências.

Orientador: Prof. Dr. Carlos Roberto de Souza Filho

CAMPINAS - SÃO PAULO

Agosto - 2003

Senna, Juliano Alves de Caracterização de argilo-minerais de utilização na indústria cerâmica por espectroscopia de reflectância / Juliano Alves de Senna.-Campinas,SP.: [s.n.], 2003.
Orientador: Carlos Roberto de Souza Filho Dissertação (mestrado) Universidade Estadual de Campinas, Instituto de Geociências.
1. Espectroscopia de reflectância. 2. Argilo-minerais - análise.
3. Pesquisa mineralógica. 4. Cerâmica – Indústria. I. Souza Filho, Carlos Roberto de. II. Universidade Estadual de Campinas, Instituto de Geociências.

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE GEOCIÊNCIAS PÓS-GRADUAÇÃO EM GEOCIÊNCIAS ÁREA DE METALOGÊNESE

AUTOR: JULIANO ALVES DE SENNA

ORIENTADOR: Prof. Dr. Carlos Roberto de Souza Filho

Aprovada em: ____/___/____

EXAMINADORES:

Prof. Dr. Carlos Roberto de Souza Filho)	Presidente
Prof. Dr. Jacinta Enzweiler		
Prof. Dr. Lênio Soares Galvão		

Campinas, 28 de Agosto de 2003

"Maravilhas nunca faltaram ao mundo o que sempre falta é a capacidade de senti-las e de admirá-las".

"Quem não compreende um olhar, tampouco compreenderá uma longa explicação".

"Livros não mudam o mundo, quem muda o mundo são as pessoas. Os livros só mudam as pessoas".

Mario Quintana

Aos meus queridos filhos: Lavínia e Augusto, razão da nossa perseverança e que um dia poderão se interessar pelo assunto.

Aos meus adoráveis pais que sempre lutaram por minha felicidade e educação.

Ao meu eterno "vô Senna", o desbravador das mentalidades e propagador do ideal igualitário, que em algum lugar desta imensidão olha por nós. Dedico não somente pela saudável saudade, mas pelo profundo respeito, ao Grande Homem que foi e espírito que o é, assim como pelas memórias de alguém que sempre admirarei.

Enfim dedico.....

Ao esforçado **Prof. Dr. Carlos Roberto de Souza Filho (Beto)**, pela orientação e auxílio na elaboração da dissertação, assim como pela compreensão nos momentos difíceis, em que a vida particular tentava abafar a profissional.

A Grande e excelente **UNICAMP**, por todas as ajudas, como: moradia, bolsa emergência, bolsa transporte e bolsa alimentação; auxílios preciosos e necessárias à conclusão do curso.

Ao CNPq pela bolsa de pesquisa.

Às **Minerações Calcário Cruzeiro Ltda** e **Matheus Leme Ltda** por cederem gentilmente suas áreas produtoras de matéria prima para alvos desta pesquisa.

Ao Prof Dr. Antenor Zanardo pela generosa colaboração durante a interpretação mineralógica, ao técnico Vladimir Barbosa Jr. pela ajuda na realização das análises difratométricas e ao Ricardo P. Borba pelos "toques" do Eva Plus.

À Prof. Dra. Jacinta Enzweiler pelas sugestões de leitura quanto a siderita cenozóica. A mesma também agradeço juntamente com a Msc. Maria Aparecida Vendemiatto e a Técnica Lúcia Helena S. Carvalho, pelo grande amparo na realização das análises de FRX.

À Dr. Katia Regina Ferrari da Unesp pela importante apresentação do setor cerâmico e ao Dr. Erasto Boretti de Almeida por levantamentos preliminares na Formação Corumbataí e indicação da Mina do Cruzeiro.

Aos professores do IG que de alguma forma nos ajudaram a evoluir nos conhecimentos geológicos, seja em aulas, defesa de projeto, ou mesmo em comentários de corredor. Especialmente aos que incentivaram a idéia e aos membros da Banca de Qualificação: Profs. Drs. Bernardino Figueiredo e Álvaro Crosta.

Aos colegas do LAPIG pela amizade e simpatia, em especial: ao Rafael, Juliano Souza e Diego Ducart pelas ajudas no ArcGIS. Ao Barata, Solange e César Kazzuo nos momentos finais. A Venissa e ao Flávio Bocarde pelas discussões e companhia durante a batalha. E aos técnicos Ricardo e Moacir pela ajuda nas questões de informática.

A todos os colegas da pós que sempre mantiveram contato, como: Daniela e Shirley pela correção das técnicas de raios X, ao Alexandre e Filipini pela amizade e ao Willian pelas caronas ao correio.

Ao pessoal da OPA, como: Gafanhoto pelos *papers*, Luciano pela informação deste mestrado e aos velhos amigos Paulo Francis, Giubraz, Renato e Tissoka pelos conselhos no inicio. A toda RepZoo.

A todos os funcionários do IG, em especial: às atenciosas secretárias Valdirene Pinotti, Ednalva Novaes e Josefina, que sempre ajudaram com muito bom humor. Ao motorista Sr. Rinaldo pela condução aos locais de investigação. Ao Sr. Aníbal e Dna. Maria pelas gentilezas noturnas, assim a todas as faxineiras que zelaram pela higiene. Ao pessoal do setor de apoio operacional e as prestativas bibliotecárias.

Ao pessoal do SAE-Unicamp pela grande atenção e a todos os habitantes e pares da moradia com quem mantivemos bons contatos. A todos os meus familiares sem que haja ordem em mencionar méritos, tanto os antigos (avos, pais, tios e irmãos) como os novos, pela enorme paciência e colaboração. A estes agradeço sem limite pelas ajudas e desculpo-me sem orgulho pelas falhas.

Às minhas tias Agda e Armênia Alves de Senna pelo apoio moral, espiritual e financeiro nas fases de maior sobrecarga, como no decorrer deste trabalho e em tantas outras.

A Querida Dna. Maria Emília, pelas orações de paz e sucesso.

Aos meus queridos irmãos: Rogério, Maurício e Rodrigo.

A Nossa Sra. de Santa Quitéria ou Santa Rita de Cássia, pelo auxílio nos momentos mais difíceis desta jornada. Ao querido São Francisco, pelo seu grande exemplo de simplicidade e por auxiliar a paz em nosso lar.

A todos os espíritos amigos pela companhia, conselho e proteção. A todos os amigos freqüentadores do CEAK pela serenidade e ao aprendizado da doutrina espírita.

Aos meus pais Fenelon Alves Senna e Rosa Maria Rodrigues A. Senna que souberam me educar apostando sempre no sucesso das minhas realizações, assim como o eterno amor que demonstraram quando se propuseram a cuidar de nós, filhos, durante a escolha de suas vidas. A eles também agradeço a pessoa justa que julgo ser.

A Paula pela companhia nos momentos mais difíceis e ajuda nas horas de ansiedade, medo e duvida.

A Lavínia e ao Augusto pelo carinho fraterno e pela inusitada compreensão.

A **DEUS nosso grande Pai**, por nos dar a grande oportunidade de crescer e evoluir durante esta curta jornada terrena, sem que precisássemos passar por expiações, para poder ajudar ao próximo. Obrigado principalmente pela saúde e inteligência.

Enfim a todos aqueles que direta ou indiretamente contribuíram para a execução deste trabalho, o meu humilde e sincero.....

Muito Obrigado.

"Ciência, Filosofia e Religião (Moral) são três coisas imprescindíveis à qualidade de vida humana"

Juliano Senna

"Uma história e suas lições só se tornam úteis quando compartilhadas"

Dan Millman

"Nunca considerem seus estudos como um dever, mas como a invejável oportunidade de aprender a conhecer a influência libertadora de beleza do reino do espírito, para sua própria alegria pessoal a benefício da comunidade a que pertencerá o trabalho posterior de vocês"

> Albert Einstein Físico Judeu (1879-1955)

"Escolha um trabalho que você ame e não terá que trabalhar um único dia de sua vida"

Confúcio Filósofo Chinês (551 - 479 a.C.)

"Quando o trabalho é prazer, a vida é alegria. Quando o trabalho é dever, a vida é escravidão"

Máximo Gorki Escritor Russo (1868-1936)

"Não há nada que atrapalhe mais o desenvolvimento científico do que o desejo de que ele aconteça rápido demais"

> Georg G. Lichtenberg Físico Alemão (1742-1799)

"Se você rouba idéias de um autor, é plágio. Se você rouba de muitos autores, é pesquisa"

Wilson Mizner Dramaturgo Americano (1876-1933)

"Achar que o mundo não tem um criador é o mesmo que afirmar que um dicionário é o resultado de uma explosão numa tipografia"

Benjamin Franklin Cientista Americano (1706-1790)

"Pense e fará o que pensa. Faça e você mesmo será aquilo que faz"

Emmanuel

SUMÁRIO

Páginas Preliminares	i
Dedicatória	v
Agradecimentos	vi
Epígrafe	ix
Sumário	xi
Figuras	xv
Tabelas	xviii
Resumo	xxi
Abstract	xxiii

INTRODUÇÃO

CAPÍTULO I

I.1 Apresentação	1
I.1.1 MINERAIS INDUSTRIAIS	2
I.1.2 Argilo-Minerais	3
Depósitos Primários	4
Depósitos Secundários	4
Classificação e Tipos de Argilas	5
Argilas Comuns	5
Argilas Plásticas	5
Argilas Refratárias	6
Argilas Descorantes	7
Caulim	7
I.1.3 ESPECTROSCOPIA DE REFLECTÂNCIA	8
I.2 OBJETIVOS E JUSTIFICATIVAS	9
I.3 Natureza do Problema	10
I.4 Materiais, Métodos e Etapas de Trabalho	10
I.4.1 PESQUISA BIBLIOGRÁFICA	10
I.4.2 TRABALHOS DE CAMPO	11
I.4.3 Amostragem e Preparação	11
I.4.4 Análises	11
I.5 Localização e Acessos	12
I.6 GEOLOGIA REGIONAL	12
I.7 REFERÊNCIAS BILIOGRÁFICAS	15

MÉTODOS ESPECTRAIS UTILIZADOS PARA CACTERIZAÇÃO MINERAL	APITULO II
II.1 Introdução	17
II.2 ESPECTROMETRIA DE RAIOS X	18
II.2.1 Fluorescência de raios X (FRX)	18
Princípios	18
Instrumento	
Metodologia	19
II.2.2 DIFRATOMETRIA DE RAIOS X (DRX)	20
Princípios	20
Lei de Bragg	20
Monocromador	21
Interpretação	21
Instrumento	21
Metodologia	22
II.3 ESPECTROSCOPIA DE REFLECTÂNCIA	24
II.3.1 PRINCÍPIOS	25
II.3.2 INTERAÇÃO DA REM COM MINERAIS E ROCHAS	26
II.3.3 Origem das Feições	. 26
Transições eletrônicas	. 27
Transições Vibracionais	. 27
II.3.4 Atenuantes Espectrais	. 27
II.3.5 Feições Diagnósticas	. 28
II.3.6 Condições de Análises	29
Espectrômetro	30
II.3.7 CLASSIFICAÇÃO ESPECTRAL	
Interpretação Empírica	31
Interpretação Automática	
II.4 Considerações Finais	36
II.5 Referências Bibliográficas	

III.1 Introdução	41
III.2 GEOLOGIA LOCAL	42
III.3 Lavra	45
III.4 Geologia da Mina	45
III.4.1 Formação Irati (FI)	46
III.4.2 FORMAÇÃO SERRA ALTA (FSA)	46
III.4.3 FORMAÇÃO CORUMBATAÍ (FC)	46
III.4.4 FORMÇÃO SERRA GERAL (FSG)	59
III.5 Aspectos Mineiros	59
III.6 COMPARTIMENTOS LITOESTRATIGRAFICOS - USO	60
III.6.1 Formação Irati	63
III.6.2 Formação Serra Alta	63
III.6.3 FORMAÇÃO CORUMBATAÍ	63
III.7 Caracterização Mineral	66
III.8 Analise dos Compartimentos Litoestratigráficos	67
III.8.1 Formação Irati (FI)	67
III.8.2 FORMAÇÃO SERRA ALTA (FSA)	72
III.8.3 FORMAÇÃO CORUMBATAÍ (FC)	76
⇔ Grupo FC1 - arenito - CS	76
⇔ Grupo FC2 - siltito róseo - CS	83
⇔ Grupo FC3 - siltito cinza, verde e amarelo - CS	88
	93
⇔ Grupo FC5 - siltito róseo - CN / N	98
⇔ Grupo FC6 - argilito e siltito róseo - N	103
⇔ Grupo FC7 - argilito amarelo e branco - N	108
III.8.4 FORMÇÃO SERRA GERAL (FSG)	116
III.9 Discussões & Conclusões	121
III.10 Referências Bibliograficas	125

IV.1 Introdução	129
IV.2 Geologia Local	130
IV.2.1 FISIOGRAFIA	130
IV.2.2 LITOESTRATIGRAFIA	133
Grupo São Bento (GSB)	133
Formação Pirambóia (FP)	134
Formação Botucatu (FB)	134
Formação Serra Geral (FSG)	135
Coberturas Cenozóicas (CC)	136
Formações Superficiais (FS)	136
Depósitos Quaternários (DQ)	137
IV.3 Geologia do Depósito	138
IV.3.1 Aluvião I	141
IV.3.2 Aluvião II	142
IV.3.3 GEOCRONOLOGIA DO DEPÓSITO	146
IV.4 ASPECTOS MINEIROS / LAVRA	147
IV.5 Propriedades Tecnológicas	151
IV.6 CARACTERIZAÇÃO MINERALÓGICA	152
IV.6.1 INTRODUÇÂO	152
IV.6.2 Materiais	153
Argila Branca	153
Argila Cinza	172
Argila Marrom	188
IV.7 DISCUSSÕES E CONCLUSÕES	205
IV.8 Referências Bibliográficas	214

CONCLUSÃO	CAPÍTULO V

219

ÍNDICE DE ILUSTRAÇÕES

LISTA DE FIGURAS

Figura I.1	Mapa de localização	13
Figura I.2	Litoestratigrafia da borda leste da Bacia do Paraná	14
Figura II.1	Espectro eletromagnético, com regiões de atuação dos métodos espectrais	17
Figura II.2	Monocromador e detector de raios X	23
Figura II.3	Espectrômetro de fluorescência de raios X	23
Figura II.4	Modelo da aplicação da lei de Bragg para a DRX	23
Figura II.5	Difratômetro de raios X	23
Figura II.6	Faixa do espectro de investigação	24
Figura II.7	Espectrorradiômetro portátil	31
Figura II.8	Método de diferença do contínuo	32
Figura III.1	Mapa da geologia local da Mina do Cruzeiro	43
Figura III.2	Vista panorâmica (MC)	44
Figura III.3	Pátio de estocagem (MC)	44
Figura III.4	Vista da lavra desativada	44
Figura III.5	Mapa da Mina do Cruzeiro	47
Figura III.6	Colunas (seção vertical) da MC (CS e CN)	48
Figura III.7	Colunas (seção vertical) área norte MC (N)	49
Figura III.8	Vista panorâmica da MC e área da principal lavra	50
Figura III.9	Vista Parcial da região centro-sul da lavra	50
Figura III.10	Formação Irati	53
Figura III.11	Região sul da mina, detalhe para FSA e FC e FI	54
Figura III.12	Topo predominantemente arenoso da FC	55
Figura III.13	Bancadas (III, IV, V)FC (CS)	56
Figura III.14	FC bancada II (CN)	57
Figura III.15	Intrusiva (FSG), latossolo e siltito (FC)	58
Figura III.16	Coluna litoestratifgrafica da mina co cruzeiro	61
Figura III.17	Coluna da mina do Cruzeiro (tipo de material e mineralogia)	62
Figura III.18a	DRX calcário escuro com folhelho (FI)	69
Figura III.18b	Coleção espectral de amostras da FI (SWIR)	69
Figura III.18c	Coleção espectral (curvas médias) das amostras da Fl	70
Figura III.19a	DRX da fração total do siltito cinza escuro (FSA)	74
Figura III.19b	Coleção espectral de amostras da FSA (SWIR)	74
Figura III.19c	Coleção espectral (curvas médias) das amostras da FSA	75

Figura III.20a	DRX da fração total do arenito (FC1)	79
Figura III.20b	Coleção espectral de amostras do grupo FC1	79
Figura III.20c	Coleção espectral (curvas médias) das amostras do grupo FC1	80
Figura III.21	Classificação espectral da mistura mineral SFS am 18d5 e SF 2.9 am18b3	81
Figura III.22	Classificação espectral da mistura mineral. SFS-am18d5 e SF-am18b3	82
Figura III.23a	DRX da fração total do siltito róseo (FC2)	85
Figura III.23b	Coleção espectral de amostras do grupo FC2	85
Figura III.23c	Coleção espectral (curvas médias) das amostras do grupo FC2	86
Figura III.24a	DRX da fração total do siltito amarelo/verde róseo (FC)	90
Figura III.24b	Coleção espectral de amostras do grupo FC3	90
Figura III.24c	Coleção espectral (curvas médias) das amostras do grupo FC3	91
Figura III.25	Classificação espectral da mistura mineral am 30 (SFS e SF)	92
Figura III.26a	DRX da fração total do nódulo carbonático (FC4)	95
Figura III.26b	Coleção espectral de amostras do grupo FC4	95
Figura III.26c	Coleção espectral (curvas médias) das amostras do grupo FC4	96
Figura III.27	Classificação espectral da mistura mineral, am29 (SFS e SF)	97
Figura III.28a	DRX da fração total do siltito róseo (FC5)	101
Figura III.28b	Coleção espectral de amostras do grupo FC5	101
Figura III.28c	Coleção espectral (curvas médias) das amostras do grupo FC5	102
Figura III.29a	DRX da fração total do argilito róseo (FC6)	105
Figura III.29b	Coleção espectral de amostras do grupo FC6	105
Figura III.29c	Coleção espectral (curvas médias) das amostras do grupo FC6	106
Figura III.30a	DRX da fração total do argilito branco (FC7)	111
Figura III.30b	Coleção espectral de amostras do grupo FC7	111
Figura III.30c	Coleção espectral (curvas médias) das amostras do grupo FC7	112
Figura III.31	Classificação Automática (am08)	113
Figura III.32	Classificação Automática (am11)	114
Figura III.33	Classificação espectral da mistura mineral am22 (SFS/SF)	115
Figura III.34a	DRX da fração total da bauxita (alteração FSG)	119
Figura III.34b	Coleção espectral do latossolo e da bauxita (FSG)	119
Figura III.34c	Espectros (curvas médias) da bauxita e do latossolo	120
Figura III.35	Assinaturas Espectrais Litoestratigrafia da mina do Cruzeiro	124
Figura IV.1	Localização da área e geologia local da região da São Simão	131
Figura IV.2	Mapa detalhado do ribeirão Tamanduá	132
Figura IV.3	Fotografias da região do Aluvião do ribeirão Tamanduá	139
Figura IV.4	Fotografias das litologias do Aluvião no Terraço 1 (Qa1)	140
Figura IV.5	Colunas Litoestratigráficas correspondentes a Seção C-D no Aluvião	143

Figura IV.6	Seções no Aluvião do ribeirão Tamanduá	144
Figura IV.7	Fotografias da cava no Aluvião II (Qa2)	149
Figura IV.8	Pátio de materiais, argilas branca, cinza, marrom escura e clara	150
Figura IV. 9	Amostra e difratograma am01 (arg.bca)	155
Figura IV.10	Amostra e difratograma am05 (arg.bca)	156
Figura IV.11	Amostra e difratograma am24 (arg.bca)	157
Figura IV.12	Amostra e difratograma am25 (arg.bca)	158
Figura IV.13	Curvas de reflectância espectral (contínuo removido) das argilas brancas	160
Figura IV.14	Classificação espectral automática da amostra 01b1	165
Figura IV.15a	Classificação espectral am05a2	166
Figura IV.15b	Classificação espectral am05b4 (VNSWIR)	167
Figura IV.15c	Classificação espectral am05b4 (SWIR)	167
Figura IV.15d	Classificação espectral am05b5	169
Figura IV.16	Classificação espectral am24b1	170
Figura IV.17	Classificação espectral am25b2	171
Figura IV.18	Amostra e difratograma am03 (arg.cza.)	173
Figura IV.19	Amostra e difratograma am05 (arg.cza.)	174
Figura IV.20	Amostra e difratograma am14 (arg.cza.)	175
Figura IV.21	Amostra e difratograma am26 (arg.cza.)	176
Figura IV.22	Curvas de reflectância espectral (contínuo removido) das argilas cinzas	178
Figura IV.23	Classificação Automática (03b3)	184
Figura IV.24	Classificação Automática (09a4)	185
Figura IV.25	Classificação Automática (14a5)	186
Figura IV.26	Classificação Automática (26a1)	187
Figura IV.27	Amostra e difratograma da am04 (arg.mar.)	190
Figura IV.28	Amostra e difratograma da am07 (arg.mar.)	191
Figura VI.29	Amostra e difratograma da am08 (arg.mar.)	192
Figura IV.30	Amostra e difratograma da am11 (arg.mar.)	193
Figura IV.31	Amostra e difratograma da am18 (arg.mar.)	194
Figura IV.32	Curvas de reflectância espectral (contínuo removido) das argilas marrons	196
Figura IV.33	Classificação Automática (04a5)	200
Figura IV.34	Classificação Automática (07a2)	201
Figura IV.36	Classificação Automática (11b2)	203
Figura IV.37	Classificação Automática (18b2)	204
Figura IV.38	Redução do ferro em sistemas aquáticos oxigenados com matéria orgânica	211
Figura IV.39	Evolução paleoambiental do depósito aluvionar do ribeirão Tamanduá	213

ÍNDICE DE TABELAS

LISTA DE TABELAS

Tabela I.1	Características e aplicações de minerais industriais	3
Tabela I.2	Relação da granulometria da amostras e analises submetida	11
Tabela II.1	Marcas de Qualidade do <i>Eva Plus</i>	22
Tabela II.2	Terminologia adotada para os minerais detectados por DRX.	22
Tabela II.3	Regiões do espectro de interesse para a espectroscopia de reflectância	24
Tabela II.4	Conceitos radiométricos	25
Tabela II.5	Regiões do espectro com propriedades minerais e rochas	28
Tabela II.6	Comprimento de onda de feições de absorção características	29
Tabela II.7	Estatus de erro do SF2.9	35
Tabela III.1	Composição química Formação Irati	67
Tabela III.2	Composição mineralógica (FI)	68
Tabela III.3	Comprimento de onda das feições dos espectros (FI)	70
Tabela III.4	Composição química Formação Serra Alta	72
Tabela III.5	Composição mineralógica (FSA)	72
Tabela III.6	Comprimento de onda das feições dos espectros (FSA)	75
Tabela III.7	Composição química da Formação Corumbataí (FC1)	77
Tabela III.8	Composição mineralógica (FC1)	77
Tabela III.9	Comprimento de onda das feições dos espectros (FC1)	80
Tabela III.10	Composição química da Formação Corumbataí (FC2)	83
Tabela III.11	Composição mineralógica (FC2)	84
Tabela III.12	Comprimento de onda das feições dos espectros (FC2)	86
Tabela III.13	Composição química da Formação Corumbataí (FC3)	88
Tabela III.14	Composição mineralógica (FC3)	89
Tabela III.15	Comprimento de onda das feições dos espectros (FC3)	91
Tabela III.16	Composição química de veios da Formação Corumbataí (FC4)	93
Tabela III.17	Composição mineralógica (FC4)	94
Tabela III.18	Comprimento de onda das feições dos espectros (FC4)	96
Tabela III.19	Composição química da Formação Corumbataí (FC5)	99
Tabela III.20	Composição mineralógica (FC5)	99
Tabela III.21	Comprimento de onda das feições dos espectros (FC5)	102
Tabela III.22	Composição química da Formação Corumbataí (FC6)	103
Tabela III.23	Composição mineralógica (FC6)	104
Tabela III.24	Comprimento de onda das feições dos espectros (FC6)	106

Tabela III.25	Composição química da Formação Corumbataí (FC7)	108
Tabela III.26	Composição mineralógica (FC7)	109
Tabela III.27	Comprimento de onda das feições dos espectros (FC7)	112
Tabela III.28	Composição química do latossolo e da alteração (FSG)	116
Tabela III.29	Composição mineralógica (FSG)	117
Tabela III.30	Comprimento de onda das feições dos espectros (FSG)	120
Tabela IV.1	Análises química total e do complexo absorvente nas argilas dos aluviões I e II	145
Tabela IV.2	Características físico-químicas e cerâmicas das argilas de São Simão	151
Tabela IV.3	Composição mineralógica (DRX) das argilas brancas	154
Tabela IV.4	Classificação espectro-mineralógica das argilas brancas	164
Tabela IV.5	Composição mineralógica (DRX) das argilas cinzas	177
Tabela IV.6:	Classificação espectro-mineralógica das argilas cinzas	183
Tabela IV.7	Composição mineralógica (DRX) das argilas marrons	189
Tabela IV.8:	Classificação espectro-mineralógica das argilas marrons	199
Tabela IV.9	Modelos crono-similares de ocorrência de siderita e lepidocrosita	212

"Melhor é dizer dez verdades do que admitir uma única falsidade; uma só teoria errônea"

Alla Kardec

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE GEOCIÊNCIAS PÓS-GRADUAÇÃO EM GEOCIÊNCIAS ÁREA DE METALOGÊNESE

CARACTERIZAÇÃO DE ARGILAS DE UTILIZAÇÃO NA INDÚSTRIA CERÂMICA POR ESPECTROSCOPIA DE REFLECTÂNCIA

RESUMO

DISSERTAÇÃO DE MESTRADO

JULIANO ALVES DE SENNA

As argilas estão entre as mais importantes matérias primas devido as suas múltiplas funções industriais. No caso especial da indústria de cerâmica, as argilas têm ampla utilidade, sendo o principal produto para a fabricação de loucas, porcelanas, revestimentos, entre outros. A caracterização de argilas, do ponto de vista químico, físico e tecnológico, é um requisito cada vez mais necessário. Entretanto, o planejamento de lavra sucinto, a falta de controle dos padrões requeridos pela indústria e a separação essencialmente subjetiva e empírica das argilas quanto ao uso, fazem com que muitos materiais química e tecnologicamente diferentes sejam classificados como semelhantes, com conseqüências danosas para a extração e industrialização da matéria prima. Considerando as complexidades envolvidas na caracterização de argilas de utilização na indústria cerâmica por métodos convencionais, esta pesquisa objetivou (i) avaliar o potencial da espectroscopia de reflectância como um método aplicável de forma expedita na definição de tipos e de pureza de argilas; (ii) determinar parâmetros espectrais que possam subsidiar a classificação de argilas quanto ao uso na indústria, com ênfase nos materiais apropriados para a produção de cerâmica de revestimentos e louça sanitária. Dois jazimentos de argila foram estudados: um primeiro, fonte de matéria prima para indústria de revestimentos cerâmicos, explorado pela Mineração Cruzeiro, em Limeira (SP); e outro, fonte de matéria prima para a indústria de porcelana e louça sanitária (incluindo argilas do tipo ball clay), explorado pela Mineração Mateus Leme, em São Simão (SP). A Mina de Cruzeiro compreende rochas ricas em argila das Formações Irati, Serra Alta, Corumbataí e Serra Geral (Bacia do Paraná), tendo o horizonte Corumbataí como principal fonte de matéria prima. Com base em métodos e dados obtidos por espectroscopia de reflectância, foi possível construir uma coluna 'espectro-litológica', onde cada compartimento (Formação) e sub-compartimento (grupos da Formação Corumbataí) possui uma assinatura espectral característica, a qual pode ser diretamente relacionada a uma determinada composição e uso (ou não) do material como matéria-prima na indústria cerâmica de revestimentos. No depósito de São Simão, a caracterização das argilas por espectroscopia de reflectância foi plena. Três tipos de argila, hospedados no aluvião do ribeirão Tamanduá, foram separados. Nas argilas brancas foi possível quantificar e detectar as porcentagens de caulinita e seu grau de cristalinidade, argilo-minerais expansivos e micas, e a lepidocrosita (inédita em depósitos aluvionares brasileiros). Nas argilas cinzas, também cauliníticas, a matéria orgânica tem intima relação com a presença dos argilo-minerais expansivos. As argilas marrons possuem a maior quantidade de caulinita e de variedades bem estruturadas e cristalinas; os argilo-minerais expansivos ocorrem numa proporção ideal em relação a caulinita, conferindo maior plasticidade geral ao material; a siderita, identificada pela primeira vez no aluvião, também é comum nessas argilas. Cada grupo de argilas caracterizadas no depósito de São Simão como distintas do ponto de vista espectral, coincidentemente tem uma aplicação específica na indústria de cerâmica fina. Considerando o caráter exploratório desta pesquisa, que buscou, aparentemente pela primeira vez, utilizar a espectroscopia de reflectância e técnicas relacionadas para caracterização de argilas empregadas como matéria-prima na indústria cerâmica, os resultados foram muito promissores.

"Admitir que a derrota resulte em experiência, é o mesmo que assumir a própria limitação. Experiência não depende do tempo, mas sim da variedade de informações, sensações e reações experimentadas. A vitória justa, é sempre conseqüência desta experiência"

Juliano Senna

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE GEOCIÊNCIAS PÓS-GRADUAÇÃO EM GEOCIÊNCIAS ÁREA DE METALOGÊNESE

CHARACTERIZATION OF CLAYS USED IN THE CERAMIC MANUFACTURING INDUSTRY BY REFLECTANCE SPECTROSCOPY

ABSTRACT

MASTER DISSERTATION

JULIANO ALVES DE SENNA

Clays are among the very important primary, raw materials due to their broad spectrum uses in the industry. In the specific case of the ceramic industry, clays are used in many fields, including the manufacturing of porcelains, pottery, chimney-flue tile, roofing tile, conduit, light-weight aggregate, floor tile, sewer pipe, drain tile and so on. The characterization of clays from the physical, chemical, and ceramic standpoint in pre- and -within mining stages is a must in modern industry. However, succinct mining planning, lack of industry-oriented standards and the usual bond to empirical discrimination of clays as regards their use, put chemically and technologically different materials as similar standards, with serious consequences to the mining and manufacturing industry. Considering the intrinsic complexities involved in characterizing ceramic industry-aimed materials by conventional methods, this works aims: (i) to evaluate the potential of reflectance spectroscopy as a relevant, expedite method to define types and purity of clays; (ii) to study the possibility to relate clays' spectral variables and parameters to their specific uses in the ceramic industry, with emphasis on the materials employed in the manufacturing of porcelains and floor tiles. Two clay deposits were investigated in this study: One, named 'Cruzeiro', is located in Limeira (São Paulo), and is a source of clays to the tile industry; the other, named São Simão, is located in the analogous town, hosts important ball clay-type deposits and it is an important source of primary materials to the porcelain industry. The Cruzeiro deposit comprises clay-rich sediments of the Irati, Serra Alta and Corumbataí Formations (Paraná Basin stratigraphic units), although the Corumbataí strata are the main source of clays. Using reflectance spectroscopy methods and data, it was possible to built a 'spectro-lithological' column, where every compartment (Formation) and sub-divisions of the Corumbataí Formation show an unambiguous spectral signature. This signature can be directly related to clay composition and possible uses (or not) for these clays in the tile manufacturing industry. The São Simão clays are associated to the Tamanduá river alluvium deposits, where three types of clays were spectrally distinguished on the basis of reflectance spectroscopy methods and data. The white clays comprise kaolinite with several degrees of crystallinity, expansive clay minerals, micas and lepidocrosite (an unique finding in Brazilian alluvium deposits). The gray clays, also kaolinite-rich, display an intrinsic relation between organic matter and expansive clay minerals. The brown clays show the highest content of well-ordered, highly crystalline kaolinites; they contain expansive clay minerals, which occur in an ideal proportion to kaolinite, conferring more plasticity to the clays; and they also host some amounts of siderite (first time found in this alluvium). Each of these clay groups characterized in the São Simão deposit coincidentally has a specific application in the fine ceramics industry. In view of the exploratory nature of this research, the results using reflectance spectroscopy to characterize particular industry-aimed clays proved very promising.

"A hipocrisia ampara dogmas e destrói gênios, mas jamais alcança a verdade científica, vitoriosamente experimentada pelos bravos"

Juliano Senna

INTRODUÇÃO

I.1. APRESENTAÇÃO

A economia mineral brasileira hoje é voltada principalmente para a extração de bens metálicos, excetuando-se aqui os recursos energéticos. Cerca de 70% em volume dos bens minerais extraídos no país são metálicos e os outros 30% são não-metálicos. Em contrapartida, na maioria dos países desenvolvidos a economia mineral é voltada para a extração de bens não-metálicos (minerais industriais), exatamente na proporção inversa ao modelo de países em desenvolvimento.

No Brasil o setor de minerais industriais é muito pouco desenvolvido (Damasceno 1994). Segundo Ciminelli (1994), a posição brasileira no comércio internacional de minerais não metálicos é frustrante, com apenas 1,5 MT (1990) exportadas anualmente, para um país de 8,5 milhões de Km² e reservas expressivas de quase todas os minerais industriais. O mesmo autor sustenta que um dos indicadores de que determinado país somente atingiu a maturidade industrial ocorre quando o valor da produção de não-metálicos supera a de metálicos, como aconteceu com a Inglaterra no século XIX, com os Estados Unidos no início do século XX, com a Espanha no começo dos anos 70 e na Austrália no final dos anos 80.

No Estado de São Paulo a tendência do setor mineral brasileiro é diferente, pois a participação do setor bens não metálicos é quase exclusiva, em decorrência da geologia do estado. A posição econômica majoritaria de São Paulo pode justificar esta tendência, pois a instalação de industrias depende dos recursos naturais locais.

A extração dos minerais industriais aliado a evolução geocientífica, pode ampliar o setor e gerar impacto social positivo, observado pelo desenvolvimento econômico.

Um caso extraordinário do ponto de vista do mercado de minerais industriais são os argilo-minerais, foco deste trabalho. Estes tem ampla aplicação industrial, ocorrências em todo o país (inclusive com enorme variação genética de depósitos) e grande volume de reservas e de produção. O principal consumidor desta matéria prima é o setor cerâmico.

I.1.1. MINERAIS INDUSTRIAIS (MI)

A denominação minerais industriais engloba todos os bens não-metálicos e nãoenergéticos, extraídos e processados para usos finais industriais, incluindo-se também nesta categoria a parte dos minerais metálicos consumida em aplicações não metalúrgicas (Noetstaller 1988).

A vantagem econômica dos MI é surpreendente, pois são facilmente transformados em produtos industrializados, gerando empregos (diretos e indiretos) e agregando maior valor ao produto. Além disto, a explotação, o beneficiamento e o consumo industrial de MI são descentralizados, privilegiando a região produtora que depende de um parque industrial próximo, para ter custos competitivos, já que o valor bruto da maioria das matérias primas é baixo em comparação aos minerais metálicos. São flexíveis à adaptação na indústria de transformação, devido às múltiplas especificações e aplicações industriais, permitindo substituições entre bens minerais industriais diversos (Mendes 1999).

São caracterizados pelo consumo local ou regional, mas o comércio exterior é intenso, centralizado em produtos com especificações mais rígidas. De modo geral está intimamente associado a pequenos e médios empreendimentos espalhados por quase todas as regiões do país. Em muitas aplicações, os MI podem ser substituídos entre si ou por materiais artificiais, fator equilibrador dos preços e regulador da comercialização (Mendes 1999).

Os preços são influenciados pelos seguintes fatores: mercado (suprimento / demanda), disponibilidade (reservas), localização geográfica (transporte) e tecnológico (complexidade da lavra e da indústria de transformação / tratamento).

O Estado de São Paulo produz 25 espécies de minerais não-metálicos, mas o parque industrial consome 52 espécies (Sintoni 1994). Embora a produção paulista seja grande, ainda há carências e para suprir a demanda é necessário recorrer a outros estados e importações (Coimbra & Riccomini 1994).

Os principais materiais não-metálicos de origem sedimentar e abordados por Coimbra & Riccomini (1994) para o Estado de São Paulo, são: areia, argila, barita, calcário, combustíveis fósseis, córidon, diamante, evaporito, grafita, granada, ocra, rochas fosfáticas, rochas para revestimentos, rochas silicosas, talco e travertino.

Os MI podem ser subdivididos em classes como na Tabela I.1.

CLASSIFICAÇÃO DE BENS MINERAIS INDUSTRIAIS								
CLASSE*	APLICAÇÃO**	MATÉRIA PRIMA						
	industria química	borax, brometos, sais, cromita, fluorita, ilmenita e outros minerais de titânio, minerais de Li, fosfatos, carbonatos e sulfatos de Na e enxofre.						
MINERAIS	industria de fertilizantes	fosfatos, potássio, enxofre, calcáreo e gipso.						
QUÍMICOS	indústria cerâmica	caulim, bauxita, borax, cromita (refratários), dolomita, feldspato, cianita, sais de Li, magnesita, sílica, cinzas, talco, wolastonita e zircão.						
	indústria metalúrgica	criolita, fluorita e calcáreo.						
	minerais estruturais	asbestos, gipso, perlita, calcáreo (cimento), agregados leves, agregados (areia, cascalho, brita) e vermiculita.						
	pigmentos	óxido de ferro, limonita, hematita, siderita, pirita, magnetita e goethita.						
MINERAIS	abrasivos	areia silicosa, corindon, granada, diamante industrial e quartzo.						
FÍSICOS	auxiliares de processo	barita, bentonita, diatomita, caulim, minerais de Li e perlita.						
FISICOS	minerais para fundição	areia silicosa, zircão, areia olivínica, cromita e estaurolita.						
	materiais para gemas	diamante, rubi, safira, esmeralda, água-marinha, turmalina e granada.						
	materiais para eletrônica e óptica	quartzo, calcita, apatita, fluorita, halita.						

Tabela I.1:	Características	e aplicações	de i	minerais	industriais	е	propriedades	da	matéria	prima	que	determinam	sua
	aplicação.												

(*): Classe principal de Propriedades

(**): Aplicação Industrial

I.1.2. ARGILO-MINERAIS

Os argilo-minerais são silicatos hidratados de alumínio constituídos por camadas de tetraedros de SiO₂ e octaedros de alumínio, as quais apresentam-se intercaladas em proporções: 1:1 (e.g., caulinita), 2:1 (e.g., montmorillonita e illita) e/ou mistas. Esses minerais integram um grupo complexo e vagamente definido de hidrossilicatos, sendo classificados como materiais terrosos de alta plasticidade, finamente cristalinos ou amorfos, essencialmente constituídos por alumínio, além de ferro, magnésio e outras impurezas (Queiroz 1994). São apropriadamente definidos por: Velde (1992), Velde (1985), Gomes (1988), Kirsch (1972), Millot (1970), entre outros.

O termo argila é empregado para designar uma grande variedade de materiais que envolvem sedimentos consolidados, inconsolidados e rochas e normalmente é utilizado em quatro sentidos: granulométrico, petrológico, mineralógico e industrial (Tanno *et al.* 1994).

Os argilo-minerais são amplamente utilizados na indústria. O uso desses minerais como matéria prima decorre da qualidade do material produzido. Essa qualidade é intrínsica às condições genéticas dos argilo-minerais segundo sua fonte hidrotermal, sedimentar ou supergênica.

Argilo-minerais, em particular as illitas e caulinitas, podem apresentar graus diferentes de pureza e cristalinidade (devido a substituições isomórficas; trocas catiônicas), com contaminantes como quartzo e óxidos de ferro (corantes). Assim, os argilo-minerais podem diferir tanto pela

composição mineralógica quantitativa e qualitativa, quanto pelas demais propriedades químicas, físicas, mecânicas e tecnológicas (Souza Santos 1989).

Associações com argilo-minerais expansivos e mistos (interestratificados) são comuns em depósitos supergênicos e, em muitos casos, são determinantes para uma utilização menos nobre para esse material. Por outro lado, argilo-minerais gerados em ambientes hidrotermais são geralmente mais puros, com menor volume de quartzo associado, menor pigmentação por óxidos de ferro e menor grau de associação com argilas do tipo camadas mistas e argilas do tipo expansivas, sendo utilizados francamente na indústria cerâmica (Queiroz 1994).

Para Gaspar *et al.* (1999), durante a caracterização da matéria prima, a identificação dos minerais presentes nas argilas, assim como a sua caracterização física (ADT, ATG e DTL)¹, química e térmica, são pontos críticos na determinação e entendimento do comportamento físico ou físico-químico dos materiais, fatores fundamentais para o controle de qualidade e informação das possíveis blendagens, aditivação e exploração racional.

A qualidade dos argilo-minerais como matéria prima é intrínseca à gênese dos depósitos, os quais são divididos a seguir em:

Depósitos Primários

São depósitos de alteração residual de rochas *in situ.* Resultam da ação de processos hidrotermais e intempéricos sobre rochas preexistentes (decomposição dos silicatos). São irregulares e comuns no Brasil (Queiroz 1994). Quando da alteração superficial de granitos e pegmatitos (Neves *et al.* 1994) podem formar varias argilas e principalmente a caulinita; as rochas básicas e ultrabásicas podem formar a montmorillonita. No caso específico do caulim (tipo 'solfataras'), esse pode ser produzido a partir de emanações vulcânicas ácidas (Luz & Damasceno 1993).

Os depósitos residuais ou primários de caulim formam caulinitas bem cristalizadas (baixa plasticidade e resistência mecânica), além de quartzo, muscovita e halloisita. Ambientes com movimentação de soluções podem conduzir à formação de: montmorillonita (Mg), paligorskita (Mg), sepiolita (Mg) e sericita (K).

Depósitos Secundários

São depósitos sedimentares, originados do material argiloso gerado e retrabalhado na superfície, transportado por correntes e depositado ao longo de depressões naturais, vales e bacias isoladas, constituindo camadas descontínuas e lentes (e.g., *"ball clay"*) (Queiroz 1994). Quando são rochas sedimentares podem se formar caulinita a partir de argilitos, e illita a partir de

¹ADT: análise térmica diferencial, ATD: análise termo gravimétrica, DLT: dilatação térmica linear 4

argilitos e folhelhos. Quando são depósitos detríticos formam-se caulinita e illita a partir de colúvios e aluvios, e glauconita a partir de placers marinhos.

O estabelecimento de critérios aplicáveis a argilo-minerais para a definição de sua pureza e cristalinidade tem, portanto, um papel importante na qualificação de áreas para a exploração/explotação do material para fins industriais específicos, principalmente na indústria cerâmica.

Classificação e Tipos de Argilas

Souza Santos (1989) e Ruiz (1990) classificam as argilas em seis grupos de aplicação industrial:

• argila plástica (ball clay);

bentonita (esmectita sódica);

• argila refratária (fire clay);

- caulim (kaolin / china clay); •
- argila descorante (terra-füller esmectita cálcica); argilas diversas ou comuns (comom clay / shale).

Buscando similaridades entre a classificação do U.S. Bureau of Mines e do Regulamento do Código de Mineração (DNPM), Ruiz (1990) propôs a seguinte classificação:

- argilas para cerâmica vermelha e para revestimentos;
- argilas plásticas e ou refratárias;

argilas descorantes;

caulins.

São diversas as abordagens quanto à classificação de argilo-minerais pela industria cerâmica. Com o intuito de organizar separadamente os principais tipos de argilas, adotar-se-á a seguinte classificação: argilas comuns, argilas plásticas, argilas refratárias, argilas descorantes e caulim, respectivamente nesta ordem.

Argilas Comuns

Esta categoria engloba as matérias primas de cerâmica vermelha (telhas, manilhas, tubos), cerâmica estrutural (tijolos) e cerâmica de revestimento vermelha. Outras aplicações industriais secundárias são: pozolanas naturais, agregados leves e fabricação de cimento.

Dentre os litotipos, pode-se destacar uma grande variedade de sedimentos consolidados ou não, como argilas de várzea, argilitos, siltitos, folhelhos e ritmitos. Os minerais comuns nestas argilas sedimentares geralmente são: a caulinita e a illita, e a montmorillonita subordinada, mas também as espécies mistas são comuns. Essas argilas queimam a aproximadamente 900-1000°C (Ruiz 1990).

Argilas Plásticas

Geralmente incluem argilo-minerais do grupo da caulinita (caulinita, diquita, halloisita, nacrita e anauxita) (Ruiz 1990).

As argilas plásticas de origem sedimentar possuem grande plasticidade, boa resistência, queimam com cor branca e/ou clara à 1250°C e são compostas predominantemente por placas hexagonais de caulinita lamelar. A granulometria é, em sua maioria (70%), abaixo de 2µm. Esmectita e illita, finamente divididas, além de matéria orgânica são compostos comuns. Essas argilas são utilizadas principalmente para a fabricação de louças de mesa e sanitárias e porcelanas elétricas (Tanno *et al.* 1994).

As argilas brancas, compostas por caulinita acompanhada de illita, esmectita e clorita, são denominadas de "ball clay" e são muito utilizadas na indústria de produtos cerâmicos finos (louças e porcelanas) (Queiroz 1994). Este material sedimentar é constituído essencialmente por placas hexagonais e de granulometria muito fina (> 70% de partículas < 2µm) de caulinita e sua cor pode variar (branco, creme, rosa, cinza, preto). Comumente é acompanhada de matéria orgânica (colóide protetor e ligante entre lamelas), fator imprescindível para o aumento da plasticidade (Ruiz 1990). Queimam a aproximadamente 1000-1250°C.

Argilas Refratárias

Também são predominantemente caulínicas, mas fundem acima de 1.450°C, ou seja, com refratariedade mínima ou cone pirométrico equivalente de CO 15 (1435°), além de possuírem plasticidade (comum) ou não. Contêm também menores quantidades de gibsita e diásporo, entre outros minerais.

As argilas refratárias caulínicas e/ou halloísiticas, são importantes para a fabricação de materiais refratários, sendo que seus principais tipos são:

- <u>sílico-aluminosa</u>: argila caoliníticas e/ou halloisíticas, Al₂O₃ < 46% após a calcinação
- <u>aluminosa</u>: argila caulinítica com gibsita, Al₂O₃ > 46% após a calcinação, plástica ou não e refratariedade mínima 1.435°C;
- <u>argila altamente aluminosa</u>: contém hidróxido de alumínio, plástica após calcinação Al₂O₃ > 46%;
- <u>argila refratária (flint clay)</u>: contém hidróxido de alumínio altamente refratária.

Essa diferenciação é decorrente da composição mineralógica básica: caulinita, halloisita, gibsita, illita e esmectita, além de quartzo, sílica coloidal e matéria orgânica. Em termos gerais, são argilas sedimentares de composição essencialmente caulínica, com teores variáveis de gibsita, o que confere o caráter refratário (Tanno *et al.* 1994).

Outra utilidade das argilas caulínicas (fonte de Al₂O₃ e SiO₂) é como matéria prima para o cimento, ao qual conferem considerável qualidade, exceção feita a argilas com alto teor de ferro, principalmente no caso de cimento branco.

Argilas Descorantes (Bentonita)

Termo utilizado pela indústria de óleos para designar argilas ativadas (tratamento ácido) ou não, que possuem a capacidade de adsorver materiais corantes. Também são denominadas de clarificantes, adsorventes e *terra fuller* (Ruiz 1990).

A composição minerálógica é predominante de argilo-minerais do grupo da esmectita, além de argilo-minerais mistos (illita-montmorillonita) (Ruiz 1990).

A bentonita (designação comercial) pertence ao grupo da montmorillonita (ou esmectita). É usada como agente atribuidor de viscosidade, de tixotropia e impermeabilizante às lamas. Comercialmente são classificadas em argilas que incham (bentonitas sódicas - adsorvem muita água entre suas folhas, aumentando de volume) e argilas que não incham (bentonitas cálcicas ou magnesianas). Na perfuração de petróleo, especialmente em água doce, são usadas as bentonitas sódicas, enquanto que para a água salgada, prefere-se a atapulgita, uma argila fibrosa e com estrutura de inossilicato. A bentonita também é utilizada na fabricação de pelotas de finos de minério de ferro, devido a suas propriedades aglomerantes e como *filler* (carga mineral) em absorventes de inseticidas.

Como descorante é utilizada na industria de óleos e gorduras alimentares, óleos minerais, de limpeza e detergentes e na produção de enxofre; é um dos melhores clarificantes quando tratada com HCI ou H₂SO₄, assim também é o caso da atapulgita. Como ligante é utilizada em obras civis e em fundição e como agente tixiotrópico na industria de tintas e vernizes e em sondagens.

<u>Caulim</u>

São argilas que geralmente apresentam cores claras (branco, creme, rosa,amarelo) e originárias de alteração de rochas feldspáticas (Ruiz 1990). A caulinita e a halloisita são os principais constituintes, mas outros argilo-minerais brancos do grupo da caulinita (variedades polimorfas), ou mesmo de outros grupos podem ocorrer.

O caulim e um dos mais sofisticados minerais industriais e de ampla utilização industrial (Luz & Damasceno 1993). Os caulins produzidos nos depósitos do sudoeste da Inglaterra são chamados de "China Clay" (Luz & Damasceno 1993) e possuem aplicação refinada.

As principais propriedades de interesse industrial deste material são: inércia química, alvura, boa capacidade de enchimento (*filling*) e cobertura (*coating*), baixa abrasão, baixa condutividade térmo-elétrica, boa dispersão em meio fluido, baixo custo de produção e variedade de produtos (Mendes 1999).

O caulim pode ser subdividido em três gêneros para a finalidade industrial:

- soft \rightarrow friável, densidade mais baixa (d =1,3-1,6), baixa cristalinidade, aplicado principalmente na confecção de papel;
- hard \rightarrow compacto, densidade um pouco mais elevada (d = 1,6-1,8) e tem alta cristalinidade;
- flint \rightarrow rígido e com infiltração de sílica.

O caulim (natural ou calcinado) é o principal *filler* utilizado na produção brasileira de papel, borracha (natural e sintética), laminados e fios (carga inerte), polímeros, plásticos, tintas (tintas e massas a base de PVA, resinas acrílicas e esmaltes e vernizes, inseticidas (dispersante), fertilizantes (dispersante), alem de ser um dos principais minerais inertes utilizados na indústria de cosméticos e farmacêutica.

Como *filler* em papel o caulim deve apresentar características específicas como: granulometria muito fina (0,01-0,1% > 53 μ m, 80-99% < 10 μ m e 40-90% < 2 μ m), brancura ISO (> 85%), reflectância GE (< 85%) e pH 5.

De modo geral, as especificações industriais possuem alguns aspectos relevantes, como:

Granulometria

- usos em geral: 60 a 100% em peso abaixo de 38μm;
- carga / filling (papel/borracha/plástico): 60% em peso abaixo de 2μm;
- cobertura / coating (papel): 98% em peso abaixo de 2μm.

Composição Mineralógica

- predominância de argilo-minerais;
- tipo de argilominerais ajudam a definir a aplicação.

Composição Química

- fatores determinantes da aplicação: porcentagem de SiO₂ e Al₂O₃;
- fatores essenciais em algumas aplicações: porcentagem de álcalis;
- impurezas mais críticas como teores de TiO₂ e Fe₂O₃;
- pH em solução a 2%

Propriedades Físicas

- comportamento térmico: cor após a queima a 1.100°C;
- propriedades aglomerantes: perda ao fogo a 105 / 250 °;
- tixiotropia.

I.1.3. ESPECTROSCOPIA DE REFLECTÂNCIA

A espectroscopia de reflectância (350-2500nm) é um método alternativo para caracterização de materiais geológicos e consolidou-se como um procedimento de simples operação (Clark 1999). Esse método proporciona uma medida quantitativa da reflectância espectral do material, resultado da razão entre a quantidade de energia refletida (radiância) e a quantidade de energia incidente (irradiância), a partir da qual, após diversos procedimentos, é

possível estabelecer-se os tipos, cristalinidade e proporções de seus constituintes mineralógicos (Clark 1999).

As técnicas mais utilizadas para caracterização de materiais geológicos são 'destrutivas' (e.g., difratometria de raios X, fluorescência de raios X, microscopia eletrônica de varredura, microssonda eletrônica, espectrometria raman, infra-vermelho - além de testes físicos e mecânicos). A espectroscopia de reflectância é um método 'não-destrutivo' (não exige preparação das amostras); é rápida, pois permite a leitura do material *in situ*, na sua área de ocorrência, dependendo somente da condição climática; é barata, pois uma vez investido o valor do espectrômetro não utiliza-se mais nenhum suprimento; é interativa, pois pode-se estudar o material pela sua assinatura espectral identificando as feições características dos minerais presentes; tem efeito multiplicador, pois as curvas de reflectância espectral dos materiais de interesse podem ser re-amostradas para a resolução espectral de um sensor multiespectral ou hiperespectral, aeroportado ou orbital, a partir dos quais os materiais podem ser remotamente detectados e distinguidos.

I.2. OBJETIVOS E JUSTIFICATIVAS

Os principais objetivos desta pesquisa foram: (i) avaliar o potencial da espectroscopia de reflectância como um método aplicável de forma expedita na definição de tipos e de pureza de argilas; (ii) determinar parâmetros espectrais que possam subsidiar a classificação de argilas quanto ao uso na indústria, com ênfase nos materiais apropriados para a produção de cerâmica de revestimentos e louça sanitária.

De modo geral, essa pesquisa buscou testar procedimentos baseados na espectroscopia de reflectância, visando auxiliar o planejamento de lavra da mineração de matéria prima cerâmica. A possibilidade de sucesso da espectroscopia de reflectância na identificação e separação de materiais nas minas de argila e a possibilidade de mapeamento interativo de zonas com conteúdo de argilo-minerais específicos (sem 'impurezas', como carbonatos e argilas expansivas), implica que essa tecnologia pode ser adotada como uma ferramenta alternativa para o estabelecimento de um rígido controle e extração seletiva de matéria-prima para fins industriais. Tanto no Brasil, quanto no exterior, praticamente não há abordagens representativas sobre a utilização desta técnica em estudos de argilas utilizadas na indústria. Isso revestiu este estudo, de um lado, de um certo ineditismo e pioneirismo, e de outro, de vulnerabilidades intrínsecas a uma pesquisa original.

I.3. NATUREZA DO PROBLEMA

A partir do anteprojeto de pesquisa foram delineados os métodos e etapas deste trabalho, os quais podem ser sumarizados nos seguintes tópicos:

- Localização de regiões de extração de matérias primas cerâmicas na porção paulista da Bacia do Paraná;
- Focalização do estudo em duas principais áreas fontes na borda leste da Bacia do Paraná, fornecedoras de matérias primas para indústria de cerâmica de revestimentos e louça sanitária;
- Realização de levantamento geológico, interpretação litoestratigráfica e coleta sistemática de materiais de aplicação industrial nas lavras sob estudo;
- Análise dos materiais com técnicas analíticas convencionais (difratometria de raios X, fluorescência de raios X e perda ao fogo), gerando informações de qualificação mineralógica e da quantificação elementar química;
- Análises espectrorradiométricas de amostras representativas de todos os horizontes explorados nas minas sob estudo;
- Geração das assinaturas espectrais (curva de reflectância espectral) dos materiais encontrados na mina, as quais foram classificadas, através dos programas SIMIS Field e SIMIS Feature Search no sentido de obter informações sobre os minerais e a mistura de minerais constituintes de cada horizonte;
- Montagem de uma biblioteca espectral baseada nas determinações por DRX e FRX para uso no processo de classificação espectral das amostras;
- Associação da assinatura espectral das amostras aos horizontes empiricamente selecionados nas minas como hospedeiros de argilas de melhor qualidade para uso na indústria cerâmica;
- Avaliação da possibilidade de substituição das ferramentas tradicionais de caracterização (química, mineral e tecnológica) pela espectroscopia de reflectância, pelo menos para os casos investigados.

I.4. MATERIAIS, MÉTODOS E ETAPAS DE TRABALHO

I.4.1. PESQUISA BIBLIOGRÁFICA

A pesquisa bibliográfica foi realizada visando catalogar as principais referências sobre (i) espectroscopia de reflectância aplicada à caracterização de argilo-minerais; (ii) bibliotecas espectrais de argilo-minerais; (iii) uso de argilo-minerais na indústria e suas especificações.

I.4.2. TRABALHOS DE CAMPO

Foram realizadas duas etapas de campo. Uma primeira, em Novembro de 2001, na Mineração Calcário Cruzeiro, Limeira e uma segunda etapa, em Maio de 2002, na Mineração Mateus Leme São Simão, ambas no Estado de São Paulo.

A primeira etapa incluiu o estudo do depósito sedimentar de argilo-minerais da Formação Corumbataí, Permiano da Bacia do Paraná, assim como aqueles associados às Formações Serra Alta e Irati, também explotadas na Mina do Cruzeiro. O enfoque da segunda etapa de campo foi sobre o depósito aluvionar de argilas altamente plásticas (do tipo *ball clay*), hospedadas nos terraços do ribeirão Tamanduá.

I.4.3. Amostragem e Preparação

Com o intuito de verificar as propriedades físicas, químicas e mineralógicas de cada material existente nos casos estudados (Cap. III e IV) foi necessário realizar uma amostragem rigorosa e seletiva.

A preparação das amostras, sutilmente distinta nas três etapas de análise, envolveu britagem, moagem e quartiamento. As frações granulométricas geradas são apresentadas pela tabela seguinte (Tab. I.2).

AN	MOSTRA	TIPO	GRANULC	ANALISE		
	а	amostra de mão	5 -			
b		cominuido por martolo	fração grossa	< 10 mm		
С		cominate por martero	fração fina	< 2 mm	SPEC	
Ь	dl	britada	< 10 mm	5 - 10 mm		
u	dll	billado	< 10 11111	< 5 mm		
	е	moído		FRX / DRX / SPEC		
	eq	moído e quartiado	21	FRX		

Tabela I.2: Relação da granulometria das amostras e analises submetida.

(*): maior dimensão do fragmento

I.4.4. ANÁLISES

As amostras foram submetidos a três tipos de análises pelos métodos da: fluorescência de raios X (FRX), difratometria de raios X e espectroscopia de reflectância. Em suma, essas análises objetivaram atingir os seguintes resultados:

- FRX → análise química dos elementos maiores (óxidos) e menores (traços);
- **DRX** \rightarrow análise mineralógica;
- **SPEC** \rightarrow geração das curvas de reflectância espectral ($\lambda \times \%$ reflectância).

Para cada material analisado, os resultados de FRX (elementos maiores) e DRX (mineralogia) serviram de modelo para orientar a interpretação e classificação espectral das amostra de argila.

I.5. LOCALIZAÇÃO E ACESSO

A região nordeste do Estado de São Paulo, com cerca de 29.400 Km², inclue diversos depósitos de matérias-primas cerâmicas. As áreas de estudo, com aproximadamente 150 Km², estão localizadas na porção central dessa grande região (Fig. I.1). Uma das áreas está situada na cidade de Limeira (a cerca de 50 Km a noroeste de Campinas) e a outra na cidade de São Simão (a cerca de 200 Km a noroeste de Campinas) (Fig. I.2). O principal acesso para as áreas de estudos é pela Rodovia Anhanguera (SP 330) (Fig. I.1).

I.6. GEOLOGIA REGIONAL

A grande região (Fig. I.1) esta situada no contexto geológico da borda leste da Bacia do Paraná (Fig. I.2 e Anexo G.1). Outras abordagens como a evolução tectônica e sedimentar da bacia podem ser muito bem elucidadas pelos seguintes trabalhos: Milani & Thomaz Filho 2000, Milani & Zalán 1999, Quintas *et al.* 1999, Milani & Ramos 1998, Assine *et al.* 1998, Assine *et al.* 1994, Zalán *et al.* 1990, entre outros.

As unidades geológicas de interesse para cada estudo de caso, estarão minuciosamente descritas nos seus respectivos capítulos.

Figura I.1: Mapa de Localização (adaptado do mapa de rodagem do Estado de São Paulo do DER, 2000)

Figura I.2: Litoestratigrafia da borda leste da Bacia do Paraná, com as respéctivas áreas de interesse (adaptado de CPRM 2001).

I.7. REFERÊNCIAS BIBLIOGRÁFICAS - Capítulo I

Assine M.L., Alvarenga C.J., Perinotto J.A. 1998. Formação Iapó: Glaciação no Limite Ordoviciano/Siluriano da Bacia do Paraná. Revista Brasileira de Geociências, 28(1): 51-60

Assine M.L., Soares P.C., Milani, E.J. 1994. Sequências Tectono-Sedimentares Mesopaleozóicas da Bacia do Paraná, Sul do Brasil. Revista Brasileira de Geociências, 24(2): 77-89

Ciminelli, R.R. 1994. Tendências Tecnológicas e Mercadológicas para os Minerais Industriais. *In:* SBG-SP, Worshop Recursos Minerais Não-Metálicos para o Estado de São Paulo, São Paulo, Resumos Expandidos, pp.: 69-72

Clark R.N. 1999. Spectroscopy of Rocks And Minerals, And Principles of Spectroscopy. *In:*, A.N. Rencz (eds.) *Remote Sensing for the Earth Sciences: Manual of Remote Sensing*, 3ed., vol. 3, chapter 1, John Wiley & Sons, Inc., New York, pp.: 03-58

Coimbra, A.M. & Riccomini, C. 1994. Mercado Paulista dos Bens Não-Metálicos. *In:* SBG-SP, Worshop Recursos Minerais Não-Metálicos para o Estado de São Paulo, São Paulo, Resumos Expandidos, pp.: 11-21

CPRM 2001. Mapa Geológico do Brasil, escala 1:2.500.000. In: Geologia, Tectônica e Recursos Minerais do Brasil, Sistemas de Informações Geográficas - SIG, MME. CD 1.

Damasceno, E.C. 1994. Importância Geológica, Econômica e Tecnológica dos Minerais Indústriais Não-Metálicos. *In:* SBG-SP, Worshop Recursos Minerais Não-Metálicos para o Estado de São Paulo, São Paulo, Resumos Expandidos, pp.: 01-05

Gaspar Jr., L.A.; Souza, M.H.O.; Valarelli, J.V & Moreno, M.M.T. 1999. A Importância da Caracterização Mineralógica, Química e Térmica das Matérias-Primas Cerâmicas. *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, VI, São Pedro, Anais, Boletim de Resumos, p. 137.

Gomes C.F. 1988. Argilas - O que são e para que servem. Fundação Calouste Gulbenkian, Lisboa, 457 pp.

Kirsch H. 1972. *Mineralogia Aplicada: para engenheiros, tecnólogos e estu*dantes. Tradução: Prof. Rui Ribeiro Franco, Universidade de São Paulo. Editora Polígono, São Paulo. "*Technische Mineralogie*", Vogel-Verlag Wurzburg (RFA), ed. original, 1965, 291 pp.

Luz A.B. & Damasceno E.C. 1993. *Caulim: Um Mineral Industrial Importante*. Rio de Janeiro, CETEM / CNPq, Série Tecnologia Mineral, 65, 32 p.

Mendes J.C. 1999. Minerais Industriais - Notas de Aula. DEGEO / EM / UFOP. Ouro Preto.

Milani E.J. & Ramos V.A. 1998. Orogenias Paleozóicas no Domínio Sul-Ocidental do Gondwana e os Ciclos de Subsidência da Bacia do Paraná. *Revista Brasileira de Geociências*, 28(4): 473-484

Milani E.J. & Thomaz Filho A. 2000. Sedimentary Basins of South America. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (eds.) *Tectonic Evolution of South America*, International Geological Congress, 31, Rio de Janeiro, Brazil, pp.: 389-449

Milani E.J. & Zalán P.V. 1999. An outline of the geology and petroleum systems of the Paleozoic interior basins of South America. *Episodes*, 22(3): 199-205

Millot, G. 1970. *Geology of Clays - weathering / sedimentology / geochemistry*. Publisher: Masson ET C^{ie}, Paris. Springer-Verlag, New York. Chapman & Hall, London, 429 pp.

Neves, M.R.; Etchebehere, M.L.C.; Ruiz, M.S. & Freire, A.S. 1994. Depósitos de Caulim no Estado de São Paulo, cap. 10. *In:* Schobbenhaus C., Queiroz E.T., Coelho C.E.S (eds.), *Principais Depósitos Minerais do Brasil* - DNPM, Brasilia, vol. IV-B - Rochas e Minerais Industriais, pp.: 111-120

Noetstaller R. 1988. *Industrial Minerals: A Technical Review*. Washington, The World Bank, Industry and Finaces Series, 24; Technical Paper, 76.

Queiroz E.T. 1994. Geologia das Argilas. *In:* Schobbenhaus C., Queiroz E.T., Coelho C.E.S (eds.), *Principais Depósitos Minerais do Brasil* - DNPM, Brasilia, vol. IV-B - Rochas e Minerais Industriais, pp.: 93-98

Quintas M.C.L., Mantovani M.S.M., Zalán P.V. 1999. Contribuição ao Estudo da Evolução Mecânica da Bacia do Paraná. *Revista Brasileria de Geociências*, 29(2): 217-226

Ruiz M.S. 1990. Argilas - Perfil 4, capítulo IV. *In:* IPT - Instituto de Pesquisas Tecnológicas, *Mercado Produtor Mineral do Estado de São Paulo* - Levantamento e Análise. Pró-Minério - programa de Desenvolvimento de Recursos Minerais. São Paulo, pp.: 61-86

Sintoni, A. 1994. Mercado Paulista dos Bens Não-Metálicos. *In:* SBG-SP, Worshop Recursos Minerais Não-Metálicos para o Estado de São Paulo, São Paulo, Resumos Expandidos, pp.: 07-09.

Souza Santos P. 1989. Ciência e Tecnologia de Argilas, 2ª ed. (revisada e ampliada), vol. 2, Edgard Blücher ed., São Paulo, 340 pp.

Tanno L.C., Motta J.F.M., Cabral Junior M. 1994. Geologia e Características Tecnológicas das Argilas Plásticas e Refratárias do Estado de São Paulo. *In:* SBG-SP, Worshop Recursos Minerais Não-Metálicos para o Estado de São Paulo, São Paulo, Resumos Expandidos, pp.: 37-41

Velde. B. 1992. Introduction to Clay Minerals. Chemistry, origins, uses and environmental significance. Chapman & Hall, France, 197 pp.

Velde. B. 1985. *Clay Minerals. A Physico-Chemical Explanation of their Ocurrence*. Elsevier Science Publishers B. V., Develoments in Sedimentology, 40, Amsterdam. 427 p.

Zalán P.V., Wolf S., Conceição J.C.J., Marques A., Astolfi M.A.M., Vieira I.S., Appi V.T., Zanotto O.A. 1990. Bacia do Paraná. In: Raja Gabaglia G.P. & Milani E.J. (coords.) Origem e Evolução da Bacias Sedimentares. Petrobrás, Rio de Janeiro, pp.: 135-168

MÉTODOS ESPECTRAIS UTILIZADOS PARA CARACTERIZAÇÃO MINERAL

II.1. INTRODUÇÃO

A radiação eletromagnética (REM) consiste da interação de campos elétrico e magnético que se propagam no vácuo, na velocidade da luz (~300.000 km/s). É gerada por meio de excitação termal, processos nucleares (fusão ou fissão) ou por bombardeamento através de outra radiação. Não requer nenhum meio de propagação e pode se propagar através do vácuo. A REM é o resultado da aceleração de partículas carregadas e pode ser entendida através de dois modelos: o ondulatório e o corpuscular (Skoog *et al.* 2002, Drury 2001).

O modelo ondulatório é descrito pelo modelo clássico de onda senoidal, que incorpora parâmetros como: comprimento de onda, frequência, velocidade e amplitude. No modelo de partícula, a radiação eletromagnética é entendida como um feixe de partículas discretas, ou pacotes de ondas de energia, chamados fotóns, onde a energia é proporcional à freqüência da radiação. As duas teorias, ondulatória e corpuscular, são complementares, ou seja, a REM se propaga como onda e como partícula e é transmitida na forma de pacotes denominados de fótons e quantas (Skoog *et al.* 2002, Drury 2001).

Figura II.1: Espectro eletromagnético, com destaque para a região de atuação dos métodos espectométricos utilizados neste capítulo. (adaptado de Robinson *et al.* 1995)

O espectro eletromagnético (EEM) consiste da representação contínua da REM do ponto de vista de comprimento de onda, freqüência e energia (Fig. II.1). Os métodos espectrais utilizados nessa pesquisa são baseados em medidas de REM em comprimentos de onda que incluem o intervalo dos raios X (espectrometria de raios X - fluorescência e difratometria), e o visível e infravermelho (espectroscopia de reflectância) (Fig. II.1).

II.2. ESPECTROMETRIA DE RAIOS X

A espectrometria de raios X é baseada nas medidas de emissão, absorção, espalhamento, fluorescência e difração da radiação eletromagnética. Os métodos de fluorescência e absorção de raios X são largamente utilizados para análises qualitativas e quantitativas de todos os elementos da tabela periódica (Skoog *et al.* 2002). A espectroscopia convencional utiliza intervalos de comprimento de onda de 0,1 a 25 Å (Angströn).

Geralmente os instrumentos são compostos por fonte, filtro, colimadores, porta amostra, detector (transdutor), processador de sinais e dispositivo de saída. A fonte é um dispositivo para restringir o intervalo de comprimento de onda da radiação incidente. Pode ser um tubo de raios X submetido a alto vácuo, onde é montado um cátodo com filamento de tungstênio e um ânodo geralmente de cobre com alvo metálico incrustado na superfície (tungstênio, cromo, cobre, molibidênio, ródio, escândio, prata, ferro ou cobalto). O circuito que aquece o filamento controla a intensidade dos raios X emitidos, enquanto que o potencial de aceleração determina sua energia ou comprimento de onda. (Skoog *et al.* 2002). Os filtros servem para restringir o intervalo de comprimento de onda da radiação incidente. A DRX comumente utiliza radiação monocromática.

II.2.1. FLUORESCÊNCIA DE RAIOS X (FRX)

É um método analítico muito usado na identificação de espécies químicas com número atômico maior que o do oxigênio (>8) e freqüentemente é empregada em análises semiquantitativas e quantitativas, especialmente no caso das amostras sólidas.

Princípios

Os espectrômetros de raios X utilizam um feixe de radiação primária (normalmente proveniente de um tubo de raios X) para irradiar a amostra. Os elementos da amostra são excitados pela absorção do feixe primário e emitem linhas características de FRX (Skoog *et al.* 2002). Dependendo da energia, o feixe pode remover elétrons das camadas eletrônicas mais

internas e as vacâncias são imediatamente preenchidas por elétrons de camadas mais externas. Em decorrência desta mudança são emitidos feixes secundários de raio X (radiação fluorescente) característicos à transição ocorrida e ao elemento. A radiação é identificada em função da energia e a intensidade é proporcional à concentração do elemento na amostra (Zambello 2001).

Instrumento

Os instrumentos mais utilizados são os chamados de comprimento de onda dispersivo e de energia dispersiva. Os espectrômetros de comprimento de onda dispersivo normalmente são monocanais e os comprimentos de onda são separados por cristais. Nos equipamentos de dispersão de energia, a detecção é feita por um detector de silicio e litio O primeiro tipo pode ser seqüêncial (canal único - analisa poucos elementos) (Fig. II.2) ou simultâneo (multicanal – que analisa até 24 elementos simultâneamente) (Skoog *et al.* 2002).

O equipamento utilizado foi o espectrômetro de fluorescência de raios X de comprimento de onda dispersivo (PW2404, Philips) (Fig. II.3) pertencente ao Laboratório de Espectroscopia de Fluorescência de Raios X do Instituto de Geociências da Unicamp. Este aparelho está equipado com fonte de tensão, tubo de ródio operando com potência de até 4000W, janela de berilio (cristal analisador), colimadores, porta amostra e detector. A ilustração (Fig. II.2) ilustra um monocromador similar ao do aparelho utilizado nesta pesquisa.

<u>Método</u>

As determinações foram realizadas a partir de pastilhas prensadas para elementos traços e em discos de vidro para elementos maiores e menores. Para o controle de qualidade, duas amostras foram duplicadas em cada etapa da preparação (britagem, moagem, quarteamento e pesagem), ou seja, cada amostra de controle resultou em oito discos. Também para efeito de controle, foram confeccionados discos de material de referência interna (BAC) e internacional (WS-E e RGM-1), para análises em paralelo.

As pastilhas prensadas foram confeccionadas por mistura da amostra moída com cêra e os discos ou pastilhas fundidas foram preparadas com um mistura de amostra moída, spectroflux 100B [mistura de metaborato (80%) e tetraborato (20%) de lítio] e solução de iodeto de lítio.

Juntamente com a preparação das pastilhas, foi realizada a perda ao fogo (PF) das amostras em estufa à 105°C, por 8 horas, para o cálculo da massa inicial reduzida de massa final (perda por volatilização).

Posteriormente as pastilhas foram levadas ao espectrômetro e analisadas com ajuda de um programa analítico. Esta etapa da análise foi realizada pelo *software Super Q 3.0*, utilizando, para comparação, o programa referente a silicatos (eficaz com sílica entre 40-100%). Na primeira etapa de análise, foram identificados os elementos traços a partir da leitura das pastilhas, e na segunda etapa, os óxidos elementares a partir dos discos, com ajuda dos resultados de PF.

II.2.2. DIFRATOMETRIA DE RAIOS X

Atualmente é o método de maior importância na elucidação de estruturas de produtos naturais de estrutura complexa. O método do pó (amostra policristalina) é único, e capaz de fornecer informação qualitativa e quantitativa sobre os compostos presentes em uma amostra sólida (Skoog *et al.* 2002). O padrão de DRX é único para cada substância cristalina.

Principíos

A emissão de raios X ocorre quando o átomo retorna do estado de excitação para o estado normal, com a transição de elétrons de orbitais externos (Willard *et al.* 1988).

A interação entre o vetor campo elétrico da radiação X e os elétrons da matéria que a radiação atravessa resulta no espalhamento. Quando os raios X são espalhados pelo ambiente ordenado de um cristal, ocorre a interferência entre raios espalhados (construtiva e destrutiva), já que as distâncias entre os centro espalhadores são da mesma ordem de grandeza do comprimento de onda da radiação, resultando na difração (Skoog *et al.* 2002).

A DRX utiliza o caráter ondulatório dos raios X e a regularidade do espaçamento entre planos de um cristal para a identificação da fase cristalina. Cada átomo de um cristal difrata em todas as direções o feixe incidente. A posição do feixe difratado depende do tamanho e da forma da unidade repetitiva de um cristal e do comprimento de onda do feixe incidente de raios X. A intensidade depende dos átomos presentes no cristal e sua localização na unidade fundamental repetitiva.

<u>Lei de Bragg</u> ($n\lambda$ =2dsen θ)

O feixe de raios-X atinge a superfície do cristal em ângulo "θ", quando parte da REM é espalhada pelas camadas dos átomos. A porção incidente atinge a segunda camada de átomos, onde novamente há espalhamento, com o restante da REM atingindo a terceira camada (Fig. II.4). O efeito cumulativo desse espalhamento pelos centros regularmente espaçados é a difração do feixe. As condições para a DRX são: (i) espaçamento entre as camadas de átomos deve ser a mesma que o comprimento de onda da radiação, e (ii) centros espalhadores devem estar espacialmente distribuídos em um arranjo altamente regular (Skoog *et al.* 2002).

Para estudos analíticos, a amostra cristalina deve ser moída, formando um pó fino e homogêneo. Desta forma, o grande número de cristais estará orientado em todas as direções

possíveis. Quando o feixe de raios-X atravessar o material, um número significativo de partículas deve estar orientado de forma a cumprir a condição de Bragg (Fig. II.4) para a reflexão para todos os espaçamentos interplanares possíveis (Skoog *et al.* 2002).

O ângulo de difração "20" é função do espaçamento dos planos, que possui distância "d", calculada usando o comprimento de onda da fonte e da medida do ângulo.

Monocromador

O monocromador (Fig. II.2) consiste num par de colimadores de feixe (mesma função de fendas de instrumentos ópticos) e um elemento dispersor (monocristal). O monocristal é montado em um goniômetro ou placa rotatória com variação e determinação precisa do ângulo " θ " entre a face do cristal e o feixe incidente colimado. Geralmente, ângulos "2 θ " maiores que 160° não podem ser medidos devido a posição da fonte em relação ao detector. Em determinadas posições ângulares do goniômetro, somente poucos comprimentos de ondas são difratados (λ =2dsen θ). O colimador do feixe de saída e o detector são montados em uma segunda placa que gira duas vezes a velocidade da primeira, isto é, enquanto o cristal gira " θ ", o detector gira "2 θ ".

Interpretação

A identificação dos cristais é empírica, sendo que uma base de dados é mantida pelo *International Centre for Diffraction Data* (Swarthmore, PA), com mais de 50 mil compostos separados em vários gêneros de compostos (inorgânicos, orgânicos, minerais, metais, ligas, materiais forenses e outros).

A partir da intensidade das linhas de difração e sua comparação com os difratogramas de padrões feitos com quantidades conhecidas, é possível a análise quantitativa de misturas cristalinas (Skoog *et al.* 2002). A aplicação quantitativa depende da intensidade dos picos; entretanto a comparação das intensidades com as misturas padrão é repleta de dificuldades (Willard *et al.* 1988).

<u>Instrumento</u>

Os difratometros automáticos são mais utilizados atualmente, mas os de método fotográfico (clássico) são apropriados para quantidades pequenas de amostra.

A fonte de raios X é um tubo com filtro apropriado. O porta amostra pode ser girado para aumentar a aleatoriedade das orientações dos cristalinos. O padrão é obtido pela varredura automática, oferecendo alta precisão para medidas das intensidades (Skoog *et al.* 2002).

As análises de DRX foram realizadas no difratrômetro *Siemens Diffraktometer Kristalloflex D5000* (Fig. II.5) do Laboratório de difratometria de raios X do Instituto de Geologia e Ciências

Exatas da Unesp de Rio Claro/SP. Este equipamento está equipado com um tubo de cobalto, operando sob potência de 25mA e 35 KV.

<u>Método</u>

As amostras foram analisadas pelo método do pó. As mesmas foram moídas (5g máx.), preparadas em placas de poliester na forma prensada e levadas ao difratômetro uma a uma.

A leitura foi realizada no intervalo 2θ de 3°-70°, com o passo de tamanho 0,050° e tempo entre 0,8s (Cap IV) e 1,0s (Cap. III), corrente do tubo de 5mA e voltagem do tubo de 20 KV. O detector instalado ao goniômetro iniciou a operação no ângulo 60° e encerrou em 130°, contabilizando tempo total para leitura de 22min e 20s (Cap III) e 17min e 52s (Cap IV).

Primeiramente as interpretações foram feitas no *software Diffrac AT Qualitative Program V3.00;* posteriormente, os difratogramas foram reinterpretados no *software Eva Plus 2.1 (Siemens Diffrac Plus D5000).* Os difratogramas apresentam ainda 'marcas de qualidade' (Tab. II.1) em cada mineral identificado, caracterizando a similaridade de cada espécie.

 Tabela II.1: Marcas de Qualidade do Eva Plus.

MARCAS	DESCRIÇÃO
*	padrão de qualidade alto
С	padrão computado de parâmetros estruturais
I	padrão de boa qualidade (sustentado pela indexação)
Q	qualidade questionável, padrão não alcançou as exigências do anterior
Ν	qualidade não é especificada, padrão não alcançou as exigências do anterior
D	padrão apagado; via de regra, padrões sinalizados como apagados não devem ser usados pois podem ser substituídos por um padrão melhor

Objetivando obter os principais parâmetros cristalográficos para identificação dos tipos de argilo-minerais presentes nas amostras, foram realizadas leituras de amostras na fração total. A proporção mineral foi obtida a partir da intensidade relativa do pico do mineral no difratograma da mistura, possibilitando uma estimativa das quantidades minerais (semi-quantitativa). Como forma de simplificar as interpretações, foi necessário utilizar uma simbologia mineral (Tab. II.2).

Tabela II.2: Terminologia adotada para	a os minerais detectados por DRX.
--	-----------------------------------

			SIMBOLOGIA	MINE	MINERAL		
alb	albita	hal	halloisita	lep	lepidocrosita	qzo	quartzo
cal	calcita	hem	hematita	mag	maghemita	rec	rectorita
clino	clinocloro	illi	illita	mic	microclínio	sap	saponita
dol	dolomita	ilm	ilmenita	mont	montmorillonita	sid	siderita
gib	gibsita	kao	caulinita	montilli	illita-montmorillonita	ver	vermiculita
goe	goethiita	kaosmec	smectita-caulinita	musc	muscovita		

Figura II.2: Monocromador e detector de raios X. Para análise por absorção a fonte é um tubo de raios X. Para a emissão a amostra torna-se uma fonte fluorescênte de raios X.

Figura II.4: Modelo de aplicação da lei de Bragg para a DRX em um conjunto de planos cristalinos. Fórmula: "n"ordem de difração, "λ"- comprimento de onda "θ" ângulo de difração e "d" - distância entre os planos atômicos da rede cristalina. A - primeiro ponto de incidência.

Figura II.3: Espectrômetro de fluorescência de raios X - PW2404 (Philips), do Instituto de Geociências da Unicamp.

Figura II.5: Difratrômetro de raios X -Siemens Diffraktometer Kristalloflex D5000 do Instituto de Geologia e Ciências Exatas da Unesp.

II.3. ESPECTROSCOPIA DE REFLECTÂNCIA

A espectroscopia de reflectância (ou espectrorradiometria de reflectância) é uma técnica analítica que tem a função de medir, em diferentes comprimentos de onda, a REM refletida da superfície dos objetos e representá-la na forma de um gráfico, denominado curva de reflectância espectral (reflectância x comprimento de onda). É um método alternativo para caracterização mineralógica e consolidou-se como um procedimento rápido, não destrutivo e de simples operação (Clark 1999). Proporciona uma medida quantitativa da reflectância espectral do material, resultado da razão entre a quantidade de energia refletida (radiância) e a quantidade de energia incidente (irradiância) em uma amostra, a partir da qual é possível estabelecer-se os tipos e proporções de seus constituintes mineralógicos (Clark 1999). É especialmente eficaz para caracterização de argilo-minerais.

Os espectrorradiômetros de campo ou portáteis, permitem análises qualitativas imediatas do material *in situ* (no campo) ou em laboratório. A análise é realizada através de uma varredura contínua compreendendo quatro regiões do espectro (Tab. II.3). No entanto, neste estudo abordaremos estas regiões como duas de modo a simplificar o tratamento (Tab. II.3, Fig. II.6).

DENOMINAÇÃO	SIGLA PADRÃO	Δλ (μm)	SIGLA ADOTADA
ultravioleta próximo	NUV (ultraviolet)	0.35-0.40	
visível	VIS (visible)	0.40-0.70	VNIR
infravermelho próximo	NIR (near-infrared)	0.70-1.30	
infravermelho de ondas curtas	SWIR (shortwave infrared)	1.3-2.5	SWIR

Tabela II.3: Regiões do espectro de interesse para a espectroscopia de reflectância.

Figura II.6: Faixa do espectro de investigação, conforme sigla adotada (Tab. II.3).

O comportamento espectral de um determinado alvo é diretamente relacionado às suas características físicos-químicas (Hunt 1977, Hunt 1980) e pode ser definido como a medida de reflectância do material. Esta medida de reflectância é representada por feições na forma de linhas, bandas, depressões ou mudanças de inclinação das curvas espectrais, cujas posições, formas e intensidade são uma conseqüência da constituição química do material e da geometria do arranjo de seus átomos (Hunt 1979).

As principais características espectrais de diferentes alvos geológicos tem sido abordadas em vários trabalhos, dentre os quais destacam-se: Hunt & Salisbury (1970), Hunt (1977), Hunt & Ashley (1979) e Clark (1999).

II.3.1. PRINCÍPIOS

As interações da REM utilizam combinação de dois processos. Um a nível macroscópico (teoria ondulatória) que considera que a REM se propaga na forma de uma onda harmônica contínua na velocidade da luz, cuja interação com as superfícies dos objetos é função de suas propriedades físicas e texturais e da geometria da iluminação. O segundo ocorre a nível atômicomolecular, explicado pela mecânica quântica, interpretando a REM como uma forma de energia medida em valores discretos de quanta e fótons (Menezes & Netto 2001).

A REM com comprimento de onda específico pode ser transmitida, absorvida, refletida, espalhada (dispersão) ou re-irradiada. A espectroscopia de reflectância utiliza dados desta interação, determinados em função da intensidade de resposta do alvo, em termos de reflectância ou radiância por intervalos de comprimento de onda (Hunt & Salisbury 1971, Hunt & Salisbury 1971b). Alguns conceitos radiométricos são apresentados pela Tabela II.4.

GRANDEZA	UNIDADE	CONCEITO
Energia Radiante	J	Energia transportada em forma de REM; total de energia radiada em todas as direções
Fluxo Radiante	W	Taxa de fluxo de energia radiada; variação radiante no tempo
Irradiância	W/m ²	Fluxo incidente sobre uma superfície por unidade de área
Excitância	W/m ²	Fluxo radiante deixando uma superfície por unidade de área
Emissividade	Adimensional	Razão entre a excitância de um material pela excitância de um corpo negro à mesma temperatura
Absortância	Adimensional	Razão entre o fluxo absorvido e o fluxo incidente numa superfície
Reflectância	Adimensional	Razão entre o fluxo refletido e o fluxo incidente numa superfície
Transmitância	Adimensional	Razão entre o fluxo transmitido e o fluxo incidente numa superfície
Energia luminosa (Quantidade de luz)	Lumen - segundo (talbot) lms	Energia na faixa do visível em função da eficácia luminosa da radiação
Iluminância	Lux (Im m ⁻²)	Fluxo luminoso incidente sobre uma superfície por unidade de área

Tabela II.4: Conceitos Radiométricos (compilado de Curran 1987 in Barret & Curtis 1976 e Colwell 1983 in Jensen 2000)

II.3.2. INTERAÇÃO DA REM COM MINERAIS E ROCHAS

Como as rochas são assembléias de minerais, os seus espectros são formados pela mistura dos espectros de cada um desses minerais. Os minerais são compostos por quantidades variáveis de diferentes elementos, ligações químicas e arranjos cristalográficos, que produzem distintas interações. As interaçãoes mono-minerálicas são simples, ao passo que as poliminerálicas podem ser extremamente complexas (Hunt & Salisbury 1971a, Hunt & Salisbury 1971b), incluindo absorções no espectro devido a misturas íntimas (Hapke 1981) ou a própria mistura mineral (Hunt 1991).

Pelo princípio da conservação de energia, a REM, com comprimento de onda específico, que incide sobre determinado alvo, será em parte refletida pela superfície, em parte absorvida pelos átomos e moléculas, podendo ser ainda transmitida, caso o material exiba alguma transparência. A soma desses três componentes é igual à intensidade da energia incidente (e.g., energia irradiada pela fonte de radiação). A relação entre a energia incidente no alvo e o tipo de fenômeno resultante da interação, pode fornecer os seguintes parâmetros espectrais (Drury 2001):

•	Transmitância	\rightarrow		transmitida	
•	Absorvância	\rightarrow	razão entre a intensidade da REM	absorvida	por determinado alvo e a incidente
•	Reflectância	\rightarrow		refletida	

A interação entre a REM e a matéria ocorre em dois níveis distintos: ao nível macroscópico e ao nível atômico/molecular. No caso especial das rochas, as medidas de reflectância são macroscopicamente controladas pela textura da superfície, granulometria, forma, estrutura dos minerais e geometria da iluminação. Neste nível, os principais fenômenos envolvidos são: reflexão, refração e espalhamento da radiação incidente. Ao nível microscópio as medidas de reflectância são dependentes da composição mineralógica do material. As interações microscópicas são responsáveis por determinadas feições de absorção espectral da radiação cujas características dependem do tipo de estrutura interna dos constituintes, do tamanho dos seus raios atômicos, das forças de ligação e das impurezas iônicas contidas no material. (Meneses & Netto 2001).

II.3.3. ORIGEM DAS FEIÇÕES

As feições espectrais de um determinado material correspondem às porções da curva de reflectância em determinado comprimento de onda, com intensidade e forma bem definidas e características do material. Essas feições espectrais são produzidas como conseqüências de

processos eletrônicos (transições atômicas) e de processos vibracionais (transições moleculares) (Hunt & Salisbury 1970, Menezes & Netto 2001).

Transições eletrônicas (0.35-1.20µm)

Ocorrem ao nível do átomo, em sólidos, líquidos e gases, são importantes principalmente para os metais de transição, tais como: ferro, cobre, níquel, cromo, cobalto, manganês, etc. Esse tipo de transição requer alta energia e ocorre essencialmente nas regiões correspondes às faixas do visível (VIS) ao infravermelho próximo do espectro eletromagnético. Estes processos estão relacionados basicamente a: (i) efeitos do campo cristalino, que ocorre devido a transições atômicas envolvendo Ni, Cr, Co e principalmente Fe (Hunt 1977, Clark 1999, Hauff 1995); (ii) transferência de carga, o qual ocorre quando a energia absorvida pelo objeto causa a migração de elétrons entre íons vizinhos, ou entre íons e seus ligantes (Clark 1999); (iii) centro de cores, causado por irradiação (radiação solar ultravioleta) de um cristal impuro, e (iv) bandas de condução, que se refere ao nível mais alto de energia ocupado pelo elétron.

Transições vibracionais (1.20-2.50µm)

Ocorrem ao nível da molécula e resultam em vibrações ou pequenas mudanças na disposição dos átomos de componentes sólidos, líquidos ou gasosos. Esta transição predomina na região do infravermelho de ondas curtas (SWIR) e acima deste, está relacionada à presença dos íons OH⁻, CO³, H₂O (Hunt & Ashley 1979, Clark *et al.* 1990a), dependendo de quantidades médias de energia. As feições de absorção envolvidas nestes processos são mais intensas, se comparadas àquelas geradas por processos eletrônicos.

As feições de absorção de alguns íons e moléculas originadas pelos processos supracitados são diagnósticas de uma mineralogia específica e úteis na definição das características espectrais de minerais e rochas.

II.3.4. Atenuantes Espectrais

Os principais fatores que afetam diretamente na determinação da composição mineralógica das rochas por espectroscopia por reflectância são: o tipo de superfície, granulometria e forma das partículas e geometria da iluminação (Meneses & Netto 2001):

<u>Tipo de superfície</u>: quando a superfície é lisa ocorre a reflectância do tipo especular, onde toda ou quase toda a energia incidente é refletida numa única direção, perpendicular a radiação incidente. Quando a superfície é rugosa, ocorre a difusão da radiação refletida em várias direções.

<u>Granulometria e forma dos minerais</u>: a diminuição no tamanho das partículas dos minerais da rocha ou do solo, quase que invariavelmente é acompanhada de um aumento de albedo (valor médio da reflectância medido num dado intervalo de comprimento de onda). Com relação à forma dos minerais, quanto maior a esfericidade das partículas, maior a quantidade de superfícies expostas. Este fato provoca um maior número de reflexões entre as várias superfícies dos grãos, acompanhadas de perdas de energia, dificultando o escape da luz, e desta forma atenuando a radiação refletida.

<u>Geometria de iluminação</u>: corresponde a relação geométrica relativa entre as posições da fonte de iluminação, objeto e sensor. Ao analisar a dependência angular entre a fonte de iluminação, conclui-se que os maiores valores de reflectância e de absortância ocorrem no intervalo angular entre 15° e 30° de iluminação.

II.3.5. FEIÇÕES DIAGNÓSTICAS

São várias as faixas de ocorrência de feições diagnósticas no espectro VNIR-SWIR (0.35-2.50µm) e cada banda tem uma aplicação característica (Tab. II.5).

REGIÃO DO ESPECTRO	APLICAÇÃO	
0.44-0.55	Detecção de ferro: várias bandas de absorção de óxido de ferro	
0.80-1.00	Detecção de Fe ³⁺ (0.92μm) e Fe ²⁺ (1.0μm)	
1.60	Identificação de zonas de alteração hidrotermal ricas em argila	
2.17	Deteccão do minorois do orgilo	
2.20	Delecção de minerais de argina	

Tabela II.5: Regiões do espectro mais adequadas ao estudo de propriedades de minerais e rochas

As feições espectrais diagnósticas de rochas e minerais na região do VNIR são originadas por transições eletrônicas e envolvem principalmente íons de Fe (Townsend 1987). As bandas de absorção espectral diagnósticas de hidróxidos, óxidos e sulfatos, contendo o íon Fe em sua estrutra (Hunt & Ashley 1979) são típicas do VNIR.

As feições espectrais de interesse geológico na região do SWIR são originadas por processos de transições vibracionais (Hunt & Ashley 1979) de ligações moleculares, ou seja, relacionados à presença dos íons OH⁻, CO₃⁻, H₂O (Hunt & Salisbury 1971, Hunt *et al.* 1971). As transições vibracionais geram cinco principais bandas de absorção, centradas em: 1.40 μ m, 1.75 μ m, 1.90 μ m, 2.20 μ m e 2.35 μ m (Hunt & Ashley 1979). Nessa faixa são detectados, principalmente, as argilas (e.g., caulinita, montmorillonita), os sulfatos (e.g., alunita, gipsita), minerais hidratados (e.g., micas, diásporo/gibsita, pirofilita) e carbonatos (Hunt & Ashley 1979). Alguns minerais possuem assinatura espectral característica, como a relação da água (H₂O - 1.9 μ m) para com a montmorillonita, a hidroxila (OH) para a caulinita e o C-O para a calcita (Hunt 1977).

A maioria das feições de absorção espectral que distinguem diferentes silicatos no SWIR é devida à transição vibracional associada à hidroxila (OH) e água (H₂O), que produzem feições de absorção em torno de 1.40 μ m (OH e H₂O) e 1.90 μ m (H₂O). Outras importantes e diagnósticas feições ocorrem aproximadamente em 2.200, 2.250 e 2.330 μ m (Tab. II.6), relacionadas à dobramentos e distenções das ligações AI-OH, Fe-OH e Mg-OH, respectivamente (Pontual *et al.* 1997).

MOLÉCULAS / RADICAIS	VALORES APROXIMADOS DE $\lambda \left(\mu m \right)$
ОН	1.400 (1.500 e 1.750-1.850 em alguns minerais)
H ₂ O	1.400 e 1.900
AI-OH	2.160-2.220
Fe-OH	2.230-2.295
Mg-OH	2.300-2.350
CO ₃	2.300-2.350 (também em 1.870, 1.990 e 2.155)

Tabela II.6: Comprimentos de onda de feições de absorção características (Pontual et al. 1997)

II.3.6. CONDIÇÕES DE ANÁLISE

Todas as amostras coletadas, nos dois depósitos de argilas estudados, foram caracterizadas espectralmente através de medidas de reflectância espectral nos comprimentos de onda entre o visível e o infra-vermelho de ondas curtas (0.350-2.500µm).

<u>Espectrômetro</u>

As medidas espectrais foram realizadas com o espectrorradiômetro portátil *FieldSpec Full Resolution (FR)*, produzido pela *Analytical Spectral Devices (ASD)* e pertencente ao Laboratório de Espectroscopia de Reflectância (LER) do IG-UNICAMP. Tal aparelho detecta radiação eletromagnética no intervalo espectral requerido para este trabalho (0.350-2.500µm), com o total de 3 detectores independentes: 1 espectrômetro formado por arranjo de fotodiodo de silício (512 elementos) cobrindo o intervalo de 0.350-0.982µm e os outros 2 cobrindo o intervalo de 0.983-1.775µm e 1.776-2.500µm, constituídos por *scanners* de alta velocidade de InGaAs, termoeletricamente resfriados (*Analytical Spectral Devices* 1994, Souza Filho & Crosta 1998).

A medida da reflectância espectral de um material com este instrumento é basicamente realizada em 5 etapas, abaixo enumeradas (*Analytical Spectral Devices* 1994)

- 1. utilização de uma fonte de iluminação estável, artificial, em condições controladas de laboratório, ou a iluminação solar ambiente (para medidas em campo) sobre o material alvo;
- 2. calibração do aparelho a partir de uma medida padrão (i.e. reflectância conhecida);
- captação da radiação eletromagnética (REM) do material alvo por um cabo de fibra ótica utilizando frentes óticas (*foreoptics*) - lentes de 1°, 5° e 18°, que controlam o campo de visada instantânea ('IFOV)' do instrumento, determinando o tamanho da área sob medida na amostra.
- condução da REM através desta fibra ótica para uma grade de difração holográfica (*holographic diffraction grating*), onde os componentes do espectro são separados e refletidos para os 3 detetores independentes; e
- conversão da corrente fotoelétrica de cada detector em voltagem e transformação de dados analógicos em digitais transferidos para a memória do computador acoplado ao espectrorradiômetro.

Nas análises em laboratório com o FieldSpec FR (Fig. II.7) foi utilizada uma lâmpada de halogênio de alta temperatura (opera a 3000° K), acoplada a um tripé montado a uma distância de 50 cm da amostra, como fonte de iluminação artificial estável. Esse arranjo permitiu a irradiação da amostra sob um ângulo de aproximadamente 30°. A fibra ótica, ligada diretamente ao espectrômetro, foi montada num suporte do tipo 'revolver' (que conecta as frentes óticas ao cabo de fibra ótica) e posicionada de modo a perfazer um ângulo também de 30° em relação ao alvo. Como obturador do campo instantâneo de visada, foi utilizada uma lente de 5°, colocada a uma distância de 20cm da amostra, o que proporcionou leituras num campo circular com diâmetro de aproximadamente 1,75cm. A calibração do aparelho foi realizada por meio de uma placa de referência constituída por um composto ótico sintético (*Spectralon*), que se comporta como uma superfície lambertiana quase ideal, capaz de refletir 100% da luz incidente.

* Métodos Espectrais para Caracterização Mineral *

Figura II.7: Espectrorradiômetro portátil FieldSpec Full Resolution (FR), do IG/Unicamp.

II.3.7. CLASSIFICAÇÃO ESPECTRAL

Utilizando estimativas semi-quantitativas das proporções entre os minerais presentes em amostras de controle, derivadas da DRX, as curvas de reflectância espectral serão classificadas, nesta pesquisa, a partir de bibliotecas espectrais de argilo-minerais puros (biblioteca espectral do USGS).

Para a interpretação das curvas espectrais serão utilizadas técnicas de análise (i) visual, com o auxílio das ferramentas de visualização de espectros do programa ENVI v.3.6; e (ii) automática, proporcionada pelos programas SIMIS (*Spectrometer Independent Mineral Identification Software*) Field 2.9 (Mackin 1999) e Feature Search 1.6 (Mackin 2002).

Classificação Espectro-Mineralógica 1 - Interpretação Empírica

No software *ENVI* v.3.5, as curvas espectrais foram submetidas à remoção do contínuo (Clark *et al.* 1990a), visando o realce, interpretação visual e possível mineralogia associada a as feições espectrais.

Remoção do Contínuo

O contínuo pode ser descrito como a linha base, de geometria convexa, que toca o máximo número possível de pontos da curva de reflectância espectral, sem cruza-la.

Para sua remoção, após o seu cálculo, o valor da reflectância original para cada comprimento de onda do espectro é subtraído do valor de reflectância para os mesmos

comprimentos de onda do contínuo. O valor resultante dessa subtração é então subtraído de 100 (Fig. II.8).

A principal vantagem deste método é que feições de absorção, tanto evidentes ou sutis, são extremamente realçadas, facilitando a sua extração automática. A desvantagem desse método é que feições mais amplas, como aquelas relacionadas aos íons de Fe, podem ser apagadas, após a correção do contínuo. Isso pode ser notado na Figura II.8 (espectro de fengita + siderita), onde o gradiente do espectro de reflectância entre 1,3µm e 1,6µm (um efeito relacionado à presença do íon Fe), aparece completamente removido após a correção. Outra desvantagem desse método é que o processo de correção pode implicar em pequenas mudanças da posição da feição de absorção, em termos do comprimento de onda original. Esse efeito é mais severo em situações onde o gradiente do contínuo é alto e as feições são amplas e/ou rasas. Isso também pode ser notado na Figura II.8, onde a feição de absorção em torno de 2,45µm é posicionada em 2,453µm na curva de reflectância espectral original, e em 2,448µm na curva com o contínuo removido.

Figura II.8: Método de "diferença do contínuo" testado para extração de bandas de absorção (adaptadp de Pontual *et al.* 1997)

A interpretação das feições espectrais foi apoiada num amplo banco de dados bibliográficos (Clark (1999), Pontual *et al.* (1997), Clark *et al.* (1990a), Hunt (1977), Hunt *et al.* (1973), Hunt & Salisbury (1971) e Hunt & Salisbury (1970) - Anexo G.4) sobre os principais minerais presentes nas amostras, com ênfase naqueles apontados pelas determinações via DRX.

A profundidade e a área das bandas de absorção são comumente utilizadas para a análise de espectros de refletância e estudos prévios têm mostrado uma correlação positiva entre estes dois parâmetros (Galvão & Vitorello 1994). Também as características geométricas das feições são fator fundamental para a distinção entre as espécies e essas são descritas como: largas, agudas, simétricas, com braço direito assimétrico, com ombro esquerdo ou direito e com *doublet* (Lyon & Zhu 1989).

Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)

A classificação espectro-mineralógica das curvas de reflectância espectral, derivadas das amostras medidas com o FieldSpec FR, foram realizadas com o auxílio dos programas SIMIS *Field* (**SF**) e *Feature Search* (**SFS**). O primeiro passo foi a criação da biblioteca espectral de interesse.

Biblioteca Espectral

A biblioteca espectral de referência utilizada no ambiente do SIMIS, para análise automática do conteúdo mineralógico das curvas espectrais, foi a do *United States Geological Survey - USGS* (<u>http://speclab.cr.usgs.gov/spectral-lib.html</u>) (Clark *et al.* 1990b). Esta biblioteca contém espectros de 423 minerais, abrangendo a faixa entre 0,205µ - 2,976µm.

Os minerais selecionados (22) para compor a biblioteca principal foram re-amostrados para o intervalo de comprimentos de onda coberto pelo FieldSpec FR (0.35-2.50µm). Os minerais inclusos nesta biblioteca foram espelhados no resultado global da DRX (Tab. II.2), excluindo-se o quartzo e feldspatos, pois não apresentam feições diagnósticas no espectro ótico refletido e são prejudiciais a mistura espectral. As outras espécies minerais de interesse na biblioteca do USGS foram incluídas com todas as suas variedades (e.g., kaolinite1,...., kaolinite8).

A construção das sub-bibliotecas, especializadas em cada amostra estudada, envolveu as seguintes etapas: (i) criação da biblioteca; (ii) cópia dos minerais por amostra, a partir da base (biblioteca principal) e, (iii) interpolação das bibliotecas para as faixas do espectro de interesse (VNIR e VNIR-SWIR).

Simis Feature Search 1.6 (SFS)

Em posse das sub-bibliotecas, a rotina de uso do software incluiu a escolha de opções de configuração padrão como: largura de 5nm para leitura da feição, percentual mínimo de ruído de

0,5%, eliminação das regiões do espectro indesejáveis e método de análise. As medidas de largura e ruído passaram por ajustes em decorrência da quantidade de ruídos e para restringir o número de minerais resultantes por feição.

Dois métodos de análises foram testados para a extração das bandas de absorção dos espectros (Pontual *et al.* 1997): o método da 'reflectância absoluta' e o método da 'diferença do contínuo':

- <u>Reflectância Absoluta (reflectance)</u>: a profundidade das feições é determinada a partir do valor de reflectância mais alto do espectro; a posição das feições de absorção, sejam essas mais amplas ou agudas, são analisadas tal qual originalmente medidas pelo espectrômetro.
- <u>Diferença do Contínuo (hull differences)</u>: este método é mais complexo e a forma de confecção desta curva foi explicada anteriormente (Fig. II.8).

Quando iniciada a análise propriamente dita, as etapas foram as seguintes: (i) analise da curva e geração dos valores de comprimento de onda das principais feições; (ii) seleção da subbiblioteca de interesse; (iii) leitura dos resultados por feição; (iv) seleção do minerais de maior aproximação com a curva espectral da amostra ou desmistura (*unmix*) de todas as espécies contidas nesta feição; (v) os minerais selecionados foram anexados em uma janela específica e, finalmente, (vi) execução geral da desmistura espectral (unmix) em uma ou várias etapas, a depender da similaridade entre a curva da amostra e a curva de mistura.

Os resultados para classificação espectro-mineralógica apresentaram as respectivas porcentagens por mineral decorrente das profundidades dos picos de absorção e as posições no espectro da feição correspondente, além das larguras apresentadas pelo mineral na comparação com a feição.

A resposta (assembléia mineral) deste processamento foi em alguns momentos utilizada para construção de outras sub-bibliotecas, para realização do tratamento com o SF, devido a melhoria nos resultados.

Simis Field 2.9 (SF)

Este programa utiliza 3 diferentes tipos de análises da curva espectral para a classificação mineralógica. No entanto, o presente tratamento utilizou somente os dois primeiros. Para as análises e classificação espectro-mineralógica os seguintes parâmetros e rotinas foram utilizadas:

 <u>Posição da feição de absorção (feature position)</u>: por meio deste procedimento a biblioteca espectral selecionada é convertida através de um algoritmo em feições espectrais. Esse algoritmo subtrai o contínuo dos espectros e extrai as 20 maiores feições de absorção, fornecendo informações sobre a posição, intensidade e largura das bandas de absorção;

- <u>Forma da curva espectral (curve shape)</u>: nesta rotina, os espectros são normalizados e comparados com a biblioteca espectral de referência através de um algoritmo de correlação cruzada;
- <u>Desmistura espectral (statistical unmixing)</u>: esta técnica utiliza o algoritmo Generalised Linear Least Square (Settle & Drake 1993) para modelar o espectro obtido através de funções lineares, ajustadas (*fitting*) pelo método dos mínimos quadrados.

As condições de análise para identificação das feições envolveram: aceitabilidade de 12nm, ruido de 12%, baixa profundidade de 0.3 e alta de 1.7.

A classificação, adicionalmente, proporciona três parâmetros críticos para a avaliação dos resultados: o ruído do espectro, a variação espectral e, o mais importante, o erro da mistura espectral formulada (com base nos espectros de referência/biblioteca) em relação à curva espectral das amostras.

Ao final do processamento, o resultado é composto pela curva espectral da amostra, pela curva espectral da mistura mineral estimada pelo programa, a janela com a descrição hierárquica, tanto da posição da feição como da forma da curva, o erro acusado e uma janela com os minerais da mistura, em suas devidas proporções.

A porcentagem do erro de cada classificação é relacionada à qualidade do resultado, segundo a seguinte escala (Mackin 1999): excelente (0-5%); bom (5-10%); razoável (10-15%); questionável (15-25%); ruim (25-35%) e inaceitável ($\geq 35\%$). Ou segundo o estatus de erro do *software* (Tab. II.7).

35%	ERRO	COMPATIBILIDADE
30%	PROVAVELMENTE REJEITADO	MUITO POBRE
25%		
20%		POBRE
15%	QUESTIONAVEE	POSSIVEL
10%		MODERADA
5%	ACEITÁVEL	BOA
0%		EXCELENTE

Tabela II.7: Estatus de erro do SF 2.9

II.4. CONSIDERAÇÕES FINAIS

Diversos trabalhos já demonstraram as vantagens da espectroscopia de reflectância para identificação mineralógica (Curtiss & Goetz 1994). Com o advento de espectrômetros portáteis de alta resolução espectral, cada vez mais esta técnica vem sendo difundida tanto para auxiliar o complexo entendimento entre as interações matéria e energia, base para o uso do sensoriamento remoto (Curtiss & Goetz 1994, Kruse 1997), como para o auxílio à identificação de minerais, mapeamento de zonas de alteração hidrotermal (Martines-Alonso *et al.* 1999), estudos cristalográficos, entre outros (Duke 1994, Martines-Alonso *et al.* 2002a, Martines-Alonso *et al.* 1991, Taylor *et al.* 1997).

II.5. REFERÊNCIAS BIBLIOGRÁFICAS - Capítulo II

Analytical Spectral Devices. 1994. FieldSPec FR - User Guide, 98 pp.

Barret E.C. & Curtis L.F. 1976. Physical bases of remote sensing. *In: Introduction to Environmental Remote Sensing*, Chapman & Hall, London, pp.: 15-28

Clark R.N. 1999. Spectroscopy of Rocks And Minerals, And Principles of Spectroscopy, chapter 1. *In:* A.N. Rencz (eds.) *Remote Sensing for the Earth Sciences: Manual of Remote Sensing*, 3ed., vol. 3, John Wiley & Sons, Inc., New York, pp.: 03-58

Clark R.N., King T.V.V., Klejwa G.A., Swayze G.A. 1990a. High Spectral Resolution Reflectance Spectroscopy of Minerals. *Journal of Geophysical Research*, 95(B8): 12.653-12.680

Clark R.N., Swayze G.A., King T.V.V., Middlebrook B., Calvin W.M., Gorelick N. 1990b. The U.S. Geological Survey, Digital Spectral Library and Analysis Software. *In*: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, *Proceedings*, pp. 208-215 (http://makalu.jpl.nasa.gov/docs/wokshops/90_docs/21.PDF)

Colwell R.N. 1983. *Manual of Remote Sensing* (2ed.). Falls Church: American Society of Photagrammetry, 2440 pp.

Curran P.J. 1987. Remote Sensing Methodologies and Geography. *International Journal of Remote Sensing*, 8: 1255-1275

Curtiss B. & Goetz A.F.H. 1994. Field Spectrometry: Techniques and Instrumentation. *In: Proceedings of the International Symposium on Spectral Sensing Research*, Boulder-Co, pp.: 31-40

Drury S.A. 2001. Image Interpretation in Geology. London. 3 ed, London, 290 pp.

Duke E.F. 1994. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. *Geology*, 22(7): 621-624

Galvão L.S. & Vitorello I. 1994. Spectral Reflectance-Lithostratigraphy of Terrigenous Rocks of the Parnaíba Basin, Brazil: Chemical Composition Relationships. *Revista Brasileira de Geociências*, 24(1): 22-31

Gladwell D.R., Lett R.E., Laurence P. 1983. Application of Reflectance Spectrometry to Mineral Exploration Using Portable Radiometers. *Economic Geology*, 78(4): 699-710

Goetz A.F.H., Hauff P., Shippert M. 1991. Rapid Detection and Identification of OH-Bearing Minerals in the 0.9-1.0 μm Region Using a New Portable Field Spectrometer. *In:* Thematic Conference on Geologic Remote Sensing, 8, Denver, Colorado, USA, *Proceedings*, pp.: 1-11

Hapke B. 1981. Bidirecional Reflectance Spectroscopy, 1, Theory. *Journal Geophysics Research*, 86(B4): 3.039-3.054

Hauff P.L. 1995. Introduction to Applied Reflectance Spectroscopy. *In*: Strategies for Exploration. A Short Course: Application of Infrared Spectroscopy and Remote Sensing to the Investigation of Precious Metal Deposit Alteration Systems. Santiago (Chile).

Hunt G.A. 1991. Geological applications of reflected and emitted multispectral over data lateritised Archaean terrain in Western Australia, United Kingdom. Doctor of Philosophy Thesis, Departament of Earth Sciences, The Open University. 332 p.

Hunt G.R. 1980. Electromagnetic Radiation, The communication link in Remote Sensing, Chapter 2. *In:* Siegal B.S. and Gillespie A.R. (eds) *Remote Sensing in Geology*, John Wiley & Sons, New York, pp.: 5-45

Hunt G.R. 1979. Near-infrared (1.3-2.4 µm) spectra of alteration minerals - potential for use in remote sensing. *Geophysics*, 44(12): 1974-1986

Hunt G.R. 1977. Spectral Signatures of Particulate Minerals in the Visible and Near Infrared. *Geophysics*, 42(3): 501-513

Hunt G.R. & Ashley R.P. 1979. Spectra of Altered Rocks in the Visible and Near Infrared. *Economic Geology*, 74: 1.613-1.629

Hunt G.R. & Salisbury J.W. 1971a. Visible and Near-Infrared Spectra of Minerals and Rocks: II. Carbonates. *Modern Geology*, 2: 23-30

Hunt G.R. & Salisbury J.W. 1971b. Visible and Near-Infrared Spectra of Minerals and Rocks: III. Oxides and Hydroxides. *Modern Geology*, 2: 195-205

Hunt G.R. & Salisbury J.W. 1970. Visible and Near-Infrared Spectra of Minerals and Rocks: 1. Silicate Minerals. *Modern Geology*, 1: 283-300

Hunt G.R., Salisbury J.W., Lenhoff C.J. 1973. Visible and Near Infrared Spectra of Minerals and Rocks: VI. Additional Silicates. *Modern Geology*, 4: 85-106

Hunt G.R., Salisbury J.W., Lenhoff. C.J. 1971. Visible and Near-Infrared Spectra of Minerals and Rocks: III. Oxides and Hydroxides. *Modern Geology*, 2: 195-205

Jensen J.R. 2000. Eletromagnetic Radiation Principles (charpter 2). *In: Remote Sensing of the Environment an Earth Resource Perspective*, University of South Carolina, Prentice Hall-Series in Geographic Information Science, Upper Saddle River, New Jersey, pp.: 29-51

Kruse F.A. 1997. Identification and Mapping of Minerals in Drill Core using Hyperspectral image Analysis of Infrared Reflectance Spectra. *International Journal of Remote Sensing*, 17(9): 1623-1632

Lyon R.J.P. & Zhu H. 1989. Spectral Band Shapes as Criteria for Mineral Discrimination in Field Spectroscopy. *In*: Thematic Remote Sensing for Exploration Geology, 7, Calgary, Alberta, Canada, *Proceedings*, pp.: 411-423

Mackin S. 2002. SIMIS-Feature Search 1.6 - Spectrometer Independent Mineral Identification Software. *In: User Manual Version 1.6*, 57pp.

Mackin S. 1999. SIMIS-Field Version 2.9 - Spectrometer Independent Mineral Identification Software. *In: User Manual Version 2.9*, 52 pp.

Martinez-Alonso S., Rustad J., Goetz A.F.H. 2002a. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part I: Methods, results and comparison to experimental data. *American Mineralogist*, 87: 1.215-1.223

Martinez-Alons S. Rustad J., Goetz A.F.H. 2002b. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations. *American Mineralogist*, 87: 1.224-1.234

Martinez-Alonso S.E., Atkinson W.W., Goetz A.F.H., Eberl D.D., Kruse F.A. 1999. Short Wave Infrared (SWIR) Spectrometry of Illite ("Sericite") to Estimate Temperature of Formation of Hydrothermal Minerals Deposits. <u>http://uscu.colorado.edu/~marinas/poster.html</u>, pp. 1-6.

Martinez-Alonso S.E., Atkinson W.W., Goetz A.F.H., Kruse F.A. 1997. Short Wave Infrared (SWIR) Spectrometry of Illite ("Sericite") to Estimate Temperature of Formation of Hydrothermal Mineral Deposits. *In:* International Conference and Workshops on Applied Geologic Remote Sensing, 12, Denver, CO, *Proceedings*, vol. 2, pp.: 426-429 Meneses P.R. & Madeira Neto J.C. 2001. Sensoriamento Remoto: reflectância de alvos naturais. Ed. UnB & Embrapa, Brasília, 262 pp.

Pontual S., Merry N., Gamson P. 1997. Spectral Interpretation Field Manual, G-Max. Spectral Analysis Guides for Mineral Exploration, vol. 1. AusSpec International Pty.Ltd. 169 pp.

Robinson A.H., Morrinson J.I., Muehrcke P.C., Kimerling A.J., Guptill S.C. 1995. Remote Sensing Data Collection, charpter 8. *In: Elements of Cartography* (6 ed.). John Wiley & Sons, Inc., New York, pp.: 126-158

Settle J.J. & Drake N.A. 1993. Linear mixing and the estimation of ground proportions. *International Journal Remote Sensing*, 14: 1159-1177

Skoog D.A., Holler F.J., Nieman T.A. 2002. Príncipios de Análise Instrumental (5ª. ed.). Bookman, Porto Alegre, 836 pp.

Souza Filho C.R. & Crosta A.P. 1998. Spectro-Mineral and Lithologic Mapping Using Field Spectroscopy and its Usefulness as an Exploration Tool - Undergoing Research in the "Laboratório de espectroscopia de Reflectância" (LER) at the University of Campinas. *In:* SBG-MG, Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anais*, p. 270

Taylor G.R., Reston M., Hewson R.D. 1997. An Assessment of a Portable Spectrometer for Analysis of Geologial Materials. *In:* Conference and Worshops os Applied Geologic Remote Sensing, 12, Denver, Colorado, *Proceedings*, part. II, pp. 409-416

Townsend T.E. 1987. Discrimination of Iron Alteration Minerals in Visible and Near-Infrared Reflectance Data. *Journal of Geophysical Research*, 92 (B2): 1.441-1.454

Whitney G., Abrams M.J., Goetz A.F.H. 1983. Mineral Discrimination Using a Portable Ratio-Determining Radiometer. *Economic Geology*, 78(4): 688-698

Willard H.H., Merritt Jr. L.L., Dean J.A., Settle Jr. F.A. 1988. *Instrumental Methods of Analysis (7 ed.)*. Wadsworth Publishing Company, Belmont, California, 895 pp.

Zambello F.R. 2001. Análise Multielementar Quantitativa de Solos e Sedimentos por Espectroscopia de Fluorescência de Raios X. Dissertação de Mestrado, Instituto de Geociências, Universidade de Campinas, 53p.

* Inst. Geociências - Unicamp *

Caracterização de Argilo-Minerais Utilizados na Indústria de Cerâmica de Revestimentos por Espectroscopia de Reflectância-Estudo de Caso na Mina do Cruzeiro, SP.

III.1. INTRODUÇÃO

A Mina do Cruzeiro está situada no município de Limeira, 50 Km a noroeste (NWN) de Campinas, Estado de São Paulo. A área da mineração encontra-se a noroeste da zona urbana de Limeira com acesso facillitado pela grande quantidade de vias que a interligam com o interior do município e do Estado (Fig. III.1).

A concessão de lavra pertence à empresa Calcário Cruzeiro Ltda, que iniciou suas atividades na década de 50 com a extração do calcário da Formação Iratí. Somente na década de 90 iniciaram-se as explotações nas rochas argilo-minerálicas (siltitos e argilitos) da Formação Corumbataí, antes descartadas do processo produtivo. A produção total de argilas da mina do Cruzeiro foi de 178.886 kT até Agosto de 1996 (Christofoletti 1999). Atualmente a produção é quase totalmente destinada à indústria de revestimentos cerâmicos da região de Limeira, além de outras regiões do Estado de São Paulo e Estados vizinhos.

A área da mina é de aproximadamente 50 Ha, compreendendo a lavra propriamente dita, pátios (disposição / sazonamento / estocagem), área de recuperação ambiental, área de beneficiamento e edifícios (oficina, paiol e sede administrativa) (Figs. III.2,3,4).

A Formação Corumbataí possui três tipos básicos de materiais explotados: argila dura, argila mole (com pastilhamento) e argila amarela. Esta designação é técnica e comercialmente veiculada pela empresa, muito embora alguns pesquisadores também a adotem (Christofoletti 1999).

Em menor proporção, as matérias primas extraídas das Formações Irati e Serra Alta têm outra destinação. O calcário escuro, da primeira, é utilizado pela indústria de corretivos agrícolas; o siltito cinza esverdeado, da segunda, é aproveitado como material de empréstimo (e.g., pavimentações).

O objetivo principal deste Capítulo é avaliar o potencial da espectroscopia de reflectância como um método analítico aplicável de forma expedita na definição de tipos e pureza de argilo-

minerais, e estudar parâmetros espectrais que possam subsidiar a classificação dos materiais da Mina do Cruzeiro.

III.2. GEOLOGIA LOCAL

Na região de Limeira e arredores da Mina do Cruzeiro (Fig. III.1), a geologia é composta por rochas sedimentares depositadas em sua maioria no Permiano e de intrusões e derrames Jurássicos-Cretácicos da Bacia do Paraná. A sequência local é formada pelos Grupos Tubarão e Passa Dois, sotopostos por rochas intrusivas tabulares. O Grupo Tubarão é representado pelo sub-grupo Itararé e pela Formação Tatuí e o Grupo Passa Dois pelas Formações Iratí, Serra Alta e Corumbataí.

O SubGrupo Itararé é composto por arenitos, ritmitos e lamitos e a Formação Tatuí por arenitos (calcíferos e carbonosos às vezes) e siltitos. Muito embora estas unidades compreendam boa parte da geologia apresentada na Figura III.1, estas não ocorrem na área da mineração.

A região de maior interesse para esse estudo encontra-se a nordeste de um grande falhamento de direção NE/SW (Fig. III.1), onde afloram rochas do Grupo Passa Dois e intrusivas tabulares. Nessa área afloram os sedimentos das Formações Iratí e Corumbataí, em contato horizontal e com direção ~N/S (Fig. III.1). Na Mina do Cruzeiro, as escavações ao longo dos anos expuseram ainda uma seqüência da Formação Serra Alta (~50m de espessura), além de uma rocha intrusiva (FSG) que corta verticalmente todo o pacote sedimentar na região norte da área investigada (Figs. III.2 e III.3).

A Formação Irati compreende uma sequência contínua e de espessura reduzida, composta por folhelhos cinzentos sotopostos a folhelhos pirobetuminosos, siltitos, arenitos e camadas de calcários fossilíferos contendo nódulos de sílex, que representam o auge da transgressão marinha. No topo ocorre siltito arenoso, compacto, não betuminoso, fossilífero e de 0,5 m de espessura (Rohn 1998). O trípoli (sílica microcristalina) ocorre como produto tardio do intemperismo (Montanheiro *et al.* 1999).

A Formação Serra Alta é formada por lamitos e folhelhos cinza escuros a esverdeados, com laminação plano paralela, os quais marcam o início da fase predominantemente regressiva iniciada em condições de mar raso. A Formação Corumbataí é composta por lamitos cinza escuros e arroxeados com ocasionais níveis de arenito médio, e representa uma sedimentação em condições de planície de maré e deltas, formando depósitos ricos em fósseis, na transição Permiano-Triássico. Sills de dioritos pórfiros, lamprófiros, andesitos pórfiros, microdioritos pórfiros e traquitos correspondem às rochas intrusivas tabulares (FSG) da região, instaladas no final do Jurássico (Morais 1999).

Figura III.1: Mapa da geologia local da mina do Cruzeiro, incluindo acessos e fisiografia da região.

Figura III.2: Vista Panorâmica da Mina do Cruzeiro, com a lavra ao fundo e o pátio de beneficiamento e armazenagem à frente.

Figura III.3: Pátio de estocagem, sazonamento e blendagem da matéria prima explotada dos vários horizontes da Formação Corumbataí.

Figura III.4: Detalhe para a região da mina que esta desativada, observada da bancada VI, com visada para SE.

III.3. Lavra

A lavra (Fig. III.5) é a céu aberto, desenvolvida na face sudeste (ESE) da encosta da principal vertente local (cf. porção NW do mapa da Fig. III.1). É composta por duas áreas: uma ativa e outra inativa. A lavra em plena operação ocupa as regiões norte, centro-norte e centro sul da mina; a inativa ocupa a região sul (Fig. III.4). Ambas possuem considerável desnível. Na região CS a altura máxima atinge 65 m (Fig. III.6) e a mínina 20m (Fig. III.7). Neste trabalho, somente a região da lavra em operação será abordada.

A estruturação da lavra é comportada por bancadas de taludes verticais a subverticais e ruas irregulares (largura e cota variável). A principal orientação da frente de lavra é NE/SW. O maior número de bancadas (6) encontra-se na região centro-sul da mina (Figs. III.8 e III.9), onde a declividade acentuada suporta a maior cota do terreno. O menor número (2) encontra-se na região norte, mais aplainada pela erosão e intemperismo.

III.4. GEOLOGIA DA MINA

Vários materiais (Anexo MC.1, Anexo MC.3) ocorrem na Mina do Cruzeiro. Os principais materiais são determinados pela litoestratigrafia local (Formações Irati, Serra Alta e Corumbataí) (Figs. III.6 e III.7). Outros materiais ocorrem controlados pelos seguintes fatores: cota do terreno, espessura do manto intempérico (solo), proximidade da drenagem e adjacência da rocha intrusiva.

Em porções onde o solo é mais espesso, nota-se que a cota do terreno diminui e conseqüentemente as rochas subjacentes são mais alteradas (pastilhamento, fraturamento e friabilidade). Este material mais alterado é chamado de argila mole, enquanto que o compacto é denominado de argila dura.

Na porção norte da mina a intrusão provocou uma auréola de alteração nas camadas sedimentares adjacentes. O pastilhamento ocorre mais intensamente nestas proximidades, assim como o fraturamento natural das rochas.

A estruturação geológica é bem definida na mina (Figs. III.5,6,7), mostrando a posição das formações em cada região da lavra (Anexo MC.2), suas variações de espessura e as ocorrências locais. A litoestratigrafia é apresentada nas Figuras III.5 e 6. A geologia da mina é principalmente representada por folhelhos betuminosos intercalados aos carbonatos (Formação Irati), siltitos esverdeados (Formação Serra Alta) e siltitos róseos a arroxeados e arenitos finos (Formação Corumbataí).

III.4.1. FORMAÇÃO IRATÍ (FI)

Esta formação, de cor escura, ocorre nos níveis basais da mina (Fig. III.10). Sua espessura atinge quase 20m (bancada BI). Ocorre em todas as regiões da mina sendo que a espessura mínima, aflora na região norte (bancada BI). Na região centro-sul, a FI compõe as bancadas B0 e BI integralmente (Fig. III.10 (B,C)) e a bancada BII parcialmente, com uma delgada faixa transicional. Ocorre também parcialmente na bancada BI da região centro-norte (Fig. III.10 (A,D)), aonde possui a maior espessura (Fig. III.6).

A FI é composta por calcário carbonoso (cinza médio a escuro), fossilífero e com formações globulares intercalando o folhelho betuminoso (negro), que também é fossilífero e portador de sulfetos. A intercalação é repetitiva e há transição de estratos, que possuem predominância de *sets* de calcário e outros de folhelho. Na base predominam os folhelhos; no topo predominam os calcários. Em certos níveis, o calcário dolomítico (Grigoletto 2001) possui limite anastomosado.

III.4.2. FORMAÇÃO SERRA ALTA (FSA)

A FSA ocupa a posição intermediária do pacote estratigráfico e é composta por siltito cinza claro a esverdeado. O contato basal é transicional, não havendo um limite claro entre o calcário e o siltito. Possui diferenciação interna, sendo que a porção inferior é mais esverdeada e a superior mais acinzentada (Fig. III.11C).

O siltito cinza-esverdeado (Figs. III.6,7), porção superior do pacote de rochas esverdeadas, foi atribuído à Formação Corumbataí por Grigoletto (2001). Este mesmo autor descreveu a presença de siltito esverdeado duro, sem acamamento visível, na porção inferior do pacote.

A FSA ocorre na porção centro-sul, nas bancadas BI (Fig. III.11(A,B)) e BII, sendo que na superior ocupa 2/3 da altura da bancada. Na porção centro-norte (Fig. III.11C), a seqüência é dividida nitidamente em base e topo, estando a base mais fraturada e o topo mais compacto. Sua menor ocorrência (Fig. III.11D) é na porção norte da mina, onde aflora com espessura inferior a 5m. Localmente, ocorrem clastos esféricos de calcário (Fig. III.11E) no siltito esverdeado, bem orientados com o acamamento.

III.4.3. FORMAÇÃO CORUMBATAÍ (FC)

A FC é composta por siltito róseo ou arroxeado que predomina sobre arenitos finos. O primeiro ocorre em toda a mina; o segundo é restrito à sua porção centro-sul, no topo da seqüência, na bancada BVI (Figs. III.6,7,9). 46

Figura III.5: Mapa da mina do Cruzeiro, com localização de pontos, seções, bancadas e geologia.

Figura III.6a:Seção vertical constituida na porção
centro-sul
(CS) da mina,
complementar ao mapa da FiguraFigura III.6b:Seção vertical constituida na porção
centro-norteCentro-norte
centro-norteCN)
da mina,
complementar ao mapa da FiguraIII.4.III.4.III.4.
* Matéria-Prima para Cerâmica de Revestimentos *

Figura III.7a: Seção vertical constituida na porçãoFigura III.7b: Seção vertical constituida na porção
norte (N1) da mina, complementar
ao mapa da Figura III.4.Seção vertical constituida na porção
norte (N2) da mina, complementar
ao mapa da Figura III.4.

Figura III.8: Vista Panorâmica da mina a partir do ponto 12 (sobre a BII – região centro-norte da mina, com visada para sul). Detalhe para as bancadas da região centro sul (B0, BI, BII, BII, BIV e BV), mina desativada e áreas de britagem e estocagem em pilhas.

Figura III.9: Vista Parcial da região centro-sul da lavra, compreendendo cinco das sete bancadas existentes em 11/2001. As duas bancadas inferiores são predominantemente da Formação Serra Alta e as três superiores da Formação Corumbataí. B (II, III...V) = bancadas.

Ao siltitos associam-se veios carbonáticos, intercalações de material arenoso, porções esverdeadas irregulares, nódulos carbonáticos e arenosos, raros fragmentos fósseis, níveis arenosos e argilosos e uma marcante alteração no contato com a rocha intrusiva básica (Figs. III.6,7).

A coluna litoestratigráfica apresenta a compartimentação da FC em litofácies com características específicas, estando dividida nas fácies: argilosa, areno-pelítica, moderadamente arenosa e a muito arenosa. Tal variação se deve principalmente aos processos sedimentares, como a passagem gradual de ambiente plataformal raso, dominado por processos de ondas e de decantação, para um ambiente mais proximal, com eventos de tempestade, próximos a linha de costa (Masson *et al.* 2000). A situação indica que a evidente arenosidade do material é crescente da base para o topo.

Grigoletto (2001) verificou ser comum níveis com fragmentos de escamas de peixes e concreções fosfáticas nas rochas da FC, inclusive da porção de topo da FSA. Os níveis centimétricos são persistentes lateralmente; as concreções variam de milimétricas a centimétricas.

Os siltito arroxeado pode ser dividido em quatro assembléias: maciça, laminada, intercalada e alterada, segundo uma abordagem industrial (Christofoletti & Moreno 2002). Entretanto, em outra consideração, Grigoletto (2001), muito semelhantemente, descreve os seguintes tipos:

- <u>siltito variegado (SV)</u>: normalmente presente abaixo do solo; compreende um nível com grande variedade de cores e ausência de estruturas sedimentares;
- <u>siltito arroxeado com intercalações de arenito fino (SAA)</u>: alternância de horizontes de espessura irregular, cujas composições são de siltito e arenitos finos, com predominância do primeiro;
- <u>siltito arroxeado laminado (SAL)</u>: possui lâminas milimétricas de material claro e de composição arenosa fina;
- siltito arroxeaado maciço (SAM): rocha com acamamento ausente ou quase imperceptível;

Os veios e nódulos carbonáticos ocorrem de forma aleatória ao longo da mina, estando geralmente oblíquos em relação às bancadas. Os veios podem ser discordantes (atitudes variáveis), com espessura milimétrica a centimétrica e de composição quartzo-carbonática (Grigoletto 2001)

Região Centro-Sul (CS)

O siltito róseo é predominante nas bancadas BV (Fig. III.12A) e BIV. Na BV é comum a presença de níveis esverdeados (Fig. III.12C) paralelos ao bandamento, glóbulos decimétricos (esverdeados e aleatórios) e veios carbonáticos. Na bancada BIV (Fig. III.12E), o siltito aparece alterado e também localmente esverdeado em torno dos veios. O siltio róseo ocorre ainda em

parte da bancada BIII, ocupando 1/3 da altura do talude (Fig. III.12(D,E,F)), onde faz contato transicional com a FSA, marcado por repetições de níveis claros.

A bancada BVI é composta por um conjunto de arenitos (Fig. III.13), divididos em três níveis:

- <u>topo</u>: arenito muito fino com delgadas laminas de argilito claro (cor creme), contendo marcas de onda e gretas de ressecamento associadas;
- meio: arenito de granulometria maior e cor avermelhada;
- <u>base</u>: intercalação de arenito e siltito; este último muito semelhante aos da bancada inferior (BV).
- Região Centro-Norte (CN)

O aspecto do siltito é distinto exibindo forte alteração intempérica e intenso fraturamento, talvez devido a intrusão da rocha básica aflorante na porção N da mina. A bancada BI (>32m) de difícil acesso (desnível abrupto), é composta, no topo, pela FC (~ 2m). Na bancada BII (Fig. III.14A) o siltito apresenta intenso fraturamento concentrado em alguns níveis (estratos) (Fig. III.14(B,D,E)), assim como pastilhamento (Fig. III.14C), venulações carbonáticas (Fig. III.14(B,F)) e alterações esverdeadas (Fig. III.14F).

Região Norte (N)

A alteração do pacote rochoso é marcante devido a dois principais fatores: a auréola de alteração hidrotermal provocada pela intrusão da rocha básica no pacote sedimentar e a alteração intempérica que atuou mais facilmente devido ao primeiro processo, formando espesso capeamento (Fig. III.15(A,B)). No *trend* da rocha intrusiva, o material possui cor amarelo claro (Fig. III.15A), com porções internas avermelhadas (Fig. III.15D). Ao longo deste *trend* o fraturamento é losangular e forma superficies verticais (Fig. III.15C). Nesta região, o siltito não conserva mais nenhum aspecto original e pode ser definido por 'argilito', considerando a textura, maciez (granulometria) e a mineralogia da rocha. O siltito amarelo ocorre de forma imprevisível, segundo Grigoletto (2001), que também admite que a sua origem tenha relação com a intrusiva básica.

Sobrepondo toda esta sequência ocorre um latossolo com grande variação de espessura (0-3m). Na porção mais espessa, o latossolo é rico em goethita botroídal e está assentado sobre as rochas da FC, alteradas pela intrusão.

Figura III.10: A) Vista para norte da bancada BI, região centro-norte da mina, com detalhe para as Formações Irati e Serra Alta. B) Bancadas B0 e BI, na região centro-sul da mina, ambas na Formação Iratil. C) Vista para oeste das cinco bancadas inferiores da região centro-sul da mina, onde afloram, simultaneamente, as Formações Irati, Serra Alta e Corumbataí. D) Bancada BI, região centro-norte da mina, vista para sudoeste, com detalhe para a estratificação e coloração escura dos calcários intercalados por folhelhos betuminosos da Formação Irati.

Figura III.11: A) Vista das bancadas da região centro-sul da mina, a partir da bancada II (FSA). B) Detalhe para o afloramento de siltitos cinzas da bancada II (6-7,5 m). C) Seção na bancada II da região centro-norte da mina, com presença das três formações do Grupo Passa Dois - nota-se que a FSA aparece, na base, mais fraturada e com o bandamento mais bem definido, enquanto no topo, é mais compacta e mais esverdeada; o contato FI/FSA é transicional e de difícil delimitação. D) Siltito esverdeado da FSA sob as rochas pastilhadas da FC (bancada = 5m). E) Detalhe do afloramento da foto "D", onde o siltito verde, com estratos bem definidos, contém clastos esféricos de calcários (oóides).

Figura III.12: Topo predominantemente arenoso da Formação Corumbataí, bancada VI. A) na face SW-NE observa-se três níveis com coloração distinta: o inferior é uma intercalação de areia e siltitos; o intermediário é o que tem granulometria mais grossa; e o superior, mais claro, é composto de uma intercalação entre areia muito fina e argilitos cor creme. B) na face NW-SE é marcante a passagem do nível inferior (roxo) para o intermediário (avermelhado) e a camada superior está bem fraturada. C) marcas de onda (*ripple marks*) e gretas de ressecamento (*mud cracks*) observadas na porção superior.

Figura III.13: Três principais bancadas da região centro sul da mina, com predominância de rochas da Formação Corumbataí. A) a bancada V, com siltitos róseos, é a mais intensamente lavrada da mina. B) Venulação carbonática nos siltitos da bancada IV; este contato é marcado pela presença de rocha com tons esverdeados. C) presença de níveis esverdeados paralelos ao bandamento e sets mais compactos e de coloração levemente mais clara, na bancada V. D) seção das principais bancadas (III, IV e V) vistas do pt 38 (BIII). É) limite entre a FC (superior) e a FSA (inferior) na bancada III. F) acima do set mais compacto da FSA / BIII nota-se a gradação para a FC com repetições de níveis claros.

Figura III.14: Formação Corumbataí da bancada II, na região centr-norte da mina. A) visão para NE, a partir do pt 24, com a região N desbastada ao fundo. B) visão para SE, a partir do pt 20, ilustrando grandes fraturamentos paralelos a bancada; detalhe para os veios irregulares de carbonato que truncam este siltito arroxeado. C) intenso pastilhamento no nível inferior da bancada no pt 20. D) Seção de aproximadamente 12m onde o solo, no topo, é delgado. E) fraturamento vertical, posterior ao obliquo, evidenciando um falhamento, também na mesma região. F) fraturamento sub-vertical e paralelo à bancada. Destaque para a coloração esverdeada do siltito nessa face, onde nota-se um veio de carbonato obliquo ao acamamento, desconfigurado por um grosso pastilhamento.

III.4.4. FORMAÇÃO SERRA GERAL (FSG)

Porções preservadas da rocha intrusiva básica são raras. Apenas um matacão, de 1m de diâmetro, com uma espessa camada externa alterada (bauxita) de cor ocre, foi encontrada em meio ao latossolo avermelhado (Fig. III.15A). A direção principal deste corpo é NW/SE, considerando a direção das rochas alteradas e a direção de planos reliquiares do seu contato com o pacote sedimentar. Esta intrusão imprimiu importantes modificações na coloração, textura e mineralogia das rochas sedimentares da FC adjacentes, o que conferiu a estes materiais outras propriedades, distintas da FC típica.

III.5. Aspectos Mineiros

A explotação da matéria prima na lavra se dá por desmonte com explosivos; a retirada por pás-carregadeiras e o transporte por caminhões de porte comercial.

São realizados furos de perfuratriz, paralelo e distante de cerca de 3m da parede da bancada, de onde saem amostras de calha que são analisadas para averiguação das características físico-químicas e tecnológicas. Estes furos são posteriormente carregados com explosivos de média intensidade. A cada fogo acumula-se material de várias dimensões no sopé da bancada, equivalente a um lote de matéria prima.

A matéria prima explotada em exposição ao tempo, transforma-se por intenso pastilhamento, principalmente ao longo dos planos de acamamento, facillitando sua cominuição (Grigoletto 2001)

No pátio de disposição, todo lote é cominuído a fragmentos de até 10cm e reunido em pilhas homogêneas ou proveniente da blendagem de dois ou mais materiais existentes na mina. O material já seco é reunido em pilhas (~100m), descansa temporariamente, passando por mudanças ao ar livre chamadas de "sazonamento" (transformações físico-químicas).

Segundo Christofoletti (1999), assim que o material é retirado da base da bancada, este é encaminhado ao britador primário e, em seguida, levado ao pátio, onde se inicia a chamada 'etapa de pátio'. Nesta etapa, o beneficiamento se dá inicialmente distribuindo o material no chão, de forma homogênea e com espessura controlada, para sofrer a cominuição por trator de esteiras (esmagamento). Na segunda fase, há a quebra do material por trator de rolo e finalmente o espalhamento do material com trator de grade. De acordo com este autor, o sazonamento é realizado após a venda do material para a UNICER (União Cerâmicas Ltda) que também acaba de beneficiar o material antes do sazonamento e o distribui para as empresas do setor. No entanto,

há empresas (e.g., Eliane S.A.) que compram a matéria prima da Mina do Cruzeiro e a coletam diretamente na lavra, ainda na forma desmontada¹.

Durante o sazonamento, o material sofre lixiviação dos sais solúveis (sulfatos, etc.) e oxidação da matéria orgânica. O objetivo é o de homogeneizar a matéria prima evitando que o produto final apresente defeitos como trincas, bolhas, 'coração negro' (acúmulo de matéria orgânica) e apresente diferenças após a queima. De acordo com Christofoletti (1999), o sazonamento é fundamental para constituição da massa cerâmica via seca.

III.6. COMPARTIMENTOS LITOESTRATIGRÁFICOS - USO

As propriedades tecnológicas (Fig. III.16) do material da MC, são controladas pelas seguintes características: litoestratigrafia, venulação carbonática, alteração de intrusão básica e intemperismo.

Após a análise dos níveis ME, ME*, D, SDB, SDT e M (Fig. III.17 e Anexo MC.9) na porção CS da mina, Christofolletti (1999) concluiu que:

- os dois primeiros níveis correspondem à zonas menos intemperizadas, mais duras, mais cimentadas (Si), contendo minerais menos alterados, e sua aplicação é dependente de blendagem.
- os três níveis superiores, mais alterados, são os mais promissores ao uso cerâmico.
- a importância do intemperismo caracteriza os seguintes processos de alteração: dissolução total de carbonatos e parcial de quartzo, alteração de feldspatos, degradação de illita e caulinita, aumento do teor de Fe, diminuição dos teores de SiO₂, Na₂O, CaO e MgO.

Os processos diagenéticos e pós-diagenéticos (que variam ao longo da mina nos mesmos níveis estratigráficos), aliados aos processos de alteração impostos a estas litofácies em decorrência das características geomorfológicas, são fundamentais para explicar a variabilidade tecnológica da matéria prima. Assim, as propriedades do material não podem estar apoiadas somente no contexto da interpretação litoestratigráfica (Christofoletti *et al.* 2001). Entretanto, com o intuito de organizar a descrição dos principais produtos de extração da Mina do Cruzeiro, adotarse-á aqui a hierarquia litoestratigráfica.

¹ rocha retirada do local original (in situ) pelo desmonte (fogo) de uma porção da bancada.

				litofácies assembléia	estruturas sedimentares	bioclastos	processos sedimentares	estruturas pós-diagênese	FRX	DRX	ensaios tecnológicos
	-			arenito (médio) carbonátic esbranquiçado muito arenosa	micro hummocky herringbone moreas do cadoo		tempestade proximal canal de				
ANCADA VI				(caráter carbonático) intercalação centimétrica entre: arenito (muito fino) carbonático, avermelhado e esbranquiçado ¹ e silitio (médio) arroxeado	acamamento ondulado e micro hummoky ¹	bioturbação	tempestade média à proximal	pouco fraturado sem	SiO ₂ : 59,95 Fe ₂ O ₃ : 3,93 Al ₂ O3 : 12,21 Na ₂ O + K ₂ O : 5,901	illita montmorillonita caulinita quartzo albita dolomita	AA (%): 8,88 DA (%): 1,98 PA (%): 17,37 PF (%): 8,19 RLQ (%): 7,4 RLT (%): 7,4
B/	-40			(caráter carbonático)	incipiente ²			pasunamento	SiO ₂ : 63,89 Fe ₂ O ₃ : 4,73	hematita	TRF (N/mm ²): 210,96
>	-			intercalação centimétrica entre: siltito (grosso) avermelhado ³ e arenito (muito fino)	laminação incipiente ³		ondas de	pouco fraturado	Al ₂ O3 : 13,89 Na ₂ O + K ₂ O : 6,41 CaO + MgO : 5,55	illita montmorillonita	DA (%): 2,12 - RLQ (%): 7,04 PA (%): 8,23 - RLT (%): 7,18 TRF (N/mm²): 328,41
ANCAD	35 -			pouco carbonático, vermelho rosado, esbranquiçado ⁴	acamamento ondulado e	nódulos	tempestade média a proximal	sem	SiQ - 62.22	caulinita quartzo albita dolomita	
6	-			argilosa	micro hummoky ⁴			pastilhamento	Fe ₂ O ₃ : 5,02 Al ₂ O3 : 5,02 Na ₂ O + K ₂ O : 6,24 CaO + MgO : 6,52	calcita hematita	AA (%): 1,63 - PF (%): 5,45 DA (%): 2,12 - RLQ (%): 7,81 PA (%): 3,43 - RLT (%): 7,94 TRF (N/mm ²): 337,36
	- 30 -			intercalação centimétrica entre: siltito arenoso avermelhado ⁵ e siltito (médio) arroxeado ⁶ areno-pelíticas	laminação plano-paralela com estrato de topo plano ⁵ laminação incipiente ⁶	fósseis de peixes e conchas nódulos	decantação maré	pouco fraturado sem pastilhamento	SiO ₂ : 66,06 Fe ₂ O ₃ : 4,58 Al ₂ O3 : 13,42 Na ₂ O + K ₂ O : 6,14 CaO + MgO : 5,16	montmorillonita illita caulinita quartzo albita calcita hematita	AA (%): 0,47 - PF (%): 4,57 DA (%): 2,18 - RLQ (%): 8,23 PA (%): 1,03 - RLT (%): 8,36 TRF (N/mm ²): 418,01
CADA IV	-			siltito (fino) arroxeado com venulação sílico-carbonática	laminação incipiente	nódulos		muito fraturado		illita	
BAN	25 -			argilosa	acamamento lenticular	fósseis de peixes e	decantação maré	fraturado com preenchimento	SiO ₂ : 65,80 Fe ₂ O ₃ : 5,00 Al ₂ O3 : 14,46	caulinita quartzo albita calcita hematita	AA (%): 0,89 DA (%): 2,14 PA (%): 1,93 PF (%): 3,1 RL 0 (%): 7,3
	-			(carăter carbonático)	macıça	conchas		parcialmente pastilhado	CaO + MgO : 3,38		RLT (%): 7,43 TRF (N/mm²): 339
	- 20 - -			siltito (fino) arroxeado com camadas de argilito escuro	maciça convoluta estratificação	nódulos	corrento	muito fraturado fraturado	SiO ₂ : 68,37 Fe ₂ O. : 6,23	illita caulinita clorita	AA (%): 6,03 DA (%): 2,07 PA (%): 12 47
ANCADA III	-			argilosa	paralela laminação incipiente aumentando para o topo com <i>linsen</i>	de peixes e conchas	de maré	com preenchimento parcialmente pastilhado	Al ₂ O3 : 13,66 Na ₂ O + K ₂ O : 5,59 CaO + MgO : 2,83	quartzo albita calcita hematita	PF (%): 2,78 RLQ (%): 6,22 RLT (%): 6,36 TRF (N/mm²): 222,89
	15-			intercalação centimétrica entre: siltito (médio a grosso) acinzentados e lentes esbranquiçadas'	maciça lenticular bedding e micro hummocky com estrato de	fósseis de	tempestade	pouco fraturado	SiO,: 70,08 Fe,O,: 3,75 Al,O3: 14,3 Na,O + K,0: 4,64 CaO + MgO: 2,76 SiO: 67.16	illita / caulinita clorita / quartzo albita / calcita hematita	AA (%): 4,69 - PF (%): 3,09 DA (%): 2,08 - RLQ (%): 7,06 PA (%): 9,74 - RLT (%): 7,06 TRF (N/mm²): 284,74
	-			e siltito (médio) arroxeado areno-pelíticas	topo ondulado laminação incipiente®	e conchas	distal	parcialmente pastilhado	Fe,O.; 4,87 Al,O3 : 14,7 Na,O + K,0 : 8,09 CaO + MgO : 3,29	clorita caulinita / illita quartzo / albita calcita	AA (%): 4.03 - PF (%): 3.33 DA (%): 2.13 - RLQ (%): 7.77 PA (%): 8.58 - RLT (%): 7.77 TRF (N/mm'): 275,96
ICADA II	- 10 - -			siltito (fino) arroxeado com venulação sílico-carbonática	maciça	fósseis de peixes e conchas	decantação maré	pouco fraturado	SiO ₂ : 58,37 Fe ₂ O ₃ : 5,55 Al ₂ O3 : 12,96 Na ₂ O + K ₂ O : 2,08	caulinita illita montmorillonita quartzo	AA (%): 14,1 DA (%): 2,12 PA (%): 29,92 PF (%): 3,07 RLQ (%): 0,40
BAN	-			argilosas (caráter carbonático)	incipiente	bone-bed		inteiramente pastilhado	CaO + MgO : 5,79	calcita	RLT (%): 0,40 TRF (N/mm ²): 34
CADA I	5-			siltito (fino) arroxeado com venulação sílico-carbonática	maciça	bone-bed	decantação	pouco fraturado	SiO ₂ : 65,54 Fe ₂ O ₃ : 7,23 Al ₂ O3 : 10,89 Na ₂ O + K O : 4 40	montmorillonita caulinita illita	AA (%): 16,1 DA (%): 2,10 PA (%): 28,74 PF (%): 292
BAN	-			argilosas (caráter carbonático)	laminação incipiente	de peixes e conchas	mare	inteiramente pastilhado	CaO + MgO : 6,17	quartzo	RLQ (%): 0,69 RLT (%): 0,69 TRF (N/mm ²): 37,1
	v	A Sf Sg Ar GRANULOMETRIA	f Ar	siltito altera	do siltito i	c/ laminaçã ncipiente	io silti	to maciço	AA - absorção de DA - densidade a PA - porosidade a PF - perda ao fog	água RLQ parente RLT - aparente TRF	- retração linear de queima retração linear total - tensão de ruptura à flexão

Figura III.16: Coluna litoestratigráfica levantada na mina do Cruzeiro. A granulometria varia de argila (A) a arenito médio (Am), passando por siltito fino (Sf) e grosso (Sg) e arenito médio fino (Amf). (Adaptado de Masson *et al.* 2000 e Christofoletti *et al.* 2001)

					alb	oita		calcita	co	aulinite	a	gibsita	her	natita	illita		microclí	nio m	illonita	quartzo
		-	 		1 1	III IV	V I	II III IV V	i i	III IV	V I	11 11 IV V	i ii	II IV V	i ii iii i	v v	1 1 11 17	V 1	II III IV V	T II II IV V
		50 — —	SOLO (2m)	latossolo vermelho escuro, extrememante argiloso e resultante da alteração da FC, observam-se cristais de quartzo, hematita e magnetita em lupa.						::										
JMBATAİ	-	45	N M (14m)	siltito de coloração arroxeada, por vezes com tonalidade esbranquiçada, está bem alterado, apresenta intercalações de arenitos finos a muito finos e filmes de argila com ondulações milimétricas e suas estruturas sedimentares são: a laminação plano paralela e cruzada de baixo ângulo e porte.																
AO CORI	BANCADA I	30 —	NSDt (6m)	siltito de coloração arroxeada, laminado, com intercalações de níveis arenosos (aproximadamente 1.5 m de espessura) de granulometria fina a muito fina.																
FORMAÇ		25	NSDb (8m)	siltito de coloração arroxeada e bem laminado, exibe laminações plano-paralelas e encontra-se bem mais alterado que os níveis superiores.																
		20	N D (5 m)	sitito à folhelho de coloração arroxeada com tonalidades acizentadas, apresentando marcante fraturamento conchóide, presença de coquina, laminações plano-paralelas, característica abrasivas e esta bem menos alterado do que as porções superiores																
ÃO SERRA ALTA	BANCADA II	15 — — — — — — — — — — — — —	NME [#] (10m)	silitio muito fino à folhelho, coloração cinza, bem menos alterado que as porções superiores, bem fraturado (fraturamento conchóide), com presença de veios (verticais a sub verticais) de quartzo centimétricos e irregulares e marcando a interdigitação das Formações Corumbataíe Serra Alta nos seus três últimos metros (topo).																
RMAÇ	ADAI	5 —	NMEt (2,6m)	siltito cinza claro e maciço, sem estruturas sedimentares e sinais de alteração				· 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3						· · · · · · · · · · · · · · · · · · ·						
<u> </u>	BANG	0-	NMEb (3m)	silito cinza escuro a claro, maciço (abrasivo), com laminação marcante, camada de calcarenito (1-10cm de espessura) variando lateralmente e muitos fragmentos fósseis (escamas e dentes), marcando o contato subjacente com a F. Irati.																
			NM - nível mol NSD - nível se ND - nível dur ME - material	e mi-duro (t: topo / b: base) o de empréstimo (#: 2 formações / t: topo / b: base) *: corpo de pro	d 1ª I III iva queir	ifraçã 2ª II IV mado	ão CPC V	2*	:		mine princ mine d	eralogia comp sipais mineral erais que exis la área do pio	oleta id s e ar stem m co ou s	entificada gilo-mine nas de dif sua existê	a por DRX ais identif ícil determ ncia é inc	ficado: ninaçã xerta	analis s aju	e da ár da do p	ea do pico rograma D	em Cps/20 com fract EVA 2.0

Figura III.17: Coluna da mina do Cruzeiro com divisões por tipo de material e a mineralogia correspondente, identificada por difratometria de raios X (modificado de Christofoletti, 1999)

III.6.1. FORMAÇÃO IRATI

A destinação do dolomito é a indústria de insumos agrícolas. Sachs *et al.* (1999) ressalta que esta é a mais importante formação produtora de corretivo agrícola da Bacia do Paraná. Como a rocha é rica em matéria orgânica, chegando a 30%, sua utilização em outras finalidades industriais não é recomendada (Grigoletto 2001).

Esse material, entretanto, pode ser utilizado como aditivo em argilas para a produção de cerâmica de revestimentos. Souza *et al.* (2002) também verificou que a mistura deste material, em pequenas proporções (2-5%) às argilas, melhora a qualidade da massa cerâmica quando queimados a 1070°C.

III.6.2. FORMAÇÃO SERRA ALTA

O siltito cinza-esverdeado é de difícil moagem, com características abrasivas prejudiciais ao processo industrial, o que eleva o custo do beneficiamento. Essa rocha não é aproveitada atualmente na mina. O mesmo se aplica ao siltito esverdeado duro, extremamente resistente ao pastilhamento (Grigoletto 2001). Este material é vendido ou doado (a depender da demanda) e pode ser alternativamente utilizado como mistura ao asfalto, para a pavimentação de rodovias.

III.6.3. FORMAÇÃO CORUMBATAÍ

A FC é a principal fonte de suprimentos de matéria prima para o Pólo Cerâmico de Santa Gertrudes, que tem produção mensal de 15 Mm², o que representa 60% da produção brasileira de revestimentos (Almeida *et al.* 1999).

As características das argilas da FC foram averiguadas quanto à aplicabilidade do material no setor cerâmico, por vários autores: Moreno *et al.* (2000), Carvalho *et al.* (1998), Fernandes *et al.* (1998), Grego *et al.* (1998), Masson *et al.* (1998b), Moreno & Valarelli (1998), Souza *et al.* (1998), Christofoletti (1997), Farinaccio *et al.* (1997), Fernades *et al.* (1997), Masson *et al.* (1997a), Masson *et al.* (1997b) e Moreno *et al.* (1997).

Testes da aplicação dessas rochas em processos cerâmicos via úmida apresentaram bons resultados para determinadas características e ruins para outras, ao contrário da via seca, onde este material é utilizado com sucesso (Thomazella *et al.* 1999).

Na região CS da mina, análises por FRX (Grigoletto 2001) mostraram que existe um acréscimo de MnO, Na₂O (albita), P₂O₅, MgO e CaO e um decréscimo de SiO₂, Al₂O₃, Fe₂O₃, Ti₂O₃ e K₂O (illita), da base para o topo da seqüência, o que é acompanhado por um aumento da granulometria no mesmo sentido. Valores elevados de SiO₂ e Al₂O₃ inviabilizam o processo por aumentar a temperatura de queima do material, assim como os valores exagerados de fundentes

(CaO+MgO+Na₂O+K₂O) aumentam a retrabilidade² do material, o que provoca o trincamento das peças.

Os melhores materiais encontram-se na porção superior da FC, pois os fundentes aumentam e os refratários diminuem. Em contrapartida, a granulometria não interfere, pois aparentemente facillita o beneficiamento devido a maior porosidade.

Os filossilicatos como illita e caulinita, após a queima, são destruídos passando a compor a fase vítrea (Masson *et al.* 1998a).

Entre outros fatores que influenciam na qualidade do material estão as porções arenosas (mais carbonáticas) e a intensa ocorrência de veios carbonáticos discordantes, que também complicam o plano de lavra (Masson *et al.*, 2000). A presença de cristais de carbonato de cálcio (CaCO₃) grosseiros na matéria prima submetida ao processo cerâmico, causa o aparecimento de defeitos pontuais (furos escuros e depressões) no produto, decorrente de reações localizadas. Entretanto, quando os carbonatos estão em fração fina, disseminados e em baixa quantidade, há uma melhoria (acréscimo) no índice de RLQ³ (Christofoletti 2001).

Souza *et al.* (2002) dividiu as argilas da FC em fundentes e refratárias para estudar a mistura com os calcários subjacentes, apresentando os seguintes resultados:

	Argila	fundente	Argil	Argila refratária			
SiO ₂	62%	baixo	> 70%	alto			
AI_2O_3	12%	normal	15%	normal a alto			
CaO+MgO+Na ₂ O+K ₂ O	13%	elevado	4%	muito baixo			

Christofoletti (2001) buscou uma correlação entre os materiais presentes na mina e seus resultados no processo cerâmico :

- <u>argilas pelíticas</u> melhores resultados cerâmicos; não são carbonáticas;
- <u>argilas carbonáticas</u> resultados desde bons até ruins;
- <u>argilas areno-pelíticas</u> eventualmente podem apresentar bons resultados, mas geralmente estes são regulares a ruins; são carbonáticas;
- <u>argilas moderadamente arenosas</u> resultados regulares a ruins.

Considerando as bancadas IV, V e VI (Fig. III.16), nota-se que há uma correlação entre a litoestratigrafia e os resultados tecnológicos. Na medida em que há o aumento na proporção de areia e carbonato em relação à argila, há também um decréscimo da qualidade dos resultados cerâmicos.

Siltito arroxeado

O siltito arroxeado da FC é a rocha de maior interesse neste trabalho, por seu volume, características tecnológicas e aplicabilidade. A variação das propriedades físicas e químicas desta

64

² Capacidade de retração: material funde e quando resfria tem retração do seu volume

³ Retração linear de queima

rocha ao longo de seqüência e das regiões da mina, mesmo que imperceptíveis para a geologia, geram diferentes produtos para a indústria cerâmica.

É possível estabelecer uma diferenciação na bancada V (CS) com base em análises químicas e ensaios físicos (Fig.III.16). A quantidade de $CaCO_3$ aumenta da base para o topo da bancada V, enquanto a retrabilidade⁴ e a absorção de água (AA) tem um comportamento inverso.

De acordo com as designações propostas por Grigoletto (2001) ao siltito arroxeado, o uso de cada espécime é o seguinte:

- <u>siltito variegado</u> (SV): sem utilização atualmente;
- <u>siltito arroxeado com intercalações de arenito fino</u> (SAA): o aproveitamento depende das proporções elementares e minerais presentes;
- siltito arroxeado laminado (SAL): é utilizado e muito valorizado;
- <u>siltito arroxeado maciço</u> (SAM): também utilizado e muito valorizado.

Das quatro assembléias descritas por Christofoletti & Moreno (2002) para a FC na região, três apresentam resultados interessantes para aplicação em cerâmica:

- <u>Maciça</u>: apresentou os melhores resultados de: MRF⁵ (260Kg/cm²), AA⁶ (5,18%), fundentes (Na₂O + K₂O = 4,17%) e de Al₂O₃ (14,61%);
- Laminada: valores bem próximos da assembléia maciça;
- <u>Intercalada</u>: apresentou resultados satisfatórios, porém piores que os da maciça e da laminada. MRF (217Kg/cm²), AA (13,99%), Na₂O + K₂O (2,80%) eAl₂O₃ (17,17%).

□ Argilito

O 'argilito' compreende o conjunto de rochas alteradas pela intrusão básica e, posteriormente pelo intemperismo. Na mina recebe a designação de argila amarela. Sua utilização principal é na blendagem com o material tradicional (argila dura - maciça e argila mole - pastilhada).

Arenito

A aplicabilidade do arenito é desconhecida. Nenhum autor propôs-se a estuda-lo minuciosamente. É uma rocha que apresenta consideráveis proporções de elementos fundentes, além de feldspatos.

Veios e Nódulos carbonáticos

Os veios e nódulos carbonáticos, muito comuns nas porções sílticas da FC, são prejudiciais ao processo cerâmico. O carbonato induz o surgimento de bolhas e poros na massa

⁴ Capacidade de retração

⁵ Módulo de Resistência à Flexão

⁶ Absorção de Água

cerâmica final. O carbonato é um problema também para a moagem, dificultando-a (Grigoletto 2001).

Solo e Intrusiva

O latossolo e a rocha intrusiva totalmente alterada não são utilizados pela industria cerâmica.

III.7. CARACTERIZAÇÃO MINERAL

Com o intuito de verificar as propriedades químicas (FRX), mineralógicas (DRX) e ópticas (SPEC), de cada material existente na mina foi necessário realizar uma amostragem seletiva (Anexo MC.1,10), o que possibilitou a obtenção de resultados divididos por compartimentos litoestratigráficos. Serão ressaltadas as características da rocha e da localização espacial (posição vertical e lateral) de ocorrência (Anexo MC.2 e Anexo MC.3).

As amostras foram submetidas às três formas de análises, descritas no Capítulo II. Vale ressaltar que a mineralogia (DRX) de toda a mina pode ser primariamente localizada com a ajuda do Anexo MC.6, juntamente com o Anexo G.2, onde as espécies estão remetidas.

Os tópicos "amostra de calibração", abaixo no texto, compreendem os resultados das determinações geoquímicas (FRX) e mineralógicas (DRX), os quais podem ser mais simplesmente interpretados a partir das descrições químicas dos minerais (Anexo G.2).

Da mesma forma, as etapas de classificação espectral encontram-se detalhadas nos Anexos G.3, G.4 e MC.10. Duas técnicas foram utilizadas para a extração dos comprimentos de onda específicos das bandas de absorção: a técnica de extração manual (com o uso do *software ENVI*, para visualização dos espectros) e a técnica de extração automática, através do *software SIMIS Feature Search*. Ambas foram feitas utilizando-se espectros com o contínuo removido (Pontual *et al.* 1997). Na etapa da classificação espectral, foi imprescindível a utilização dos programas SIMIS *Field* (SF) e SIMIS *Feature Search* (SFS) para análise e classificação espectromineralógica da mistura espectral contida nas amostras coletadas. Neste procedimento, a interpretação é feita diretamente pelo SIMIS, através de seus algoritmos de classificação (Cap. II), resultando em estimativas qualitativas e semi-quantitativas de abundância mineral. A biblioteca do USGS (<u>http://speclab.cr.usgs.gov/spectral-lib.html</u>). Neste capítulo, somente os resultados mais consistentes da classificação espectro-mineralógica serão detalhados.

III.8. ANÁLISE DOS COMPARTIMENTOS LITOESTRATIGRÁFICOS

Os compartimentos litoestratigráficos são correspondentes às formações geológicas.

III.8.1. FORMAÇÃO IRATI (FI)

□ <u>Amostras de calibração</u>

Duas rochas representativas da FI foram analisadas por FRX (Tab. III.1). Na amostra am32, a quantidade de SiO₂ (~20%), CaO+MgO (~36%), voláteis (39,03%), assim como o alto valor de MnO, são compatíveis os de com uma rocha calcária.

Tabela III.1: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras da Formação Irati.

DANCADA			Elementos Maiores (Óxidos) em %								P.F.	0		
BANG	JADA	AM	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
	П	03#	65,62	0,384	7,53	7,73	0,074	7,38	2,59	1,27	1,06	0,299	5,08	99,0
CS	Ι	32B#	20,37	0,005	0,84	1,90	0,653	6,04	30,0	0,27	0,01	0,07	39,03	99,2

CS: região centro-sul. AM: número da amostra. #: amostra quartiada após a britagem. Obs: elementos traços ver Anexo MC.4.

A amostra am03 possui elevado teor de SiO₂ (65,62%) e Fe₂O₃ e muito baixo de CaO (2,59%), o que a distingue de uma rocha carbonática, típica da FI.

A mineralogia derivada da DRX (Tab. III.2 e Fig. III.18a) é apoiada pela análise química, com as seguintes observações:

- o quartzo está presente nas duas amostras. Na amostra 32, concentra a maioria da SiO₂, com o restante aparecendo incorporado à estrutura da saponita e rectorita.
- na amostra 03 (Fig. III.18a), o alto valor de SiO₂ é devido à presença, além do quartzo, de albita, illita, caulinita, saponita. Da mesma forma, o Al₂O₃ também apresenta valores mais altos e é constituinte essencial destes minerais (feldspato e alumino-silicatos hidratados). Os conteúdos de K₂O e Na₂O, embora baixos, são relacionados à illita e albita, respectivamente. O MgO alto, provavelmente é devido à saponita, ainda que possa estar parcialmente associado à illita. O Fe₂O₃ pode estar na saponita ou na illita, já que seus valores superam os do alumínio.
- na amostra 32, a calcita é responsável por boa parte da fração do CaO contido. Parte dos conteúdos de sódio, alumínio e cálcio estão associados à presença de rectorita, e parte dos conteúdos de cálcio e magnésio à presença de dolomita e saponita. A PF (39,03%), elevada nesta amostra, é devido ao CO₃ presente tanto na calcita quanto na dolomita, além da matéria orgânica abundante. Esta matéria orgânica escura tem origem fóssil, o que tende a elevar os teores de P₂O₅.

BANCADA		AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA
<u> </u>	П	03	alb / cal / illi / kao / qzo / sap	qzo > sap > illi ≅ kao > alb > cal
03	I	32B	cal / dol / qzo / rec / sap	dol > cal > rec > sap > qzo

Tabela III.2: Com	posição mineraló	gica (DRX) em amostras da fra	ção total ((rocha britada e moída) da Formação Irati.
-------------------	------------------	-----------	----------------------	-------------	------------------------	----------------------

CS: região centro-sul / AM: número da amostra / Hierarquia de acordo com picos dos difratogramas (Fig III.18a e Anexo MC.7)

Com base nos picos da DRX (Fig. III.18a), observa-se que na am03 o quartzo supera a saponita, que por sua vez supera a illita, caulinita, albita e calcita. Em comparação com a química, pode-se verificar, nesta ordem de minerais acima, as seguintes relações: SiO₂↑, MgO↑, K₂O↓, Al₂O₃↓, Na₂O↓ e CaO↓, ou seja o quartzo e saponita tem relação direta com o quimismo da rocha.

Na am32, a ordem dos picos (Anexo MC.7) é condizente com a química. O CaO+MgO=36,04% é quase que totalmente associado a dominância dol > cal; uma pequena parcela de CaO é ligada à rectorita e o MgO a saponita. A SiO₂ está relacionada à presença do quartzo, rectorita e saponita; os teores de Na e Fe (baixos) ficam na rectorita e saponita (poucas), respectivamente. O Al, também baixo, é atribuído à presença de rectorita e saponita na amostra.

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

A remoção do contínuo e o exagero após o empilhamento vertical, realçou as feições características das amostras deste grupo, facilitou a interpretação visual dos espectros (Figs III.18b,c), embora as custas de um aumento substancial do nível de ruídos. Essa sistemática, que foi adotada para todas as amostras investigadas neste estudo, tem a mesma conseqüência sobre todos os espectros, conforme poderá ser observado ao longo deste Capítulo.

As principais feições de absorção registradas nas amostras da FI, no intervalo do espectro SWIR (Fig. III.18b,c), são descritas a seguir:

- <u>1.39-1.42μm</u>: feição de baixa profundidade devido à molécula de H₂O (Clark *et al.* 1990); destaca-se na am03 e pode ser resultado da mistura saponita (principal) e illita;
- <u>1.91-1.92μm</u>: feição mais proeminente do espectro; apresenta relativa profundidade na am03. Na am32 parece ser resultado da combinação entre saponita e rectorita, destacando-se a grande semelhança com o espectro da saponita;
- <u>2.31-2.32µm</u>: é mais profunda na am32 e pode ser uma combinação da calcita, rectorita, e saponita;
- 2.38-2.39μm: a feição é pequena (am32B), provavelmente relacionada também a saponita;

Figura III.18a: DRX da fração total do calcário escuro com folhelho (FI)

Figura III.18b: Coleção espectral de amostras da Formação Irati (SWIR)

Tabela III.3: Comprimento de onda dos picos de absorção da curva espectral das amostras da Formação Irati, moléculas responsáveis, minerais identificados pelo *SFS* com base nos resultados de DRX e minerais correlacionados de acordo com a bibliografia.

2 (m)	0 N A		MIN	ERAIS
λ (μ	III)	Alvi	MOLLCOLA	DRX / SFS	PROVÁVEIS
1.39	1.390	32Bd2/e6			sap
а	1.410	03e3/e1	ОН		ili / kao
1.42	1.419	03e1	H ₂ O	illi 3,5 / kao 3	
1.81	1.805	todas			hal (#) (?)/ kao
	1.905	32Bd2/e6			cal / sap / illi / kao / dol
1.91	1.905	32Bd2		rec 2 / sap 2	
а	1 910	03e1/e3	H ₂ O		sap / illi / kao / rec
1.92	1.911	03e3		illi 2 (5) / kao 6	
	1.912	03e1		illi 5.2 / kao 6	
0.00	2.195			-,	illi / kao / rec
2.20	2.240	03e1/e3	AI-OH		mont (?)
	2.305				cal / sap / dol
	2.308	32Be6		clino 6 (?) / kao 7	· ·
2.31	2.310	32Bd2/e6			sap / kao
а	2.314	32Bd2	CO₃	dol 2 / sap 2	
2.32	2.316	03e3	Mg-OH	-OH illi A / kao 3 / sap 2	
-	2.320	03e1			dol
	2.322	0001		dol 2 / kao 5	
2.35	2.350	03e1/e3			cal / illi / dol / kao
2 38	2.378	03e1		kao 2	
2.30	2.379				kao
а	2.386	03e2		dol 1 / sap 2	
2.39	2.300	32Bd2		-	san/kao
	2.397	03e3		mont 5	3ap / Nau
2 40	2.420	03e1		monto	
2.70	2.424	03e3, 32Be6			mont (<i>?</i>)
a	2.427	03e3		illi 1	
2.44	2.440	03e3, 32Bd2/e6			illi
	2.459	32Be6		sap 2	
2.46	2.460	03e3, 32Bd2/e6			mont (?)
	2.461	03e3, 32Bd2		kao 7 / sap 2	
2.48	2.480	03e1/e3			carbonato (?)
2.49	2.490	03e3, 32Be6			

coluna II: picos (0.000) segundo a Figura III.18, em *negrito* de acordo com os resultados do *SFS*. (#): ombro da curva, (?): não apresentados pela DRX

Figura III.18c: Coleção espectral (curvas médias) das amostras da Formação Irati. (SWIR)

Segundo Hunt & Salisbury (1971) as bandas de absorção características de carbonatos ocorrem em 2.35µm e 2.42µm para a vibração do C-O, e em 2.50µm para o *overtone* e a combinação da vibração interna do radical CO₃. Estudando rochas calcárias/carbonáticas, Hunt & Salisbury (1976) identificam a feição antissimétrica de CO em 2.35µm, além das bandas centradas em 1.9µm, 2.0µm, 2.2µm e 2.5-2.6µm. Nas amostras da FI, os carbonatos não apresentaram algumas de suas feições mais típicas, como aquela centrada em 2.35µm, em função das misturas espectrais. Entretanto, os carbonatos parecem estar presentes como parte da mistura nas amostras estudadas em função do desvio na forma da feição típica da saponita em torno de 2.3µm. O fato de não ser tão aguda como deveria, sugere a sua mistura com carbonatos, que normalmente resulta numa feição de absorção mais simétrica, em 2.315µm, tal como observado nas curvas das amostras.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

A sistemática utilizada para a classificação espectro-mineralógica automática seguiu os seguintes passos (Cap. II) : (i) criação de uma biblioteca espectral para cada amostra, com todos os minerais determinados por DRX; (ii) essa biblioteca foi montada a partir da biblioteca do USGS, considerando todas as variedades de cada mineral de interesse. Esse procedimento foi repetido para todas as amostras, cujos resultados são apresentados neste capítulo.

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica, a partir dos algoritmos do SIMIS, para as amostras da FI (Tab. III.3) é apresentado a seguir:

03e1	mistura resultado	illi (2,3,5) / kao (3,5,6) illi (2,5)	32d2	mistura resultado	dol 2 / sap 2 dol 2
03e3	mistura resultado	illi (A,1,2) / kao (3,6,7) / sap 2 illi 2	32e6	mistura resultado	dol 2 / sap 2 / rec 2 rec 2

Os resultados do SF para essas amostras não foram satisfatórios devido aos elevados erros.

III.8.2. FORMAÇÃO SERRA ALTA (FSA)

Amostras de calibração

Três rochas representativas da FSA foram analisadas por FRX (Tab. III.4). Duas dessas amostras têm composição química similar (marcadas por teores mais altos de SiO₂, Al₂O₃ e TiO₂), enquanto a amostra am06 apresenta características de rochas carbonáticas, destacando-se o seu conteúdo mais alto em CaO+MgO (9,51%), P₂O₅, MnO e PF, e mais baixo em SiO₂, Al₂O₃, K₂O, TiO₂, K₂O.

O alto valor de CaO+MgO na am06 é devido a ocorrência de nódulos carbonáticos – calcíticos, como apontado pela DRX (Tab. III.5 e Fig. III.19a). Parte do Mg é associado também a presença de saponita e montmorillonita. Apesar do AI_2O_3 ser baixo na am06, este ainda é compatível com os alumino-silicatos e feldspatos determinados via DRX (Fig. III.19a), os quais ocorrem em menor proporção que o quartzo. O teor de K₂O na am06 (baixo) é relacionado a presença de illita (pouca); o teor de NaO₂ é associada a presença de albita.

Tabela III.4: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras da F. Serra Alta.

						Element	tos Maiore	es (Óxido:	s) em %				P.F.	
BANCADA		AM	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
00		01	73,37	0,537	10,95	4,63	0,018	2,31	1 0,30 2,69 2,71 0,087	2,15	99,7			
03		34	67,59	0,653	13,57	5,15	0,027	2,40	0,56	2,56	3,50	0,144	2,73	98,9
Ν	Ι	06#	65,43	0,351	8,50	5,54	0,151	4,88	4,63	2,62	1,01	0,387	6,22	99,7

CS: região centro-sul. N: região norte. AM: número da amostra. #: amostra quartiada após a britagem obs: elementos traços ver Anexo MC.4

Tabela III.5: Composição mineralógica (DRX) em amostras da fração total (rocha britada e moída) da F. Serra Alta.

BANC	CADA	AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA
CS	111	01	alb / illi / kao / qzo / sap	qzo >> alb > kao > illi = sap
03		34	alb / illi / kao / mont / qzo / sap	qzo > alb > illi = kao
N I		06	alb / cal / illi / kao / mont / qzo / sap	qzo >> alb \geq mont \approx sap > cal > illi > kao

CS: região centro-sul. N: região norte. AM: número da amostra. Hierarquia: de acordo com picos dos difratogramas (Fig. III.19a e Anexo MC.7)

Na am01, o alto valor de SiO₂ é corroborado pela grande quantidade de quartzo, além de outros silicatos detectados via DRX (Tab. III.5 e Anexo MC.7). O siltito esverdeado <u>duro</u>, denominação local dada para o material parental da am01, tem relação direta com a quantidade de quartzo detectada na rocha.

Na am34, correspondente ao siltito cinza esverdeado, a porcentagem de silica é menor, destacando-se o mais alto conteúdo de Na₂O+K₂O (6,06%), relacionado à presença de albita

(Na₂O=2,56%) e illita (K₂O=3,50%) na amostra. O MgO é relacionado a montmorillonita e a saponita. Os teores de Al₂O₃ estão ligados ao conteúdo de caulinita.

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

As amostras apresentam feições de absorção pouco profundas, devido à alta quantidade de quartzo (que comporta-se como cimento na rocha). Considerando os curvas espectrais das Figuras II.19b,c, que apresentam as leituras das amostras da FSA, pode-se observar as seguintes <u>diferenças</u> quanto às bandas de absorção, de acordo com a região do espectro:

- <u>~1.41μm</u>: picos de absorção pouco proeminentes; destaque para a am06, cuja feição pode ser devido a uma combinação de montmorillonita e saponita, mais importante;
- <u>1.91μm</u>: feições mais profundas; destaque para a maior profundidade na am06, que pode ser relacionada a uma combinação de montmorillonita, saponita e illita, embora a distância relativa entre os ombros da feição seja mais similar ao da illita. Na am34, a feição pode ser devido a illita e, na am01, devido a illita ou saponita (mais provável);
- <u>2.19-2.21μm</u>: na am34 pode ser combinação relacionada a mistura illita e caulinita, mas a análise do formato dificulta a afirmação; o mesmo se aplica a am01;
- <u>2.31-2.32μm</u>: feição característica da am06, provavelmente devida a saponita ou a uma combinação desta com a caulinita; na am34, feição associada a caulinita;
- <u>2.34-2.35µm</u>: feição característica do carbonato; visível na am01, mas com forma atípica; pode ser resultado de misturas com a illita e/ou caulinita.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras da FSA, a partir dos algoritmos do SIMIS (Tabela III.6), é apresentado a seguir:

01e3	mistura resultado	illi (A,1,2,4,5) / kao (3) illi 2	34a1	mistura resultado	illi (2,4,5) / kao 2 / mont (A,9) illi 5 / mont 9
06d2	mistura resultado	illi 5 / mont (3,8) / sap 2 illi 5			

Os resultados do SF para essas amostras não foram satisfatórios devido aos elevados erros.

Figura III.19a: DRX da fração total do siltito cinza escuro (FSA)

Figura III.19b: Coleção espectral de amostras da Formação Serra Alta. (SWIR)

Tabela III.6: Comprimento de onda dos picos de absorção da curva espectral das
amostras da Formação Serra Alta, moléculas responsáveis, minerais
identificados pelo SFS com base nos resultados de DRX e minerais
correlacionados de acordo com a bibliografia (Anexo G.3).

2 (m)	ΔΜ	MOLÉCULA	MINE	RAIS
λ (μ	11)		MOLLCOLA	DRX / SFS	PROVÁVEIS
1.41	1.412	01e3, 06d2, 34a1	OH / H ₂ O		illi / kao / mont / sap
1.68	1.677	0103		illi 1	
1.76	1.762	0165			
1.80	1.800	06d2, 34a1			kao / hall (?]
1.91	1.907	06d2		illi 5 / mont 8 / sap 2	
	1.911	34a1	H-O	illi 4,5 / kao 2 / mont 9	
4 00	1.912	06d2	1120		illi / kao / mont / sap
1.92	1.915	01e3		illi 4,2 / kao 3	
2.19	2.190	01e3, 06d2			illi
2.21	2.208	34a1	AI-OH		illi / kao / mont
2.25	2.245	06d2	Fe-OH		mont
2.25	2.250	34a1	10.011		ment
2.31	2.312	06d2		mont 5 / sap 2	
2.32	2.315	01e3, 06d2			kao / sap
2.34	2.337	34a1		mont A	
a	2.345		Mg-OH		cal / illi / mont
2 35	2.349	01e3		illi 2,5	
2.00	2.350				cal / Illi / kao / mont
2.37	2.369	06d2, 34a1			mont
2.38	2.382	06d2			kao / mont
2.40	2.392	34a1			kao / mont / sap
2.41	2.407	06d2			mont
0.40	2.411	24.2			
2.42	2.423	01e3		mont 8 [?]	
2.43	2.425	01e3, 06d2			mont
2.44	2.435	34a1		illi 2,4 / mont 9	
2.44 2.45	2.450	06d2			illi / mont
	2.451	01.02		illi A / kao 3	
2.47	2.466	UTes			
2 / 8	2.475	06d2		dol 2 [?]	
2.40	2.480	34a1			carbonato [?]

coluna II: picos (0.000) segundo a figura III.19(b,c), em **negrito** de acordo com os resultados do *SFS* [?]: não identificados por DRX

Figura III.19c: Coleção espectral (curvas médias) das amostras da Formação Serra Alta. (SWIR)

III.8.3. FORMAÇÃO CORUMBATAÍ

Neste compartimento, Masson *et al.* (2000), estudando uma mina nas proximidades da mina de Morro do Cruzeiro, verificou, através de DRX, que a predominância de illita entre os argilominerais é notável, porém, são comuns associações com caulinitas e esmectitas. O mesmo autor observou que os principais minerais são quartzo, caulinita⁷, illita⁸, feldspatos, óxidos e hidróxidos de ferro (magnetita, hematita e goethita nos níveis superiores), além de montmorillonita, em menor proporção. Nos níveis basais, a presença conjunta de caulinita e illita foram mais promissoras ao processo cerâmico, ao passo que nos níveis superficiais, a presença de hidróxidos de ferro e alumínio geraram problemas, incluindo a explosão da peça cerâmica durante a queima. A deficiência em illita também implicou em defeitos (trincas e fraturas) durante a prensagem do corpo de prova (Gaspar *et al.*, 1999a).

Em função dos diferentes minerais e materiais previamente documentados (Masson et al., 2000) e observados nesta unidade durante esse estudo, foi necessário separa-los segundo associações ou grupos litológicos específicos (Anexos MC.5 e MC.8).

⇒ Grupo FC1 (arenito - CS)

O grupo FC1 compreende a porção arenosa da Formação Corumbataí, topo da seqüência. Suas amostras pertencem cada uma a um nível distinto, e foram divididas, da base para o topo, em am1A, am17 e am18. Os resultados obtidos por FRX e DRX sobre essas três amostras são apresentados, respectivamente, nas Tabelas III.7 e III.8.

Amostras de calibração

A característica arenosa deste grupo é ratificada pelo elevado teor de SiO₂ (70,21-73,03%) (Tab. III.7) e pela elevada proporção de quartzo nas amostras determinadas por DRX (Tab. III.8 e Anexo MC.7). O AI_2O_3 , um pouco abaixo do padrão geral das rochas da FC, é coerente com a presença do feldspato e das argilas (illita, montmorillonita, saponita e esmectita-caulinita) (Fig.20a).

76

aumento para o topo comprovado por análise térmica (AT)

⁸ predomínio em níveis basais também averiguado por AT

			Elementos Maiores (Óxidos) em %										P.F.	
BANCADA		AM	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
		16A	72,57	0,493	11,28	2,95	0,053	1,40	1,81	4,38	1,67	0,182	3,34	100,1
CS	VI	17	73,03	0,580	13,04	2,75	0,036	1,33	0,48	4,83	1,71	0,180	2,04	100,0
		18	70,21	0,469	11,96	2,06	0,067	1,40	3,81	4,55	1,36	0,155	4,77	100,8

Tabela III.7: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras do topo (FC1) da Formação Corumbataí

CS: região centro-sul. AM: número da amostra. Obs: elementos traços ver Anexo MC.4

O teor de Fe₂O₃ (2,06%) é o mais baixo de toda a FC, o que justifica a coloração mais clara das amostras deste grupo (Anexo MC.3), especialmente na am18 (creme), topo da seqüência. O Ti₂O, que geralmente acompanha os teores de Fe na FC, não varia entre as amostras. A maior quantidade de Fe₂O₃ é relacionada à ocorrência de hematita, principalmente na am16, que apresenta o maior percentual (2,95%). Outras frações do Fe₂O₃ estão associados a illita e saponita.

Assim como a sílica, o teor de Na_2O é o mais alto de toda a FC (4,38-4,83%), provavelmente em decorrência da grande quantidade de feldspato sódico presente (albita) e alguma quantidade residual na estrutura de montmorillonita e da smectita-caulinita.

Tabela III.8: Composição mineralógica (DRX) em amostras da fração total (rocha britada e moída) da Formação
Corumbataí (FC1)

BANCADA A		AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA				
		16A	alb / dol / hem / illi / qzo / sap	qz > alb > dol > illi > hem > sap				
CS	VI	17	alb / illi / kaosmec / mont / qzo	alb > qz > mont > illi > kao				
		18	alb / cal /illi / mont / qzo / sap	$qz > alb > mont \cong sap > cal > illi$				

CS: região centro-sul. AM: número da amostra. Hierarquia: de acordo com picos dos difratogramas (Fig. III.20a e Anexo MC.7)

O teor de K₂O (baixo) é condizente com a pequena proporção de illita em todas as amostras e, na medida em que é menor, como no caso da am18, a montmorillonita tende a aparecer em maior proporção (Fig.20a).

A teor de CaO é muito variável (0,48-3,81%) e tem relação com a ocorrência de calcita, montmorillonita e esmectita-caulinita nas amostras. O baixo valor de CaO na am17 é decorrente da inexistência de carbonato na mesma. A quantidade de MgO varia pouco (1,33-1,40%) e é relacionada a presença de dolomita (am16a), saponita, montmorillonita e dolomita nas amostras.

Classificação Espectro-Mineralógica 1 - Interpretação Empírica

As curvas espectrais da FC1 apresentam comportamento espectral sutil, com destaque para a am18, onde as feições de absorção tem profundidade e formato característicos. As

principais feições de absorção registradas nas amostras do grupo FC1, no intervalo do espectro SWIR (Fig. III.20b,c), são descritas a seguir:

- <u>1.41-1.42μm</u>: feição de baixa profundidade, exceto na am18, que pode ser uma combinação das feições da montmorillonita, saponita e illita, porém a primeira é a que mais se assemelha, inclusive pela inflexão do ombro direito;
- <u>1.91μm</u>: feições mais evidente dos espectros; destaque para a feição na am18 que pode ser devida a uma combinação de montmorillonita, saponita e illita; na am17 parece haver uma combinação de feições da montmorillonita, caulinita e illita;
- <u>2.20-2.21μm</u>: feição discreta, presente na am18 e am17; pode ser devida a combinação da illita e montmorillonita;

Nos espectros no VIS-NIR-SWIR (Anexo MC.11), aparecem feições de absorção em 0.53-0.55μm (am16 e 17) profundas e ausentes na am18. Por outro lado, a em 0.9-1.1μm ocorre na am18. Os compostos de ferro (e.g., hematita - am16 - Tab. III.8), são os responsáveis por estas feições e decrescem do topo para a base da seqüência (Fig. III.5).

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras do grupo FC1, a partir dos algoritmos do SIMIS (Tabela III.9), é apresentado a seguir:

16Aa2	mistura resultado	illi (A,5) / sap 2 illi A	18b3	mistura resultado	illi (A,1,4,5) / mont (1,7,8) / sap (1,2) illi (1,5) / sap 2 / mont 8					
17c2	mistura resultado	mistura illi (1,2,5) / kaosmec 1 / mont (1,9) resultado illi 2		mistura resultado	cal 2 / illi (1,3,4,5) / mont (A,1-9) cal 2 / illi 5 / sap 2 / mont (2,4)					
18a3	mistura resultado	illi (2,3,4,5) / mont (A,1-9) / sap (1,2) illi (4,5) / mont (2,4) / sap 2								

O espectro da am18a3 analisado via *SFS* forneceu valores percentuais de 61% de montmorillonita, 25% de illita e 14% de saponita, totalizando 100% da fração destes minerais na amostra (Fig. III.21). O *SF*, por sua vez, forneceu proporções ligeiramente diferentes: 63,38% para a montmorillonita, 21,04% para a illita e 15,59% para a saponita, com um erro de 13,33% (aceitável) entre a curva da amostra e a mistura espectral utilizada na classificação. As montmorillonitas, variedades mont2 e mont4 do USGS, foram as que mais se aproximaram da curva espectral desta amostra, sob os critérios posição das feições e forma da curva, respectivamente.

Figura III.20a: DRX da fração total do arenito (FC1)

Figura III.20b: Coleção espectral de amostras do grupo FC1. (SWIR)

Tabela III.9:Comprimento de onda dos picos de absorção da curva espectral das
amostras da Formação Corumbataí (FC1), moléculas responsáveis,
minerais identificados pelo SFS com base nos resultados de DRX e
minerais correlacionados de acordo com a bibliografia.

λ (um)		AM		MINE	RAIS			
λ (μΠ)			MOLLOOLA	DRX / SFS	PROVÁVEIS			
	1.410	18d2			illi / mont / sap			
		16Aa2		illi (A,5) / sap 2				
1.41	1.413	17c2	ОН	illi (4,1) / kaosmec 1 /				
а		1702	H ₀ 0	mont 1				
1.42		18a3	1120	illi 4 /mont (A,2,8) / sap 1				
	1.415	18b2		illi 4 / mont 1 / sap 1				
		18d5		illi 4 / mont 1 / sap 1				
1 60	1.605	16Aa2						
1.00	1.609	17c2						
1.68	1.680	16						
1.80	1.785	18a3/b2/d2						
	1.907	16Aa2		illi 5 / sap 2				
		17c2		illi 5 / kaosmec 1 / mont 1				
1 01	1 000	18a3	ЦО	mont (2,5,8) / sap 2				
1.91	1.909	18b2	$\Pi_2 O$	illi A / mont 1 / sap 2				
		18 d5		illi (A,1) / mont 1 / sap 2				
	1.910	18d2			illi / mont / sap			
	2.203	17c2		illi 5 / kaosmec 1 / mont 1				
2.20	2.204	16Aa2		illi 5				
а	2.207	18b2/d5	AI-OH	illi 5 / mont 1				
2.21	2.209	18a3		illi 5 / mont (5,8)				
	2.210	18d2/d5			illi / mont			
	2.290	17c2, 18b2/d2		mont 8				
2.29	2.291	18a3	Fe-OH					
	2.293	18d5		ver 3 [?]				
	2.380	18d2			kao / sap			
2.38	2.400	18a3/d2/d5			mont			
а	2.427	18b2		mont 7 / illi 1				
2 44	2.430				mont			
2.77	2.440	18a3			illi / mont			
	2.441	17c2		illi (3,2) / mont 9				
2.45	2.450	18d2/b2	AI-OH		dol / Illi / mont			
	2.451	1805						
	2.401	1802		sap 2	mont			
2.46	2.403			dol(1,2)/dolino(1,4)/min	mont			
а	2.467	17c2		2 [2]				
2.48	2 480	16Aa2 18a3		۲ [:]	cal (?)			
	2.400	18d5		cal 2	Gai (:)			
	2.701	1000						

18 (Offset for clarity) 17 16 1.7 2. 2.3 2.5 Figura III.20c: Coleção espectral (curvas médias) das amostras do grupo FC1. (VNSWIR)

λ (μ**m**)

[?]: não identificados por DRX

coluna II: picos (0.000) segundo a figura III.20b, em *negrito* de acordo com os resultados do SFS

Para a curva espectral da am18d5, o *SFS* forneceu as seguintes proporções (Fig. III.22): 69% illita, 26,1% montmorillonita, 5% saponita e 0.27% calcita. Para a am18b3 (Fig. III.22), o SF estimou a presença de 63,09% de montmorillonita, 30,59% de illita e 6,31% de saponita, com um erro de 13,72% (aceitável). A montimorillonita, variedade mont2 do USGS, foi a que mais se aproximou em critérios de formato da curva e posição das feições da curva da am18b3.

É interessante observar que a calcita só aparece na amostra com menor granulometria (am18d5), talvez devido à forma como a mesma encontra-se associada aos outros minerais na rocha em estado bruto.

➡ Grupo FC2 (siltito róseo - CS)

O Grupo FC2 corresponde aos siltitos arroxeados <u>típicos</u> da FC, encontrados nas bancadas BV e BIV da região centro-sul. É a principal fonte de matéria prima da mina. As propriedades químicas e mineralógicas deste grupo são apresentadas nas Tabelas III.10 e III.11.

Amostras de calibração

Cinco amostras foram selecionadas como de calibração para este grupo. Essas amostras contém quantidades equivalentes de SiO₂ (65,80-68,93%) e de Al₂O₃ (12,01-14,66%), exceto a am15, na qual o teor de Al₂O₃ é abaixo da média, de cerca de 14%. Estas quantidades refletem a ampla predominância do quartzo sobre o feldspato (e.g., am13 - Fig. III.23a), em quatro das amostras. Os teores de SiO₂ e Al₂O₃ têm ainda relação com a presença de caulinita e de outros argilo-minerais (illita e montmorillonita).

 Tabela III.10: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras de siltito róseo da região CS, Formação Corumbataí (FC2).

BANCADA			Elementos Maiores (Óxidos) em %										P.F.	
		AM	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
		13	65,80	0,615	14,01	5,21	0,089	2,41	1,82	3,77	3,25	0,098	3,60	100,7
	V	14	68,93	0,633	14,06	4,58	0,016	1,62	0,50	3,78	3,36	0,112	2,38	100,0
CS		15	68,29	0,536	12,01	7,89	0,028	1,11	0,71	3,69	2,31	0,326	1,98	98,9
	N/	12	68,67	0,603	13,93	5,23	0,035	2,10	0,50	3,02	3,42	0,093	2,76	100,4
	IV	33*#	67,74	0,650	14,66	5,35	0,030	2,02	0,39	3,02	3,61	0,107	2,47	100,0

CS: região centro-sul. AM: número da amostra. #: amostra quartiada após a britagem

*: amostras com resultados em valores médios, a partir de 8 duplicatas. Elementos traços - cf Anexos MC.4,5

Os teores de Fe_2O_3 e de Ti O_2 são comuns para todas as amostras, exceto na am15 (Tab. III.10), cujo maior teor é função do seu maior conteúdo em hematita (pico mais acentuado, na

determinação via DRX) (Anexo MC.7). Parte do teor de ferro também pode estar associado à presença de illita, saponita (am14) e illita-montimorillonita (am33) nas amostras.

Tabela	III.11 :	Composição	mineralógica	(DRX)	em	amostras	da	fração	total	(rocha	britada	е	moída)	da	Formação
	Corumbataí (FC2).														

BANCADA		AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA				
		13	alb / cal / hem / illi / qzo	qz > alb > illi > cal > hem				
	V	14	alb / hem / illi / qzo / sap	qz > alb > illi > hem > sap				
CS		15	alb / hem / illi / mont / qzo	qz > alb > illi > hem > mont				
	11/	12	alb / clino / hem / illi / kao / mont / qzo	qz >> alb > illi > clino > hem > kao				
	IV	33	alb / hem / illi / kao / mont / mont-illi / qzo	$qz > alb \cong illi > kao > hem > mont$				

CS: região centro-sul. AM: número da amostra. Hierarquia: de acordo com picos dos difratogramas (Fig. III.23a e Anexo MC.7,8)

O Na₂O apresenta teores altos (3,02-3,78%) e coerentes com a existência de albita; o K₂O, também com valores elevados (2,31-3,61%), indica a existência comum da illita. Na am33, em que a illita supera a albita em quantidade (Tabela III.11), observa-se que os teor de K₂O (3,61%) é o mais alto e o de Na₂O (3,02%) o mais baixo do grupo, ratificando a dominância da illita sobre a albita. Nesta mesma amostra, outro fato a destacar é que há ainda a presença do argilomineral misto, formado pela interestratificação montmorillonita-illita (mont-illi), que também abriga uma parte do potássio.

Os valores inferiores de K_2O da am15 indicam a menor quantidade de illita. Da mesma forma, os valores mais altos de fosfato sugerem a presença de microfósseis na amostra.

O CaO tem teores homegêneos neste grupo, e seu maior valor na am13 (1,82%) é justificado pela presença de calcita (Tab. III.11). O MgO varia bastante e é associado a proporções variáveis de saponita, montmorillonita, clinocloro e illita-montmorillonita.

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

As principais feições de absorção registradas nas amostras do grupo FC2, no intervalo do espectro SWIR (Fig. III.23b,c), são descritas a seguir:

- <u>1.41-1.42μm</u>: feição sutil, talvez em função da grande quantidade de quartzo e hematita na amostra, impedindo ou diluindo o efeito dos minerais com feições nesta banda;
- <u>1.68μm</u>: feição de pequena profundidade, presente somente na am 15; não foi relacionada a nenhum dos minerais presentes (DRX);
- <u>1.91μm</u>: feição mais profunda dos espectros; é destacada na am13 e na am12, onde pode ser devida a illita; na am15 e am 33 a feição é diferente e provavelmente produto da combinação illita e montmorillonita; na am14, a combinação predominante parece ser entre a illita e a saponita;
* Matéria-Prima para Cerâmica de Revestimentos *

Figura III.23a: DRX da fração total do siltito róseo (FC2)

Figura III.23b: Coleção espectral de amostras do grupo FC2. (SWIR)

Tabela III.12: Comprimento de onda dos picos de absorção da curva espectral das amostras da Formação Corumbataí (FC2), moléculas responsáveis, minerais identificados pelo *SFS* com base nos resultados de DRX e minerais correlacionados de acordo com a bibliografia.

2 (m)	0 M		MINEF	RAIS
v (h	uni)	AW	MOLECOLA	DRX / SFS	PROVÁVEIS
1.41	1.410	12e1, 14b1 15a2_33a1/e3	ОН		illi / kao / sap
1.42	1.421	13a3	H ₂ O	illi 3	
1.45	1.446	13a2			mont
1.58	1.583	14b1			
1.59	1.591	15a2		clino 5 [?]	
1.60	1.600	33a1			
1.68	1.680	15(m)			
	1.907	14b1		illi (4,5)	
	1.910	15a2		illi (4,5) / mont 8	
	1.912	33e3		illi 5 / kao 2 / mont 9	
1.91	1.914	12e1	H₂O	clino 4 / illi (5,2) / kao 2 / mont 9	
		13a3		iili (4,5)	
	1.929	13a2			
2 20	2.150	13a3			cal / illi / kao
2.20	2.220	33a1			illi
a	2.222	12e1	AFOIT	illi 1	
2.22	2.227	15a2			
2.24	2.237	33e3	Fe-OH	mic 4 [?]	
2.32	2.323	33e3	CO ₃		cal (?) / clino
2 34	2.335	13a2	Ma-OH	cal 3	
2.07	2.337	13a3	5 -		
2.37	2.370	15a2			mont
2.39	2.392	13a2			kao / sap / mont
2.41	2.405	12e1		mont 2	
2.43	2.426	13a3			mont
	2.434	13a2		illi (4.2) / mont 0	
2.44	2.441	15a2		IIII (4,2) / mont 9	illi / mont
0.40	2.443	1343, 1401			
2.40	2.460	13a2, 14b1			mont
2.47	2.470	13a3		cal 2 / dol 2 [?]	
	2.473	33e3			
	2.475	1382			
2.48	2.4/9	1401			ool [2]
	2.401	1382/83			Car [f]
1	2.403	12e1	1		

coluna II: picos (0.000) segundo a figura V. , em **negrito** de acordo com os resultados do SFS. [?]: não identificados por DRX / (#): ombro do pico / (*): quebra da cur

Figura III.23c: Coleção espectral (curvas médias) das amostras do grupo FC2. (SWIR)

- <u>2.20-2.22µm</u>: feições de pequena profundidade; é ausente na am13; aparece como provável combinação de illita e montmorillonita na am15 e am33, de illita e clinocloro na am12, e somente devido a illita na am14;
- <u>2.32-2.34μm</u>: feição distinta na am13, devido a calcita, em que o ombro esquerdo é característico.

Na faixa do VNIR as feições em 0.52-0.54 μ m (todas amostras) e 0.88 μ m (am15 e 33) estão relaciondas à hematita.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras do grupo FC2, a partir dos algoritmos do SIMIS (Tab. III.12), é apresentado a seguir:

12e1	mistura resultado	clino 4 / illi (1,2,5) / kao 2 / mont 9 illi 2	14b1	mistura resultado	illi (4,5) illi (4,5)
13a2	mistura resultado	(2,3) / cal 3 (2,3) / cal 3	15a2	mistura resultado	illi (2,4,5) / mont (8,9) illi 4 / mont 8
13a3	mistura resultado	cal 3 / illi (3,4,5) cal 3 / illi 5	33e3	mistura resultado	illi 5 / kao 2 / kaosmec 1 / mont 9 illi 5

Os resultados do SF para essas amostras não foram satisfatórios devido aos elevados erros.

⇒ Grupo FC3 (siltito cinza, verde e amarelo - CS)

As rochas deste grupo são siltitos frescos (am14x e 31A) e alterados (am30) que ocorrem junto com os siltitos arroxeados (FC2), porém são de coloração e tonalidade diferentes (Anexo MC.3). Sua ocorrência na mina é localizada.

As propriedades químicas e mineralógicas das três amostras analisadas deste grupo são apresentadas nas Tabelas III.13 e III.14.

Amostras de calibração

A quantidade de SiO₂ (64,85-69,90%) deste grupo é compatível com as do grupo FC2 (siltitos arroxeados), porém as quantidades de Al_2O_3 (13,53-15,59%) são um pouco (~1%) maiores. Em todas as amostras, a relação entre sílica e alumínio é coerente com as proporções de quartzo, predominante, seguido por feldspato, illita e outros argilo-minerais (kao e mont) (Tab. III.14).

Os teores de Ti₂O e Fe₂O₃ são interessantes, já que o óxido de ferro (hematita) não foi reconhecido em nenhuma amostra. A maior fração de ferro na am31A se deve à ocorrência dos minerais illita e vermiculita (provável maior portadora). Na am30, o ferro é associado a saponita, e na am14x, a illita.

A quantidade de Na₂O (0,84-3,27%) é variável entre as amostras, sendo muito baixa na am30 e relativamente alta na am14x. Esses teores têm relação com a presença, apontada por DRX, de albita na am30 (Fig. III.23a) e a de montmorillonita nas três amostras (Tab. III.14).

O K₂O (3,55-4,08%) apresenta valores altos e é relacionado principalmente a illita, que ocorre nas três amostras.

Tabela III.13: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras de siltitos cinza claroa verde e argilito amarelo da Formação Corumbataí (FC3).

			Elementos Maiores (Óxidos) em %										P.F.	
BANG	CADA	AM	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
	V	14X	68,04	0,680	15,50	2,03	0,029	2,42	0,67	3,27	4,08	0,099	3,34	100,2
CS	N/	30	64,85	0,710	15,59	6,02	0,014	1,77	0,34	0,84	3,93	0,082	5,75	99,9
	IV	31A	69,90	0,593	13,53	5,63	0,025	1,97	0,50	2,05	3,55	0,153	4,10	102,0

CS: região centro-sul. AM: número da amostra. Obs: elementos traços - cf. Anexos MC.4,5

O CaO apresenta valores baixos (0,34-0,67%) e tem relação com a presença de montmorillonita, detectada via DRX em todas as amostras. O teor de MgO, variável neste grupo, é maior na am14x, devido a ocorrência de calcita magnesiana (DRX - Anexo MC.7), e associado a saponita e a vermiculita, respectivamente, na am30 e am31A.

 Tabela III.14:
 Composição mineralógica (DRX) em amostras da fração total (rocha britada e moída) da Formação Corumbataí (FC3).

BANG	CADA	AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA
	V	14x	alb / cal / illi / kao / mont / qzo	qz > alb > illi > kao > cal > mont
CS	S 30		alb / illi / mic / mont / qzo / sap	qz >> alb \cong mic > illi > sap > mont
	IV	31A	alb / illi / mont / qzo / ver	$qz >> alb > illi > mont \cong ver$

CS: região centro-sul / AM: número da amostra / Hierarquia de acordo com picos dos difratogramas (Fig. III.24a e Anexos MC.7,8)

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

As principais feições de absorção registradas nas amostras do grupo FC3, no intervalo do espectro SWIR (Fig. III.24b,c), são descritas a seguir:

- <u>1.41µm</u>: feições razoavelmente profundas, com destaque para a am30, onde a feição mais aguda parece ser devida a presença de illita; na am14x e am31, as feições são, respectivamente, mais aberta e fechada, o que indica uma combinação de illita e montmorillonita;
- <u>1.60μm</u>: feições rasas, presente na am30 e am31A;
- <u>1.91-1.92µm</u>: feições mais profundas, com destaque para a am31A. Pode ser devida a combinação entre illita (principal na am30 e am14x), saponita (am30) e montmorillonita (am31A onde a feição aparece mais aberta e assimétrica, típica da montmorillonita) (Pontual *et al.* 1997).
- <u>2.21µm</u>: feições medianamente profundas; na am30 pode haver mistura de saponita, montmorillonita e illita, mas a geometria, com ombro esquerdo suspenso, é mais diagnóstica da saponita (Pontual *et al.* 1997); na am14x e am31A ocorrem feições mais rasas e atribuídas a combinação de illita e montmorillonita;
- <u>2.30-2.38 μm</u>: região contendo feições características de carbonatos; apenas a am14X tem feição proeminente (2.34μm), onde a calcita é o mineral responsável pela mesma, com alguma participação da illita; a am30 possui três pequenas bandas de absorção em 2.30μm, 2.35μm e 2.38μm, atribuídas a presença de illita e montmorillonita;
- <u>2.45µm</u>: a pequena feição presente na am14X pode ser devida a illita e/ou da caulinita.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras do grupo FC3, a partir dos algoritmos do SIMIS (Tabela III.15), é apresentado a seguir:

14Xc1	mistura resultado	alb (2,3) / cal (2,3) / illi (1,2,4,5) / kao (2,6) / mont (A,1,9) alb 3 / cal 2 / illi (1,2) / mont 1	31Aa2	mistura resultado	alb (1,3) / illi (2,4,5) / mont (1,9) / ver 4 alb 3 / illi 2 / mont 1 / ver 4
30c1	mistura resultado	alb (2,3) / illi (A,1,4,5) / mic (3,5) / mont (1,7,9) / sap 2 alb 3 / illi 1 / mic 3 / mont 1 / sap 2	31Ac1	mistura resultado	alb 3 / illi (1,2,4,5) / mont 9 / ver (1,4) alb 3 / illi 2 / ver 4

Figura III.24a: DRX da fração total do siltito amarelo/verde róseo (FC3)

Figura III.24b: Coleção espectral de amostras do grupo FC3. (SWIR)

Tabela III.15: Comprimento de onda dos picos de absorção da curva espectral das
amostras da Formação Corumbataí (FC3), moléculas responsáveis,
minerais identificados pelo SFS com base nos resultados de DRX e minerais correlacionados de acordo com a bibliografia.

2 (1	(m)	ΔM	MOLÉCULA	MINER	AIS
v (†		AW	MOLLOOLX	DRX / SFS	PROVÁVEIS
	1.411	31Ac1		illi (4,2) / mont 9 / ver 4	
		14Xc1		alb (2,3) / illi (1,5) / kao	
			ОН	2 / mont 1	
1.41	1.413	00.4	H ₂ O	alb 2 / ili (1,4) / mic 3 /	
		3001		mont 1	
	1 117	21 / 22		sap z	
1.60	1.417	30c1		aib 1 / III 5 / III0IIL 1 mont 7	
1.00	1.605	14Xc1_31Ac1	-		mont
a 161	1.617	314c1	-	ver 1	mont
1.01	1.017	31AC1	-		
00.1	1.680	3001		::::::::::::::::::::::::::::::::::::::	
	1.909	14Xc1		1 (1,5) / Kao 6 / mont	
1.91	1 011	30c1 H ₂ O il		illi A / mont 9	mic / san
	1.915	31Aa2/c1	-	illi (2 4) / mont 9 / ver 4	mic / Sap
	2.205	30c1		illi 5 / mont 1	mic
2.21	2.212	31Ac1		illi (2.1) / mont 9	
2.21	2.220	14Xc1		illi 1 / mont A	kao
2.29	2.290	30c1	AI-OH		sap
2.30	2.298	31Aa2			ver / sap / gib [?] / dol [?]
2.24	2.337	14Xc1		cal (2,3) / mont A	car[!]
2.34	0.055	21 4 - 2			cal / kao / mont /
a 2.26	2.300	STAAZ	Mg-OH		illi / gib (?)
2.30	2.359	30c1		alb 3 / mic (3,5)	
2.39	2.387	30c1, 31Aa2			kao / mont / sap
2.42	2.422	31Aa2			mont
2.43	2.433	30c1		illi 1 / mont 9	
2 11	2.441	14Xc1		alb 2 / illi (2,4) / mont 9	
2.44	2.442	31Aa2			mont
2.45	2.450	14Xc1, 31Aa2			mont / illi
2.46	2.459	31Aa2/c1	AFOIT	alb 3	
2.48	2.483	30c1, 31Aa2			carbonato [?]]
2.49	2.489	31Ac1			

Os resultados da classificação do SIMIS para as amostras deste grupo foram muito bons, com erros aceitáveis. Tomando como exemplo a am30c1 (Fig. III.25), os minerais derivados dos espectros são coerentes com a mineralogia obtida via DRX. A albita (variedade parcialmente alterada para argilo-minerais), utilizada nas bibliotecas espectrais deste grupo, foi bem caracterizada na mistura espectral pelos algoritmos do SIMIS, embora seja um mineral com feições sutis no espectro.

➡ Grupo FC4 (porções carbonáticas - CS)

As rochas do grupo FC4 são carbonáticas e ocorrem em meio ao pacote de siltitos arroxeados. A am29V compreende nódulos de carbonato dispersos na matriz siltica. A am13V corresponde a veios carbonáticos (~5 cm) que cortam o siltito obliquamente, preenchendo fraturas preexistentes. Esses veios apresentam, em torno de si, auréolas esverdeadas, também com conteúdo em carbonato, fruto da alteração do siltito. Estes veios são freqüentes na mina e oferecem problemas para a utilização industrial do material.

As propriedades químicas e mineralógicas de duas amostras deste grupo são apresentadas nas Tabelas III.16 e 17.

Amostras de calibração

Os resultados de análise química por FRX (Tab. III.16) indicam que a quantidade de sílica das duas rochas são distintas; a am13V possui elevados teores (68,51%), compatível com o do siltito arroxeado - o teor de SiO₂ mais elevado condiz com a dominância do quartzo na rocha (Fig. III.26a). O teor de SiO₂ (44,39%) da am29V é inferior, mas ainda alto para uma rocha carbonática. Além do quartzo, a SiO₂ participa da albita e da illita na am13V, e da albita e montmorillonita na am29V. Os teores de Al₂O₃ são baixos para ambas as rochas (3,40 e 2,99%).

As quantidades de TiO₂ (0,138 e 0,076%) e Fe₂O₃ (0,85 e 1,96%) também são baixas. O Fe₂O₃ pode estar na estrutura da illita na am13V e disseminado em pequenas frações na am29V.

Tabela	III.16 :	Composição	química	(FRX)	de	elementos	maiores	е	perda	ao	fogo	(PF)	em	amostras	de	veios
		carbonáticos	da Forma	ição Co	orum	bataí (FC4)										

				Elementos Maiores (Óxidos) em %										
BANG	CADA	AM	SiO ₂	TiO ₂	AI_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
CS	V	13V	68,51	0,138	3,40	0,85	0,450	1,86	13,55	0,94	0,65	0,065	12,30	102,7
	v	29V#	44,39	0,076	2,99	1,96	0,991	8,17	18,37	0,85	0,70	0,06	23,29	101,8

CS: região centro-sul / AM: número da amostra / #: amostra quartiada após a britagem Obs: elementos traços ver Anexos MC.4,5

BANG	CADA	AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA
6	, 13v a		alb / cal / dol / illi / qzo	qzo > cal > dol > alb > illi
03	v	29v	alb / cal / dol / mont / qzo	dol > qzo > cal > alb > mont

 Tabela III.17:
 Composição mineralógica (DRX) em amostras da fração total (rocha britada e moída) da Formação Corumbataí.

CS: região centro-sul . AM: número da amostra. Hierarquia de acordo com picos dos difratogramas (Fig. III.26a e Anexos MC.7,8)

O Na₂O e o K₂O apresentam teores entre 0,9% e 0,65%, o que é compatível com a baixa quantidade de albita determinada nessas amostras por DRX. Na am29V, o Na₂O também tem relação com a presença de montmorillonita.

O teor de CaO (13,55-18,37%) é alto nas duas amostras devido à natureza carbonática das mesmas. O MgO (1,86-8,17%) apresenta valor elevado somente na am29V, em decorrência da predominância de dolomita na mesma (Fig. III.26a). A montmorillonita presente nesta amostra também consome parte do CaO e do MgO. Na am13V, a calcita predomina sobre a dolomita, concentrando a maior parte do cálcio.

Acompanhando o CaO, os teores de MnO também são elevados, típico de rochas carbonáticas. Já os de P_2O_5 são ligeiramente inferiores aos dos siltitos arroxeados e próximos aos do calcário (am32B) da FI.

Os resultados de perda ao fogo são coerentes com a composição carbonática das amostras, com índices de até 23% (am29V), embora inferiores aos registrados na FI.

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

As principais feições de absorção registradas nas amostras da FC4, no intervalo do espectro SWIR (Fig. III.26b,c), são descritas a seguir:

- <u>~1.42μm</u>: essa feição ocorre somente na am29V e parece ser um efeito da combinação entre dolomita e montmorillonita;
- <u>~1.56μm</u>: na amostra am13V, é marcada por uma suave depressão na curva espectral. Não é característica de nenhum mineral em particular.
- <u>1.91-1.92 μm</u>: feição medianamente profunda nas duas amostras; na am29 pode ser devida a dolomita, considerando a geometria da curva de ponta larga com ligeira inflexão; na am13V pode ser devida a illita (am13V), onde aparece mais aguda e assimétrica;
- <u>2.31-2.33μm</u>: feição mais profunda, com destaque para a am29V; pode ser decorrente da combinação dolomita (mais próximo de 2.32μm) e calcita (mais afunilada) na am29V; na am13V pode ser decorrente da dolomita que possui uma banda de absorção em 2.14μm (pequena) e em 2.32μm (grande) (Pontual *et al.* 1997).
- ~2.45µm: feição sutil, somente presente na am29V e associada a dolomita.

Figura III.26a: DRX da fração total do nódulo carbonático (FC4)

Figura III.26b: Coleção espectral de amostras do grupo FC4. (SWIR)

Tabela III.18:Comprimento de onda dos picos de absorção da curva
espectral das amostras da Formação Corumbataí (FC4),
moléculas responsáveis, minerais identificados pelo SFS
com base nos resultados de DRX e minerais
correlacionados de acordo com a bibliografia.

2 (1	m)		MOLÉCULA	MINE	ERAIS
v (h	uny	7 (10)	MOLEOULY	DRX / SFS	PROVÁVEIS
1.35	1.350	13V (m) 29V (m)			
1.41 1.42	1.415	29Va1	OH / H ₂ O	mont 8	illi
1.46	1.464	13Vd3		cal 3	mont
1.56	1.560	13V(m)			
1.61	1.605	20\/o1			
1.86	1.860	29741	CO ₃	dol 1	
1.91 1.92	1.918	13Vd3	H ₂ O		illi
1.97 2.14	1.974 2.135	29Va1	CO ₃	dol 1 dol 2	
2.31	2.312 2.318	29Va1	Ma-OH	sap 2 [?]	dol / kao
a 2.33	2.326	13Vd3	CO ₃	clino 1 / kaosmec 1 / rec 1 / ver 4 [?]	dol / illi
2.42	2.421			mont 8 [?]	
2.46	2.455	29Va1	AI-OH	sap 2 [?]	dol / illi
2.47	2.468	12)/42			
2.48	2.484	13703			carbonato (?)

coluna II: picos (0.000) segundo a figura III.26b, em *negrito* de acordo com os resultados do *SFS* [?]: não identificados por DRX / (#): ombro do pico / (*): quebra da curva (m): valores médios das curvas da amostra

Figura III.26c: Coleção espectral (curvas médias) das amostras do grupo FC4. (SWIR)

λ (μ**m**)

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras da FC4, a partir dos algoritmos do SIMIS (Tab. III.18), é apresentado a seguir:

20\/c1	mistura 1 resultado 1	dol (1,2) / mont (A,1-9) [A,8] dol 1 / mont 4 [A]	13Vd3	mistura resultado	cal 3 cal 3
29Va1	mistura 2	dol (1,2) / kaosmec 1 / mont (A,8) / sap (1,2)	- 13\/d2	mistura	dol 2 / illi A
	resultado 2	dol 1 / mont A / sap 2	10002	resultado	dol 2

Resultados excelentes foram obtidos para as amostras deste grupo (Fig. III.27). Tomando a am29V como exemplo, o SFS estimou a presença de 89% de dolomita (dol 1) e 11% de montmorillonita na curva espectral da amostra. O SF, por sua vez, gerou resultados semelhantes, com 90.1% de dolomita e 9.9% de montmorillonita, e com um erro de 10% na análise. A curva espectral de referência da dolomita, variedade dol1 do USGS, foi a que mais se aproximou, em critérios de formato da curva e posição das feições, da curva da am29V.

⇒ Grupo FC5 (siltito róseo - CN / N)

As rochas deste grupo compreendem os siltitos arroxeados (B II / CN e N). Como o siltito do grupo FC2, este também corresponde a uma matéria prima abundante e de grande aplicabilidade da mina, sendo um pouco mais alterado do que as rochas do grupo FC2.

Os resultados de análises químicas e mineralógicas de quatro amostras deste grupo são apresentadas nas Tabelas III.19 e III.20.

Amostras de calibração

Os teores de SiO₂ (65,89-68,75%) e Al₂O₃ (14,07-15,01%) nas amostras deste grupo são compatíveis com a presença de quartzo, albita, illita, caulinita, montmorillonita, saponita e outros argilo-minerais mistos (kaosmec e montilli), determinados via DRX (Fig. III.28a - am27). A predominância de quartzo sobre o feldspatos é evidente em todas as amostras, conforme a análise de intensidade dos picos de DRX (Fig. III.28a e Anexo MC.7), a partir dos quais obteve-se uma hierarquia de proporções dos minerais para cada amostra (Tab. III.20).

Os teores de TiO₂ e de Fe₂O₃ são próximos ao do grupo FC2, que tem características semelhantes. A hematita somente não aparece na am25, onde os valores de ferro são os mais baixos. Já a saponita, outro mineral que portador de ferro em sua estrutura, ocorre em todas as amostras, assim como a illita e seu misto parental (montmorillonita-illita).

			Elementos Maiores (Óxidos) em %										P.F.	
BANG	CADA	AM	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
		24#	67,98	0,671	14,33	4,62	0,031	1,87	0,46	2,97	3,55	0,091	2,77	99,3
		25#	68,75	0,638	14,52	4,37	0,026	1,55	0,52	3,04	3,54	0,148	2,89	99,9
CN		27#	68,70	0,574	14,07	5,27	0,027	1,62	0,58	3,87	3,10	0,100	2,24	100,1
		28#	65,89	0,676	15,01	5,46	0,063	2,43	0,88	3,05	3,72	0,115	3,03	100,3

 Tabela III.19: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras de siltito róseo da Formação Corumbataí (FC5).

CN: região centro-norte / AM: número da amostra / #: amostra quartiada após a britagem Obs: elementos traços ver Anexos MC.4,5

Os valores de Na₂O (2,97-3.87%) e K₂O (3,10-3,72%), também próximos do grupo FC2, são coerentes com a presença e proporção estimada para a illita e albita nas amostras. Parte do Na₂O pode estar também associado a montmorillonita.

O CaO (0,46-0,88%) tem valores bastante uniformes e próximos da FC2. O MgO (1,55-2,43%) tem uma pequena variação, sendo mais alto na am28, função da presença de minerais como a saponita (presente em todas as amostras), a montmorillonita e dois mistos (kaosmec e montilli) (Tab. III.20), todos de composição parcialmente magnesiana. O teor maior de Mg nesta amostra em relação as outras é atribuído a presença dos minerais mistos na am28.

Tabela III.20:Composição mineralógica (DRX) em amostras da fração total (rocha britada e moída) da Formação
Corumbataí (FC5).

BANCADA		AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA
		24	alb / hem / illi / kao / mont / qzo / sap	$qzo > alb > illi > kao > mont \cong sap > hem$
		25	alb / illi / mont / qzo / sap	qzo > alb > illi > sap ≅ mont
CN	II	27	alb / hem / illi / kao / mont / qzo / sap	$qzo > alb > illi > hem > sap \cong kao > mont$
		28	alb / hem / illi / kao / kaosmec / mont / montilli / qzo / sap	qzo > alb > illi > kaosmec

CS: região centro-sul / AM: número da amostra / Hierarquia de acordo com picos dos difratogramas (Fig. III.28a e Anexos MC.7,8)

O MnO (0,026-0,063) que geralmente tem seus valores acompanhados aos do CaO esta também muito próximo dos valores das rochas do grupo FC2. Também apresenta-se próximo a estes padrões (FC2) os valores de P_2O_5 e de perda ao fogo que variam entre 2,24 e 3,03%, muito baixa e adequada para a aplicação cerâmica.

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

As principais feições de absorção registradas nas amostras do grupo FC5, no intervalo do espectro SWIR (Fig. III.28b,c), são descritas a seguir:

- <u>1.40-1.42μm</u>: feições rasas e pequenas; na am25 e am25 podem ser devido a combinação de illita e motmorillonita, e na am28 de illita, montmorillonita e interestratificados (caulinitaesmectita e montmorillonita-illita);
- <u>1.60-1.68μm</u>: feição rasa e centrada em 1.60μm nas curvas am24 e am27; em 1.64μm na am25 e em 1.68μm na am28; apesar da sua consistência, não foi possível relacionar essas feições a nenhum mineral em específico;
- <u>1.91-1.92μm</u>: essa feição pode ser devida a combinação illita, montmorillonita e saponita em todas as amostras, além dos interestratificados na am28; a am27 apresenta a feição mais profunda e com razoável simetria,
- <u>2.091µm</u>: feição relacionada a illita na am27.
- <u>2.21-2.23µm</u>: feições rasas, provavelmente relacionadas a illita e montmorillonita nas curvas am24, am25 e am28; é ausente na am27,
- <u>2.27μm</u>: feição pequena, relacionada a faixa da vibração do Fe-OH e presente somente na am27;
- <u>2.33-2.35μm</u>: feição pequena, presente em todas as curvas, atribuída a presença de illita (cf. am25);
- <u>2.45μm</u>: feição pequena e visualizada somente na am27 e am28, devido a illita e talvez a caulinita.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras do grupo FC5, a partir dos algoritmos do SIMIS (Tab. III.21), é apresentado a seguir:

24a2	mistura resultado	illi (2,5) / mont 8 / sap 2 ailli 2	27a2	mistura resultado	illi 1 / kao (3,5) / mont A kao 3 / mont A
25b	mistura resultado	illi (4,5) / mont (1,8) / sap 2 sap 2	28c2	mistura resultado	illi (A,1,2,3,4,5) / kao (2,3) / mont (A,9) / sap 2 illi (1,4) / sap 2

Os resultados do SF para essas amostras não foram tão satisfatórios devido aos elevados

erros.

* Matéria-Prima para Cerâmica de Revestimentos *

Figura III.28a: DRX da fração total do siltito róseo (FC5)

Figura III.28b: Coleção espectral de amostras do grupo FC5. (SWIR)

Tabela III.21: Comprimento de onda dos picos de absorção da curva espectral das amostras da Formação Corumbataí (FC5), moléculas responsáveis, minerais identificados pelo *SFS* com base nos resultados de DRX e minerais correlacionados de acordo com a bibliografia.

λ (um)		ΔM		MINE	RAIS
λ (μΠ)			MOLLOOLA	DRX / SFS	PROVÁVEIS
	1.390	25a, 27a2 (#)			hal / sap / ver
	1 411	28c2		illi (4,5) / kao 2	
1.40	1.411	2002	011	kaosmec 1 / mont 9 / sap 2	
а		24a2	OH	illi 5 / kao 2 / mont 8	
1 / 2	1.413		H ₂ O	sap 2	
1.42		25b		IIII (5,4) / mont 8	kao
	1 /15	255		Sap z	illi / kao / mont / san (H.O)
	1 495	254		kao 5	
_	1560	27a2			illi
1.50	1.590	25a			
а	1.603	24a2			
1 70	1.616	25b		clino 6 [?]	
1.70	1.639	28c2			
	1.700	27a2			
1.78	1.780	25a, 28c2	OH		
1.89	1.890	25b (#)	CO ₃		cal
1 01	1.905	28c2		illi 5 / kaosmec 3 / mont 9 sap 2	
1.31	1.906	24a2		illi (2.5) / mont 8 / sap 2	
а	1.907	25b	H ₂ O	illi (4,5) / mont 8 / sap 2	
1.92	1.910	25a			illi / kao / mont / sap
	1.919	27a2		kao 3	
2 09	2.090	25b	NH4		illi
2.00	2.091	27a2			
2.21	2.207	25b		illi 5 / mont 1	kao
а	2.219	2802	AI-OH	IIII (1,2) / mont A	
2.23	2.228	24a2			illi
2 27	2.269	27a2	Fe-OH	gib 2 [?]	
2.21	2.270	25b	10.011	4	ver (?)
2.33	2.330	28c2	Mg-OH		illi / dol (?)
2.35	2.339	2/a2	ČO₃	Illi 1 / mont A	illi / kog / mant
2.00	2.350	24a2, 25a/b		4	IIII / Kao / mont
2.40	2.400	25b, 28c2		illi (A 2) /koo 2	mont
2.45	2.449 2.452	2002	AI-OH	IIII (А,З) / Кай З	illi / mont
2.46	2.459	23a 24a2			mont
2.47	2.470	25a			(?)
2.48	2.483	25b, 27a2			carbonato (?)

(Offset for clarity)

Figura III.28c: Coleção espectral (curvas médias) das amostras do grupo FC5. (SWIR)

coluna II: picos (0.000) segundo a figura III.28b, em **negrito** de acordo com os resultados do *SFS* [?]: não identificados por DRX / (#): ombro do pico / (*): quebra da curva

⇒Grupo FC6 (argilito e siltito róseo - N)

As rochas do grupo FC6 compreendem os argilitos e/ou siltitos róseos, encontrados na região norte da mina. Em comparação aos siltitos clássicos da mina, do grupo FC2, este apresenta granulometria mais fina, textura untuosa e coloração levemente mais clara. É produto da alteração intempérica nos siltitos arroxeados, na região adjacente a intrusão básica. A alteração nesta região da mina é relacionada à intrusão básica que modificou a composição das rochas adjacentes, tornando essas porções das rochas encaixantes mais susceptíveis à alteração supergênica.

A extração destas rochas é facillitada por suas características físicas. A am23A é a que apresenta o menor grau de alteração entre as amostras mas está completamente pastilhada⁹.

Os resultados de análises químicas e mineralógicas de cinco amostras deste grupo são apresentadas nas Tabelas III.22 e III.23.

Amostras de calibração

As quantidades de SiO₂ (64,67-69-60%) destas amostras estão de acordo com os padrões das rochas que sofreram a alteração (siltio arroxeado). O teor em sílica na am23A é levemente superior, devido ao seu estado menos alterado. O Al₂O₃ (14,02-17,86%) também apresenta índices próximos aos dos padrões, exceto na am23A (14-02%), com o mais baixo valor. Durante a alteração, provavelmente houve concentração de alumínio as custas da perda de sílica. O quartzo é abundante (Tab. III.23) nas amostras, ora dominando a composição da rocha em relação ao feldspato (albita) (am11A, 19 e 23A), ora em relação a illita (am21) e/ou caulinita (am07) (Fig. III.29a). Os alumino-silicatos (alb / clino / illi / kao / kaosmec / mic / mont / sap / rec) também são coerentes com teores de sílica e alumínio.

 Tabela III.22: Composição química (FRX) de elementos maiores e perda ao fogo (P.F.) em amostras argilitos róseos e siltitos pastilhados da Formação Corumbataí (FC6).

			Elementos Maiores (Óxidos) em %											
BANCADA A		AM	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C)%	Soma
		07	64,67	0,809	17,86	6,71	0,012	0,99	0,04	0,26	2,42	0,064	6,21	100,0
		11A*	66,14	0,669	15,09	6,14	0,012	1,72	0,29	0,42	3,96	0,052	5,14	99,6
Ν	П	19	67,55	0,663	15,48	5,39	0,016	1,69	0,34	1,68	3,94	0,057	4,88	101,7
		21#	65,08	0,763	15,87	6,75	0,037	1,60	0,19	0,16	4,04	0,043	5,06	99,6
		23A	69,60	0,610	14,02	4,18	0,027	1,62	0,57	2,68	3,52	0,087	3,06	100,0

N: região norte. AM: número da amostra. #: amostra quartiada após a britagem.

(*): amostras com resultados em valores médios, a partir de 8 duplicatas. Elementos traço - cf. Anexos MC.4,5

⁹ termo comumente utilizado da mina e por outros autores que trabalharam na área (Christofoletti 1999; Grigoletto 2001)

Os teores de TiO₂ (0,61-0,81%) e Fe₂O₃ (4,18-6,75%) são comparáveis aos dos siltitos clássicos. Os teores de ferro estão ligados a hematita, presente em todas as amostras, embora possam estar associados ainda a outros minerais identificados, como a illita, saponita e clinocloro.

Tabela III.23: Composição mineralógica (DRX) em amostras da fração total (rocha britada e moída) da Formação
Corumbataí (FC6).

BANCADA		AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA		
		07	hem / illi / kao / qzo	qzo > kao > illi > hem		
		11A	alb / clino / hem / illi / kao / qzo	qzo >> alb ≅ illi > clino ≅ kao > hem		
Ν	П	19	alb / cal / hem / illi / kaosmec / mont / qzo	$qzo > alb \cong illi > kaosmec \cong mont > hem > cal$		
		21	hem / illi / kao / mic / mont / qzo / sap	qzo > illi > kao > sap > mic > hem > mont		
		23A	alb / hem / illi / qzo / rec	qzo > alb > illi > hem > rec		

N: região norte. AM: número da amostra. Hierarquia de acordo com picos dos difratogramas (Fig. III.29a e Anexos MC.7,8)

A quantidade de Na₂O (0,16-1,68%) é muito baixa, exceto na am23A (2,68%), em que o sódio pode ser tanto da composição da illita como da rectorita.

Os teores de K₂O (2,42-4,04%) estão relacionados a presença da illita na maioria das amostras. O microclíneo, identificado via DRX na am 21, é associado a teores um pouco mais elevados de sódio (4,04%) nesta amostra.

Os teores de CaO (0,19-0,57%) são associados a montmorillonita na am19 e am21. O MgO é coerente com ma presença de illita (todas as amostras), clinocloro (am11A), montimorillonita (am19 e 21) e saponita (am21). Na am07, o conteúdo desses óxidos é muito baixo, função da dominância de caulinita na amostra e menor porporção de outros argilo-minerais.

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

As principais feições de absorção registradas nas amostras do grupo FC6, no intervalo do espectro SWIR (Fig. III.29b,c), são descritas a seguir:

- <u>1.41-1.42μm</u>: feição variável entre as amostras; na am07 parece ser devida a exclusivamente a illita; a illita também parece ser responsável pelas feições nas outras amostras, mas combinada ao clinocloro (am11A), rectorita (am23A) e montmorillonita (am19 e am21);
- 1.60μm: as curvas am07, am 19, am21 e am23 apresentam uma ampla depressão em torno de 1.6μm; não foi possível relacionar essa banda a nenhum mineral em específico
- <u>1.78-1.80μm</u>: feição sutil na am07 e na am 11A; é possível que esteja relacionada a caulinita;

* Matéria-Prima para Cerâmica de Revestimentos *

Figura III.29a: DRX da fração total do argilito róseo (FC6)

Figura III.29b: Coleção espectral de amostras do grupo FC6. (SWIR)

Tabela III.24: Comprimento de onda dos picos de absorção da curva espectral das amostras da Formação Corumbataí (FC6), moléculas responsáveis, minerais identificados pelo *SFS* com base nos resultados de DRX e minerais correlacionados de acordo com a bibliografia.

λ. (um)		ΔΜ		MINERAIS				
v (t	uiii)	7.101	MOLEOULA	DRX / SFS	PROVÁVEIS			
1.41	1.413	19a2		illi (1,4) kaosmec 1 / mont 8				
a		21c2	OH H₂O	illi (1,4) / kao 2 / mic 3 mont 8 / sap 2				
1.42	1.414	11Aa1		illi (4,5)	kao			
	1.415	07a2		illi 4 / kao 2				
1.60	1.600	07a2, 19a2, 21c2, 23c4						
а	1.605	21c2						
1.70	1.607	19a2						
_	1.703	23Ac4		clino 5 [?]				
1.79	1.790	07a2	OH		hal [?]			
	1.909	21c2		illi 5 / kao 6 / mont 8 / sap 2	mic			
1.91 a	1.910	19a2	H ₂ O	illi (4,5) / kaosmec 1 / mont 9	cal			
1.92	1.911	11Aa1		clino 4 / illi 5 / kao 6				
	1.912	23Ac4		illi 5 / rec 2				
	1.920 07a2			kao 4				
	2.155	07a2, 11Aa1, 19a2, 21c2 (#)			cal / kao			
2.16	2 205	11Aa1		illi 5 / kao 2	kao			
່ລັ		21c2	AI-OH	illi 5 / kao 2 / mont 1	kao / mic			
2 21	2.206	07a2	/	illi 5 / kao 3	kao			
2.21		23Ac4		illi 5	kao / rec			
	2.207	19a2		illi 5 / kaosmec 1 / mont 1				
2.34	2.343	23Ac4	Mg-OH	cal 1 / illi (A,2)				
2.35	2.345	21c2	CO3		cal / illi / kao / mont			
2.38	2.380	07a2, 21c2			kao / mont / mic / sap [?]			
2.42	2.420	11Aa1, 23Ac4						
2.43	2.431	23Ac4		illi 1				
2.44	2.442	11Aa1		illi (2,4)	mont			
2.45	2.454	23Ac4	AI-OH		illi			
2 47	2.471	19a2		cal 1				
2	2.473	21c2			kao			
240	2.479	11Aa1		cal 2 [?]				
2.49	2.485	23Ac4			carbonato [?]			

coluna II: picos (0.000) segundo a figura III.29c, em **negrito** de acordo com os resultados do *SFS* [?]: não identificados por DRX / (#): ombro do pico

(Offset for clarity)

Figura III.29c: Coleção espectral (curvas médias) das amostras do grupo FC6. (SWIR)

- <u>1.91-1.92μm</u>: feições de absorção profundas. A illita aparece de forma clara na am07, com sua feição tipicamente mais simétrica e braço direito mais longo. As feições nas outras amostras (am11, am19, am21 e am23) são mais assimétricas (maior assimetria na am11), e apontam para misturas com outros argilo-minerais. A feições nas curvas am19 e am21 são muitos semelhantes e devem ser devidas a combinações entre illita, kaosmec e montmorillonita e illita, saponita e montmorillonita. A feição na am23 sugere uma combinação de illita e rectorita, visto que o braço direito da feição sofre um leve sobresalto, possivelmentre pela influência da rectorita na mistura;
- <u>2.16-2.21µm</u>: feições (agudas) mais características. A principal feição ocorre na am07, em forma de um *doublet* assimétrico, com ponta dos picos de absorção simétricas e angulosidade fechada pelas características, é uma feição inconteste da presença de caulinita (predominate) e illita. O outro pico mais proeminente ocorre na am21, tem angulosidade mais fechada e pode ser decorrente da combinação illita, caulinita e montmorillonita. Outras combinações são: illita e rectorita (am23A), illita e montmorillonita (am19), illita e caulinita (am11A) e (am19). A am23 tem menor grau de alteração (apenas pastilhada) e apresenta a feição menos evidente neste intervalo;
- <u>2.34-2.35</u>: feições muito rasas; destaque para a am19, onde a feição pode ser devida a combinação das feições de calcita e illita nessa faixa.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras do grupo FC6, a partir dos algoritmos do SIMIS (Tab. III.24), é apresentado a seguir:

07a2	mistura resultado	kao (2,3,4) / illi (4,5) illi (4,5)	21c2	mistura resultado	illi (4,5) / kao 2 / mic 3 / mont (1,8) / sap 2 illi 5
11Aa1	mistura resultado	clino 4 / illi (2,4,5) / kao (2,6) 	23Ac4	mistura resultado	illi (A,1,2,5) / rec 2 illi 2
19a2	mistura resultado	cal 1 / illi (4,5) / kaosmec 1 / mo cal 1 / mont 1	nt (1,8,9)		

Os resultados do SF para essas amostras não foram satisfatórios devido aos elevados erros.

➡ Grupo FC7 (argilito amarelo e branco - N)

As rochas deste grupo são encontradas apenas na região norte da mina. Compreendem tipos com coloração amarela, textura maciça, untuosa e baixa dureza (macia), geralmente fraturados, com superfícies planas e verticais, paralelas ao contato da rocha básica intrusiva (decomposta), com as encaixantes. Destaque para a am22 que é branca, com percolações avermelhadas e ocre, mas com textura semelhante.

Os litotipos aqui também são produto da alteração da FC, em contato com a rocha intrusiva básica, que numa segunda fase foram alterados intempéricamente. Estas características facillitam sua extração (mecânica), que não necessita de desmonte com explosivos. É utilizado como *blend* na matéria prima cerâmica em conjunto com os tradicionais siltitos arroxeados.

Sua característica plástica é impar da mina, além dos baixíssimos teores de sódio, que são diagnósticos e prejudicam seu uso individual.

Os resultados de análises químicas e mineralógicas de três amostras deste grupo são apresentadas nas Tabelas III.25 e 26.

Amostras de calibração

Os teores de SiO₂ (65-46-73,38%) e Al₂O₃ (12,64-15-98%) são compatioveis com os siltitos da FC2; apenas a am 22 possui teor de sílica mais elevado e de alumínio mais baixo.

A hierarquia de proporção mineral (Tab. III.26), gerada com base na interpretação das intensidades dos picos de DRX (Fig. III.31a e Anexo MC.7), mostra uma coerência entre o quimismo e a mineralogia derivada via DRX.

				ronnaşe			01).							
			Elementos Maiores (Óxidos) em %										P.F.	
BANG	CADA	AM	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
		08	65,46	0,750	15,98	6,24	0,030	1,43	0,17	0,09	3,18	0,075	5,83	99,2
N	Ш	11B	68.24	0.677	14.45	5.04	0.015	1.55	0.31	0.91	3.98	0.054	4.85	100.1

0,99

0,12

0,09

0,018

0,071

5,28

101,5

2,21

Tabela III.25: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras de argilito amarelo e
branco da Formação Corumbataí (FC7).

N: região norte. AM: número da amostra. Obs: elementos traços - cf. Anexos MC.4,5

12,64

6,07

0,588

22

73,38

Tabela III.26	: Composição	mineralógica	(DRX)	em	amostras	da	fração	total	(rocha	britada	e moída) da	Formação
	Corumbataí	(FC7)											

BANG	CADA	AM	MINERAIS RESULTANTES DA DRX	HIERARQUIA
		08	alb / illi / kaosmec / qzo	qzo > kaosmec > illi > alb
Ν	П	11B	alb / illi / kao / qzo / sap	qzo > alb > illi > kao > sap
		22	hal / illi / kao / mic / mont / qzo	qzo > kao > hal > illi = mic > mont

N: região norte. AM: número da amostra. Hierarquia: de acordo com picos dos difratogramas (Fig. III.30a e Anexos MC.7,8)

A predominância do quartzo é absoluta em todas as amostras, o que é corroborado pelos altos teores de sílica. A presença de caulinita, halloisita $[Al_2Si_2O_5(OH)_4]$ e caulinita-montmorillonita nas amostras (DRX - Fig. III. 30a), é compatível com os teores em conjunto da sílica e do alumínio.

A quantidade de TiO₂ (0,588-0,750%) e Fe₂O₃ (5,04-6,24%) é compatível com os siltitos da FC. O Na₂O (0,09-0,91%), anômalamente baixo na am08 e am22, não justitica a detecção de albita, mesmo em baixas proporções. O K₂O (2,21-3,98%) está relacionado principalmente a presença de illita em todas as amostras.

O CaO (0,12-0,31%) e o MgO (0,99-1,43%) apresentam valores abaixo da média padrão dos siltitos da FC, o que suporta a mineralogia identificada via DRX.

Classificação Espectro-Mineralógica 1 - Interpretação Empírica

As principais feições de absorção registradas nas amostras do grupo FC7, no intervalo do espectro SWIR (Fig. III.30b,c), são descritas a seguir:

- <u>1.41-1.42μm</u>: todas as curvas possuem excelentes feições assimétricas (Fig. III.30b,c), destacando-se aquela da am22. Na am11B é mais assimétrica e aberta, com inflexão direita e nas amostras 08 e 22 a ponta dos picos são simetricas. As combinações possíveis, que justificam essas feições, são as seguintes: na am08 illita e caulinita-esmectita; na am11B illita e saponita e na am 22 illita e montmorillonita;
- <u>1.91-1.92µm</u>: feições de até 30% de profundidade; claramente indica a presença de montmorillonita e illita na mistura de todas as curvas. A am22 apresenta a menor inclinação do braço direito da feição. A am11B aprsenta a feição mais profunda, assimétrica e com braço direito menos inclinado, sugerindo a combinações de illita e saponita. Na am22 pode haver combinação de illita e montmorillonita; na am08 a feição é dominante devida a illita;
- <u>2.16-2.21μm</u>: feições com geometria mais características, profundas e marcadas por *doublets* (am08 e am22). A feição mais profunda (am22) pode ser função de combinações de caulinita, halloisita e illita já que o doublet é medianamente inflexionado. Na am08 a combinação pode ser de caulinita-smectita e illita, com doublet pouco inflexionado. Na am11B a feição dominante é a da illita;

<u>2.32-2.38μm</u>: feições pequenas (Fig. III.30c), distribuídas em 2.31μm, 2.35μm e 2.38μm, ocorrem conjuntamente na am22 e são típicas da caulinita. A última feição de absorção, em 2.38μm, sempre persiste na mistura de caulinita com outros argilo-minerais e é diagnóstica da sua presença na amostra (Pontual *et al.* 1997).

Além das quatro principais regiões ocorrem outras feições sutis no SWIR (Fig. III.30c). Em 1.78μm, aparece uma feição rasa, que pode estar associada a halloisita ou caulinita (am22, am11B). Em 2.45μm, uma pequena banda de absorção na am1B pode ser devida a caulinita.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras do grupo FC7, a partir dos algoritmos do SIMIS (Tabela III.27), é apresentado a seguir:

08c2	mistura resultado	alb 2 / illi (A,1,2,4) / kaosmec (1,5) alb 2 / illi 1 / kaosmec (1,5)	11Ba4	mistura resultado	alb 2 / illi (4,5) / rec 1 alb 2 / illi 5 / rec 1
22a1	mistura resultado	hal 2 / illi (A,3,4) / kao 6 / kaosmec (1,2, illi A / kao 6 / kaosmec (1,	4,5) / mic 3 / ,2,5) / mont A	mont (A,1,5,8)	

Os resultados da classificação para as amostras deste grupo foram muito bons do ponto de vista de erros associados aos resultados do SF (8,48% - am22; 9,65% - am08; 14,48% - am11B), e também com relação à mineralogia obtida a partir dos espectros, que ficou muito próxima daquela determinada via DRX (inclusive com a detecção de albita parcialmente alterada para argilo-minerais - alb 2). A rectorita foi a principal anomalia, não constando entre os minerais previstos pela DRX nas amostras. Esses resultados são apresentados nas Figuras III.31, 32 e 33, respectivamente, para as amostras 08, 11B e 22.

A classificação da am08 (Fig. III.31) pelo SFS e SF gerou os mesmos resultados quanto a detecção dos minerais, mas com proporções diferentes: albita variou entre 41,6% e 54%, a illita entre 11% e 15,8%, e a mistura caulinita-esmectita (variedades kaosmec-1 e kaosmec-5) variou entre 35 % e 42.5%. Para a am11B (Fig. III.32), os resultados mostraram as seguintes variações entre o SF e SFS: albita 6,6% -10%; illita-5 27% - 30%; rectorita 63% - 64%. Essa última, aparentemente, é um desvio de classificação.

A am22 (Fig. III.33) apresentou as seguintes variações entre os resultados do SF e do SFS: a caulinita (kao) variou de 6% - 20,1%, a illita de 0% - 2%, a kaosmec-1 de 16,4% - 36%, a kaosmec-2 de 0% - 17%, a kaosmec-5 de 17%-63,6%, e a montmorillonita de 0%-22%.

Figura III.30a: DRX da fração total do argilito branco (FC7)

Figura III.30b: Coleção espectral de amostras do grupo FC7. (SWIR)

Tabela III.27:Comprimento de onda dos picos de absorção da curva espectral
das amostras da Formação Corumbataí (FC7), moléculas
responsáveis, minerais identificados pelo SFS com base nos resultados de DRX e minerais correlacionados de acordo com a bibliografia.

λ (μm)		AM MOLÉCULA		MINER	AIS	
λ (μ		7.000		DRX / SFS	PROVÁVEIS	
	1 113	08c2		alb 2 / illi (1,4) / kaosmec (1,5)		
1.41 a	1.413	22a1	ОН	hal 2 / illi (A,4) / kao 6 mic 3 / mont (A,5,8)	hal (hidra)	
1.42	1.415	11Ba4		alb 2 / illi 4 kao 2 / mont 8 / kaosmec (1,5) [?]		
1.62	1.620	08c2				
1.78	1.780	11Ba4, 22a1 (*)	OH		hal	
	1 010	08c2		illi (1,4) / kaosmec (1,5)	alb	
1.91 a	1.910	22a1	H ₂ O	hal 2 / illi A / mont (A,5,8)	mic	
1.92	1.915	11Ba4		kao 4 / kaosmec 5 / mont (2,9) rec 1 [?]	alb / hal	
	2.160	08c2, 11Ba4, 22a1 (#)			hal	
2.16		08c2		kaosmec(1,5)		
a	2.205	22a1	AI-OH	hal 2 / kao 6 / mont (1,5)	illi	
2.21	2.207	11Ba4		illi 5 kao 2 / mont 8 / kaosmec (1,5) [?]		
2 35	2.345	08c2	CO.	alb 2 / illi (A,2,4)		
2.00	2.350	11Ba4, 22a1	003		illi / mont	
2.38	2.376	22a1		hal 2 / kao 2 / mont 1		
2.39	2.385	08c2, 11Ba4, 22a1			mont	
2.44	2.437	08c2		alb 2 / illi (2,4)		
2.45	2.445	22a1	AI-OH	illi (A,3,4) / mic 3	mont	
2.46	2.460	11Bo4		kao 7 [2]	alb / mont [?]	
2 47	2.470	TIDa4		1.40 / [:]		
2.49	2.487	22a1			carbonato [?]	
	1		l	1		

III.8.4. FORMAÇÃO SERRA GERAL (FSG)

O compartimento relativo a FSG é composto por dois litotipos: o produto de alteração da rocha básica intrusiva (am 10) e o latossolo sobrejacente (am09), ambos expostos na região norte da mina

O material ocre da rocha intrusiva foi coletado em um matação em estado avançado de alteração. Como não há registro *in situ* da rocha intrusiva, já totalmente degradada próximo à superfície, os matacões são a única fonte de dados deste litotipo. A alteração tem a composição próxima de uma bauxita, devido à grande predominância de gibbsita [Al(OH)3].

O latossolo, espesso (3m) nesta região, possui cor vermelho intensa, e é rico em goethita [FeO(OH)] botriodal dispersa, de granulometria variável. A intrusão básica na FC, responsável pela alteração primária das rochas, somada a alteração intempérica a qual todo o conjunto foi submetido, geraram este latossolo.

A investigação destes dois materiais de ocorrência local foi feita com o intuito de construir uma relação entre os litotipos da mina e ajustar a calibração de amostras para a espectroscopia de reflectância. A FRX (Tab. III.28) e a DRX (Tab. III.29) forneceram informações químicas e mineralógicas, críticas para a posterior classificação espectral (Fig. III.34, Tab. III.30).

Amostras de calibração

A perda ao fogo é alta nestas amostras. No latossolo, observou-se elevados teores de alumínio, ferro, e titânio, e baixos teores de sódio, potássio, cálcio e magnésio, além de quantidades medianas de sílica (Tab. III.28). Esses teores são compatíveis com a mineralogia do hidróxido de alumínio (gibbsita), dos óxidos e hidróxidos de ferro (hematita e maghemita), a caulinita e o quartzo.

O quartzo, predominante no latossolo (Tab. III.29 e Anexo MC.7), concentra boa parte dos teores de sílica, acompanhado na ordem pelos minerais: caulinita, illita, microclíneo, montmorillonita e saponita. Da mesma forma, o alumínio é relacionado, na ordem, aos minerais: caulinita, microclíneo, gibbsita, illita, montmorillonita e saponita.

 Tabela III.28: Composição química (FRX) de elementos maiores e perda ao fogo (PF) em amostras do latossolo e da alteração da intrusiva básica (matacão), na região N (norte).

AM	Elementos Maiores (Óxidos) em %								P.F.	Somo		
	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000 C) %	Soma
09	42,04	3,925	23,85	19,08	0,088	0,35	0,03	0,02	0,37	0,098	10,56	100,4
10	15,40	8,451	23,97	34,41	0,304	0,28	0,02	0,02	0,01	0,816	14,68	98,4

AM: número da amostra Obs: elementos traços ver Anexo MC.4 O alto teor de titânio no latossolo pode ser devido aos minerais de ferro, ao microclíneo e/ou soluções residuais da alteração da rocha intrusiva. O teor de ferro é devido a presença de óxidos e hidróxidos de ferro e, em menor quantidade, de illita e a saponita. A presença de illita no solo é discreta (cf. % de K₂O), assim como a montmorillonita (cf. Na₂O, CaO e MgO) e a saponita (MgO).

O produto de alteração da rocha intrusiva tem baixíssima sílica. O alumínio, em quantidade superior à sílica, é relacionado a presença abundante de gibbsita (Fig. III.34a). A maior fração de óxido na bauxita é pertencente ao ferro que distribui esta quantidade pelos minerais: maghemita (Fe₂O₃), goethita [FeO(OH)] e ilmenita (FeTiO₃). O titânio, muito elevado, é decorrente da ilmenita, que é o mineral presente em menor quantidade. Outros óxidos que se destacam nesta bauxita são o MnO e principalmente o P₂O₅. O fosfato pode estar relacionado ao manganês visto que este último não tem relação com o cálcio nesta rocha.

 Tabela III.29: Composição mineralógica (DRX) em amostras da fração total (rocha britada e moída) da rocha intrusiva e do solo.

BANCADA	AM	MINERAIS RESULTANTES DA DRX			
LATOSSOLO	09	gib / hem / illi / kao / mag / mic / mont / qzo / sap	qzo > kao > mic > mag > hem > gib > illi > mont > sap		
INTRUSIVA	10	gib / goe / ilm / mag / qzo	gib > qzo > mag > goe > ilm		

AM: número da amostra; difratogramas em Fig. III.34a e Anexo MC.

<u>Classificação Espectro-Mineralógica 1 - Interpretação Empírica</u>

As principais feições de absorção registradas nas amostras da FSG no intervalo do espectro SWIR (Fig. III.34b,c), são descritas a seguir:

- <u>1.41-1.42μm</u>: nesta região o pico de absorção do solo é muito mais proeminente que o da bauxita (Fig. III.34b,c), enquanto que a feição do solo é relativamente profunda (10% reflectância), simétrica na ponta e com ombro esquerdo, a da bauxita é abaulada, aberta e rasa (5%). Para o solo (am09) a montmorillonita apresenta a feição mais similar, devido a leve inflexão direita, porém a illita pode estar combinada. Somente a gibbsita, entre os minerais identificados pela DRX, foi detectada na bauxita (am10), mas o abaulamento da feição pode ser devido à composição em minerais de ferro como a goethita, que apresenta feição nesta região;
- <u>1.60-1.62μm</u>: feições de absorção amplas e rasas (am09/10);
- <u>1.92μm</u>: compreende as maiores profundidades das bandas de absorção, onde a feição do solo apresenta até 15% de reflectância (Fig. III.34b,c). As feições são assimétricas com o braço direito menos inclinado. A bauxita (am10) contém a feição da gibbsita e o solo (am09) pode conter combinações entre gibbsita, illita, montmorillonita e saponita, porém a feição da gibbsita

é mais similar devdido a menor largura e maior inclinação do braço direito. A presença de gibbsita na feição de 1.915μm é coerente (Pontual *et al.* 1997).

- <u>2.19-2.20μm</u>: feição mais característica da curva espectral do solo (am09) apesar de não ser a mais profunda. É assimétrica, mas a ponta do pico é simétrica e mais fechada; o braço direito é mais inclinado e a profundidade alcança 15% de reflectância (Fig. III.34b,c). Quanto a essa feição na am09 sugere a combinação caulinita e illita é satisteita devido a inflexão do doublet ser suave, mas originariamente esta característica é da caulinita;
- <u>2.20-2.27μm</u>: feição de geometria mais característica da gibbsita (típica) que ocorre na bauxita (am10). Esta feição é formada por um doublet, sendo o primeiro pico em 2.2μm e o segundo em 2.266μm (mais profundo) (Fig. III.34b,c). Apesar de ser pouco profunda, devido a mistura, é diagnóstica. Segundo Pontual *et al.* (1997) esta feição de absorção pode persistir fortemente em misturas, sempre possibilitando a identificação da gibbsita na amostra.
- <u>2.31-2.38μm</u>: duas feições característica da caulinita em 2.31μm muito pequena e em 2.38μm levemente mais profunda, ocorrem somente no latossolo (Fig. III.34c).

No VNIR (Anexo MC.11), aparecem feições de absorção em 0.53μ m e 0.90μ m na am09 interpretadas como da hematita. Na am10, ocorrem feições em 0.42μ m, 0.49μ m (goethita ou maghemita), 0.68μ m (goethita) e 0.97μ m (goethita ou maghemita) atribuídas a outros óxidos e hidróxidos de ferro.

<u>Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)</u>

Um sumário dos resultados gerais obtidos da classificação espectro-mineralógica das amostras do grupo FSG, a partir dos algoritmos do SIMIS (Tabela III.30), é apresentado a seguir:

09c2	mistura	illi (A,1,4,5) / kao 3 / mic (3,5) / mont 1	1002	mistura	gib (1,2)
	resultado	illi 1 / mic 5 / mont 1	1002	resultado	gib 2

Os resultados do SF para essas amostras não foram satisfatórios devido aos elevados erros.

Figura III.34a: DRX da fração total da bauxita (alteração FSG)

Figura III.34b: Coleção espectral de amostras do latossolo e da bauxita, ambos alteração da intrusiva (FSG). (SWIR)

Tabela III.30:Comprimento de onda dos picos de absorção da curva
espectral das amostras do Solo da Formação Corumbataí e
da alteração da Rocha Intrusiva, moléculas responsáveis,
minerais identificados pelo SFS com base nos resultados de
DRX e minerais correlacionados de acordo com a bibliografia.

λ (μm)		ΔΜ	MOLÉCULA	MINERAIS			
			moleooer	DRX / SFS	PROVÁVEIS		
1.41	1.413	09c2	ОН	illi (A,4,5) / kao 3 / mic 3 / mont 1	sap		
1.414		10c2	H ₂ O		goe		
1.42	1.415	10c2		gib 2			
1.60	1.596	09c2			clino		
1.61	1.609	10-0		clino 6 [?]			
1.62	1.618	10c2					
	1.919	09c2		kao 3	gib		
1.92	1.920	10c2	H₂O	hal 4 / kao 3 / rec1 / ver 4 [?]			
2.19	2.185	09c2 (#)			illi / mont		
2.20	2.204	09c2 / 10c2		illi 5 / kao 3	gib / mic		
2.25	2.252	10-2			mont		
2.27	2.266	1002	re-On	gib 2			
2.36	2.356	09c2			gib / illi / kao / mont		
2 38	2.378	0302		kao 3 / mont 1	hem		
2.30	2.380	10c2			nontronita / sap		
2.40	2.396	10c2			kao / mont		
2 4 1	2.407	09c2			mont		
2.71	2.413	10c2					
2.43	2.434	09c2		illi i / mont 9			
2.47	2.467	10c2		clino (3,4) / dol 2 / mic 2 [?]			
2.48	2.477	09c2					
2.47	2.468	10c2					
2.49	2.491	09c2					

coluna II: picos (0.000) segundo a figura III.34b., em *negrito* de acordo com os resultados do SFS [?]: não identificados por DRX / (#): ombro do pico

Figura III.34c: Espectros (curvas médias) da bauxita (10) e do latossolo (09), alterações da FSG. (SWIR)
III.9. DISCUSSÕES & CONCLUSÕES

A caracterização de matérias primas para a indústria cerâmica pelos meios convencionais é um trabalho complexo, pois muitos materiais visualmente semelhantes são química e tecnologicamente diferentes.

Com o intuito de verificar a possibilidade de utilização da técnica de espectroscopia de reflectância para a caracterização das matérias primas da Mina do Cruzeiro, foram levantados dados de propriedades químicas, mineralógicas e espectrais dos diferentes litotipos.

Os siltitos róseos dos grupos <u>FC2 e FC5</u>, <u>principal fonte de matéria prima da mina</u>, apresentaram uma proporção entre óxidos fundentes (K₂O+Na₂O & CaO+MgO) *versus* óxidos refratários (SiO₂ e Al₂O₃) muito boa, o que lhes confere excelentes qualidades cerâmicas. Por exemplo, a relação [(Na₂O+K₂O)/Al₂O₃] é de 0.5, em média, para as amostras destes dois grupos, o que é considerado com um bom termo entre fuzibilidade e retrabilidade (Moreno *et al.* 2000, Christofoletti & Moreno 2002). Além de terem sido importantes para caracterizar os materais da mina quanto a sua qualidade cerâmica, as análises químicas foram úteis no sentido de confirmar a presença dos minerais determinados por DRX, apontando a existência de possíveis minerais não detectados por esse método e/ou pela espectroscopia de reflectância.

A partir do conhecimento detalhado da composição mineral das rochas, de suas propriedades químicas e espectrais, foi possível estabelecer quais os fatores que obliteram a assinatura espectral das mesmas. Estes resumidamente são os seguintes:

- > matéria orgânica, principalmente nas rochas carbonáticas;
- cimento silicoso, nos siltitos;
- granulometria muito fina;
- mistura mineral complexa;
- minerais sem feição espectral diagnóstica presentes na mistura;
- baixa cristalinidade dos argilo-minerais

De modo geral, as respostas espectrais da Formação Irati (FI) foram prejudicadas pela quantidade matéria orgânica, e da Formação Serra Alta (FSA) pela extrema silicificação (quantidade de quartzo).

A despeito destes obstáculos, a proposta inicial de substituir ou complementar as técnicas convencionais de caracterização mineralógica pela classificação espectral nos materiais alvo foi atingida, no mínimo parcialmente, nesta pesquisa. A análise espectro-mineralógica dos litotipos da Mina do Cruzeiro permitiu o estabelecimento de uma compartimentação na mina (Fig. III.35), que pode ser associada a usos específicos e/ou características tecnológicas das diferentes matérias-primas aplicadas na indústria cerâmica de revestimentos.

A partir das curvas de reflectância espectral características de cada compartimento e/ou grupo litológico, métodos de interpretação empíricos (visual/manual) possibillitaram a separação de quatro principais regiões do espectro SWIR, com feições diagnósticas de minerais ou mistura de minerais associados aos vários litotipos.

Na primeira região do espectro, entre 1.40-1.42 µm, relativa às vibrações das moléculas de OH e H₂O, há feições proeminentes relacionadas aos litotipos FC1, FC3 e FC7 e latossolo (Fig. III.35). Os litotipos FC7 e latossolo possuem uma mistura de feições nessa região, parte das quais apontam para a presença de caulinita (confirmada por DRX). Entre os litotipos da Formação Corumbataí, o FC2 e FC5, com alto conteúdo em quartzo e baixo de caulinita, não possuem feições destacadas nessa região - <u>um primeiro fator que os distingue espectralmente de todos os outros materiais de interesse econômico da mina.</u> Nos litotipos da FSA e na FI, essas feições são ainda menos importantes.

A segunda região, entre 1.90 e 1.92µm, relativa à vibração da ligação das moléculas de água, aparece na maioria dos litotipos estudados (Fig. III.35). As feições menos profundas ocorrem na FSA, FC2 e FC5 - <u>o que constitui um segundo fator de separação dos litotipos da Formação Corumbataí de outros na mina.</u> Quanto a geometria lateral das diversas feições, observa-se que as bandas de absorção comportam-se de vários modos, entre formas fechadas (simétricas ou assimétricas) e abertas (simétricas ou assimétricas). Esses comportamentos variáveis são advindos de misturas espectrais mais e menos homogêneas entre minerais como illita, caulinita, montmorillonita, saponita e gibbsita.

Na terceira região, entre 2.16 e 2.22µm, relativa às vibrações das ligações de Al-OH, observa-se que algumas assinaturas possuem destaque na profundidade, como ocorre para os litotipos FC3, FC6, FC7 e latosolo (Fig. III.35). As curvas do litotipo FC7 e do latossolo denotam perfeitamente a presença de caulinita na mistura espectral, com seu d*oublet* típico centrado em 2.2µm, embora afetado pela mistura com outros minerais. Os litotipos FC1, FC3 e FC6, por sua vez, possuem feições de absorção com tendência a formas mais agudas e únicas nessa região, o que denota a dominância de minerais do grupo da illita e das esmectitas em sua composição. A gibbsita possue feições mistas tanto na bauxita como no latossolo, destacando-se o *doublet* com absorções em 2.220µm e 2.266µm, e as absorções múltiplas em 1.452µm, 1.521µm e 1549µm - embora feições de outros argilo minerais mascarem tais feições parcialmente.

Na quarta região, entre 2.31 e 2.35µm, relativa às vibrações das moléculas de Mg-OH e CO₃, há poucas assinaturas espectrais representativas, exceto nos litotipos da FI e FC4, que são claramente discriminados dos outros materiais estudados na mina. Essa assinatura espectral particular é função das bandas de absorção causadas por vibrações de CO₃ e ligados à presença de carbonatos nesses litotipos, minerais que, no caso da Formação Corumbataí, ocorrem na forma de veios, aglomerados e nódulos. A determinação desta assinatura, que permite a separação destes litotipos com conteúdo em carbonatos de todos os outros materiais da mina, é muito importante, principalmente em rochas da FC, pois o carbonato é prejudicial e causa várias complicações ao processo cerâmico.

A possibilidade de separar espectralmente litotipos ricos em carbonato, abre a possibilidade de utilização da espectroscopia de reflectância para o controle de qualidade e lavra seletiva na Mina do Cruzeiro, não só na caracterização dos melhores materiais (FC2 e FC5), mas também no sentido de isolar os materiais indesejáveis (FI e FC4).

Os siltitos da Formação Corumbataí alterados pela intrusão básica (FC7), além do estágio de decomposição intempérica avançada em que se encontram, apresentam excelentes feições espectrais, muitas delas diagnosticadas com facilidade, o que propiciou sua caracterização espectral plena. Entretanto, estas rochas não possuem tão boa qualidade para a aplicação cerâmica do setor de revestimentos, a não ser como *blend* para melhorar as proporções de potássio no material.

A classificação espectral automática, baseada nos algoritmos do SIMIS, não obteve sucesso nesta investigação. Apesar do *SIMIS Feature Search* ser um excelente indicador das misturas espectrais possíveis na amostra, auxiliando na confecção de bibliotecas espectrais especializadas, o mesmo não possui nenhuma referência ao erro de classificação, deixando ao usuário a avaliação subjetiva dos resultados. O *SIMIS Field*, em contrapartida, oferece informações sobre os erros de classificação, os quais foram muito altos para a maioria dos casos analisados, tornando os resultados ambíguos. Da mesma forma, a tentativa de quantificação das proporções dos minerais presentes na mistura espectral também não foi bem sucedida em quase todos os casos. Isso indica que a tecnologia de classificação espectral automática, baseada em bibliotecas de referência, ainda não é um assunto dominado e que novos avanços podem e devem ser realizados neste campo.

Figura III.35: Correlação da entre a litoestratigrafia, litotipos e assinaturas espectrais obtidas por espectroscopia de reflectância na Mina do Cruzeiro.

III.10. REFERÊNCIAS BIBLIOGRÁFICAS - Capítulo III

Almeida E.B., Christofoletti S.R., Alegri V., Fugie A. 1999. Fatores Restritivos ao Aproveitamento Cerâmico da Formação Corumbataí, Região de Rio Claro, SP. *In:* SBG - Núcleo SP, RJ e ES, Simpósio de Geologia do Sudeste, VI, São Pedro, *Atas*, Boletim de Resumos, p. 122.

Carvalho S.G., Moreno M.M.T., Zanardo A., Valarelli J.V. 1998. Argilas para Cerâmica Vermelha - Tema de Pesquisas de Minerais Industriais no IGCE - Unesp - Rio Claro. *In*: Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anais*, p. 302.

Christofoletti S.R. 1999. Estudo Mineralógico, Químico e Textural das Rochas Sedimentares da Formação Corumbataí "Jazida Cruzeiro", e suas Implicações nos Processos e Produtos Cerâmicos. Dissertação de Mestrado, Instituto de Geociências e Ciências Exatas, Unesp, Rio Claro. 169p.

Christofoletti S.R. 1997. Caracterização Geológica e Tecnológica das Matérias-Primas para Cerâmica Vermelha do Pólo de Santa Gertrudes (SP). *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, V, Penedo - Itatiaia, *Anais*, Boletim de Resumos, p. 409.

Christofoletti S.R. & Moreno M.M.T. 2002. Correlação Estratigráfica de Jazidas Versus Propriedades Tecnológicas das Argilas da Formação Corumabataí Utilizada como Matéria-Prima Cerâmica. *In:* SBG - Núcleo Nordeste, Congresso Brasileiro de Geologia, 41, João Pessoa, *Anais*, p. 187.

Christofoletti S.R., Masson M.R., Thomazella H.R., Fugie A., Moreno M.M.T., Valarelli J.V. 2001. Mapeamento e Caracterização Geológica / Tecnológica da Formação Corumbataí com vistas ao seu emprego na Indústria de Revestimentos Cerâmicos. Parte II - Caracterização tecnológica e sua correlação com a geologia. *Revista Cerâmica Industrial* - ABC, 6(1): 24-31.

Clark R.N. 1999. Spectroscopy of Rocks And Minerals, And Principles of Spectroscopy. *In:*, A.N. Rencz (eds.) *Remote Sensing for the Earth Sciences: Manual of Remote Sensing*, 3ed., vol. 3, chapter 1, John Wiley & Sons, Inc., New York, pp.: 03-58

Clark R.N., King T.V.V., Klejwa G.A., Swayze G.A. 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. *Journal of Geophysical Research*, 95(B8): 12.653-12.680.

Farinaccio A., Motta J.F.M., Tanno L.C., Valarelli J.V., Moreno M.M.T., Aily C. 1997. Distribuição das Lavras de Argila para Cerâmica Vermelha e de Revestimento no Município de Rio Claro. In: SBG - Núcleo SP, RJ e ES, Simposio de Geología do Sudeste, V, Penedo-Itatiaia, *Atas*, Boletim de Resumos, p. 425.

Fernandes A.C., Souza P.E.C., Santana P.R. Moreno M.M.T., Carvalho S.G. 1998. A Variação das Propriedades da Massa Cerâmica em Função das Características Físico-Químicas, Mineralógicas e Texturais de Argilas da Região de Santa Gertrudres - SP. *Revista Cerâmica Industrial*, ABC, 3(4-6): 24-29.

Fernandes A.C., Souza P.E.C., Santana P.R. Moreno M.M.T., Carvalho S.G. 1998. A Variação das Propriedades da Massa Cerâmica em Função das Características Físico-Químicas, Mineralógicas e Texturais de Argilas da Região de Santa Gertrudres - SP. *In:* ABC, Congresso Brasileiro de Cerâmica, 42, Poços de Caldas, *Anais*, vol. 1, p. 76.

Gaspar Junior L.A., Souza M.H.O., Moreno M.M.T., Valarelli J.V. 1999a. Caracterização Química, Mineralógica e Textural de Rochas Sedimentares da Formação Corumbataí e sua Utilização como Matéria Prima na Indústria Cerâmica de Revestimentos. *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, VI, São Pedro, *Atas*, Boletim de Resumos, p. 136.

Grego M.I.B.M., Moreno M.M.T., Amarante Jr. A., Fernandes A.C., Valarelli J.V. 1998. Caracterização Quanto à Plasticidade de Argilas de 10 Jazidas da Formação Corumbataí com Finalidades Cerâmicas. *In:* SBG - MG, Congresso Brasileiro de Geologia, 40, *Anais*, p. 309.

Grigoletto L.R. 2001. Mapeamento Geológico e Caracterização de Frentes de Lavra - Mina do Cruzeiro. *In:* Melhoria da Qualidade das Massas Cerâmicas Básicas da UNICER, Relatório Final de Projeto. CNPq / PADCT III / RHAE. PI: 610037/98-6. pp. 33-49.

Hunt G.R. & Salisbury J.W., 1976. Visible and Near Infrared Spectra of Minerals and Rocks: XI. Sedimentary Rocks. *Modern Geology*, 5(4): 211-217.

Hunt G.R. & Salisbury J.W. 1971. Visible and Near-Infrared Spectra of Minerals and Rocks: II. Carbonates. *Modern Geology*, 2(): 23-30.

Masson M.R., Christofoletti S.R., Thomazella H.R., Fugie A., Zanardo A., Alegre V. 2000. Mapeamento e Caracterização Geológica / Tecnológica da Formação Corumbataí com vistas ao seu Emprego na Indústria de Revestimentos Cerâmicos. Parte I - Geologia e correlação entre as minas e jazidas estudadas. *Revista Cerâmica Industrial* - ABC, 5(6): 24-33.

Masson M.R., Zanardo A., Valarelli J.V., Moreno M.M.T. 1998a. Delimitação das Causas de Defeito em Revestimentos Cerâmicos Provocados pela Natureza Composicional das Matérias-Primas Utilizadas. *In:* SBG - MG, Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anais*, p. 312.

Masson M.R., Zanardo A., Valarelli J.V. 1998b. O Grupo de Pesquisa Qualidade em Cerâmica e sua Atuação no Setor de Matérias-Primas para Revestimentos. *In:* SBG - MG, Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anais*, p. 319.

Masson M.R., Zanardo, A., Moreno M.M.T., Valarelli J.V. 1997a. Estudo da Utilização das Argilas da Formação Corumbataí, no Estado de São Paulo, como Matéria-Prima para a Indústria Cerâmica de Revestimentos: Sua Influência na Qualidade dos Produtos. Resultados Preliminares. *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, V, Penedo - Itatiaia, *Atas*, Boletim de Resumos, p. 428.

Masson M.R., Thomazella H.R., Zanardo A., Moreno M.M.T., Valarelli J.V. 1997b. Os Principais Defeitos Cerâmicos, suas Causas e Possíveis Medidas Corretivas Ligadas à Lavra e ao Beneficiamento das Matérias-Primas Utilizadas pelo Pólo Cerâmico de Santa Gertrudes-Cordeirópolis (SP). *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, V, Penedo - Itatiaia, *Atas*, Boletim de Resumos, p. 440.

Montanheiro T.J., Yamamoto J.K., Gobbo L.A. 1999. Ocorrências de Tripoli no Subgrupo Irati, Estado de São Paulo. *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, VI, São Pedro, *Atas*, Boletim de Resumos, p. 156.

Morais S.M. 1999. Integração Geológica da Folha Campinas SF.23-Y-A, Escala 1:250.000, Estados de São Paulo e Minas Gerais. Ministério de Minas e Energia, Secretaria de Minas e Metalurgia, CPRM - Serviço Geológico do Brasil. Programa de Levantamentos Geológicos Básicos do Brasil, Projeto de Integração Geológico - Metalogenética Folha Rio de Janeiro. São Paulo, 1999. 38p.

Moreno M.M.T., Christofoletti S.R., Valarelli J.V. 2000. Composição Química dos Elementos Maiores em Rochas da Formação Corumbataí e sua Influência na Produção de Revestimentos Cerâmicos. *Revista Cerâmica Industrial* - ABC, 5(4): 47-50.

Moreno M.M.T. & Valarelli J.V. 1998. Composição Química e Mineralógica de Argilas para Cerâmica Vermelha Utilizadas no Pólo Cerâmico Santa Gertrudes - SP. *In:* SBG - MG, Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anais*, p. 310.

Moreno M.M.T., Valarelli, J.V., Campos G.C. 1997. Caracterização Química e Mineralógica da Matéria Prima para Cerâmica Vermelha da Formação Corumbataí - Jazida Sartori, Rio Claro. *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, V, Penedo - Itatiaia, *Atas*, Boletim de Resumos, p. 417.

Pontual S., Merry N., Gamson P. 1997. Spectral Interpretation Field Manual, G-Max. Spectral Analysis Guides for Mineral Exploration, vol. 1. AusSpec International Pty.Ltd. 169 pp.

Rohn R. 1998. O Topo da Formação Irati (Bacia do Paraná, Permiano) na Região de Rio Claro (SP). *In:* SBG - MG, Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anai*s, p. 108.

Sachs L.L.B., Alegri V., Hermes I.B. 1999. Insumos Minerais Agrícolas do Estado de São Paulo. *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, VI, São Pedro, *Atas*, Boletim de Resumos, p. 115.

Senna J.A. & Souza Filho C.R. 2002. Caracterização de Argilo-Minerais por Espectroscopia de Reflectância na Mina do Cruzeiro (Limeira-SP) e Implicações para a Extração Seletiva de Matéria Prima para uso na Indústria Cerâmica. *In:* Congresso Brasileiro de Geologia, 41, João Pessoa, *Anais*, p. 171.

Souza M.H.O., Gaspar Jr. L.A., Moreno M.M.T. 2002. Comparação dos Efeitos da Adição de Dolomito da Formação Irati em Duas Diferentes Argilas da Formação Corumbataí para Fins Cerâmicos. *In:* SBG - Núcleo Nordeste, Congresso Brasileiro de Geologia, 41, João Pessoa, *Anais*, p. 203.

Souza P.E.C., Christofoletti S.R., Moreno M.M.T., Motta J.F.M., Gonçalves J.C., Valarelli J.V., Carvalho S.G. 1998. Características Cerâmicas das Argilas das Formações Corumbataí e Aquidauana / Subgrupo Itararé, e sua Utilização nos Pólos de Mogi Guaçu e Santa Gertrudes (SP). *In:* SBG - MG, Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anais*, p. 306.

Thomazella H.R., Berbert B.C., Christofoletti S.R., Masson M.R., Zanardo A. 1999. O Desempenho dos Pelitos da Formação Corumbataí para Cerâmica Via Úmida. *In:* SBG - Núcleos SP, RJ e ES, Simpósio de Geologia do Sudeste, VI, São Pedro, *Anais*, Boletim de Resumos, p. 130.

Thomazella H.R., Zanardo A., Valarelli J.V., Moreno M.M.T. 1998. Aspectos Geoquímicos e Tecnológicos do Sazonamento (Descanso) das Argilas para Cerâmica Vermelha na Região de Rio Claro - SP. *In:* Congresso Brasileiro de Geologia, 40, Belo Horizonte, *Anais*, p. 304

* Inst. Geociências - Unicamp *

CARACTERIZAÇÃO DE ARGILO-MINERAIS UTILIZADOS NA INDÚSTRIA DE LOUÇA SANITÁRIA E PORCELANA POR ESPECTROSCOPIA DE REFLECTÂNCIA - ESTUDO DE CASO NOS JAZIMENTOS DE SÃO SIMÃO, SP

IV.1. INTRODUÇÃO

Depósitos de *ball clays* têm sido explorados há pelo menos três séculos na Inglaterra e Estados Unidos e compreendem um dos mais importantes tipos de argila utilizados na indústria de cerâmica fina (Mine & Quarry 1987, Murray 1982, Wilson 1983, Edwards 1976, Angelieri *et al.* 1975, Souza Santos 1975, Phelps 1972). O termo *ball clay* não tem significado mineralógico. Foi derivado da característica singular de determinados volumes de argila assumirem formas esféricas após a sua extração das jazidas (Pressinotti 1991, Phelps 1972). Tecnicamente, a *ball clay* é definida como uma argila secundária, caracterizada pela presença de matéria orgânica, alta plasticidade, alta resistência a seco, longa margem de vitrificação e cor clara de queima (ASTM 1968). Apresenta granulometria mais fina que os caulins secundários (transportados) e tem, com freqüência, mais de 70% em peso de partículas de diâmetro inferior a 2µm (Phelps 1972, Souza Santos 1975).

A região do município de São Simão, Estado de São Paulo, é uma importante produtora de argilas. Em função de sua natureza dominantemente caulinítica, alta plasticidade, contéudo em matéria orgânica, baixo teor de ferro.e cor de queima clara, essas argilas são denominadas do 'tipo *ball clays*', considerando a semelhança de suas propriedades físicas em relação às 'ball clays' inglesas e americanas (Ruiz 1990, Pressinotti 1991). Entretanto, seu conteúdo em alcalis (K, Na, Li, etd) é muito inferior, atingindo, em média, ¼ do valor das estrangeiras (Pressinotti 1991). Isso corresponde a uma deficiência relativa em argilo-minerais, ricos nesses elementos, de 2:1 em relação as *ball clays* genuínas. Mesmo assim, esses depósitos são os mais importantes do Brasil nesta categoria.

Os depósitos de argilas de São Simão encontram-se hospedados em terraços aluviais pleistocênicos da bacia do ribeirão Tamanduá, afluente da margem sul do rio Pardo e principal curso d'água da região. Este ribeirão ocupa um vale aberto, entalhado nas fraldas areníticas das cuestas; tem direção geral N-S (Fig. IV.1, Fig. IV.2) e extensão de cerca de 50 Km (Tanno *et al.* 1994a). A região portadora dos jazimentos de argila encontra-se a montante, próximo de suas

nascentes, embora argila e areia sejam também extraídas ao longo de porções de várzea. Estas porções planas (largura máxima: 1000 m) podem ocupar uma única ou ambas as margens do ribeirão Tamanduá (Tanno *et al.* 1994a).

As jazidas de argilas do tipo *ball clay* de São Simão compreendem uma reserva¹ medida de 3,8 milhões de toneladas (DNPM 1998), das quais são extraídas cerca de 80 mil toneladas por ano (IPT 1990, DNPM-SIPROM 1988), sendo 25.204 t pela MML (Ruiz 1990). Tais argilas, mesmo sendo comercializadas como matéria prima bruta, possuem elevado valor em função de seus aspectos reológicos e tecnológicos diferenciados e sua aplicabilidade na indústria de cerâmica branca, principalmente para a fabricação de peças sanitárias e louças de mesa (Tanno *et al.* 1994a). Essa particularidade faz com que este material tenha um consumo considerável no Brasil (Incepa e a Duratex), sendo ainda exportado para alguns países da América do Sul, como é o caso do Uruguai, maior importador (Ruiz 1990).

Dentre as mineradoras de argilas na região, destaca-se a Mineração Matheus Leme (MML), que explora um jazimento a 200 Km a noroeste (NWN) de Campinas e 50 Km a sudeste (SES) de Ribeirão Preto, na região nordeste do Estado. A área da mineração encontra-se afastada da zona urbana de São Simão cerca de 8 Km, à leste. O acesso à MML, a partir da Rodovia Anhanguera (SP-330), é feito pela SP-253, principal entrada de São Simão, numa distância aproximada de 3 Km, sendo que a área se encontra a sul desta rodovia (Fig. IV.1).

Tomando como estudo de caso os jazimentos do tipo *ball clay* da MML na região de São Simão, os objetivos deste capítulo são:

- avaliar o desempenho da espectroscopia de reflectância e técnicas associadas para caracterização das argilas de São Simão em relação a métodos tradicionais (como a difratometria de raios X), incluindo sua aplicabilidade para definição de tipo, composição e pureza de argilas;
- avaliar a possibilidade de associar parâmetros espectrais para classificação das argilas de São Simão quanto ao uso na indústria de cerâmica fina;
- discutir sobre o ambiente de formação dos principais minerais identificados no jazimento, incluindo minerais de interesse e impurezas contidas nas argilas.

IV.2. GEOLOGIA LOCAL

IV.2.1. FISIOGRAFIA

A região encontra-se no domínio geomorfológico das Cuestas Basálticas, em porções distais, numa região de difícil delimitação com a Depressão Periférica.

¹ indicada: 274.786 t e inferida: 230.000 t (DNPM 1998)

Figura IV.1: Localização da área de estudo e geologia local da região de São Simão.

Figura IV.2: Mapa de detalhe do aluvião do ribeirão Tamanduá.

O clima é o tropical e pode ser dividido em dois grupos, segundo a classificação Köppen:

- A clima tropical quente e úmido;
- C clima mesotérmico.

O relevo apresenta duas formas típicas (Pressinotti 1991):

- <u>Morros amplos</u>: desenvolvidos sobre os arenitos das Formações Pirambóia e Botucatu, são encostas suavizadas de baixa declividade, com topos arredondados e achatados e vertentes retilíneas e convexas. São entalhados por drenagens de baixa densidade (padrão dendrítico) formando vales abertos;
- <u>Relevos residuais</u>: desenvolvidos sobre as rochas básicas da Formação Serra Geral, são sustentados por maciços destas rochas, apresentam feições do tipo mesas e/ou morros testemunhos isolados, com topos aplainados ou arredondados, e vertentes retilíneas, às vezes escarpadas. São entalhados por drenagens de média densidade (padrão pinulado a subparalelo), formando vales fechados.

Os latossolos (roxo, vermelho escuro e vermelho amarelado) e areias quartzosas profundas (< 15% de argila), desenvolvidas sobre os depósitos arenosos, são os tipos de solo dominantes na região. Os solos litólicos, hidromórficos e a "terra roxa" estruturada ocorrem, mas são menos importantes (Oliveira & Prado 1987).

Os solos hidromórficos, formados em decorrência do acúmulo de matéria orgânica, da saturação em água e de processos redutores, vêm abrangendo áreas progressivamente maiores ao longo do ribeirão Tamanduá, função da drenagem deficiente das planícies aluviais (sedimentos quaternários) (Pressinotti 1991).

A vegetação, originalmente formada por Formações Florestais e Cerrados, hoje é restrita a cerrados em alguns setores onde dominam solos arenosos, mata latifoliada e subcaducifóila nos relevos mais acidentados e pequenos trechos preservados de mata de galeria (Pressinotti 1991).

IV.2.2. LITOESTRATIGRAFIA

Na região de São Simão, a geologia é dominada pelas unidades litoestratigráficas do Grupo São Bento da Bacia do Paraná. As rochas sedimentares das Formações Pirambóia e Botucatu, os derrames basálticos da Formação Serra Geral e as Coberturas Cenozóicas, são os principais representantes da geologia local (Fig. IV.1).

Grupo São Bento (GSB)

O GSB compreende arenitos sub-arcoseanos, com baixa maturidade textural e relativa maturidade mineral, o que indica a sua posição proximal em relação à área fonte e sedimentação

relacionada a transporte fluvial e leques aluviais. As estratificações cruzadas de médio a grande porte caracterizam a fácies torrencial, com retrabalhamento fluvial (Pressinotti 1991). Na área de estudo, estes arenitos apresentam espessura de 60 m e nas escarpas da Serra de São Simão ocorrem afloramentos de 40 m.

A alteração supérgena dos arenitos GSB é marcada pela pseudomorfose dos feldspatos e mica para caulinita. Esta transformação pode ser verificada pela ausência de feldspatos nos materiais arenosos superficiais, os quais apresentam somente quartzo imerso em uma massa (pseudomatriz) caulinítica, resultante de processos hidrolíticos. No mesmo processo, as montmorillonitas também se transformaram em caulinitas (Pressinotti 1991).

Formação Pirambóia (FP)

A FP é constituída por arenitos, arenitos argilosos (5-20% de argila) de granulação média a grossa e alguns níveis de arenito conglomerático. As estruturas dominantes são estratificações cruzadas (médio a grande porte) planar tangencial ou acanaladas e acamamentos plano paralelos (fácies transbordamento). Os depósitos de trasbordamento, sempre mais argilosos, são compostos por arenitos lamíticos passando a lamitos arenosos ou folhelhos, com esparsos grãos de areia. No pacote sedimentar, a base é mais argilosa com estratificações cruzadas acanaladas (médio porte), passando, no topo, para coberturas arenosas, formadas por intemperismo (Pressinotti 1991).

A sedimentação desta formação foi iniciada com acumulações de arenitos finos a médios intercalados com camadas e/ou lentes de folhelhos e de lamitos fluviais. As características estruturais, texturais e minerais destes sedimentos indicam deposição em ambiente continental, oxidante e fluvial (principal), com alternância para depósitos de canal e planícies de inundação (Pressinotti 1991). Houve alternância cíclica entre a fácies canal e a de trasbordamento (Soares 1973a, Soares 1973b).

A espessura da formação é de 100 a 200 m, nas proximidades de Serra Azul (município a NE de São Simão) (Soares 1975). Nesta região, Fu-Tai (1981) constatou a seguinte assembléia mineral para os arenitos: quartzo (85-93%), feldspato (5-15%), além de magnetita, ilmenita, leucoxênio, limonita, hematita, zircão, turmalina, rutilo, granada e estaurolita. Ramos & Formoso (1976) verificaram ainda que, em rochas frescas, a montmorillonita é predominante em relação a caulinita.

□ Formação Botucatu (FB)

A FB é composta essencialmente por arenitos eólicos, de granulação fina a média, com pouca matriz, bem selecionados e com raras intercalações de lamitos sílticos. Localmente ocorrem

conglomerados. Os arenitos possuem, em média, teor de argila inferior a 3%. Na base da formação, o conteúdo de argila é maior, de até 15%. No topo do pacote, o arenito possui estratificações cruzadas tangenciais (grande a médio porte) e acanaladas. A FB ocupa a parte inferior das escarpas sustentadas pelos basaltos da FSG e freqüentemente está coberta por colúvios argilosos. Sua espessura estimada é de 70 m (Pressinotti 1991).

Soares (1975), discorrendo sobre o ambiente desértico em clima árido, divide esta formação em três fácies sedimentares:

- <u>Eólica</u> (dominante): arenitos homogêneos, moderado a bem selecionados, finos a médios e com pouca matriz;
- Torrencial: granulação grossa;
- Lacustre: mais fina.

Neta região nordeste do Estado, Fu-Tai (1981) verificou a seguinte assembléia mineral para esses arenitos: quartzo (93-99%) arredondados e bem selecionados, feldspatos (0,25-5%) inalterados, além de limonita e hematita (cimentantes), magnetita, ilmentita, leucoxênio, zircão, turmalina e rutilo.

Quanto aos argilo-minerais, Ramos & Formoso (1976) indicam a predominância de montmorillonita com pequenas porcentagens de illita e clorita. A formação da montmorillonita é favorecida pelo ambiente árido pretérito; em contrapartida, no clima temperado úmido atual a dominância é da caulinita, já que é a fase mais estável (Pressinotti 1991).

□ Formação Serra Geral (FSG)

A FSG é formada por basaltos toleíticos e intrusivas básicas (diques e/ou *sills* de diabásio). Este vulcanismo básico, ocorrido no final do Mesozóico, processou-se sob condições climáticas semi-áridas. Os derrames basálticos, associados à corpos intrusivos de mesma constituição, são intercalados por arenitos de origem eólica. A assembléia mineral dos basaltos é composta por plagioclásio cálcico (andesina e labradorita), clinopiroxênio (augita as vezes pigeonita) e tem, como minerais acessórios, a magnetita, ilmenita e titanomagnetita, apatita e olivina. Há ainda a matéria vítrea nas bordas dos derrames e minerais secundários preenchendo amígdalas, entre os quais zeólitas, quartzo, calcedônia, celadonita e calcita (Pressinotti 1991).

Na região de São Simão, rochas da FSG formam morros testemunhos isolados e superfícies aplainadas elevadas, com bordas escarpadas (região preservada da alteração). Corpos tabulares sustentam as superfícies mais elevadas (~800m). A FSG tem espessura variável entre 100 e 130 m, e sustenta a Serra do Canaã e as Serras de São Simão e de Santa Maria [Fig. IV.1 e Fig. IV.3(a,c,d)], respectivamente, a oeste e leste da bacia do ribeirão Tamanduá (Pressinotti 1991).

Os diques e/ou *sills* de diabásio que cortam os arenitos afloram em diversos pontos da bacia aluvionar do ribeirão Tamanduá, sustentando elevações ou pequenos morrotes. O efeito destes corpos é o estrangulamento da bacia, formando corredeiras localizadas (Pressinotti 1991).

Coberturas Cenozóicas (CC)

As CC são formadas por materiais provenientes da alteração intempérica das rochas do GSB, podendo ocorrer como seqüências *in situ* ou transportadas (coberturas coluvionares e aluvionares). Apresentam composição variada, de argilosa, argilo-anenosa, areno-argilosa, arenosa, até conglomerática.

□ Formações Superficiais (FS)

As FS têm sido objeto de estudo de várias pesquisas na região de São Simão, embora sejam ausentes na maioria dos mapas, incluindo aqueles apresentados nas Figuras IV.1 e IV.2.

São correlacionáveis às couraças ferruginosas que ocorrem sobre a Formação Itaqueri (arenitos conglomeráticos polimíticos, com matriz areno-argilosa e cimento ferruginoso), da passagem Mesozóico-Cenozóico. Estariam associadas às superfícies de encouraçamento ferruginoso do semi-árido (Eoceno) ou a superfície decorrente da morfogênese mecânica (clima semi-árido) intercalada a dissecação do relevo (clima úmido) entre o Plioceno e o Pleitoceno pliocenica (Melo & Ponçano 1983). Por outro lado Gonçalves (1978) às associa a modelagem do terreno (Depressão Periférica e Cuestas Básicas) durante o Cenozóico.

Comportam-se como capeamento das unidades do GSB, formando superfícies aplainadas. No sopé das escarpas, são sustentadas pelas rochas básicas. Podem ocorrer na forma de extensos e espessos areais eluvionares e coluvionares, recobrindo colinas e morros das FP e FB. Pressinotti (1991), utilizando a cartografia básica dessas formações na escala 1:50.000 (IG 1986), verificou que essas areias inconsolidadas podem atingir espessuras consideráveis (2-13m) sobre os arenitos.

As FS espessas ocupam a cota mais elevada (550-800m) da região, onde ocorrem solos profundos, de composição argilosa ou argilo-arenosa, e acúmulo de óxidos e hidróxidos de ferro, gibbsita e abundante caulinita mal cristalizada. Os óxidos, hidratos e hidróxidos de ferro registram a condição menos lixiviante, em comparação com as FS delgadas (Gonçalvez 1978).

Já as FS delgadas estão situadas em locais de relevo rejuvenescido e guardam características do substrato; sua composição é essencialmente caulinítica (caulinita, halloisita e methalloisita), sendo composta por argilas neoformadas.

Depósitos Quaternários (DQ) / Sedimentos Aluvio-Coluvionares

Os DQ são registros de eventos mais recentes do processo de evolução e modelagem do relevo regional e, embora importantes, também ainda não foram cartografados sistematicamente. Esses depósitos estão associados às últimas fases de intercalação entre climas semi-árido e úmido, que dominaram a região de São Simão no Pleistoceno (Pressinotti 1991). As características coluvio-eluvionares decorrem das oscilações climáticas

Os depósitos coluvionares são principalmente cascalheiras, sedimentos derivados de alteração de basaltos e arenitos do GSB. As cascalheiras, formadas durante o semi-árido (Pliopleistoceno), ocorrem em locais restritos (drenagens de 1^ª e 2^ª ordem) e são sedimentos imaturos. Com espessura considerável (2-5m), a cascalheira é formada por seixos de quartzo, arenitos ferruginosos e fragmentos de basaltos, com matriz arenosa a areno-silto-argilosa e, em geral, encontra-se recoberta por areais coluvio-eluvionares. Estes depósitos formam a base dos sedimentos aluvionares (Pressinotti 1991).

Os sedimentos aluvionares são terraços e planícies de inundação. São arenosos e argilosos, ou seja, sedimentos inconsolidados, onde destacam-se cascalhos, areias e argilas. Os areais ou areias inconsolidadas, bastante permeáveis e sem estratificações sedimentares, acumularam-se graças às soleiras de basalto. Próxima às drenagens, estas areias podem conter intercalações conglomeráticas e areno-argilosas, evoluindo para as areias inconsolidadas no topo (Pressinotti 1991).

Os aluviões instalados nas principais drenagens são sedimentos de origem fluvial, incluindo depósitos residuais de canal, barras de meandro e planícies de inundação. De modo geral, são formados por um conglomerado basal com seixos de litotipos variados, passando para areias médias a finas de cores claras, abrigando lentes e bolsões de argilas brancas, cinzas e pretas (Gonçalves 1978, Gonçalves *et al.* 1979).

As lentes argilosas, intercaladas aos depósitos arenosos, são eventualmente ricas em matéria orgânica e correspondem à fácies de trasbordamento e preenchimento de canais abandonados. A planície de inundação é relacionada ao sistema meandrante e a matéria orgânica decorrente do desenvolvimento de vegetação neste ambiente (Pressinotti 1991).

IV.3. GEOLOGIA DO DEPÓSITO

O ribeirão Tamanduá apresenta uma planície aluvionar (Figs. IV.2, IV.3a) bem desenvolvida sobre os arenitos das Formações Pirambóia (Fig. IV.3b) e Botucatu, podendo atingir 1 Km de largura. A planície, em segmentos isolados, é controlada por diques ou soleiras de diabásio (Fig. IV.3c,d) (controle do nível de base local), que estrangulam a planície de inundação, gerando um sutil nivelamento em degraus (Tanno *et al.* 1994a).

A base do depósito aluvionar do ribeirão Tamanduá é marcada por níveis rudáceos e conglomerados arenosos (seixos de quartzo com matriz média a grossa). Sobreposto a este nível, ocorrem seqüências arenosas (areias finas a médias) (Fig. IV.4a,b,c,d) com intercalações de argilas brancas plásticas associadas a argilas negras orgânicas (Figs. IV.5, IV6).

Os terraços aluvionares são constituídos por pacotes arenosos intercalados à níveis de argilas plásticas, de até 2 m de espessura (Tanno *et al.* 1994b). Os níveis argilosos formam bolsões ou lentes (Fig. IV.5) com espessura média em torno de 50 cm, intercaladas em camadas de turfa e areia (Ruiz 1990). Os corpos lenticulares são descontínuos longitudinalmente e correlacionáveis lateralmente (Pressinotti 1991).

Os níveis de argila têm laminação plano-paralela com intercalações de matéria orgânica. Próximo à cabeceira do ribeirão, as lentes são constituídas por argila e areia fina em menor proporção (Pressinotti 1991). As argilas possuem várias cores como: branca, creme, castanho, rosa, cinza (claro, amarelado e escuro), ocre, marrom e negra (alto teor de M.O.).

As camadas de argila geralmente estão sotopostas por camadas de turfa, de espessuras variáveis entre 30 e 50 cm e ocorrem até profundidade de 8m (Ruiz 1990). A turfa é o resto vegetal, pouco humificado, de alta densidade, saturado em água e com baixa proporção de minerais. A mineralogia descrita nessas camadas de argila compreendem a caulinita, com illita, quartzo e feldspato subordinados (Motta *et al.* 1993). A caulinita é finamente dividida com distribuição granulométrica bimodal, o que suporta a idéia de múltiplas fontes (Tanno *et al.* 1994a).

A areia quartzosa é limpa, com pouquíssima matriz argilosa, possui gradação (normal ou inversa) e estratificações cruzadas acanaladas de pequeno e médio porte (Pressinotti 1991).

Na planície de inundação, dois níveis geomorfológicos (Terraço 1 e 2) (Fig. IV.6) foram reconhecidos (Tanno *et al.* 1994a, Pressinotti 1991), possibilitando a divisão do aluvião em duas unidades (Qa1 e Qa2).

Figura IV.3: a) Aluvião do Ribeirão Tamanduá na baixada, com a Serra de São Simão (FSG) ao fundo. b) Lavra no Aluvião II (Qa2) com FP ao fundo. c) e d) Terraço 1 com o Serrote de Santa Maria (FSG) ao fundo com forma aguda, detalhe (c) para o Aluvião I (Qa1).

а С

Figura IV.4: a) Perfil no Aluvião I (Qa1) - argila com matéria orgânica sobre o arenito muito fino e claro. b) hidróxidos de ferro no contato entre a argila com matéria orgânica e o arenito fino. c) estratificações no arenito. d) níveis de argila entre o arenito.

140

IV.3.1. ALUVIÃO I (Qa1)

O Aluvião I [Figs. IV.3(c,d), IV.5, IV.6] corresponde aos sedimentos encontrados no Terraço 1 (designação geomorfológica) que representa o nível atual do ribeirão e o patamar com cota inferior (zona baixa). O Terraço 1 recebe as inundações periódicas anuais.

O topo da unidade é turfáceo (turfa bastante úmida e pouco húmica) (Fig. IV.4a,b,d) com matéria orgânica e acúmulo de fragmentos vegetais (turfa superficial), gradando para argilas silticas arenosas, ou seja, seqüência areno-argilosa (areias argilosas e argilas silto-arenosas). A base é arenosa, com níveis conglomeráticos e delgadas lentes cauliníticas, possui estratificação cruzada acanalada e granodecrescência (intercalações de níveis de maior granulometria).

O sistema fluvial meandrante é representado por depósitos de canal (arenosos), e depósitos de transbordamento (argilo-orgânicos).

O Aluvião I possui bimodalidade granulométrica nos sedimentos da fração argila (<4μm). Nesta fração ¾ das partículas são inferiores a 2μm (Pressinotti 1991).

<u>Mineralogia</u>

O quartzo apresenta teores entre 25-41% na fração argila e 87% na fração areia; a caulinita entre 18-27% na fração argila e 11% na fração areia. Os outros constituintes e/ou matéria orgânica apresentam teores entre 2-57%. Estes teores foram adquiridos com a avaliação mineralógica semi-quantitativa, estimada a partir da análise química total e da composição mineralógica qualitativa total (DRX), ou seja, um cálculo normativo simples a partir da fórmula teórica dos minerais (Pressinotti 1991).

Análise Química (Tab. IV.1)

Nestes sedimentos, os teores de sílica e alumínio são condizentes com a ocorrência de caulinita. O magnésio (0,45-0,85%), que predomina sobre o potássio (0,03-0,07%), está relacionado à matéria orgânica ou como substituto isomórfico nas camadas octaédricas dos argilominerais. O titânio (0,82-1,80%) indica a possível contaminação pelos basaltos. O ferro é geralmente muito baixo (< 0,6%), assim como a relação Fe₂O₃/FeO (0,23-0,3%), que sofre redução neste ambiente aluvionar. A perda ao fogo (32-57%), alta na fácies argila, é decorrente da matéria orgânica e também dos argilominerais (caulinita e illita). Nas argilas turfosas, a capacidade de troca catiônica atinge valores altos de até 52,8 meq/100g, o que é relacionado à presença de matéria orgânica. O carbono total (22,15-53,60%), também alto, é em sua maioria devido à fração humica. Desta forma, compostos solúveis (mais ácidos), com partículas de dimensões menores (acido fúlvico), são mais freqüentes nesta unidade, indicando a menor maturidade deste material (Pressinotti 1991).

IV.3.2. ALUVIÃO II (Qa2)

O Aluvião II (Figs. IV.3b, IV.5, IV.6) corresponde aos sediemntos encontrados no Terraço 2 (designação geomorfológica) que representa o nível antigo do ribeirão e o patamar com cota superior (zona alta), alçado cerca de 1 a 2m e sobrejacente ao Terraço 1. Este horizonte é o portador das argilas do tipo *ball clays*. Este terraço se distribui de forma irregular, em corpos alongados paralelos ao vale, sendo comum dimensões de mais de 100m de largura por 500m de comprimento (Pressinotti 1991).

É uma sequência espessa e arenosa com intercalações de lentes de argila. Os arenitos (finos e médios) são limpos, com granodecrescência ascendente, estratificação cruzada de médio porte e base conglomerática. As lentes de argila caulinítica (plástica), constituem-se de corpos tabulares de pequena espessura, irregulares e descontínuos, com contato gradacional ou abrupto.

O Aluvião II pertence ao sistema fluvial meandrante psamítico, composto por duas principais fácies (Suguio & Bigarella 1979). A fácies argila representa o depósito de transbordamento ligado a planície de inundação e preenchimento de canais abandonados. A fácies areia representa os depósitos de canal ligado a barra de meandro.

A granulometria predominante no Qa2 é a fração argila (< 4 μ m), sendo que grande parte (55-90%) das partículas são inferiores a 2 μ m. A fração areia não ultrapassa os 27% e a fração silte varia entre 9-36% (Pressinotti 1991).

<u>Mineralogia</u>

A caulinita apresenta teores elevados (60-89%) com valores médios acima de 75% na fração argila (< 4μm). O quartzo com teores variando entre 4-32% está geralmente abaixo de 15% e as micas (illita) possuem baixos teores (2-5%). Outros minerais e matéria orgânica também apresentam teores baixos (3-8%). (Pressinotti 1991)

Análise Química (Tab. IV.1)

Os teores de sílica e alumínio condizem perfeitamente com a ocorrência de caulinita. O magnésio (0,19-0,98%) é possivelmente relacionado com a M.O. ou como substituto isomórfico nas camadas octaédricas dos argilo-minerais. O potássio (0,24-0,62%), apesar de baixas proporções, condiz com a ocorrência de mica (illita), já que este mineral apresenta-se em baixas quantidades. O titânio (0,76-1,70%), indica a possível contaminação pelos basaltos. O ferro possui valores bem altos (3,38-5,17%) nas amostras castanhas e amareladas e consideravelmente baixos nas brancas e cinza claro (0,07-1,07%) - relação Fe₂O₃/FeO. Apesar do Fe²⁺ ser dominante nesta unidade, o Fe³⁺ també aparece com conteúdo significativo nos finos horizontes amarelados, os quais, segundo Pressinotti (1991), são devidos a condições oxidantes temporárias causadas pela 142

* Inst. Geociências - Unicamp *

variação no nível do lençol freático. A perda ao fogo (9,10-15,8%), relativamente mais baixa do que em Qa1, também pode ser devido à matéria orgânica, assim como aos argilo-minerais.

A capacidade de troca catiônica tabém está relacionada à presença de M.O. O carbono total (6,67-32,4%), relativamente alto, é devido à fração húmica. Desta forma, compostos insolúveis (medianamente ou total), menos ácidos e com partículas de maior dimensão (ácidos húmicos), são freqüentes nesta unidade, indicando maior maturidade deste material (Pressinotti 1991).

Figura IV.5: Colunas Litoestratigráficas correspondentes a Seção C-D no Aluvião.

Figura IV.6: Seções no Aluvião do Riobeirão Tamanduá. Simplificada acima (A-B / W-E). Detalhada abaixo (C-D / NW-SE-NE)

144

		005	Elementos Maiores (Óxidos) em %									P.F	H ₂ O	H ₂ O ⁻ H ₂ O ⁺	Dh		BASES	;	S	А	т	V		
		COR	SiO ₂	AI_2O_3	Fe ₂ O ₃	FeO	TiO ₂	CaO	MgO	Na₂O	K ₂ O	MnO ₂	P_2O_5		%	%		K+	Ca ⁺²	Mg ⁺² (mea/	100a)			%
Qa1																								
SS6-50/55 SS6-35/40	0	proto	53,9	10,8	<0,10	0,58	1,80	0,05	0,45	0,02	0,07	<0,01	0,07	32,06	4,19	15,51	3,9	0,15	1,7	0,4	2,3	31,3	33,6	7
SS4-5	Fβ	preta	33,5	7,2	<0,10	0,33	1,10	0,05	0,86	<0,01	0,05	0,01	0,07	56,98	6,26	23,55								
SS6-140/150 SS6-170/180	FA1	cinza amarelado	91,9	4,5	<0,10	0,44	0,82	<0,05	0,66	0,01	0,03	<0,01	<0,05	1,62	0,49	1,65	4,2	0,12	1,3	0,3	1,7	1,6	3,3	52
Qa2																								
SS9-340/345	FA2	branca	47,6	36,7	0,47	0,44	0,90	0,05	0,31	0,02	0,46	<0,01	0,09	12,93	0,99	11,63								
SS9-288/291		cinza claro	54,0	31,3	0,34	0,59	1,00	<0,05	0,19	0,03	0,54	0,01	0,08	11,89	0,91	9,74								
SS118-D			52,5	32,1	0,28	0,74	0,92	0,07	0,75	0,02	0,62	<0,01	0,09	11,79	1,07	10,36	3,6	0,19	1,4	1,1	2,7	9,9	12,6	21
SS10-353/358			48,3	32,1	<0,10	1,50	1,70	0,14	0,31	0,02	0,30	0,02	0,09	15,49	1,64	12,45								
SS7-25/32 SS7-33/38			48,1	35,4	0,34	0,59	0,81	0,05	0,68	0,02	0,50	<0,01	0,09	13,39	1,14	12,12	3,5	0,09	0,6	0,2	0,9	12,1	13	7
SS3-10			47,5	35,4	<0,10	1,00	1,20	0,13	0,71	0,02	0,38	<0,01	0,09	13,48	1,05	12,36								
SS10-115/120			47,5	34,3	0,44	0,59	0,88	0,07	0,73	0,05	0,58	<0,01	0,08	14,11	1,21	12,18	3,8	0,20	1,4	0,8	2,4	3,8	6,2	39
SS9-112/115		cinza	57,5	24,5	<0,10	0,77	0,78	0,58	0,82	0,02	0,30	<0,01	0,09	14,97	0,91	11,38								
SS9-146/149			47,2	33,9	<0,10	0,88	0,95	0,06	0,54	0,07	0,45	<0,01	0,09	15,80	1,09	12,02								
SS1-2		cinza amarelo claro	47,5	36,1	0,98	0,29	0,76	<0,05	0,88	0,02	0,24	<0,01	0,09	13,11	1,38	12,79								
SS3-6		castanho claro cinza	48,2	34,1	1,50	0,29	0,88	0,06	0,98	0,02	0,55	0,01	0,09	13,15	1,15	11,78								
SS9-392/395	FAA	amarelo claro	61,8	25,0	1,20	0,29	1,20	<0,05	0,93	0,02	0,24	0,02	0,09	9,18	1,22	6,76								
SS3-9	FAO																3,6	0,19	7,7	2,8	9,9	42,9	52,8	19

Tabela IV.1: Análises química total e do complexo absorvente, em amostras de argilas dos aluviões I e II (modificado de Pressinotti 1991)

FA1: fácie argila, FA2: fácie areia, FAA: fácies argila arenosa e FAO: fácies argila orgânica;

PF: perda ao fogo, **S**: soma das bases trocáveis, **A**: acidez titulável ($AI^{3+} + H^+$), **T**: capacidade de troca catiônica (CTC) \rightarrow T=S+A; **V**: saturação em bases \rightarrow V=(100-S)/T.

IV.3.3. GEOCRONOLOGIA DO DEPÓSITO

Apesar das semelhanças litológicas, texturais e estruturais entre os dois aluviões, estes apresentam considerável diferença temporal, além de estarem separados por uma superfície erosiva, decorrente do evento regional que atingiu todo o sudeste brasileiro (Suguio *et al.* 1989), há 7.000 anos atrás.

Segundo datações recentes (Turcq *et al.* 1997, Pressinotti 1991, Turcq *et al.* 1987), as argilas são de idade cenozóica. As idades evidenciam duas fases deposicionais distintas (Qa1 e Qa2) com os depósitos de argila do tipo *ball clay* relacionados ao mais antigo.

O inicio do preenchimento da bacia do ribeirão Tamanduá é anterior há 33.000 anos. Aparentemente próximo a essa época, iniciou-se a deposição do Aluvião II (32.910 anos), encerrando sua primeira fase em torno de 28.000 anos. Passado 8.000 anos (hiato), iniciou-se a deposição da segunda fase (~20.000 anos atrás), encerrada há 10.430 anos atrás. Assim, de acordo com as estimativas de Pressinotti (1991), os sedimentos do Aluvião II são Neopleistocênicos,

Datações por radiocarbono dos níveis turfáceos do Terraço 2, indicam idade entre 13.000 e 17.000 anos, fase em que a sedimentação teria se processado sob um clima mais seco (Tanno *et al.* 1994a).

O Aluvião I iniciou sua deposição há 6.210 anos (Holoceno) (Pressinotti 1991). Já idades em torno de 5.500 anos foram obtidas por Turcq *et al.* (1987) para o material de natureza orgânica da base da seqüência erosiva sotoposta ao Aluvião II.

Algumas idades fornecidas pelas datações radiométricas de ¹⁴C em amostras ricas em matéria orgânica, realizadas por Pressinotti (1991), ajudam a visualizar a evolução do depósito, como a seguir:

- <u>30.000-20.000</u>: clima úmido para as latitudes intertropicais na América do Sul (Martin *et. al.* 1982);
- <u>29.900-19.400</u>: freqüentes sedimentos extremamente argilosos sem matéria orgânica e descontinuidade, podendo indicar superfície erosiva ou deposição lenta (material em suspensão / fase mais úmida);
- <u>27.300-20.400</u>: hiato 1 (hipóteses: (i) interrupção da sedimentação / diminuição do aporte; (ii) deposição lenta / sedimentos finos / material em suspensão e (iii) evento erosivo / sedimentação para fora da bacia);
- <u>18.000-13.000</u>: semi-aridez;
- <u>10.430-6.210</u>: superfície erosiva (evento erosivo regional após deposição do aluvião II, formação de canais cortando o aluvião II e formação do Terraço II);
- <u>10.100-6.400</u>: hiato 2 (fase erosiva entre Qa1 e Qa2);

A hipótese mais aceita para o hiato 1 é a de deposição lenta, já que os sedimentos que ocorrem em parte concomitante são extremamente argilosos; a falta de registros datáveis impossibilitou o balizamento seguro desta lacuna (Pressinotti 1991).

Segundo a proposta integrada em Turcq *et al.* (1997), o depósito do ribeirão Tamanduá contém evidencias para quatro estágios maiores de paleohidrologia nos últimos 33.000 anos, sendo dois períodos úmidos e dois secos intercalados:

- <u>30.000-20.000 (período úmido)</u>: alto lençol freático (ascensão), permitindo enriquecimento em matéria orgânica;
- <u>17.000-10.000 (período seco)</u>: produção de depósitos de areia nos canais trançados e nos leques aluviais, agradação resultante da alta carga sedimentar promovido pela intensa erosão da calha (*slope erosion*) e pela inundação instantânea;
- <u>10.000-6.000 (período úmido)</u>: marcado pela redução da erosão da calha e pela alta descarga que propiciou o preenchimento do vale; durante esta fase desenvolveram extensas floresta no país;
- <u>após 6.000 (período seco)</u>: redução da descarga mas permitiu que a elevação do lençol freático fosse mantida.

IV.4. ASPECTOS MINEIROS / LAVRA

A atividade de mineração é concentrada nos terraços aluvionares (Tanno *et al.* 1994b). Os níveis lavrados estão associados aos baixos terrenos (Motta *et al.* 1993). Este horizonte tem espessura variando entre 0,2-2 m e profundidade máxima de 2m (Motta *et. al.* 1993). As vezes estão sotopostos por capeamento estéril superior a 2 m (Tanno *et. al.* 1994a, Ruiz 1990).

A explotação da argila na lavra se dá por desmonte mecânico, no caso por escavadeira de esteira (Fig. IV.7a,b). O transporte é feito por caminhões de porte comercial.

Como o substrato possui alta umidade devido à proximidade do lençol freático (Fig. IV.7b), o material possui razoável maciez, facilitando a retirada. O problema é a grande variedade de materiais em pequenas dimensões de escavação. Desta forma, a precisão e a experiência do operador da escavadeira são críticos para que blocos irregulares de argila possam ser retirados, preservando o material o mais homogêneo possível.

Os blocos de argila extraídos (com o formato genérico da pá da escavadeira) são então colocados nas laterais da cava perene (Fig. IV.7c,d). Ali, um técnico executa trabalhos manuais, com uma ferramenta tipo harpa, para a remoção das partes indesejáveis (porções arenosos e ferruginosas) do bloco (Fig. IV.7d). Numa outra etapa, a argila é removida da frente de lavra para os pátios de secagem e estocagem [Fig. IV.8(a-d)].

O método de lavra seletiva, utilizado neste caso, é o mais indicado para argilas de boa qualidade que ocorrem formando bolsões entremeados a outros sedimentos argilosos, de qualidade inferior, ou arenosos (Ruiz 1990). O descapeamento é realizado por retroescavadeira sobre esteiras, quando necessário (Ruiz 1990).

Geralmente, há uma preocupação com a drenagem das frentes de lavra para evitar a inundação das minas (Ruiz 1990). Na prática, esta rotina é diária, pois na medida em que se iniciam novas escavações para retirada de argila, o aporte de água é contínuo.

Os produtores não efetuam o beneficiamento deste tipo de argila e, quando o fazem, isso se resume a uma simples lavagem. Desta forma, a argila é comercializada na sua forma bruta, pois as industrias compradoras possuem equipamentos que efetuam a operação de beneficiamento em suas unidades. Eventualmente, o controle de umidade é feito em determinados lotes, a depender da exigência do cliente, embora a possibilidade dessa operação seja prejudicada em meses chuvosos (Ruiz 1990).

Um aspecto notório nos procedimentos de lavra é a ausência de um controle de qualidade específico, principalmente considerando-se a variedade de argilas (e impurezas associadas) documentadas nesse jazimento. Toda essa responsabilidade fica concentrada no operador da escavadeira e no técnico que corta os blocos, segundo critérios de 'aparência'. É com base nessa 'aparência' que os diferentes materiais são separados para uso em determinadas aplicações na indústria de louça sanitária e porcelana.

149

Figura IV.7: a) Cava no Aluvião II (Qa2) - terraço 2. b) Argila cinza *in situ* na cava, detalhe para o nível do lençol freático. c) Blocos retirados da cava com argila marrom e cinza e contaminação de Fe. d) Blocos de argila branca limpos (seletividade do material).

а С

Figura IV.8: Pátio de estocagem dos materiais. a) Argila branca. b) Argila cinza. c) Argila marrom escura. d) Argila marrom clara.

IV.5. PROPRIEDADES TECNOLÓGICAS

A argila de São Simão possui excelentes propriedades reológicas (Tab. IV.2), o que permite utilizá-la em quase todos os segmentos da cerâmica branca.

	PARÂ	METROS ANALISADOS	RESULTADOS					
	110°C	Limite de plasticidade (%) Umidade de Prensagem (%) Variação Linear após Secagem (%) Tensão Ruptura à Flexão (kgf/cm ²) Cor	32,9 9,7 -0,8 32 cinza escuro					
TEMPERATURA	1150°C	Perda ao fogo (%) Contração Linear (%) Tensão de Ruptura à Flexão (kgf/cm ²) Absorção de Água (%) Porosidade Aparente (%) Massa Específica Aparente (kgf/cm ³) Cor	15,2 9,6 159 19,4 34,6 1787 branca					
	1250°C	Perda ao fogo (%) Contração Linear (%) Tensão de Ruptura à Flexão (kgf/cm ²) Absorção de Água (%) Porosidade Aparente (%) Massa Específica Aparente (kgf/cm ³) Cor	15,3 14,9 243 6,9 14,3 2255 branca					
	ANÁLISE QUÍMICA	Perda ao Fogo SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ TiO ₂ CaO MgO Na ₂ O K ₂ O total	15,37 43,76 29,19 2,78 1,02 0,36 3,98 0,14 4,11 100,71					
	MI	NERAIS INDUSTRIAIS	caulinita e Illita					

Tabela IV.2: Características físico-químicas e cerâmicas das argilas de São Simão (modificado de Motta et al. 1993)

As condições de elevada plasticidade e resistência mecânica das argilas do tipo "ball clay", segundo alguns autores (Phelps 1972, Souza Santos 1975, Murray 1982, Wilson 1983), são devido:

 ao elevado teor de partículas de caulinita da baixa granulometria (< 2μm - diâmetro), aumentando a superfície específica das partículas;

- à presença de lâminas hexagonais de caulinitas extremamente finas, que geram a relação diâmetro/espessura superior a 10;
- ao conteúdo de matéria orgânica (sais de ácido húmico) / colóides, protetores das partículas lamelares, que permitem a formação de películas de H₂O, adsorvida à superfície das partículas minerais, que agem como agentes lubrificantes, facilitando o escorregamento das lâminas de caulinita, uma sobre as outras;
- ao conteúdo de montmorillonita e/ou illita, finamente divididas, adsorvidas às fácies laterais das partículas lamelares da caulinita, evitando a formação de agregados do tipo face-aresta e propiciando a interação face-face das partículas de caulinita.

IV.6. CARACTERIZAÇÃO MINERALÓGICA

IV.6.1. INTRODUÇÃO

Nesta investigação, a caracterização mineralógica das argilas de São Simão foi feita com base na espectroscopia de reflectância (Cap. II), com o objetivo de estabelecer os parâmetros necessários para separação qualitativa e semi-quantitativa dos tipos de argila documentados no aluvião do ribeirão Tamanduá. Esse estudo, todavia, foi apoiado em análises por difratometria de raios X (DRX), que serviram como referência para a caracterização espectro-mineralógica do depósito.

A amostragem foi realizada somente no Aluvião II (**IV.3.2**), já que este é o portador das principais ocorrências da argila do tipo *ball clay*. Durante a coleta, o interesse foi pelo maior número de amostras com aspecto, textura e cores distintas, incluindo material arenoso ou rico em matéria orgânica.

Com base nos resultados obtidos a partir da interpretação das principais feições nos difratogramas de raio X, que são picos com variações de intensidade, mensurados por CPS (contagem por segundo), foi possível chegar a aproximações da composição modal de cada amostra.

A mensuração das amostras por espectroscopia de reflectância foi realizada em duas etapas: uma, com as amostras em estado bruto, tal como retiradas da mina; e outra, com as amostras moídas. Nas amostras brutas, foram visados vários detalhes durante as medidas de reflectância espectral, de acordo com a heterogeneidade do material. As amostras moídas foram provenientes de parte integral de cada amostra bruta ou de uma porção específica, de ocorrência de determinado material de interesse (e.g. amostra $05\underline{a}$ (<u>bruta</u>) \rightarrow argila branca com níveis ferruginosos; amostra $05\underline{b}$ (<u>moída</u>) \rightarrow somente porção ferruginosa). A fração moída das amostras foi àquela analisada por DRX.

A descrição de cada curva de reflectância espectral para todas amostras medidas e a nomenclatura utilizada são apresentadas no Anexo MML.1.

IV.6.2. MATERIAIS

Numerosos tipos de argila são encontrados no aluvião do ribeirão Tamanduá. Com o objetivo de otimizar o processo de caracterização, optou-se por separar as argilas em três grupos, principalmente com base em testes espectrais preliminares e em suas cores dominantes. Esses grupos ficaram definidos da seguinte forma: argila branca, argila cinza e argila marron [Fig. IV.8(a-d)].

Argila Branca (AB)

O grupo das argilas brancas é constituído de: (i) argilas com cores variando do branco ao cinza bem claro, localmente, com níveis alaranjados (Figs IV.9a, IV.10a, IV.11a); (ii) porções arenosas brancas, amareladas, alaranjadas e acinzentadas (Fig. IV.12a); e (iii) porções com matéria orgânica.

Nas argilas brancas superficiais, a contaminação por hidróxidos de ferro é mais comum, enquanto que em zonas mais profundas, há o predomínio de argilas aparentemente mais puras. Quando a contaminação se dá pela presença de matéria orgânica, a argila pode assumir tons de cinza claro, mas há horizontes onde não ocorre a mistura dos dois materiais.

<u>DRX</u>

Na Tabela IV.3 e nas Figuras IV.9b, IV.10b, IV.11b e IV.12b, são apresentados os resultados obtidos por DRX. As amostras são muito ricas em caulinita, com teores que giram em torno de 75%, em média, nas porções argilosas. Nas porções arenosas (am25), esta quantidade cai para teores próximos a 50%, em decorrência do aumento do teor de quartzo, que se iguala ao da caulinita.

As micas estão presentes em pequena proporção, abaixo dos 10%. A difícil separação entre muscovita e illita pela DRX deve-se ao fato de que ambas possuem picos em regiões semelhantes. No caso da amostra 01 (Fig. IV.9b), a muscovita coincide melhor com os picos do difratograma do que a illita, enquanto que na amostra 05 (Fig. IV.10b) há dúvidas, já que a espécie coincidente é trioctaédrica (Fe e Mg), motivo pelo qual ambas foram incorporadas na análise do difratograma, para comparação. Na amostra am25 (Fig. IV.12b), a mica presente foi interpretada como sendo muscovita, embora possa ser illita. A presença de halloisita também foi investigada, principalmente na amostra am05 (Fig. IV.10b), já que também apresenta os picos (DRX) na mesma região e pode ocorrer juntamente com o tipo principal de seu grupo (caulinita).

Os argilo-minerais expansivos e/ou interestratificadas do grupo da esmectita (montmorillonita e saponita) também são comuns, mas presentes em proporções abaixo de 10%. Na amostra 01 (Fig. IV.9b), a ocorrência dessas esmectitas evitou a detecção da gibbsita. Na amostra 24 (Fig. IV.11b) é evidente a pouca estruturação destes interestratificados, com baixa cristalinidade, comprovada pela grande abertura do pico característico das esmectitas.

A goethita e seu polimorfo, a lepidocrosita, foram os dois hidróxidos de ferro, de mesma composição (FeOOH), identificados nas amostras 05, 24 e 25. A gibbsita (hidróxido de Al) foi identificada na amostra 05 (Tab. IV.3 e Fig. IV.10b).

Tabela IV.3: Resultado de análise mineralógica por difratometria de raios X (DRX) em amostras da fração total das argilas brancas.

am	PORÇÃO ARGILOSA	MINERAIS - DRX	HIRERARQUIA					
01	branca	kao / qz / musc / mont / sap	kao (70) >> qzo (10) > mica (10) ≈ exp (10)					
05	branca com níveis alaranjados	kao / qz / lep / musc / illi / mont / sap / gib	kao (70) >> qz (10) > lep (<10) ≈ mica* (<10) > exp (<5)					
24	branca a cinza claro	kao / qz / musc / mont / sap / goe	kao (80) >> qz (10) > mica (5-10) ≈ exp (5-10)					
am	PORÇÃO ARENOSA	MINERAIS - DRX	HIRERARQUIA					
25	branca, amarelada a cinza claro	kao / qz / musc / lep / mont / rec	kao (45) ≈ qz (45) > mica (5-10) > lep (<5) ≈ exp (<5)					

kao: caulinita,

qz: quartzo,

gib: gibbsita,

mica: illita (illi) e/ou muscovita (musc),

mica*: pode ser também halloisita,

exp: argila expansiva ou interestratificada: montmorillonita (mont), saponita (sap) e rectorita (rec),

lep: lepidocrocita,

goe: goethita,
(100): valores percentuais estimados para cada mineral com base nos picos do difratograma.

* Matéria-Prima para Louça Sanitária e Porcelana *

Figura IV. 9: a) amostra 01 e b) DRX da fração total

Figura IV.10: a) amostra 05 e b) DRX da fração total

Figura IV.11: a) amostra 24 e b) DRX da fração total

Figura IV.12: a) amostra 25 e b) DRX da fração total

Classificação Espectro-Mineralógica 1 - Interpretação Empírica

A classificação espectral foi realizada em todas as amostras deste grupo, incluindo as amostras brutas, as amostras moídas em geral e as amostras moídas e analisadas por DRX [Fig. IV.13(a-d)]. Inicialmente, com base nas curvas de reflectância espectral das várias amostras, procurou-se analisar as principais bandas de absorção, nas regiões do visível e do infravermelho próximo (VNIR) e do infravermelho de ondas curtas (SWIR). Isso foi feito no sentido de definir feições diagnósticas e diferenças espectrais nos materiais sob investigação. Duas técnicas foram utilizadas para a extração dos comprimentos de onda específicos das bandas de absorção: a técnica de extração manual (com o uso do *software ENVI*, para visualização dos espectros) e a técnica de extração automática, através do *software SIMIS Feature Search*. Ambas foram feitas utilizando-se espectros com o contínuo removido (Pontual *et al.* 1997).

Como estas amostras são muito ricas em caulinita é pertinente fazer antecipadamente uma rápida explanação de suas principais feições espectrais (Pontual *et al.* 1997):

- a queda de cristalinidade da caulinita afeta seus dois *doublets* de absorção típicos (1.4μm e 2.2μm), mas principalmente o *doublet* centrado em torno de 1.4μm;
- a banda de absorção em 2.16μm pode ocorrer em caulinitas pouco cristalinas e/ou misturas;
- a banda de absorção em 1.8μm ocorre somente em caulinitas muito cristalinas;
- a feição em 1.9 μm é típica da presença de água;
- a banda de absorção em 2.38µm persiste em misturas espectrais.

Nas Figuras IV.13(a,b), as bandas de absorção em 1.4-1.42µm relacionam-se à presença de caulinita em praticamente todas as amostras, com ombro de inflexão e profundidade características, sendo que destaque é dado para a curva 05b5 (Fig. IV.13a). A feição em 1.4µm mais profunda nesta amostra deve-se a pelo menos um dentre dois fatores: menor conteúdo de quartzo ou presença de uma caulinita mais cristalinina, o que é evidenciado também pelos *doublets* típicos, muito bem definidos.

A feição em 1.91µm também é muito similar em todas as amostras, exceção feita à curva 25b2, onde a profundidade é menor (Fig. IV.13b). A profundidade e a forma desta feição sugere a presença de micas e/ou argilas expansivas na composição da amostra, provavelmente uma mistura espectral entre caulinita e muscovita, já que a muscovita tem a feição em 1.91µm rasa e aberta, ao contrário da illita, onde é relativamente mais profunda e fechada.

As bandas de absorção entre 2.16-2.2µm, com *doublet* bem marcado e forte inflexão do ombro da feição, são diagnósticas da caulinita. Nesta região do espectro, a curva 05b5 apresenta a maior profundidade e a curva 25b2 a menor (Fig. IV.13a). No que tange à forma do *doublet*, as curvas 25b2 e 24b1 apresentam feições que são indicativas, respectivamente, de menor e maior cristalinidade relativa (Fig. IV.13b).

Figura IV.13: Curvas de reflectância espectral (contínuo removido) das amostras 01, 05, 24 e 25 do grupo das argilas brancas, frações moídas, considerando o comportamento no espectro VNIR-SWIR (A) e no espectro SWIR (B) . Em (C), curvas de reflectância espectral da amostra 05, frações bruta (05a1 a 05a8) e moída (05b1 a 05b5), considerando o espectro VNIR-SWIR. Em (D), tabela com os valores de comprimento de onda das bandas de absorção dos minerais presentes em cada amostra analisada (λ1 - extração visual de feições , λ2 - extração automática de feições, via software SIMIS).

As bandas de absorção em 2.31µm, 2.35µm e 2.38µm (Fig. IV.13b), todas relacionadas à caulinita, são bem definidas nas curvas da argila branca. A feição em 2.31µm é redundante em todas as amostras, aparecendo com menor profundidade na curva 25b2. A feição em 2.35µm é mais rasa, sendo incipiente na curva 25b2 e bem marcada nas curvas 01b1 e 01b3. A feição em 2.38µm apresenta a maior profundidade nesta região do espectro e é comum a todas as amostras. A feição em 2.45µm não é utilizada como diagnóstica da caulinita, mas sim das micas, principalmente, da muscovita. Essa feição é bem marcada nas curvas 05b4 e 24b1 (Fig. IV.13a), assim como em todas as curvas da Figura IV.13b. Pelo menos parte destas feições descritas acima pode estar relacionada à presença de micas nas amostras, sob ausência de montmorillonita. Isto pois, as bandas de absorção secundária da muscovita e da illita, em 2,35µm e 2,45µm, são ausentes na montmorillonita (Meneses *et al.* 2001).

Na Figura IV.13a pode-se destacar ainda um outro conjunto de feições de absorção entre 0.42-0.49μm e 0.97μm nas curvas 05b5 e 25b2. Tais feições são atribuídas às transições eletrônicas do Fe³⁺ e devidas à presença de lepidocrosita nas amostras.

Considerando os espectros da Figura IV.13c, que apresenta todas as leituras da amostra 05 distribuídas em duas modas granulométricas, ou seja, um grupo ('**a**') de leituras de amostra brutas e outro grupo ('**b**') de amostras moídas, pode-se observar as seguintes <u>diferenças</u> quanto às bandas de absorção, de acordo com a região do espectro:

- <u>0.42-0.49μm</u>: essa feição, associada à presença de lepidocrosita, ocorre consistentemente na fração alaranjada das amostras, é marcante em todas as medidas de rocha moída, mas aparece em somente uma das medidas de amostra bruta (05a3). Isto se deve ao fato de que a porção moída compreende o material alaranjado em específico, enquanto, entre todas as medidas realizadas nas amostras brutas, somente a 05a3 abrangeu uma superfície com conteúdo neste hidróxido de ferro;
- <u>0.97μm</u>: essa feição, também associada à presença de lepidocrosita, aparece destacada nas amostras moídas, pelos mesmos motivos apresentados em epígrafe;
- <u>1.145μm e 1.681μm</u>: essas feições, de geometria simétrica, são relativamente rasas, mas muito bem definidas na curva 05b3, sendo muito sutis na curva 05b1. Possivelmente, são relacionadas a caulinita (do tipo K4a, moderadamente cristalina - Pontual *et al.* 1997), muito embora não seja uma feição descrita na literatura para nenhum argilo-mineral em específico;
- <u>1.8μm</u>: esta feição ocorre somente nas medidas realizadas nas amostras brutas, principalmente na curva 05a7;
- <u>2.16-2.28μm</u>: essas feições, associadas aos minerais do grupo das kanditas (caulinita, halloisita) são sistemáticas em todas as curvas, mas atingem profundidades maiores na fração moída;

 <u>2.31-2.38μm</u>: as três feições desta região do espectro são também sistemáticas e mais destacadas na fração moída.

De modo geral, todas as amostras são muito ricas em caulinita com alguma participação de mica (illita e/ou muscovita) e minerais do grupo da esmectita, minerais estes com feições muito bem assinaladas no infravermelho de ondas curtas (SWIR: 1.3-2.5 μm) (Fig. IV.13d).

Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)

Nesta etapa da classificação espectral, foi imprescindível a utilização dos programas SIMIS *Field* (SF) e SIMIS *Feature Search* (SFS) para análise e classificação espectro-mineralógica da mistura espectral contida nas amostras coletadas. Neste procedimento, a interpretação é feita diretamente pelo SIMIS, através de seus algoritmos de classificação (Cap. II), resultando em estimativas qualitativas e semi-quantitativas de abundância mineral.

A biblioteca espectral aqui utilizada foi montada a partir da biblioteca do USGS (<u>http://speclab.cr.usgs.gov/spectral-lib.html</u>). A mineralogia obtida por DRX nas amostras de referência (Tab. IV.3), foi utilizada para nortear a escolha das curvas espectrais das bibliotecas de uso específico para as argilas de São Simão. Os minerais utilizados no SFS e os resultados de desmistura são apresentados na Tabela IV.4, assim como os resultados do tratamento pelo SF e os respectivos erros de análise.

Os resultados da classificação espectral qualitativa e semi-quantitativa considerando o conjunto de medidas realizadas para cada amostra, e sua coerência com os resultados obtidos via DRX, são também apresentados de forma completa na Tabela IV.4. A seguinte análise pode ser feita para algumas curvas de reflectância espectral específicas:

- <u>01b1 (bandas do SWIR</u> Fig. IV.14): a caulinita domina amplamente a mistura espectral nessa amostra (> 90%). As argilas expansivas são representadas por frações de montmorillonita e uma mistura de caulinita e esmectita. As micas não foram detectadas na mistura. O erro da mistura nestas análises, estimado em 9.8%, é satisfatório;
- <u>05a5 (bandas do SWIR</u> Fig. IV.15a); 05b4 (bandas do VNIR-SWIR Fig. IV.15b); 05b4 (bandas do SWIR Fig. IV.15c); 05b5 (bandas do VNIR-SWIR Fig. IV.15d): o uso de todas as bandas espectrais, entre o VNIR e o SWIR, na classificação espectral da amostra 05, produziu resultados compatíveis com as determinações por DRX (Figs. IV.15b, IV15d). Além da alta concentração de caulinita na mistura, a lepidocrosita foi caracterizada com uma proporção coerente, em torno de 10%. As micas e as argilas expansivas, embora também detectadas, são geralmente superestimadas pelos classificadores. Essas últimas podem variar entre montmorillonita, rectorita e uma mistura de esmectita e caulinita. O resultado da leitura 05b5, considerando todo o espectro, foi excelente do ponto de vista da mistura discriminada. Entretanto, o erro da mistura foi alto, de 27% (Fig. IV15d). Considerando somente as bandas do SWIR (Figs. IV.15a, IV15c), os erros da mistura são sensivelmente melhores (~10%); a caulinita é estimada em proporções mais próximas da realidade e há boas aproximações para

micas e argilas expansivas. A lepidocrosita foi também detectada pelo SFS na leitura 05a5, em proporções coerentes.

- <u>24b1 (somente bandas do SWIR</u> Fig. IV.16): os resultados da classificação espectral para essa amostra foram excelentes, tanto do ponto de vista da proporção de minerais presentes, quanto ao erro associado à mistura. A caulinita é caracterizada com proporções acima de 70% por todos os classificadores; a mistura caulinita e esmectita entre 26-30% e a mica em cerca de 2%.
- <u>25b2 (bandas do VNIR-SWIR</u> Fig. IV.17): embora com um erro superior a 10% (13-16%), as classificações para essa amostra são também coerentes com as determinações via DRX. Considerando todo o espectro VNIR-SWIR, todos os minerais previstos foram detetectados, embora haja desvios em relação à proporção das rectorita e montmorillonita.

Tabela IV.4: Mi	isturas sugeridas	e resultados o	obtidos pela	classificação	espectro-mi	neralógica	realizada	com a u	utilização
do	os programas SIM	IS nas curvas	s espectrais o	das argilas b	rancas.				

		SIMIS FEATURE SI			ARCH (SFS)		510			
AM	MEL	DIDAS	MISTURA		RESULTADO	MISTURA	RESULTADO	ERRO (%)	FIG	
	a1		Kao (2,3,6) Kaosmec (1,2) Musc (2)	R1	Kao 3 (38%) Kaosmec 1 (62%)		Kao 3 (87%) Kaosmec 1 (13%)	13,1		
01	b1	SWIR	Kao (1,2,3,4,5,6,7,8) Kaosmec (1) Mont (8)	H1	Kao 2 (53%) Kao 3 (2%) Kao 4 (8%) Kao 8 (30%) Kaosmec 1 (4%) Mont 8 (2,4%)	Biblio 01swir	Kao 3 (76%) Kao 8 (16,8%) Mont 8 (7,2%)	9,9	IV.14	
	b3		Kao (3,4,5,7,8) Kaosmec (1,2) Musc (2) Sap (1)	H1	Kao 8 (15%) Kao 3 (30%) Kaosmec (55%)		Kao 3 (85,5%) Kao 4 (7,5%) Kao 5 (7%)	13		
	а5	SWIR	Gib (2) Illi (4) Kao (2,3,5,8) Kaosmec (10 Iep Mont (a,3,6,7,8,9) Musc (a,1,2,6,8,9) San (4)		Kao 3 (25%) Kaosmec 1 (34%) Lep (14%) Musc 2 (27%)	Biblio 05 vnir-swir	Kao 3 (88%) Kao 6 (12%)	11,4	IV.15a	
	b4	VNIR - SWIR	Gib (1,2) Illi (3,4,5) Kao (2,3,5,8) Kaosmec (1,2,5) lep Mont (a,1,6,5,7,9) Musc (a,1,5,8) Sap (1,2)	H4	Kao 8 (35%) Kaosmec 1 (22%) Lep (11%) Mont a (31%)	Biblio T vnir-swir	Hal 5 (7.8%) Kao 6 (17%) Lep (7%) Mont a (9,6%) Musc b (13,7%) Musc 2 (28,4%) Rec 2 (16,7%)	33,3	IV.15b	
	b4	SWIR	Illi (3,4) Kao (1,2,5,6,8) Kaosmec (1,2) Mont (1,5,9) Musc (9)	H3	Illi (9%) Kao 8 (40%) Kaosmec 1 (51%)	Biblio 05 swir	Kao 3 (87,4%) Kao 4 (12,6%)	10,4	IV.15c	
	b5	VNIR - SWIR	Gib (2) Illi (2,3,4,5) Lep Kao (1,3,8) Kaosmec (1,2,5) Mont (a,1,3,5,6,7,8,9) Musc (a,b,1,5,6) Sap (2)		Lep (12%) Kao 2 (40%) Kaosmec 1 (47%)	Biblio T vnir-swir	Kao 3 (65,6%) Lep (7,8%) Mont a (11,8%) Musc 2 (14,8%)	27,4	IV.15d	
24	b1	SWIR	Kao (2,3,6,8) Kaosmec (1,2,4) Mont (a,1,5,9) Musc (a,1,2,7)	НЗ	Kao 2 (0,6%) Kao 3 (71%) Kaosmec 1 (26%) Musc 2 (1,7%)	Biblio 24 swir	Kao 3 (53,4%) Kao 4 (15,9%) Kaosmec 1 (30,7%)	11,3	IV.16	
25	b2	VNIR Kao (2,3,6,8) Kaosmec (1,3,4,5) - lep H5 SWIR Musc (a,6,7,8,9) Rec (1)		Kao 2 (60%) Lep (4%) Rec (36%)	Biblio 25 vnir-swir	Kao 8 (29,9%) Mont 9 (20,9%) Musc 6 (6,1%) Rec 1 (32,9%) Rec 2 (10,2%)	16,4	IV.17		
	b2	SWIR	Kao (2,3,4) Kaosmec (1,2) Mont (1,2,4,5,7,9) Musc (a,1,2,5,9) Sap (2)	H5	Kao2 (48%) Kao 3 (11%) Kao 8 (21%) Kaosmec 1 (20%)	Biblio 25 swir	Kao 3 (100%)	13		

Argila Cinza (AC)

O grupo das argilas cinzas é composto por argilas que variam do cinza claro ao cinza escuro (Figs. IV.18a, 19a, 20a, 21a). Essa variação de tons de cinza é intimamente relacionada ao conteúdo de matéria orgânica nas argilas. Essa contaminação parece ter ocorrido em função de trocas catiônicas entre os argilo-minerais, presentes no material original, em contato com as turfas sobrejacentes. Localmente, restos e fragmentos de folhas e caules são também encontrados imersos nas massas de argila. Além da matéria orgânica, porções ferruginosas e ricas em quartzo (arenosas) aparecem em meio às massas de argila.

<u>DRX</u>

Na Tabela IV.5 e nas Figs. IV.18b, IV.19b, IV.20b e IV.21b, são apresentados os resultados obtidos por DRX. As argilas cinzas são também ricas em caulinita, porém sua porcentagem nas amostras é sensivelmente mais baixa quando comparada àquela do grupo anterior, das argilas brancas. A caulinita aqui possui teores que variam de 50-85% (Tab. IV.5); o valor mais baixo se deve a amostra 14, rica em material arenoso (Fig. IV.20a,b); o valor mais alto ocorre na amostra 09 (Fig. IV.19a,b), pobre em quartzo.

O quartzo varia entre 5-45%, com porcentagens médias (~20%) mais elevadas neste grupo do que no das argilas brancas. O importante pico do quartzo de 24° (2θ) não ocorre na amostra 09 (Fig. IV.19b). A amostra 14 (Fig. IV.20b), por sua vez, possui todos os picos deste mineral em 24°, 31°, 46°, 59,5°, 59° e 65° (2θ).

A mica tem baixa expressão nas argilas cinzas, onde sua variação vai de quase inexistente [amostras 09 e 11 - Figs. IV.19(a,b), IV.21(a,b)] até aproximadamente 10% (amostra 03 - Fig. IV.18a,b). De acordo com os difratogramas, nota-se que as amostras 03 (Fig. IV.18b) e 26 (Fig. IV.21b) possuem o pico da mica de 10,5° (2θ), e não o pico de 20,5° (2θ), mais típico.

Os argilo-minerais expansivos deste grupo apresentam os teores mais elevados nas amostras, dentre todos os grupos estudados na jazida da MML. Os teores variam em torno de 5-10%, sendo que o predomínio é na amostra 26 (Fig. IV.21a,b), que também apresenta o pico diagnóstico dos expansivos de 6° (20) mais obtuso, indicando maior cristalinidade. Na amostra 09, segunda maior em teor, os expansivos predominam sobre o quartzo, mas são de baixa cristalinidade, conforme indicado pela abertura do seu pico (Fig. IV.19b). A amostra 03 é a que apresenta argilo-minerais expansivos menos cristalinos ou muito mal estruturados (Fig. IV.18b).

A goethita é rara, destacando-se somente na amostra 03. A gibbsita também é muito incipiente. A siderita, não listada, pode existir na amostra 26, visto o pequeno pico em 37,5° (2θ) (Fig. IV.21b), considerado como indicativo.

* Matéria-Prima para Louça Sanitária e Porcelana *

Figura IV.18: a) amostra 03 e b) DRX da fração total

Figura IV.19: a) amostra 05 e b) DRX da fração total

* Matéria-Prima para Louça Sanitária e Porcelana *

Figura IV.20: a) amostra 14 e b) DRX da fração total

Figura IV.21: a) amostra 26 e b) DRX da fração total

AM	ARGILA	MINERAIS - DRX	HIRERARQUIA
03	cinza médio I (arenoso)	kao / qz/ musc / mont / goe	kao (60) > qz (30) > mica (~10) > exp (<5) ≈ goe (<5)
09	cinza escuro (matéria orgânica)	kao / qz / mont / sap / musc	kao (85) >>> qz (<5) > exp (5-10) > mica↓↓
14	cinza médio II (areia amarelada)	kao / qz / mont / musc / goe / gib	kao (50) > qz (45) > exp (5) > mica ≈ goe ≈ gib↓↓
26	cinza médio II	kao / qz / mont / musc / goe	kao (65) > qz (20) > exp (10) >mica (<5) > goe↓↓

Tabela IV.5: Resultado de análise mineralógica por difratometria de raios X (DRX) em amostras da fração total das argilas cinzas.

kao: caulinita;

qz: quartzo;

gib: gibbsita; mica: illita (illi) e/ou muscovita (musc);

exp: argila expansiva ou interestratificada: montmorillonita (mont), saponita (sap) e rectorita (rec);

goe: goethita;(100): valores percentuais estimados para cada mineral com base nos picos do difratograma;

↓↓: percentual muito baixo.

Classificação Espectro-Mineralógica 1 - Interpretação Empírica

A classificação espectral foi realizada em todas as amostras deste grupo, incluindo as amostras brutas, as amostras moídas em geral e as amostras moídas e analisadas por DRX [Figs. IV.22(a-d)]. Todos os procedimentos descritos para análise das amostras do grupo das argilas brancas foram repetidos para as argilas deste grupo, exceto no que tange à iluminação das amostras. Com o objetivo de realçar as feições no SWIR do espectro, variavelmente afetadas pela presença de matéria orgânica nas amostras (que reduz a intensidade do sinal refletido), a maior parte das leituras foi realizada com iluminação saturada, ou seja, a fonte de luz foi colocada a uma distância muito próxima da amostra. Se por um lado isso melhorou muito a resposta no SWIR, por outro lado, o procedimento acarretou o aparecimento de uma série de interferências na região do VNIR, o que é marcado por fortes ondulações no sinal (Figs. IV.22a,c). Assim, a utilização desta porção do espectro nas análises espectrais ficou comprometida.

Em relação às curvas de reflectância espectral (com o contínuo removido) da Figura IV.22a, as seguintes bandas de absorção podem ser destacadas: 0.6μm (grosseiramente), 1.4/1.41μm, 1.91μm, 2.16/2.2μm, 2.31μm, 2.35μm, 2.38μm e 2.45μm.

A banda de absorção em 0,6μm ocorre em todas as curvas, mas é muito incipiente na curva 14a5 e mais proeminente na 09a4. A leitura 03b3 foi a que relativamente menos sofreu os efeitos da saturação da iluminação, e exibe uma feição melhor marcada nesta região. Esta feição, embora pobremente caracterizada, deve estar relacionada à transições eletrônicas do Fe⁺³, particularmente devido à presença de goethita, também apontada pela DRX.

Figura IV.22: Curvas de reflectância espectral (contínuo removido) das amostras 03, 09, 14 e 26 do grupo das argilas cinzas, considerando o comportamento no espectro VNIR-SWIR de frações brutas e moídas (A) e no espectro SWIR de frações brutas (B). Em (C), curvas de reflectância espectral da amostra 09 (argila cinza escuro com matéria orgânica), frações bruta (09a1 a 09a4) e moída (09b1 a 09b3), considerando o espectro VNIR-SWIR. Em (D), tabela com os valores de comprimento de onda das bandas de absorção dos minerais presentes em cada amostra analisada (λ1 - extração visual de feições, λ2 - extração automática de feições, via software SIMIS).

A banda de absorção em 0,6μm ocorre em todas as curvas, mas é muito incipiente na curva 14a5 e mais proeminente na 09a4. A leitura 03b3 foi a que relativamente menos sofreu os efeitos da saturação da iluminação, e exibe uma feição melhor marcada nesta região. Esta feição, embora pobremente caracterizada, deve estar relacionada à transições eletrônicas do Fe⁺³, particularmente devido à presença de goethita, também apontada pela DRX.

Na curva 09a4, numa faixa já livre da interferência da fonte de luz, ocorre uma banda de absorção em 0,98µm pouco profunda, mas bem definida, também relacionada à transições eletrônicas do Fe⁺³. Apesar de nenhum mineral de ferro ter sido apontado na interpretação padrão dos dados de DRX nesta amostra, pode haver alguma quantidade de goethita presente, talvez indicada por um pico sutil na DRX, em 24,5° (20) (Fig. IV.19b). Por outro lado, a goethita possui uma feição característica no NIR, mas entre 0.9-0.94µm (Hunt & Ashley 1979), enquanto a lepidocrosita tem a sua feição típica e discriminante em 0.98µm (Towsend 1987). Pela qualidade dos dados, fica impossível determinar quais são, de fato, os hidróxidos de ferro presentes nessa amostra por espectroscopia de reflectância.

As feições acima de 1.3 μ m são mais evidentes (Fig. IV.22b). As bandas de absorção em 1.4-1.42 μ m definem bem a presença de caulinita em todas as curvas, embora na curva 09a1 o *doublet* seja mais raso. Levando-se em conta a profundidade e inflexão dos *doublets*, é possível propor uma hierarquia de cristalinidade para as caulinitas das curvas da Figura IV.22b, de maior para menor, da seguinte forma: 26a1 (caulinita mais cristalina) >>> 03a2 >> 14a5 > 09a1 (caulinita menos cristalina). Adicionalmente, essa possível diferença de cristalinidade pode ser analisada em função da banda de absorção em 1.8 μ m, a qual só ocorre em caulinitas mais cristalinas (Pontual *et al.* 1997) e, justamente, é ausente na curva 09a1, já apontada como representativa de uma caulinita de menor cristalinidade.

A feição assimétrica centrada em 1.91µm é diferente em formato e profundidade nestas curvas (Fig. IV.22b). Observa-se que as curvas 03a2 e 26a1 apresentam as feições mais profundas e com geometria mais fechada nesta faixa. Esta feição proeminente nesta região do espectro registra a existência de uma proporção razoável de argilo-minerais expansivos em algumas amostras do grupo das argilas cinzas. As curvas 09a1 e 14a5 sofrem uma maior influência da caulinita na construção desta banda de absorção, enquanto que nas curvas 03a2 e 26a1, a contribuição da mica e dos expansivos na mistura é mais destacada. Entre as micas, a muscovita apresenta esta feição em 1.91µm rasa e aberta, ao contrário da illita, onde é profunda e fechada (Pontual *et al.* 1997).

Analisando-se a feição mais diagnóstica da caulinita nas curvas da Figura IV.22b, com bandas de absorção entre 2.16-2.20µm, e levando-se em conta a profundidade e inflexão (ou ombro) dos *doublets*, é possível classificar essas curvas entre as que apresentam a maior inflexão

e a menor inflexão, da seguinte forma: 26a1 (mais inflexionada) >>> 03b3 >> 14a5 > 09a1 (menos inflexionada). Essa maior e menor inflexão também tem uma relação com a cristalinidade da caulinita (Pontual *et al.* 1997) e ratifica a escala de cristalinidade indicada em epígrafe.

As bandas de absorção em 2.31µm, 2.35µm e 2.38µm (Fig. IV.22b), todas características da caulinita, são bem definidas. As feições em 2.31µm e 2.38µm são mais proeminentes nas curvas 26a1 e 03a2, enquanto a feição em 2.35µm destaca-se mais nas curvas 26a1 e 09a1. Na curva 09a1, essas três bandas de absorção apresentam a mesma profundidade, o que já não ocorre para as demais curvas, onde a profundidade varia. Com base em outras feições do SWIR (principalmente em torno de 1.4µm e 2.2µm), a curva 09a1 é a que aparenta representar a caulinita menos cristalina; e a curva 26a1 a mais criistalina. Considerando o conjunto das características das feições entre 2.31 -2.38µm, expostas acima para essas curvas, é possível que haja uma relação também destas bandas de absorção, em comprimentos de onda mais longos, com a cristalinidade relativa das caulinitas deste grupo.

A feição em 2.45µm é bem marcada nas curvas 03a2 e 09a1 e ocorre também, mais aberta, na curva 26a1 (Fig. IV.22b). Essa feição pode estar relacionada à presença de muscovita nas amostras, conforme indicado pela DFX. Entretanto, a quantidade de ruído nesta faixa limita a interpretação.

De acordo com a Figura IV.22c, que ilustra todas as curvas de reflectância espectral obtidas para a amostra 09 (a: amostra bruta; b: amostra moída), pode-se observar as seguintes <u>diferenças</u> de acordo com a região do espectro:

- <u>0.60μm</u>: essa banda de absorção ampla, embora numa região comprometida por interferência da luz incidente, em todas as curvas, é relacionada à presença de minerais com conteúdo em ferro nas amostras, possivelmente goethita. As curvas obtidas nas amostras brutas (a1,a2,a3) apresentam uma ampla inflexão, centrada entre 0.6-0.65 μm;
- <u>1.20μm</u>: esta quase imperceptível feição ocorre somente na fração moída e pode também estar relacionada à presença de minerais com conteúdo em ferro;
- <u>1.4-1.41μm</u>: são feições com profundidade maior nas amostras moídas, exceção feita a curva a4 da fração bruta, em que a profundidade é mediana;
- <u>1.8μm</u>: esta feição, quase imperceptível, desaparece totalmente na fração moída;
- <u>1.91μm</u>: essa feição aparece em destaque e com grande profundidade nas curvas 09a2 e 09a3. Essas curvas correspondem a medidas feitas sobre superfícies rugosas e com matéria orgânica nas amostras brutas. Essa feição marca claramente a presença de minerais do grupo das smectitas (expansivos - montmorillonita e/ou saponita), o que confirma a relação mais direta entre estes minerais e a matéria orgânica. Essa mesma feição nas amostras moídas (09b1-

09b3) é menos intensa e similar às feições verificadas nas outras duas curvas obtidas em amostras brutas (09a1 e 09a4);

- <u>2.16-2.20μm</u>: essas feições, associadas à caulinita, são sistemáticas em todas as curvas, mas atingem profundidades maiores na fração moída;
- 2.31μm: essa feição só aparece nas curvas da fração moída, exceção feita a curva 09a1;
- <u>2.32μm</u>: essa feição só aparece na curva 09a1;
- <u>2.38μm</u>: essa feição aparece em todas curvas da fração moída e nas curvas a1 e a4 da fração bruta.

De modo geral todas as amostras são ricas em caulinita com exceção da amostra 14 (arenosa). A participação da caulinita e de expansivos (grupo das esmectitas) são bem marcadas no infravermelho de ondas curtas (SWIR: 1.3-2.5 µm). As micas (illita e/ou muscovita), que eventualmente ocorrem na mistura (amostras 03 e 26), não parecem modificar as feições dos espectros. Na região do visível e do infra-vermelho próximo (VNIR: 0.35-1.3µm), o destaque é dado para os minerais de ferro que ora ocorrem conforme apontado pela DRX (amostras 03, 14 e 26), ou por anomalias apresentadas pela curva de reflectância espectral (amostra 09) nesta região.

Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)

Nesta etapa da classificação espectral, todos os procedimentos apresentados anteriormente para o grupo das argilas brancas, foram repetidos, incluindo: (i) a utilização dos programas SIMIS *Field* (SF) e SIMIS *Feature Search* (SFS) para análise e classificação espectromineralógica da mistura espectral contida nas amostras; a adaptação da biblioteca espectral do USGS, para a montagem de uma biblioteca específica para essas amostras de São Simão, segundo a mineralogia obtida por DRX (Tab. IV.5).

Os resultados da classificação espectral qualitativa e semi-quantitativa considerando o conjunto de medidas realizadas para cada amostra, e sua coerência com os resultados obtidos via DRX, são apresentados de forma completa na Tabela IV.6. A seguinte análise pode ser feita para algumas curvas de reflectância espectral em particular:

- <u>03b3</u> (bandas do SWIR Fig IV.23): a caulinita aparece como mineral dominante, com porcentagem próxima àquela estimada pela DRX. A muscovita foi detectada pelo SF e com uma porcentagem também compatível ao estimado, embora não tenha sido caracterizada no SFS. O resultado do SF foi também satisfatório para as argilas expansivas, representadas por uma mistura de caulinita e esmectita (kao-esmectita). O erro da mistura para essa amostra, de 14.9%, foi considerado aceitável;
- <u>09a4 (bandas do SWIR</u> Fig IV.24): essa curva apresentou o segundo maior erro de mistura (59.8%) entre todos os resultados derivados do SF. O problema desta curva, que é extensivo a todas as curvas obtidas sobre a amostra 09, é a presença excessiva de matéria orgânica nessa amostra, que afeta a qualidade do sinal em todas as faixas do espectro refletido, mas particularmente no SWIR. Isso faz que as medidas sejam feitas com um ruído alto associado ou adquiridas com baixa variação espectral, ambos com prejuízos à classificação espectromineralógica pelo SF. Apesar desta dificuldade do SF, o resultado do SFS, por outro lado, foi um pouco mais coerente apesar da quantidade de caulinita ter sido sub-estimada como mineral puro e somada como parte da contribuição das esmectitas (kao-esmectitas), a proporção de muscovita foi coerente com os valores indicados pela DRX;
- <u>14a5</u> (bandas do SWIR Fig IV.25): apesar do erro moderado da classificação do SF (29.1%), o formato da curva de mistura espectral é razoavelmente semelhante à curva da amostra. O SFS apontou a presença de caulinita, mistura caulinita e smectita e mica, em proporções muito próximas àquelas estimadas pela DRX;
- <u>26a1 (bandas do SWIR</u> Fig IV.26): apesar do erro moderado da classificação do SF (15,3%), todos os minerais presentes na amostra foram detectados com proporções coerentes. O SF foi o que apontou a proporção de muscovita mais próxima aos resultados por DRX; enquanto o SFS gerou uma melhor aproximação para a porcentagem de expansivos, aqui também representados por parcelas da mistura caulinita e esmectita (kao-esmectita).

Tabela IV.6: Misturas sug	geridas e resultados o	obtidos pela classifica	ção espectro-mineralóg	ca realizada c	om a utilização
dos progran	nas SIMIS nas curvas	s espectrais das argila	s cinzas.		

			SIMIS FEATU	RE SE	ARCH (SFS)		510				
AM	MEL	DIDAS	MISTURA		RESULTADO	MISTURA	MISTURA RESULTADO				
	a2		Kao (2,3,4,6) Kaosmec (1,3) Mont (1,6,8) Musc (a,2,5,8))	H3 Kao 3 (100%)			Kao 2 (25,2%)				
03	a2	SWIR	Kao (1,3,8) Kaosmec (1) Musc (5,8)	R3	Kao 3 (75%) Kaosmec 1 (24%) Musc 8 (1%)	Biblio 03 swir	NdU 3 (74,0%)				
	b3		Kao (2,3,4,5,8) Kaosmec (1,3) Mont (1,6,8) Musc (a,2,5,8)	H3 [*]	Kao 2 (50%) Kao 3 (2%) Kao 8 (14%) Kaosmec 1 (35%)		Kao 3 (50,5%) Kaosmec 1 (38,5%) Musc 2 (11%)	14,9	IV.23		
09	a1	SWIR	Kao (2,3,5,6) Kaosmec (1,3) Mont (1,9) Musc (d,2)	H1	Kao 2 (45%) Kaosmec 1 (42%) Musc d (13%)	Biblio 09 swir	Biblio 09 swir	Kao 3 (11,3%) Kao 6 (18,3%) Musc 6 (70,4%)	72,8		
	a4		Kao (3,4,7) Kaosmec (1) Mont (a,9) Musc (d,2)	H2	Kao 3 (13%) Kao 7 (15%) Kaosmec 1 (71%) Musc d (1%)			swir	Kao 5 (39,3%) Musc d (6,9%) Musc 6 (46,5%) Musc 7 (7,3%)	59,8	IV.24
14	а5	SWIR	Kao (2,3,6,7,8) Kaosmec (1,3) Mont (1,4,5,9) Musc (b,2,3,5)	H3	Kao 2 (36%) Kaosmec 1 (61%) Musc b (3%)	Biblio 14 swir	Kaosmec 1 (100%)	29,1	IV.25		
26	a1	SWIR	Kao (2,3,4,5,6,8) Kaosmec (1,2,4)	H5	Kao 2 (37%) Kao 3 (48%) Kao 4 (13%) Kaosmec 1 (1,7%) Musc 2 (0,2%)	Biblio 26	Kao 3 (78,6%) Kao 5 (12,5%)	15.3			
			Mont (a,1,3,5,7,8,9) Musc (a,b,1,2,8,9)	H7	Kao 3 (79%) Kaosmec 1 (21%)	swir	Musc 2 (8,9%)	-,-	IV.26		
				H8	Kao 3 (35%) Kaosmec 1 (65%)						

Argila Marrom (AM)

Este grupo de argilas apresenta uma variação de cores que vai do rosa claro ao marrom escuro, passando por tons intermediários. Para facilitar a interpretação das amostras deste grupo, as argilas foram separadas em cinco associações principais: marron (com porções cinza escuro e claro) (Fig. IV.27a); rosa escuro (com material arenoso ocre) (Fig. IV.28a); rosa escuro (Fig. IV.29a); rosa claro (Fig. IV.30a) e marrom escuro (com material arenoso ocre) (Fig. IV.31a).

DRX

Na Tabela IV.7 e nas Figs. IV.27b, IV.28b, IV.29b, IV.30b e IV.31b, são apresentados os resultados obtidos por DRX.

O grupo das argilas marrons compreende as argilas mais ricas em caulinita, entre todas as amostras investigadas no jazimento da MML. As amostras deste grupo possuem elevados picos de caulinitas nos difratogramas (14° e 29°: 20), além dos outros de menor tamanho. Os teores de caulinita variam aqui entre 70-90%, numa média de até 80% acima das outras argilas. Os valores mais baixos de caulinita, como na amostra 04 (Fig. IV.27a,b), indicam uma maior contribuição de outros materiais (outros tipos de argila ou materiais arenosos).

O quartzo que varia entre 4-15% (Tab. IV.7), tem seus teores médios abaixo dos 10%, bem menos quando comparado com os valores das argilas cinzas, com quase 20%. Na amostra 07, a proporção de quartzo é bastante baixa, enquanto a de minerais atípicos, como a siderita, é mais alta. O pico de 24° (20) do quartzo somente ocorre na amostra 04 (Fig. IV.27b). O outro pico do quartzo, de 31° (20), é sempre pequeno, tornando-se mais sutil ainda na presença simultânea do pico de 37° (20), diagnóstico da siderita (Figs. IV.28b, IV.31b).

A siderita (carbonato de ferro - $FeCO_3$) foi identificada nas amostras 07 e 18 (Fig. IV.28b, IV.31b), respectivamente, com teores em torno de 10% e 5%. Além do pico de 37° (2 θ) comum a essas duas amostras, o segundo pico da siderita, em 59° (2 θ), somente foi observado na amostra 07.

A mica apresenta uma porcentagem homogênea entre as amostras, com valores em torno de 5% (Tab. IV.7), exceção feita a amostra 04, com teores próximos a 10%. Nas amostras 04 e 08 (Fig. IV.27b, IV.29b), as micas (muscovita e illita) são de difícil separação da halloisita (caulinita), pois ambos minerais apresentam picos na mesma região do difratograma. Estas micas podem ser também híbridas, ou seja, uma transição entre muscovita e illita. As amostras 04 (Fig. IV.27b), 08 (Fig. IV.29b), 11 (Fig. IV.30b) e 18 (Fig. IV.31b) possuem o pico de 10° (20) da mica, enquanto o outro pico característico, de 20,5° (20), é quase inexistente. Na amostra 07, entretanto, ambos os picos apresentam intensidade proporcional (Fig. IV.28b).

As argilas expansivas, com média em torno de 5%, também apresentam proporção homogênea nas amostras onde ocorrem (são ausentes na amostra 07 - Fig. IV.28b), exibindo o maior teor na amostra 04 (Fig. IV.27b). De acordo com os difratogramas, nota-se que os picos de 6° (20), relativo aos expansivos, em todas as amostras, são abertos e de cume arredondado, indicando que esses minerais são deficientemente estruturados e de baixa cristalinidade.

Os hidróxidos de ferro são comuns nas argilas deste grupo (Tabela IV.8). A goethita somente não ocorre na amostra 18. O pico da goethita de 24,5° (2θ) ocorre em quase todas as amostras, mas é menos intenso na amostra 07. Embora seu percentual seja baixo e não calculado, sua participação nas amostras não é negligenciável, considerando a cor (tons de marron) que as argilas adquirem em função de sua presença. A gibbsita aparece como traço na amostra 11 (Fig. IV.30b).

Tabela IV.7	Resultado	de análise	mineralógica	por o	difratometria	de	raios	X (DF	RX) em	amostras	da	fração	total	das
	argilas ma	arrons.												

AM	ARGILA	MINERAIS - DRX	HIRERARQUIA
04	marrom, cinza escuro e claro	kao / qz / musc / hall / mont / sap / goe	kao (70) >> qz (15) > mica*(<10) ≈ exp (<10) > goe↓↓
07	rosa escuro e material ocre	kao / qz / sid / musc / goe	kao (90) >>> qz (<4) > sid (5-10) > mica (<5) > goe↓↓
08	rosa escuro	kao / qz / musc / hall / mont / goe	kao (80) >>> qz (<5) > mica*(<5) ≈ exp (5) > goe↓↓
11	rosa claro	kao / qz / musc / mont / goe / gib	kao (80) >> qz (10) > mica (5) > exp (<5) > goe \approx gib $\downarrow\downarrow$
18	marrom (material ocre)	kao / qz / musc / mont / sid	kao (75) >> qzo (<10) > mica (5) > exp (<5) ≈ sid (<5)

kao: caulinita;

qz: quartzo;

gib: gibbsita;

mica: muscovita (musc);

mica*: halloisita ou muscovita → obs (*): halloisita é do grupo da caulinita, mas a interpretação é ambígua na difratometria com a muscovita; exp: argila expansiva ou interestratificada: montmorillonita (mont) e saponita (sap);

goe: goethita;

sid: siderita;

(100): valores percentuais estimados para cada mineral com base nos picos do difratograma;

↓↓: percentual muito baixo;

Figura IV.27: a) amostra 04 e b) DRX da fração total

Figura IV.28: a) amostra 07 e b) DRX da fração total

Figura VI.29: a) amostra 08 e b) DRX da fração total

Figura IV.30: a) amostra 11 e b) DRX da fração total

Figura IV.31: a) amostra 18 e b) DRX da fração total

Classificação Espectro-Mineralógica 1 - Interpretação Empírica

A classificação espectral foi realizada em todas as amostras deste grupo, incluindo as amostras brutas, as amostras moídas em geral e as amostras moídas e analisadas por DRX (Fig. IV.32a-d).

Em relação às curvas de reflectância espectral (com o contínuo removido) da Figura IV.32a, as seguintes bandas de absorção podem ser destacadas: 0.42-0.49μm, 0.53μm, 1.00μm, 1.25μm, 1.4-1.41μm, 1.80μm, 1.91μm, 2.16/2.2μm, 2.31μm, 2.35μm, 2.38μm e 2.45μm.

A feição em 0.42µm ocorre nas curvas 18b2, 08b1 e 07a2, tem considerável profundidade e é relacionada às transições eletrônicas devido ao Fe³⁺. A feição entre 0.48-0.50µm é marcada por uma banda de absorção profunda, ocorre nas mesmas curvas (18b2, 08b1 e 07a2), aparece com um pequeno deslocamento (0.53µm) na curva 08b1, e está associada à presença de goethita, que possui uma banda de absorção típica em 0.48µm (Scheinost *et al.* 1998, Meneses *et al.* 2001).

As bandas de absorção entre $0.53-0.55\mu$ m, detectadas nas curvas 18b2, 11b2 (muito sutil), 08b1 e 04a5, também são tipicas da condução devida ao íon Fe³⁺ e também associadas à goethita (Hunt *et al.* 1971, Meneses *et al.* 2001). A curva 04a5 não possui este conjugado de feições de absorção, em 0.48µm e 0.55µm, mas apenas uma suave banda de absorção, centralizada em torno de 0.55 µm - mesmo assim, essa feição única é indicativa da goethita.

A feição entre 1.00-1.06μm, marcante na curva 07a2 e sutil e muito rasa na curva 18b2, possivelmente é relacionada à transição eletrônica do ferro contido na siderita. O mesmo pode ser dito em relação à feição em 1.25μm, que somente ocorre na curva 07a2, formando um par com a feição em 1.05μm. Essa noção é suportada por: (i) Whitney (1983), que reconhece a banda de absorção em 1.05μm da siderita como uma feição ampla e profunda, mas sem a inflexão brusca que a assemelhe a uma banda de absorção aguda, típica do SWIR; e (ii) por Gaffey (1987), que determinou duas bandas de absorção diagnósticas para siderita, exatamente em 1.08 μm e 1.25μm. Interessantemente, essas duas feições inibem o aparecimento das bandas de absorção no SWIR nessa mesma curva 07a2, o que é notório sobre as bandas de absorção devidas à presença de hidroxilas, na região entre 1.4-1.41μm.

As feições do SWIR, acima de 1.3µm, aparecem realçadas na Figura IV. 32b. As bandas de absorção entre 1.4-1.42µm formam *doublets* típicos da caulinita. As curvas 18b2 e 11b2 apresentam inflexões consideráveis neste intervalo, seguidas pela curva 08b2 e 04a5. Com a remoção do contínuo, calculado somente no espetro SWIR, é possível observar esse *doublet* da caulinita também na curva 07a2, o qual é totalmente apagado pela influência da siderita na Figura IV.32a.

Figura IV.32: Curvas de reflectância espectral (contínuo removido) das amostras 04, 07, 08, 11 e 18 do grupo das argilas marrons, considerando o comportamento de frações brutas e moídas no espectro VNIR-SWIR (A) e no espectro SWIR. Em (C), curvas de reflectância espectral da amostra 07 (argila rosa escuro, com material arenoso ocre), frações bruta (07a1 a 07a6) e moída (07b1 a 07b3), considerando o espectro VNIR-SWIR. Em (D), tabela com os valores de comprimento de onda das bandas de absorção dos minerais presentes em cada amostra analisada (λ1 - extração visual de feições, λ2 - extração 196 automática de feições, via software SIMIS).

A feição em 1.8μm, característica das caulinitas mais cristalinas, aparece em várias curvas, sendo que sua maior expressão ocorre na curva 08a2.

A banda de absorção em 1.91μm é muito semelhante em todas as curvas (Fig. IV. 32b), mostrando-se ligeiramente mais côncava e menos assimétrica nas curvas 04a5 e 07a2. Analisando a geometria dessas feições, com considerável profundidade e assimetria, é possível relacioná-las à presença de argilas expansivas misturadas à caulinita.

As bandas de absorção entre 2.16-2.2µm, com *doublet* bem marcado e forte inflexão do ombro da feição, são as clássicas feições da caulinita (Fig. IV. 32b) e, pela sua expressão, são indicativas de caulinitas bem estruturadas e de alta cristalinidade. Nesta faixa do espectro, considerando o conjunto da profundidade e geometria das feições, é possível estabelecer a seguinte escala de cristalinidade, de maior para menor, entre as amostras: 18b2 >>>> 11b3 >>> 04a5 >> 08a2 > 07a2.

As bandas de absorção em 2.31µm, 2.35µm e 2.38µm (Fig. IV.32b), também relacionadas à caulinita, são bem definidas em todas a curvas, exceto na curva 07a2, onde são prejudicadas por ruído e/ou pelas bandas da siderita no SWIR. No conjunto, as curvas 18b2, 11b2 e 08a2 apresentam essas três bandas com geometria e profundidade similar. Entretanto, a curva 18b2 é a que mostra as feições em 2.31µm e 2.38µm mais profundas e evidentes, o que condiz com a maior cristalinidade sugerida para a caulinita representada nesta curva, com base em outras feições do SWIR.

A feição 2.45μm, que aparece em meio a oscilações devidas à ruídos, destaca-se nas curvas 04a5 e 11b2; possivelmente, essas feições estão associadas à presença de micas nas amostras, como também apontado pelas determinações via DRX.

Analisando-se a Figura IV.32c, que contém todas as medidas da amostra 07 (a: amostra bruta; b: amostra moída), pode-se observar as seguintes diferenças, de acordo com a região do espectro:

- <u>0.41-0.49μm</u>: feição intensa em todas as curvas e ligeiramente mais profunda nas curvas "a"; é relacionada à presença de goethita (0.48 μm);
- <u>1.4-1.41µm</u>: feição mais intensa na fração moída, com *doublets* profundos e característicos da caulinita;
- <u>1.8μm</u>: feição típica de caulinitas de boa cristalinidade. É notada somente na fração "a", principalmente nas curvas 07a3 a 07a6;
- <u>1.91μm</u>: essa feição é mais evidente na fração moída, onde aparece com maior profundidade, mais retilínea e com ângulo menos inclinado na sua extensão em direção à comprimentos de onda mais longos - possivelmente é devida a presença de argilas expansivas na mistura. Na fração bruta, esta feição é bem mais rasa e mascarada por ruído nas curvas. O aparecimento

de bandas de absorção de argilas expansivas em amostras moídas, onde grãos mais finos foram liberados, sugere que sua detecção pode estar relacionada a determinadas faixas granulométricas;

- <u>2.16-2.2μm</u>: essa feição é bem parecida no conjunto de curvas e é tipicamente da caulinita. Detalhe para a curva 07a3, onde ocorre com maior profundidade e com *doublet* marcante;
- <u>2.31μm</u>: essa feição ocorre principalmente na fração moída, mas tem razoável profundidade na curva 07a5;
- <u>2.35μm</u>: feição indistinta de ruído na fração bruta, aparecendo de forma sutil na fração moída;
- <u>2.38μm</u>: feição mais evidente na fração moída, exceção feita a curva 07a5, que apresenta uma banda de absorção um pouco difusa, mas com considerável profundidade;
- <u>2.45μm</u>: de forma geral, essa feição é indistinta do ruído, embora apareça, com um mínimo de definição, nas curvas da fração moída.

Classificação Espectro-Mineralógica 2 - Interpretação Automática (SIMIS)

Nesta etapa da classificação espectral, todos os procedimentos apresentados anteriormente para o grupo das argilas brancas e argilas cinzas foram repetidos.

Os resultados da classificação espectro-mineralógica qualitativa e semi-quantitativa considerando o conjunto de medidas realizadas para cada amostra do grupo das argilas marrons, e sua coerência com os resultados obtidos via DRX, são apresentados de forma completa na Tabela IV.8. A seguinte análise pode ser feita para algumas curvas de reflectância espectral em particular:

- <u>04a5</u> (bandas do SWIR Fig. IV.33): o desempenho dos classificadores automáticos foi relativamente bom. O resultado do SF apontou a presença de caulinita (94%) e muscovita (5%) em proporções similares àquelas estimadas pela DRX entretanto, nenhuma argila expansiva foi detectada na mistura. O SFS foi complementar neste sentido, indicando a presença, além da caulinita, da mistura esmectita e caulinita (kaoesmectita), mas subestimou sobremaneira a percentagem de muscovita na amostra;
- <u>07a2</u> (bandas do VNIR-SWIR Fig. IV.34): a resposta do SF é exagerada nos constituintes goethita, muscovita e siderita. Isso ocorre pois as feições da caulinita, mineral majoritário na amostra, são reduzidas ou totalmente encobertas (1.4-1.41μm) pela interferência destes minerais de ferro (curva 07a2). O resultado do SFS é melhor quanto ao percentual de mica (8.4%) na mistura, mas ainda inadequado quanto à estimativa das proporções de caulinita pura (0%), siderita (41%) e goethita (24%). A presença da caulinita, em porções mais livres da influência dos minerais de ferro, é bem caracterizada nas amostras moídas (curva 07b3 Fig. IV.34), onde o conjunto de suas feições diagnósticas no SWIR estão presentes;

- <u>08a2</u> (bandas do SWIR Fig. IV.35): os resultados dos classificadores, com um erro aceitável, no caso do SF, indicam a presença dominante de caulinita e esmectita (kaoesmectita) para essa amostra, o que é compatível com a determinação via DRX;
- <u>11b2</u> (bandas do SWIR Fig. IV.36): somente caulinita e esmectita foram detectadas nessa amostra pelo SF e SFS. A muscovita, que aparece em proporções de até 5% (DRX), não foi apontada como presente na mistura pelos classificadores;
- <u>18b2</u> (bandas do SWIR Fig. IV.37): apesar do erro de 16% na mistura, a classificação derivada pelo SF foi considerada muito boa, qualitativa e quantitativamente, em comparação às estimativas via DRX. Além da caulinita, a muscovita aparece com uma proporção de 8% (estimada abaixo de 10% pela DRX). As argilas expansivas foram estimadas com uma porcentagem de 43%, aparentemente exagerada. Entretanto, o SF calculou essa porcentagem baseado numa variação da mistura caulinita + esmectita (amostra KLF506 do USGS) que contém 95% de caulinita originalmente, o que implica numa porcentagem necessariamente abaixo dos 5% para os expansivos uma estimativa que confere com aquelas obtidas via DRX.

Tabela IV.8: Misturas sugeridas e resultado	s obtidos pela classificação espectro	o-mineralógica realizada com a util	lização
dos programas SIMIS nas curv	as espectrais das argilas marrons.		

	MEDIDAS		SIMIS FEATURE SEARCH (SFS)				SIMIS FIELD (SF)						
AM			MISTURA		RESULTADO	MISTURA	RESULTADO	ERRO (%)	FIG				
04	a5	SWIR	Kao (1,2,3) Kaosmec (1,5) Mont Musc (2,3)	R1	Kao 2 (66%) Kao 3 (4,6%) Kaosmec 1 (21%) Kaosmec 5 (7,5%) Musc 2 (0,7%)	Biblio 04 swir	Kao 3 (94,2%) Musc 2 (5,8%)	16,5	IV.33				
07	a2	VNIR	Kao (3,7,8) Kaosmec (1) Mura (2,8,9)	R1	Goe 3 (21%) Kaosmec 1 (20%) Musc 8 (6,2%) Sid (53%)	Biblio 07 vnir-swir	Goe 1 (24,9%) Kao 1 (10,5%) Kaosmec 4 (11,6%) Musc 3 (11,4%) Sid (41,7%)	17,3	IV.34				
	u.	SWIR	Goe (1,3) sid	H1	Goe 3 (20%) Kaosmec 1 (21%) Musc 8 (8,4%) Sid (51%)								
08	a2	SWIR	SWIR	SWIR	SWIR	SWIR	Hall (5) Kao (4,6,8) Kaosmec (1) Mmont (6) Musc (9)	H1	Kao 8 (54%) Kaosmec 1 (46%)	Biblio 08	Kao 3 (84,3%) Kao 6 (15,7%)	14,3	IV.35
	b1		Kao (8) Kaosmec (1)	H1	Kao 8 (11%) Kaosmec 1 (88%)	SWI	Kao 3 (58,2%) Kao 4 (7,6%) Musc 2 (34,2%)	14,4					
11	b2	SWIR	Kao (2,3,4,6,8) Kaosmec (1) Musc (2) Mont (5)	H2	Kao 2 (15%) Kao 3 (15%) Kao 8 (36%) Kaosmec 1 (36%)	Biblio 11 swir	Kao 3 (88,5%) Kao 6 (11,5%)	13,8	IV.36				
18	b2	SWIR	Kao (2,3,4,6) Kaosmec (1,2,4) Mont (1,3,5,9) Musc (a,b,1,2,9)	H2	Kao 2 (85%) Kao 8 (6,7%) Musc b (7,9%)	Biblio 18 swir	Kao 3 (15,6%) Kao 7 (33,4%) Kaosmec 1 (43%) Musc b (8%)	16,2	IV.37				

IV.7. DISCUSSÕES & CONCLUSÕES

Sobre o desempenho da espectroscopia de reflectância e classificação espectro-mineralógica para caracterização das argilas de São Simão, incluindo sua aplicabilidade para definição de tipo, composição e pureza de argilas.

A caracterização espectral das **argilas brancas** por espectroscopia de reflectância foi bem sucedida. Através deste método foi possível quantificar e detectar, com relativa precisão (em relação às determinações por DRX), as porcentagens de caulinita e seu grau de cristalinidade, além dos minerais subordinados como os argilominerais expansivos e micas, e minerais 'contaminantes', como a lepidocrocita. A identificação de lepidocrocita tem um significado especial, visto que foi a primeira vez que este mineral foi identificado em sedimentos de aluvião no Brasil.

A caracterização espectral das **argilas cinzas**, principalmente das variedades mais escuras, foi dificultada pela presença, em excesso, de quartzo e, sobretudo, de matéria orgânica, a qual tende a mascarar o comportamento espectral de todos minerais presentes na amostra. A matéria orgânica tem intima relação com a presença dos argilominerais expansivos nas argilas. Isso é observado principalmente na banda de absorção característica da água, que sempre se mantém, ao passo que outras feições podem ser influenciadas pela presença da matéria orgânica. Apesar destes contrapontos, através da espectroscopia de reflectância foi possível qualificar razoavelmente os minerais presentes neste grupo de argilas, resultados estes que são bem próximos aos obtidos via DRX.

As **argilas marrons** apresentaram resultados dos mais interessantes. Muita embora não entendida desta forma na operação na MML, essas argilas são as que possuem a maior quantidade de caulinita e de variedades dominantemente bem estruturadas e cristalinas. Além disso, os argilominerais expansivos presentes nestas argilas ocorrem numa proporção ideal em relação a caulinita, conferindo maior plasticidade geral ao material. Nessas argilas, os minerais com ferro em sua estrutura são hidróxidos (goethita) e carbonatos (siderita). Todos esses dados, qualitativos e quantitativos, sobre essas argilas puderam ser derivados através de análises por espectroscopia de reflectância e classificação espectro-mineralógica. Os argilominerais são bem definidos na região do SWIR (1.3-2.5µm), enquanto os minerais de ferro são melhor caracterizados na região do VNIR (infra-vermelho próximo: 0.35-1.3µm). A presença de siderita nesta argila, detectada tanto por DRX como pela espectroscopia, principalmente na amostra 07, também é uma novidade, pois em nenhum trabalho até então realizado no aluvião do ribeirão Tamanduá este mineral havia sido detectado.

As curvas de reflectância espectral geradas para as argilas de todos os grupos investigados apresentaram diversas bandas de absorção diagnósticas de minerais hidroxilados e compostos de ferro. Com o auxílio do ferramental disponível no *software ENVI* (remoção do contínuo, detecção precisa dos comprimentos de onda de bandas de absorção, etc), foi possível distinguir as diferentes feições e correlacioná-las aos minerais presentes nas massas de argila.

Os resultados derivados da classificação espectro-mineralógica automática através dos programas *SIMIS Field* e *SIMIS Feature Search*, se analisados de forma integrada e complementar, podem fornecer estimativas razoáveis quanto aos tipos e proporção de minerais presentes na mistura. Entretanto, certamente os algoritmos de classificação precisam ser aperfeiçoados, pois ainda há ambigüidades nos resultados. Isso ocorre principalmente nas curvas de reflectância espectral obtidas em superfícies contendo compostos de ferro, considerando-se todo o espectro VNIR-SWIR. Os compostos de ferro tendem a modificar/mascarar importantes bandas de absorção, atenuando as feições no SWIR. Nesse caso, as porcentagens do minerais de ferro se tornam altas em detrimento da queda das porcentagens dos argilominerais. Em específico, o método estatístico de classificação necessita de um refinamento para quantificar melhor essas misturas complexas, visto que, em geral, a aproximação entre as curvas das argilas medidas e as curvas das misturas matemáticas (baseadas em composições dos espectros da biblioteca espectral) são muito boas.

Considerando o caráter exploratório desta pesquisa, que buscou, pela primeira vez, utilizar a espectroscopia de reflectância e técnicas relacionadas para caracterização de argilas empregadas como matéria-prima na indústria cerâmica fina, quanto ao tipo, composição e pureza, os resultados foram muito promissores.

2. Sobre a possibilidade de associar parâmetros espectrais para classificação das argilas de São Simão quanto ao uso na indústria de cerâmica fina.

Analisando-se os resultados da espectroscopia de reflectância para todas as argilas, a **argila branca** e a **marrom** são as que apresentam a maior quantidade de caulinita e de tipos mais cristalinos. A argila branca possui maior quantidade de mica do que a argila marrom. Essa, por sua vez, apresenta os menores teores de quartzo e uma proporção de argilominerais que lhe confere maior plasticidade em relação aos outros grupos de argilas. Desta forma, no conjunto, a argila marrom é a de melhor qualidade e aplicabilidade mais flexível na indústria de cerâmica fina, mesmo não possuindo a coloração branca, visualmente associada à qualidade do material cerâmico.

Cada grupo de argilas aqui caracterizadas como distintas do ponto de vista espectral, coincidentemente tem uma aplicação específica na indústria de cerâmica fina. A **argila branca** é o material com maior demanda na MML. É considerada a argila de melhor qualidade dentre aquelas encontradas na região de São Simão, pois além de possuir alta quantidade de caulinita, é também um tipo de argila de elevada pureza, com pequena participação de minerais corantes. Isso leva o material a ter uma aplicabilidade mais nobre e particular, na indústria de porcelana branca. A principal utilização das **argilas cinzas** é na indústria de louça sanitária. A empresa Duratex S.A. (Grupo Itaú S.A.), situada em Jundiaí (SP) e representante da marca Deca (louça sanitária), tem preferência por este material e é o maior comprador da MML. A principal utilização das **argilas marrons** é também na indústria de louça sanitária. A empresa Ideal Standard (Grupo American Standard, New Jersey / USA), situada em Jundiaí (SP), tem preferência por este material e é o maior comprador do mesmo junto a MML.

Muito embora mais estudos devam ser realizados nesse sentido, mas é plausível, com base nos resultados aqui apresentados, admitir que deve haver uma relação entre as características espectrais da matéria prima do tipo *ball clay* e sua possibilidade e especificidade de uso na indústria cerâmica fina.

3. Sobre o ambiente de formação do aluvião, das principais argilas e minerais identificados no jazimento do tipo ball clay de São Simão.

Ambiente Aluvionar e Paleoclima

Os sedimentos aluvionares do ribeirão Tamanduá, de origem detrítica (Tanno *et al.* 1994a) foram depositados no final do Pleistoceno (Turcq *et al.* 1987). Este depósito foi produto do retrabalhamento dos arenitos mesozóicos (GSB), profundamente alterados, em uma fase quente e úmida. A forma dos corpos argilosos e sua relação com as areias, eventualmente em contato abrupto, sugere deposição em canais abandonados (Tanno *et al.* 1994a).

O aporte detrítico das argilas (Motta *et al.* 1993) é evidenciado pelo arranjo disperso das partículas de caulinita e pela recorrência da moda granulométrica de 1 μm nos arenitos adjacentes. Por outro lado, Pressinotti (1991) associa estas partículas à alteração de feldspatos dos arenitos e a fração fina estaria associada à alteração das rochas básicas.

A partir de dados obtidos em outras localidades no Brasil (Sifeddine *et al.* 2003, Ledru *et al.* 2001, Sifeddine *et al.* 2001, Salgado-Labouriau *et al.* 1997, Turcq *et al.* 1996, Ledru *et al.* 1996, Ledru 1993, Martin *et al.* 1993, Turcq *et al.* 1993, Ab'Saber 1977) e na América do Sul (Baker *et al.* 2001) foi possível identificar registros de transições climáticas. As continentais são pleistocênicas e

as Sul-Americanas são holôcenicas (Sifeddiene *et al.* 2003). As intercalações entre clima seco e úmido ocorrem respectivamente nesta ordem: fase 1 (21.000-17.400→seco frio), fase 2 (17.400-16.200→quente e úmido), fase 3 (16.200-14.700→seco frio), fase 4 (14.700-12.900→quente e úmido), fase 5a (13.000-12.000→úmido), fase 5b (12.000-11.500→quente e úmido) e fase 6 11.500-7000→clima úmido interrompido por seco holôcenico). O clima semi-árido é bem registrado no sudeste brasileiro. Cordeiro *et al.* (2003) verificou evidências sobre a última fase seca do final do Pleitoceno, entre 8.400-6.400 anos, nesta região (vale do rio Doce - M.G.). O último período glacial do Pleistoceno era marcado por clima seco a semi-árido, intercalado por fases úmidas iniciadas entre 22.000-20.000 anos, que se encerraram no Holoceno (Turcq *et al.* 1996).

Desta forma, o paleoclima que dominou a região sudeste (Fig. IV.38) no perído Quaternário (Pleistoceno) apóia, com propriedade, a discussão sobre o ambiente de formação do jazimento de *ball clay* de São Simão.

Genêse das Argilas

A coloração dos diferentes tipos de argila é decorrência da lixiviação dos materiais sobrepostos contaminando os sotopostos, aliado a transformações do estado mineral primordial em decorrência dos diversos fenômenos químicos possíveis em materiais argilosos, como: oxidação, redução, hidratação, desidratação, troca catiônica, neoformação, entre outros.

As **argilas brancas** com aspecto muito limpo parecem ter sido 'lavadas', pois raramente contém as impurezas orgânicas e ferruginosas.

As **argilas cinzas** parecem ser resultado do contato direto do material argiloso com a matéria orgânica, considerando a sua intensa contaminação pela turfa e outras formas amorfas. Um indício que a argila cinza não foi primordialmente cinza é que ela apresenta freqüentemente porções brancas em meio à massa cinza, sugerindo a contaminação gradativa.

O ferro é o principal elemento responsável pela coloração da **argila marrom**, sendo associado à presença de goethita e siderita. Provavelmente, as argilas marrons tiveram relação com o substrato do paleopantâno e, de certa forma, foram mais susceptíveis a anexação dos argilominerais expansivos, também responsáveis pela sua coloração.

Argilominerais

A gênese da **caulinita** do depósito de São Simão é relacionada a alterações das Formações Pirambóia e Botucatu, cujos sedimentos preencheram micro bacias inundadas, de fluxo quase nulo, favorecendo a precipitação das partículas em suspensão. Estas microbacias constituíram depressões locais formadas no arenito fino e inconsolidado. A variação climática

208

periódica serviu de alavanca ao processo intempérico local. No inicio do período úmido, as partes altas, adjacêntes ao aluvião, foram lavadas, carreando o material para o vale. Ao final do período úmido, já com baixo fluxo, o material foi depositado. Esse processo teria ocorrido, sucessivamente, nos diversos ciclos sazonais.

As caulinitas que ocorrem em duas classes granulométricas distintas (Pressinotti 1991) são separadas em:

- cristalinas (2-0.2μm): bem orientadas, em partículas pseudo-hexagonais (1μm) e vermiculares (raras), e com teores elevados (Calil & Souza Santos 1974);
- desordenadas *fire clays* (< 0.2μm): irregulares, com contornos mal definidos, na forma de plaquetas de baixa cristalinidade.

A origem distinta para estas duas classes de caulinita pode ser explicada por duas hipóteses (Pressinotti 1991):

- <u>Origem detrítica</u>: todas as partículas são detríticas. As caulinitas maiores são provenientes dos arenitos alterados e as menores (vermiculares) das rochas básicas. O transporte das argilas, como grãos, ocorreu na forma de micro-agregados;
- <u>Origem secundária:</u> envolveu neogênese (modificação no próprio ambiente sedimentar) no meio deposicional das argilas. Parte das caulinitas maiores foram geradas a partir da pseudomorfose de feldspatos e micas (previamente transportados) ou de neoformação (agradação) em meio ácido. As partículas menores são relacionadas ao transporte da caulinitas maiores, em meio ácido (matéria orgânica) e degradações de caulinitas detríticas.

A combinação de todos estes fatores citados para a genêse da caulinita podem gerar um único modelo. As origens detríticas e secundárias não são excludentes. A alteração do mineral protólito da caulinita pode ter ocorrido *in situ* ou na bacia de deposição, ou seja, a ordem dos fenômenos (detrítico e degradação) é que deve ser levado em questão.

Os argilominerais **expansivos**, assim como interestratificações e mistos, são comuns no depósito de São Simão e sua origem parece ligada ao ambiente de formação, ou seja, são autigênicos. A montmorillonita, dominante, e a saponita e a rectorita, subordinados, foram os expansivos identificados neste trabalho. Pressinotti (1991) verificou a existência de um argilomineral misto ou interestratificado de caulinita-esmectita (*fire clay*, com baixa freqüência de folhelhos de esmectita) na fração intermediária (2-0.2µm) da argila, devido aos picos de maior (7,6-7,8 Å) e menor (3,8-3,9 Å) intensidade. A mesma autora identificou bandas difusas com picos característicos entre 10 e 18 Å, indicando a presença de argilominerais do grupo das esmectitas ou das cloritas. Souza & Souza Santos (1964) verificou pequenos teores de montmorillonita ou camadas mistas de illita-montmorillonita, que também ocorrem principalmente na fração intermediária (2-0.2µm). O aparecimento de bandas de absorção (argila marrom) de argilas

expansivas nas amostras moídas, onde grãos mais finos foram liberados, sugere que sua detecção pode estar relacionada à fração granulométrica mais fina.

Neste estudo, as **micas** foram descritas como argilominerais pela falta de consenso na literatura sobre a separação entre muscovita e illita - isso decorre da semelhança nas posições dos picos destes minerais nos difratogramas. Calil & Souza Santos (1974), que não as individualizam, apontam teores em torno de 1,5% para a mica no depósito de São Simão e sugerem sua origem como detrítica.

<u>Siderita</u>

A siderita (FeCO₃) é o carbonato de ferro autigênico (autóctone) mais comum em depósitos sedimentares de várias idades (Maynard 1983). Sua formação pode ser atribuída a precoce precipitação diagenética pela água intersticial ou na interface água-sedimento, principalmente em sedimentos lacustres e de pântanos recentes (Spiro *et al.* 1993, Bahrig 1989, Gautier 1982, Postma 1981, Postma 1977). Em geral, a siderita ocorre em sedimentos de ambientes restritos, com baixo pE e elevado pH (CO₂) (Rajan 1996). O pH é o fator de maior controle na estabilidade deste carbonato de ferro (Postma 1977).

Há numerosas possibilidades para formação de siderita em ambientes similares àqueles concebidos para a formação dos depósitos de argila de São Simão (Tab. IV.9). A disponibilidade de matéria orgânica, a atividade de HCO₃⁻⁻ (ou concentração de CO₂), a baixa concentração de enxofre e a atividade microbiológica, influenciam na formação deste mineral (Curtis & Spears 1968).

São vários os processos envolvidos na mudança de estado do íon ferro num sistema aquático oxigenado e na presença de matéria orgânica (Davison 1993, Rajan 1996) - processos esses que podem ser críticos para a formação de siderita. O Fe³⁺ é facilmente complexado pelo material húmico e a taxa de oxidação do complexo metálico é alta, a depender do pH e do tipo de concentração do ligante orgânico (L). O ácido húmico inibe a oxidação do Fe⁺² para Fe³⁺, especialmente em baixos valores de pH. A redução do Fe(III) (humico complexado) para Fe(II) na matéria orgânica é instável, ocorrendo mais rapidamente na presença da luz. A taxa de redução também é função do tipo de organo-ligante complexado com o ferro. O Fe(II) é instável e dissocia-se facilmente, liberando Fe²⁺ livre e oxidando a matéria orgânica. As taxas de redução e dissociação de Fe³⁺ são rápidas em comparação as suas taxas de oxidação (Fig. IV.39).

* Matéria-Prima para Louça Sanitária e Porcelana *

Figura IV.38: Processos envolvidos na redução do ferro em sistemas aquáticos oxigenados na presença de matéria orgânica. O Fe (II e III) são as espécies complexadas orgânicamente. L e L_0 representam, respectivamente, as formas ligante e oxidante. (modificado de Davison 1993)

Lepidocrocita

A lepidocrocita [FeO(OH)], mineral laranja e incomum, é um polimorfo da goethita, porém contém oxigênio em pacotes cúbicos aproximados. Forma-se preferencialmente com a goethita, como produto de oxidação direta do ferro. Eventualmente, é precipitada no lugar da goethita em presença de cloro (ACMS 2003). Pode ser maciça, laminada, micácea, fibrosa ou pulverulenta e encontrada como ferrugem de materiais submersos (Crutchfield 2001). Há também algumas possibilidades para formação de lepidocrocita em tipos de ambientes correlatos àqueles concebidos para a formação dos depósitos de argila de São Simão, conforme apresentado na Tab. IV.9.

Síntese do Ambiente de Formação

Analisando-se a compilação apresentada na Tabela IV.9, é possível tecer algumas considerações sobre os possíveis ambientes de formação da siderita e da lepidocrocita, com conseqüências importantes para o entendimento da evolução dos depósitos sedimentares pleistocênicos de São Simão.

A siderita, com base nas considerações em epígrafe, provavelmente foi gerada em ambiente de pântano. Neste ambiente, a siderita pode ter se formado graças ao ferro proveniente de porções oxidadas e complexadas, retidas na matéria orgânica abundante. O carbonato, inicialmente, permaneceu dissociado em meio aquoso, já que nas condições de pântano, o pH costuma ser relativamente baixo (acidez elevada), devido ao aporte de matéria orgânica. Num segundo momento, com a elevação brusca do pH em decorrência do surgimento de água no pântano, as condições termodinâmicas locais foram modificadas, favorecendo a combinação ferrocarbonato para a formação da siderita. A fonte de cálcio e ferro primária pode estar relacionada à alteração das rochas básicas da FSG (rica nestes elementos), que atuam como controladoras geomorfológicas do aluvião.

Tabela IV.9: Modelos crono-similares de ocorrência de siderita e lepidocrocita.

SIDERITA	AUTOR
Em pântanos onde são encontradas altas concentrações de Fe ⁺² nas águas intersticiais e ausência de H ₂ S, juntamente com a siderita, pode ocorrer a vivianita [Fe ₃ (PO ₄) ₂ .8H ₂ O], as quais formam uma solução sólida (Ca ⁺² / Mn ⁺²). Os processos que provocam a precipitação da siderita neste ambiente são: redução de óxi-hidróxidos de Fe e dissolução de CaCO ₃ (origem orgânica)	Postma (1977) e Postma (1981)
Em lago raso, a siderita forma-se como produto de precipitação na interface água-sedimento, em condições de pH elevado ou dentro do sedimento devido a intensa fotossíntese em condições de depleção de CO ₂ e alto pH. As composições de isótopos de oxigênio nos sedimentos lacustres oleosos, indicam que a siderita formou-se em ambiente de água doce, mas a composição em equilíbrio foi decorrente de águas meteóricas.	Spiroa <i>et al.</i> (1993)
Em sedimentos cretácicos, a presença de siderita é devido a acumulação biogênica de metano durante a diagênese em poros intersticiais de água com alto bicabonato, depleção e dissolução de enxofre e oxigênio livre. A rápida deposição é dependente da alta quantidade de matéria orgânica e geração de metano.	Gautier (1982)
Em ambientes lacustres com baixa dissolução de sulfatos, conseqüente concentração de sulfetos, altas taxas de sedimentação e relativamente alto fluxo de matéria orgânica.	Rajan (1996)
Em ambiente de diagênese juvenil a siderita ocorre em sedimentos ricos em carbono orgânico num regime de flutuação climática.	Bahrig 1989
A siderita de origem metassomatica ocorre devido ao desequilíbrio isotópico entre carbono e oxigênio.	Cortecci & Frizzo (1993)
A siderita pleistocênica do lago Caçó (MA) ocorre em três principais fases (17.400-16.200, 14.700- 12.900 e 12.000-11.500 anos atrás), decorrente das bruscas mudanças climáticas devido ao final da última glaciação. Na primeira, as condições úmidas promoveram chuvas e o conseqüente transporte de ferro para dentro do lago, favorecendo a neoformação de compostos ricos em ferro, como a siderita. As mudanças paleohidrológicas foram sempre acompanhadas pelo acréscimo de temperatura. Nas duas últimas fases, as condições abruptas de umidade favoreceram o fluxo de siderita e goethita para dentro do lago. Nas duas primeiras fases, juntamente com as condições úmidas ocorrem evidências palinológicas e de expansão da floresta.	Sifeddine <i>et al.</i> (2003)
LEPIDOCROCITA	AUTOR
Em sedimentos de solos permanentemente congelados é decorrente de degradação da illita e de alteração do ferro contido em cloritas, em condições climáticas extremamente frias e secas (Pleistoceno intermediário ao final). Esta cristalização de barreira criogênica na formação da lepidocrocita é o principal processo de transformação mineral. A concentração mais alta deste mineral foi associada ao limite com o solo permanentemente congelado.	Alekseev (2003)
Pode ser encontrada em formação ferruginosas nodulares de camadas quaternárias intercaladas à bauxita pré-Paleogenica.	Ladislav & Tulis (2002)
Em horizontes húmicos de solos calcicos, cristais de tamanho variável de lepidocrocita.	Vodyanitskiy <i>et</i> <i>al.</i> (1990)
A origem bioquímica (bactéria) da lepidocrocita (filamentos e partículas cristalinas) é verificada nas camadas (placas) ferruginosas em raízes de plantas aquáticas, podendo ocorrer juntamente com a goethita.	Stcyr <i>et al.</i> (1993)
Lepidocrocitas ripóides, similares as formadas em colunas de água de lagos periodicamente anóxidos. A deposição dos oxi-hidróxidos de ferro nos sedimentos de lago parecem ocorrer em células bacterianas e nos exopolímeros. O carbono orgânico é o composto mais abundante para a diagênese deste oxi-hidróxido de ferro.	Fortin <i>et al.</i> (1993)
A lepidocrocita pobremente cristalina, com forma fina (1-5 nm) e em lamelas irregulares pode ser produto de fácil oxidação da vivianita.	Roldan <i>et al</i> 2002

Para a lepidocrocita há três possibilidades para sua formação:

- uma primeira, em decorrência da alteração da vivianita (supostamente existente), mineral formado em conjunto com a siderita (Tab. IV.9). Neste caso, toda a vivianita teria sido alterada para lepidocrocita, visto que este mineral nunca foi encontrado no aluvião. Esta abordagem implica que a lepidocrocita é mais jovem que a siderita e que o clima seco dominou a região na época de formação deste mineral, proporcionando a exposição dos sedimentos depositados (regime hídrico calmo) e a transformação da vivianita em lepidocrocita. É pouco possível;
- uma segunda, em decorrência de precipitação bioquímica (Tab. IV.9), relacionada à presença de vegetação no paleopantâno Tamanduá e em condições de clima úmido;
- uma terceira, em decorrência da glaciação pleistocência, sob clima frio e seco. Neste caso, a lepidocrocita seria o produto da migração de ferro dentro de horizontes sedimentares semi-congelados, devido a degradação de argilominerais pré-existentes.

De acordo com os indicadores paleoclimáticos (Turcq *et al.* 1997) do ribeirão Tamanduá é possível arguir que:

- a siderita do ribeirão Tamanduá pode ter se formado entre 30.000-20.000 ou entre 10.000-5.500 anos atrás, em processos de deposição relacionados ao final dos ciclos de clima úmido (Fig. IV.39). Nesta fase, o nível d´agua do aluvião era elevado (inundação das margens), mas com fluxo estagnado, propiciando a formação de pântanos de águas redutoras, devido ao substrato rico em matéria orgânica.
- a lepidocrocita pode ter se formado entre 17.000-10.000 anos atrás, assumindo-se que sua formação ocorreu em regime de clima seco e frio (Fig. IV.39), e associada a presença de solos gelados ou alterados.

0-	DEPÓSITO	PALEOHIDRO	PALEOCLIMA	MINERAL					
, , , , , , , , , , , , , , , , , , , ,	rico em matéria orgânica	baixa descarga baixo aporte sedimentar alto lençol freático	clima seco	lepidocrosita					
-10.000	erosao do aluviao	alta descarga baixo aporte de sedimentos	clima umido	siderita					
-	alta deposição por canais entrelaçado e leques aluviais	grande fluxo de descarga, efêmero	clima seco	lepidocrosita					
	falta de informações								
-20.000	rico em matéria orgânica	baixa descarga baixo aporte de sedimentar elevado lençol freático	clima umido	siderita					

Figura IV.39: Evolução paleoambiental do depósito aluvionar do ribeirão Tamanduá.

213

* Caracterização de Argilas de Utilização na Indústria Cerâmica por Espectroscopia de Reflectância *

IV.8. REFERÊNCIAS BIBLIOGRAFICAS - Capítulo IV

Ab'Saber A.N. 1977. Espaços ocupados pela expansão dos climas secos na América do Sul, por ocasião dos períodos glaciais Quaternários. Igeogr/USP, *Paleoclimas* (3): 1-19.

ACMS. 2003. Varieties Of Clay, Iron oxyhydroxides, Lepidocrocite. *In:* Site The Asutralian Clay Mineral Society (ACMS). http://www.clays.org.au/mins.htm

Alekseev A., Alekseeva T, Ostroumov V, Siegert C., Graduscov B. 2003. Mineral transformations in permafrost-affected solis, North Kolyma Lowand, Russia. *Soil Science Society of America Journal*, 67(2): 596-605

Angelieri F.B., Christino J.A., Frias M.C. 1975. Caracterização de argilominerais para indústria de louças sanitárias. *Cerâmica*, 21(82): 85-99

ASTM - 1968. Terms relating to ceramic whitewares and related products. ASTM Designation: C242-60. *In:* American Society for Testing an Materials (ASTM) ed. *Book of ASTM Standards*, Part 13 - Refracteries, Glass, Ceramic Materials, Manufactured Carbon and Graphite Products. Philadelphia, PA, pp.: 204-206

Bahrig B. 1989. Stable isotope composition of siderite as an indicator of the paleoenvironmental history of oil shale lakes. *Palaeogeography, Palaeoclimatology, Palaeocology*, 70(1-3): 139-151

Baker P.A., Seltzer G.O., Fritz S.C., Dunbar R.B., Grove M.J., Tapia P.M., Cross S.L., Rowe H.D., Broda J.P. 2001. The history of South American tropical precipitation for the past 25.000 years. Science, 291: 640-643

Calil S.F. & Souza Santos P. 1974. Estudos sistemáticos de argilas e caulins utilizados em cerâmica branca. *Cerâmica*, 20(80): 347-386

Cordeiro R.C., Albuquerque A.L.S., Simões Filho, F.F., Turqc B., Sifeddine A. 2003. Charcoal Deposition Related to Paeoenvironmental Changes and Land Use Changes Events. *In:* INQUA, Congress, XVI, Session no. 3. Fire, Climate and Vegetation in the Holocene (Posters). Paper no. 73-9. Reno Hilton Resort and Conference Center. http://gsa.confex.com/gsa/inqu/finalprogram/abstract_56108.htm

Cortecci G. & Frizzo P. 1993. Isotope geoscience section research paper Origin of siderite the Lombardy Valleys, northern Italy: a carbon, oxygen and strontium isotope study. *Chemical Geology*, 105 (4): 293-303

Crutchfield C. 2001. The Iron Oxide "Rust" Minerals. *In:* The 763rd Meeting of the Mineralogical Society of Sourthern California, Annual Picnic and Mineral Swap, Arcadia, CA, USA. http://www.mineralsocal.org/bulletin/2001/2001_aug.htm

Curtis C.D. & Spears D.A. 1968. The Formation of Sedimentary Iron Minerals. *Economic Geology*, 63 (3): 257-270

Davison W. 1993. Iron and manganese in lakes. Earth-Science Reviews, 34 (2): 119-163

DNPM. 1998. Anuário Mineral Brasileiro. Departamento Nacional da Produção Mineral, MME, Brasília, 404p.

DNPM-SIPROM. 1988. Produção Mineral por Municipio / Substância / Empresa. Departamento Nacional de Produção Mineral. Data-base 1987. s.l.p. (listagem L.91)

Edwards R.A. 1976. Tertiary sediments and structures of Bovey Basin, South Devon, London. *Proceedings of the Geologists Association*, 87: 1-26

Fortin D., Leppard G.G., Tessier A. 1993. Characteristics of Lacustrine Diagenetic Iron Oxyhydroxides. *Geochimica et Coscomchimica Acta*, 57(18): 4391-4404

Fu-Tai W. 1981. *Minerais Pesados das Sequências arenosas Paleozóicas e Mesozóicas no centro-leste do Estado de São Paulo*. Dissertação de Mestrado, Instituto de Geociências, Universidade de São Paulo, 78p.

Gaffey S.J. 1987. Spectral Reflectance of Carbonate in the Visible and Near Infrared (0.35-2.55µm): Anhydrous Carbonate Minerals. *Journal of Geophysical Research*, 92(B2): 1429-1440

Gautier D.L. 1982. Siderite Concretions: Indicator of Early Diagenesis in the Gammon Shale (Cretaceous). *Journal of Sedimentary Petrology*, 52(3): 859-871

Gonçalves N.M.M. 1978. Estudo dos materiais superficiais da região de Ribeirão Preto, SP, e suas relações com elementos morfológicos da Paisagem. Dissertação de Mestrado, Instituto de Geociências, Universidade de São Paulo, 177p.

Gonçalves N.M.M., Sinelli O., Souza A. 1979. Geologia dos depósitos argilosos dos rios Pardo, Mogi e Tietê (SP). *In:* SBG, Simpósio Regional de Geologia, 2, Rio Claro, *Atas*, vol. 1, pp.: 305-319

Hunt, G.R. & Ashley, R.P. 1979. Spectra of Altered Rocks in the Visible and Near Infrared. *Economic Geology*, 74: 1.613-1.629

Hunt, G.R.; Salisbury, J.W. & Lenhoff. C.J. 1971. Visible and Near-Infrared Spectra of Minerals and Rocks: III. Oxides and Hydroxides. *Modern Geology*, 2: 195-205

IG. 1986. Folha Geológica de Luiz Antônio - Formações Geológicas de Superfície. Escala 1:50.000. Instituto Geológico do Estado de São Paulo. São Paulo.

IPT. 1990. Mercado Produtor Mineral do Estado de São Paulo: Levantamento e Análise., Pró-Minério, Programa de Desenvolvimento de Recursos Minerais, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, 188p.

Ladislav N. & Tulis J. (2002). Discovery of Bauxite in the Slovak Paradise. Mineralia Slovaca, 34(2): 145-146

Ledru M.P. 1993. Late Quaternary Environmental and Climatic Changes in Central Brazil. *Quaternary Research*, 39(1): 90-98

Ledru M.P., Braga M.P., Soubies F., Fournier M., Martin L., Suguio K., Turcq B. 1996. The last 50.000 years in the neotropics (Southern Brazil): Evolution of vegetation and climate. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 123(1-4): 239-257

Ledru M.P., Cordeiro R.C., Dominguez J.M.L., Martin L., Mouguiart Ph., Sifeddine A., Turcq B. 2001. Lateglacial cooling in Amania. Quaternary7 Research, 55(1): 47-56

Martin L., Fournier M., Mourguiart P., Sifeddine A., Turcq B. 1993. Southern Oscillation Signal in South American Palaeoclimattic Data of the Last 7000 Years. *Quaternary Research*, 39(3): 338-346

Maynard J.B. 1983. Iron, Chapter 2. *In: Geochemistry os Sedimentary Ore Deposits*, Springer-Verlag, New York Inc., pp.: 9-61

Melo M.S. & Ponçano W.L. 1983. *Gênese, Distribuição e Estratigrafia dos Depósitos Cenozóicos no Estado de São Paulo*. Monografia, 9, IPT, São Paulo, 74p.

Meneses P.R., Pontara R.C.P., Silva F.H.F., Madeira Neto J.C. 2001. Comportamento da Reflectância Espectral de Filitos Carbonosos Mineralizados em Ouro. *Revista Brasileira de Geociências*, 31(1): 83-88

Mine & Quarry. 1987. Ball Clay mining and quarrying. Mine & Quarry reports on the ball clay production activities of Watts Balke Bearne & Co PLC. *Mine & Quarry*, 16(5): 11-16

Motta J.F.M., Tanno L.C., Cabral Junior M. 1993. Argilas Plásticas para Cerâmica Branca no Estado de São Paulo - Potencialidade Geológica. *Revista Brasileira de Geociências*, 23(2): 158-173

Murray H.H. 1982. Clay resourcers of the midwest states. *Mining Engineering*, 34(1): 68-71

Oliveira J.B. & Prado H. 1987. Levantamento Pedológico semidetalhado do Estado de São Paulo: Quadrícula de Ribeirão Preto - II Memorial Descritivo, Campinas, IAC, Boletim Científico do Instituto Agronômico de Campinas 71, 180p.

Phelps G.W. 1972. A química coloidal de argilas cerâmicas. Cerâmica, 18(69): 3-16

Pontual S., Merry N., Gamson P. 1997. Spectral Interpretation Field Manual, G-Max. Spectral Analysis Guides for Mineral Exploration, vol. 1. AusSpec International Pty.Ltd. 169 p.

Postma D. 1981. Formation of Siderite and Vivianite and the pore-water composition of a Recent bog sediment in Denmark. *Chemical Geology*, 31 (1): 225-244

Postma D. 1977. The Occurrence and Chemical Composition of Recent Fe-Rich Mixed Carbonate in a River Bog. *Journal of Sedimentary Petrology*, 47(3): 1089-1098

Pressinotti M.M.N. 1991. Caracterização Geológica e Aspectos Genéticos dos Depósitos de Argilas Tipo "Ball Clay" de São Simão, SP. Dissertação de Mestrado, Instituto de Geociências, Universidade de São Paulo, 141p.

Rajan S., Mackenzie F.T., Glenn G.R. 1996. A Thermodynamic Model for Water Column Precipitation of Siderite in the Plio-Pleistoceno Black Sea. *American Journal of Science*, 296(5): 506-548

Ramos A.N. & Formoso M.L.L. 1976. Clay Mineralogy of the sedimentary rocks the Paraná Basin, Brazil. *Revista Brasileira de Geociências*, 6(1): 15-42

Roldan R., Barron V., Torrent J. 2002. Experimental alteration of vivianite to lepidocrocite in a calcareous médium. *Clay Minerals*, 37(4): 709-718

Ruiz M.S. 1990. Argilas - Perfil 4, capítulo IV. *In:* IPT - Instituto de Pesquisas Tecnológicas, *Mercado Produtor Mineral do Estado de São Paulo* - Levantamento e Análise. Pró-Minério - programa de Desenvolvimento de Recursos Minerais. São Paulo, pp.: 61-86

Salgado-Labouriau M.L., Casseti W., Ferraz-Vincentini K.R., Martin L., Soubies F., Suguio K., Turcq B. 1997. Late Quaternary vegetational and climatic changes in Cerrado and palm swamp from central Brazil. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 128(1-4): 215-226

Scheinost A.C., Chavernas A., Barrón V., Torrent J. 1998. Use and Limitations os Secon-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils. *Clays and Clay Minerals*, 46(5): 528-536

Sifeddine A., Albuquerque A.L.S., Ledru M.P., Turcq B., Knoppers B., Martin L., Melo W.Z., Passenau H., Dominguez J.M.L., Cordeiro R.C., Abrão J.J., Bittencourt A.C.S.P. 2003. A 21000 cal years paleoclimatic record from Caçó Lake, northern Brazil: evidence from sedimentary and pollen analyses. *Palaeogeography, Palaeoclimatology, Palaeocology*, 189(1): 25-34

Sifeddine A., Martin L. Turcq B., Volkemer-Ribeiro C., Soubiès F., Cordeiro R.C., Suguio K. 2001. Variations of the Amazon rainforest environment: a sedimentological record covering 30.000 years. *Palaeogeography, Palaeoclimatology, Palaeocology*, 168(3/4): 221-235

Soares P.C. 1975. Divisão Estratigráfica do Mesozóico no Estado de São Paulo. *Revista Brasileira de Geociências*, 5(4): 229-251

Soares P.C., Sinelli O., Penalva F., Wernick E., Souza A., Castro P.R.M. 1973a. Geologia do Nordeste do estado de São Paulo. *In:* SBG, Congresso Brasileiro de Geologia, 27, Aracaju, *Anais*, vol. 1, pp.: 209-228

Soares P.C. & Landim P.M.B. 1973b. Aspectos regionais da estratigrafia da Bacia do Paraná no seu flanco nordeste. *In:* SBG, Congresso Brasileiro de Geologia, 27, Aracaju, *Anais*, vol. 1, pp.: 243-256

Souza J.V. & Souza Santos P. 1964. Considerações sobre a aplicação de análise térmica difderencial no estudo de argilas cerâmicas do Brasil. *Cerâmica*, 10(39): 2-27

Souza Santos P. 1975. Caulins e Argilas para Cerâmica Branca, cap. 21. *In: Tecnologia de Argilas, aplicada às argilas brasileiras vol.* 2. Edgard Blücher Ltda ed., São Paulo, pp.: 468-505

Spiro B., Gibson P.J., Shaw H.F. 1993. Eogenetic siderites in lacustrine oil shales from Queensland, Austrália, a stable isotope study. *Chemical Geology*, 106(3-4): 415-427

Stcyr L., Fortin D., Campbell P.G.C. 1993. Microscopic Observations of the Iron plaque of a Submerged Aquatic Plant (Vallisneria-Americana Michx). *Aquatic Botany*, 46(2): 155-167

Suguio K., Turcq B., Servant M., Soubies F., Fournier M. 1989. Holocene fluvial deposits in southeastern Brazil – Chronology and Palohydrological implications. *In:* ABEQUA/INQUA, International Symposium on Global Changes in South America During the Quaternary, Special Publication no. 1, São Paulo, pp.: 70-74

Suguio K. & Bigarella J.J. 1979. Ambiente Fluvial. Universidade Federal do Paraná ed. Curitiba, Assoc. Dif. Educ. Ambiental (ADEA). 185p.

Tanno L.C., Motta J.F.M., Cabral Junior M., Kaseker E.P., Pressinotti M.M.N. 1994a. Depósitos de Argilas para uso Cerâmico no Estado de São Paulo, cap. 9. *In:* Schobbenhaus C., Queiroz E.T., Coelho C.E.S (eds.), *Principais Depósitos Minerais do Brasil* - DNPM, Brasilia, vol. IV-B - Rochas e Minerais Industriais, pp.: 99-110

Tanno L.C., Motta J.F.M., Cabral Junior M. 1994b. Geologia e Características Tecnológicas das Argilas Plásticas e Refratárias do Estado de São Paulo. *In:* SBG-SP, Worshop Recursos Minerais Não-Metálicos para o Estado de São Paulo, São Paulo, Resumos Expandidos, pp.: 37-41

Townsend, T.E., 1987. Discrimination of Iron Alteration Minerals in Visible and Near-Infrared Reflectance Data. *Journal of Geophysical Research*, 92 (B2): 1.441-1.454

Turcq B., Pressinotti M.M.N., Martin L. 1997. Paleohydrology and paleoclimate of the Past 33,000 years at the Tamanduá River, Central Brazil. *Quaternary Research*, 47(3): 284-294

Turcq B., Albuquerque A.L., Ledru M.P., Mello C.L., Pressinotti M.M.N., Ricomini C., Suguio K. 1996. A Transição Pleistoceno-Holoceno na região Sudeste Brasileira. *In:* SBG, Congresso Brasileiro de Geologia, 39, Salvador, *Anais*, vol. 4, pp.: 507-509

Turcq B., Suguio K., Salgado-Laboriau M.L., Ferraz-Vicentini K., Lorscheitter M.L., Martin L., Pressinotti M.M.N., Riccomini C. 1993. Os significados paleoclimáticos dos depósitos orgânicos dos últimos 30.000 anos no Brasil Central. *In:* ABEQUA, Congresso da Associação Brasileira de Estudos do Quaternário, 4, São Paulo, Resumos, p. 7

Turcq B., Suguio K., Soubies F., Servant M., Pressinotti M.M.N. 1987. Alguns terraços fluviais do Sudeste do Centro Oeste brasileiro datados por radiocarbono: possíveis significados paleoclimáticos. *In:* ABEQUA, Congresso da Associação Brasileira de Estudos do Quaternário, 1, Porto Alegre, Resumos, p. 57-8

Vodyanitskiy Y.N., Trukhin V.I, Bagina O.L., Kuzmin N.R. 1990. Lepidocrocite in Brown Forest Soil of Lithuania. *Soviet Soil Science*, 22(5): 87-91

Whitney G., Abrams M.J., Goetz A.F.H. 1983. Mineral Discrimination Using a Portable Ratio-Determining Radiometer. *Economic Geology*, 78(4): 688-698

Wilson I.R. 1983. "Ball Clays" inglesas - origens, propriedades e usos em cerâmica. *Cerâmica*, 29(165): 217-238

CONCLUSÕES

Gerais:

⇒ o desempenho da espectroscopia de reflectância e da classificação espectro-mineralógica manual/visual para a caracterização de argilo-minerais se mostrou muito eficaz nos casos das matérias primas de cerâmica de revestimento (Mina do Cruzeiro - Limeira) e de porcelana e louça sanitária (Mineração Mateus Leme - São Simão). As curvas de reflectância espectral das argilas de todos os grupos investigados apresentaram bandas de absorção diagnósticas de minerais hidroxilados e compostos de ferro. Os argilo-minerais foram bem definidos na região do SWIR (1.3-2.5µm), enquanto os minerais de ferro no VNIR (visível-infra-vermelho próximo: 0.4-1.3µm).

Mina do Cruzeiro:

⇒ na Mina do Cruzeiro, a partir de dados levantados sobre as propriedades químicas, mineralógicas e espectrais das diferentes rochas e coberturas investigadas, foi possível estabelecer-se uma compartimentação 'espectro-litológica', onde cada compartimento ou sub-compartimento (grupos da Formação Corumbataí) possui uma assinatura espectral característica, a qual pode ser diretamente relacionada a uma determinada composição e uso (ou não) do material como matéria-prima na indústria cerâmica de revestimentos.

⇒ dois grupos de amostras da Formação Corumbataí, denominados FC2 e FC5, que correspondem à principal fonte de matéria prima da mina, apresentam comportamento espectral diferenciado nas regiões do espectro entre 1.40-1.42µm e entre 1.90 e 1.92µm. Nessas regiões, esses litotipos não possuem feições importantes, ao contrário de todos os outros materiais da mina, o que permite separá-los dos demais por ausência de feições espectrais típicas. Interessantemente, esses litotipos apresentam uma proporção equilibrada entre alguns óxidos fundentes (K₂O+Na₂O) *e* óxidos refratários (Al₂O₃), o que lhes confere excelentes qualidades cerâmicas.

⇒ os constituintes dos grupos FC1, FC3, FC6 e FC7, além do latossolo, apresentam assinaturas espectrais típicas na região do espectro entre 2.16µm e 2.22µm. As curvas do litotipo FC7 e do latossolo denotam perfeitamente a presença de caulinita na mistura espectral, com seu d*oublet* típico centrado em 2.2µm, embora afetado pela mistura com outros minerais. Os litotipos FC1, FC3

e FC6, por sua vez, possuem feições de absorção com tendência a formas mais agudas e únicas nessa região, o que denota a dominância de minerais do grupo da illita e das esmectitas em sua composição. A gibsita possui feições mistas no latossolo, destacando-se pelo *doublet* com absorções em 2.220µm e 2.266µm, e pelas absorções múltiplas em 1.452µm, 1.521µm e 1549µm.

 \Rightarrow os litotipos da FI e do grupo FC4 foram discriminados dos outros materiais estudados na mina, com base nas bandas de absorção causadas por vibrações de CO₃ na região do espectro entre 2.31 e 2.35µm, função da sua maior riqueza em carbonatos.

⇒ a possibilidade de separar espectralmente litotipos ricos em carbonato, torna possível a utilização da espectroscopia de reflectância para o controle de qualidade e lavra seletiva na Mina do Cruzeiro, não só na caracterização dos melhores materiais (FC2 e FC5), mas também no sentido de isolar os materiais indesejáveis (FI e FC4) no processo de extração.

⇒ o levantamento de mais dados será necessário para demonstrar integralmente a metodologia aqui testada, mas as curvas de reflectância espectral geradas como características de cada compartimento e grupo na Mina do Cruzeiro, a princípio, podem ser agora aplicadas como bibliotecas de referência para caracterização espectral das matérias-primas na mina, visando a melhoria do controle de qualidade e a para auxiliar na sistematização de uma lavra mais seletiva.

Mina de São Simão:

⇒ no depósito de *ball clay* de São Simão foram identificados três principais tipos de argila (branca, cinza e marrom) com diferentes aplicações industriais.

⇒ nas argilas brancas foi possível quantificar e detectar, com relativa precisão, as porcentagens de caulinita e seu grau de cristalinidade, além dos minerais subordinados como os argilo-minerais expansivos e micas, e a lepidocrosita (inédita).

⇒ nas argilas cinzas, também cauliníticas, a matéria orgânica tem intima relação com a presença dos argilo-minerais expansivos, fato observado principalmente na banda de absorção característica da água, que sempre se mantém.

⇒ as argilas marrons possuem a maior quantidade de caulinita e de variedades bem estruturadas e cristalinas; os argilo-minerais expansivos ocorrem numa proporção ideal em relação a caulinita, conferindo maior plasticidade geral ao material; a siderita, identificada pela primeira vez no aluvião do ribeirão Tamanduá, também é comuns nessas argilas.

⇒ em comparação, as argilas branca e marrom apresentam a maior quantidade de caulinita e de tipos mais cristalinos. A argila branca possui maior quantidade de mica do que a argila marrom.
 Essa, por sua vez, apresenta os menores teores de quartzo e uma proporção de argilo-minerais

expansivos que lhe confere maior plasticidade em relação aos outros grupos de argilas. Desta forma, no conjunto, a **argila marrom** é a de melhor qualidade e aplicabilidade mais flexível na indústria de cerâmica fina, mesmo não possuindo a coloração branca, visualmente associada à qualidade do material cerâmico.

⇒ as argilas brancas possuem aplicabilidade mais nobre e particular, na indústria de porcelana branca, devido a ausência de minerais corantes. As argilas cinza e marron têm principal utilização na indústria de louça sanitária.

⇒ a gênese da caulinita das argilas parece ter sido relacionada à deposição subaérea em regime de baixo fluxo por sedimentos transportados das alterações das Formações Pirambóia e Botucatu. A deposição se deu em micro bacias, o que é verificado pelo caráter lenticular do depósito. A gênese das argilas brancas, com aspecto muito limpo, deve ter relação com algum tipo de processo de 'lavagem' das argilas cinzas, que por sua vez, parecem ser resultado do contato direto do material argiloso com a matéria orgânica (turfa). As argilas marrons provavelmente tiveram relação com o substrato do paleopantâno, o que favoreceu o enriquecimento em argilominerais expansivos.

⇒ a siderita e a lepidocrosita são indicadores paleoambientais importantes e forneceram elementos para aprofundar a discussão sobre a evolução do aluvião do ribeirão Tamanduá. A siderita formou-se em ambiente redutor (baixo pH) de pântano, decorrente da combinação do ferro (originariamente na matéria orgânica), solubilizado na água em temperaturas mais quentes, e do CO₂, liberado pela putrefação da matéria orgânica do substrato. A formação da lepidocrosita é aparentemente relacionada à glaciação pleistocência, sob clima frio e seco, sendo o provável produto de migração de ferro dentro dos horizontes sedimentares semi-congelados com a degradação de argilo-minerais pré-existentes. O paleoclima do ribeirão Tamanduá já bem estudado recebe aqui aporte de indicadores como: a siderita pode ter se formado entre 30.000-20.000 ou entre 10.000-5.500 anos atrás, em processos de deposição relacionados ao final dos ciclos de clima úmido, fase em que o nível d´agua do aluvião era elevado e o fluxo estagnado, propiciando a formação de pântanos; e a lepidocrosita pode ter se formado entre 17.000-10.000 anos atrás, em condições de clima seco e frio associada a presença de solos gelados ou alterados.

➡ considerando o caráter exploratório desta pesquisa, que buscou, pela primeira vez, utilizar a espectroscopia de reflectância e técnicas relacionadas para caracterização de argilas empregadas como matéria-prima na indústria cerâmica fina, quanto ao tipo, composição e pureza, os resultados foram muito promissores.

ANEXOS G

GERAL

- Descrição Geologia Regional Anexo G.1
- Descrição dos Minerais de DRX Anexo G.2
- Biblioteca Espectral (USGS) de Interesse Anexo G.3
- Revisão Bibliográfica de Espectros Minerais Anexo G.4

PROVÍNCIA	SIGLA UNIDADE	NOME UNIDADE	HIERARQUIA	IDADE MAXIMA	IDADE MÍNIMA	MÉTODO DETERMINAÇÃO	EON IDADE	ERA IDADE	PERÍODO IDADE	ÉPOCA IDADE	SISTEMA IDADE	LITOTIPO 01	LITOTIPO 02	CLASSE 01	CLASSE 02	SUBCLASSE 01	SUBCLASSE 02
	Q2a	Depósitos aluvionares	Não Definida	0,875	0,875 0			8	Quaternário	Holoceno		Sedimento Aluvionar Sedimento Detrito-Lateritico	Cascalho			Sedimentos inconsolidados	Sedimentos inconsolida dos
	ENdl	Coberturas Detrito lateriticas com concrecões ferruginosas	Não Definida	65	1,76	Relacões de Campo		Cenozóic	Paleógeno	Paleoceno	Estrutural	Areia Lama Laterita	Laterita	Sedimentar (ou Sedimentos)	Sedimentar (ou Sedimentos)	Sedimentos Inconsolidados Química	Quimica
	K2Eit	Itaqueri		96	23,6			0		Superior	Irafico /E	Arenito Arenito conglomerático	Conglomerados Folhelhos Siltitos	-		Clástica	Clástica
ıraná	K1βsg	Serra Geral Grupo Sao Bento	ວ ເຫ ເບ ເບ ເບ 260 ເບ	135	97	Ar-Ar em Mineral		Cretác Cretác Co Cretác Cretác Cretác Cretác D Cretác D Juráss	Cretáceo	Inferior	Estratig	Basalto Dacito	Gabro	Ígnea	Ignea	Vulcânica	Plutônica
Ъ	J3K1bt	Botucatu		154	97	Poloçãos			Jurássico	Superior		Quartzo Arenito	Arenito				Clástica
a d o	P3T1p	Pirambóia		ະອ ບ 26 ອ	ະໝ ບ 260 ໜ	241	de Campo	nero					Arenito fino Arenito siltico-argiloso Folhelho	Calcario	-		
 	P3T1c	Corumbataí	L L	260	241	S	ы		Lonpingian Our Be Guadalupia	Lonpingiano	Arenito Siltito	Evaporito		ntos)	Clástica	Química	
B a	P3t	Teresina	о Ц	260	251	inologi					ntológico	Siltito Argiloso		tar ntos)	edime		
	P23sa	Serra Alta		275	251	Pal		zóico		Guadalupiano		Argilito Folhelho, Siltito	Arenito fino	dimen	r (ou S		Olfation
-	P2i	Irati		270	261	Vertebrado	_	Palec				Calcário Folhelho	Arenito fino	Seo Se	menta	Química Clástica	Clastica
	P1tt	Tatui	295		271	C:	-			Cisuraliano	Paleor	Siltito	Arenito fino Calcario Silexito	-	Sedi		Clástica Química
	C2P1i	Itarare	Grupo	320	276	alinologi			Carbonífero	ro Pennsylvaniano		Arenito Diamictito			Clástica	Clástico	
C2P1	C2P1a	Aquidauana	Formacão	320	296	Å						Folhelho Ritmito	Argilito Arenoso Conglomerado	-			Claslica

Anexo G.1: Tabelça com descrições geológicas da borda leste da Bacia do Paraná (Fig. I.2) (adaptado de CPRM 2001)

	SIGLA		MINERAL	TIPO	IDENT	COMPOSIÇÃO		
		1	-	calcian disordered syn	9-0456	(Na,Ca)(Si,Al) ₄ O ₈		
		2		calcian ordered	9-0457	(Na,Ca)(Si,Al) ₄ O ₈		
	alb	3	Alhita	low	9-0466	NaAlSi ₃ O ₈		
	aib	4	71010	ordered	10-0393	NaAlSi ₃ O ₈		
		5		calcian disordered	20-0548	(Na,Ca)(Si,Al) ₄ O ₈		
		6		low	20-0554	NaAlSi ₃ O ₈		
	cal	1	Calcite	syn	5-0586	CaCO ₃		
		2			24-0027			
	clin	1	Clinochlore	IT M I I b RG ferroan	29-0701	(Mg,Fe) ₆ (Si,Al) ₄ O ₁₀ (OH) ₈		
		2	D +	ITMIIbRG	29-0853	Mg₅AI(Si₃AI)O10(OH)8		
	dol	1	Dolomite		11-0078			
	gib	1	Gibbsite	0.00	12.0460	AI(OH) ₃		
	700	2 1	Coathita	Syn	12-0400			
	gue	1	Goetrine	Δ	9-0451			
0)	hal	2	Halloysite	^	13-0375	$A_{12}S_{12}O_{5}(OH)_{4.2}H_{2}O_{5}(OH)_{4$		
ш		1			13-0534			
	hem	2	Hematite	syn	33-0664	Fe ₂ O ₃		
		1		Μ	2-0462	KAl ₂ (Si ₂ AlO ₄₀)(OH) ₂		
٩		2		trioctahedral	9-0343	$K_{0.5}(ALFe,Mg)_{3}(Si,Al)_{4}O_{10}(OH)_{2}$		
-	illi	3	Illite	sodian brammalite	25-0001	$(Na_{K})_{1,*}(Al_{Mg}, Ee)_{2}(Si_{K}Al)_{4}O_{10}(OH)_{2}$		
2		4		IT M RG NR	26-0911	$(K_1H_3O)Al_2Si_3AlO_{10}(OH)_2$		
—	ilm	1	Ilmenite		3-0781	FeTiO ₃		
S		1		Md	6-0221			
•••	kao	2		Т	12-0447			
		3	Kaolinite	IT A RG	14-0164	$AI_2SI_2O_5(OH)_4$		
		4		IT Md RG	29-1488			
	lep		Lepidocrosite		8-0098	FeO(OH)		
S	mag	1	Maghemite	syn	4-0755	Fe-O-		
•••	mag	2	Magnernite	Q syn	25-1402			
_	mic	1	Microcline	inter	19-0932	KalSi₂O₀		
\triangleleft		2	Wildfochille	ordered	22-0687			
~		1			2-0037	$AISi_2O_6(OH)_2$		
· • •	mont	2			3-0009	SI-AI-Fe-Mg-O		
ш		3	Montmorillonite	syn	3-0016	$Al_2O_3ASIO_2.H_2O.XH_2O$		
~		4		A	12-0219	$Na_{0,3}(AI,Mg)_2SI_4O_{10}OH_2.XH_2O$		
~		5		А	13-0135	$Ca_{0,2}(AI,Mg)_2SI_4O_{10}(OH)_2.XH_2O$		
—		6			29-1499	$Na_{0,3}(AI, NIG)_2 SI_4 O_{10}(OH)_2$		
Σ	muse		Mucovite		0-0203	$KAI_2(SI_3AI)O_{10}(OH,F)_2$		
	musc		MUCOVILE	M cyrp	7-0025	KAI ₂ Si ₃ AIO ₁₀ (OH) ₂		
		1		low	5-0490			
	qtz	2	Quartz	svn	33-1161	SiO ₂		
		1		0,11	14-0183	Na-Ca-K-Al-Si-OH 3H2O		
	rec	2	Rectorite		25-0781	$(Na.Ca)Al_4(Al_4 zSis 2)O_2(OH)_4 2H_2O$		
		1			10-0426	6MgO.,67Al ₂ O ₃ ,7SiO ₂ ,2H ₂ O		
		2			11-0056	(Mg,Al,Fe) ₃ (Al,Si) ₄ O ₁₀ (OH) ₂		
		3	o	A glycol syn	12-0168	$Na_0 3Mg_3(Si,Al)_4O_{10}(OH)_2,xH_2O$		
	sap	4	Saponite	A	13-0086	Mg ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ .xH ₂ O		
		5		A ferroan	13-0305	Ca _{0,5} (Mg,Fe) ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ .xH ₂ O		
		6		А	29-1491	Ca _{0.2} Mg ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ .xH ₂ O		
	sid		Siderite		8-0133	FeCO ₃		
	ver	1	Vermiculite	IT M RG	16-0613	Mgx(Mg, Fe) ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ .4H ₂ O		
-	illi mont	1	Illite	regular	7-0330	K-Al ₄ (SiAl) ₈ O ₂₀ (OH) ₄ .xH ₂ O		
2	ini-mont	2	Montmorillonite		35-0652	K _{0,5} Al ₂ (Si,Al) ₄ O ₁₀ (OH) ₂ .2H ₂ O		
~	sme-kao	1	Smectite-Kaolinite		29-1490	Al-Si-O-OH-H₂O		

Anexo G.2: Tabela com a descrição mineral resultante da DRX.

MM: minerais mistos ou interestratificados

* Senna J. A. 2003 *

* Senna J. A. 2003 *

* Caracterização de Argilas de Utilização na Indústria Cerâmica por Espectroscopia de Reflectância *

MINERAL	ESPÉCIE	λ (μ m)	MOLÉCULA	CARACTERÍSTICA	REFERÊNCIA
albita	324 B	1.4 1.9 2.22	H ₂ O	bandas da água combinação de moléculas	Hunt et al. (1973)
	66 B	1.4 1.9	H ₂ O	inclusão fluida	Hunt (1977)
	194 B 48 B	1.88 2.0 2.16 (2.3) 2.35 (2.5) 2.55			Hunt & Salisbury (1971)
calcita	WS 272 HS48.3B	~1.9 (1.88) 2.0 ~2.15 (2.16) 2.35	CO3	fracos fortes	Clark <i>et al.</i> (1990) e Clark (1999)
		2.33 1.880 1.992 2.156		fraca feição de absorção que não são presentes nos espectros da mistura. absorção diagnóstica de	Pontual <i>et al.</i> (1997)
	9	1.4		persiste em misturas	Hunt &
	216 B	1.9 2.2		pequena feiçao tipico	(1970)
	220 B	1.4 1.9	OH H ₂ O	doublet / combinação presença de alguma absorção de H ₂ O intensa feição / layer dioctaédrico	Hunt et al. (1973)
		1.395 1.405 1.415	ОН	da estrutura deste mineral doublet	
caulinita	CM9 KGa-1 KGa-2	1.83 1.91 (1.92) 2.16 2.205 2.39	AI-OH	<i>doublet</i> com uma feição interna 2.18μm feicão muito pequena	Clark <i>et al.</i> 1990 e Clark 1999
		~1.400 1.412 1.813 1.920	OH H ₂ O	doublet depende da cristalinidade presença somente em minerais com alta cristalinidade tipicamente	Pontual of al
		~2.162 ~2.206 ~2.312 ~2.350 ~2.380	Al-OH	doublet diagnóstico dependente da critalinidade absorção persiste em misturas espectrais	(1997)

Anexo G.4a: Tabela com a Revisão Bibliográfica das características espectrais dos principais minerais.

MINERAL	ESPÉCIE	λ (μm)	MOLÉCULA	CARACTERÍSTICA	REFERÊNCIA
	102 B / 43 B	1.86 / 1.87 1.99 2.14 / 2.16 2.33 / 2.34 2.53	CO3		Hunt & Salisbury (1971)
	HS 102	1.9 2.0 2.15 2.35 2.55		muito fraco, picos com pouca profundidade forte	Clark <i>et al.</i> (1990)
dolomita	3B	2.33 1.87 1.99 2.16 (2.30) 2.33	CO ₃	doublet	Clark (1999)
		~1.440 ~1.865 ~1.940 ~2.140 2.320-2.328 2.450	CO ₃ H ₂ O CO ₃	artefato de Fe ²⁺ , presença em dolomitos de Fe absorção do carbonato água nem sempre presente absorção do carbonato aiagnostico da dolomita e de carbonato, persiste na mistura artefato (<i>hull</i>)	Pontual <i>et al.</i> (1997)
	423 B	1.00 1.45 (1.55) 1.90 2.30	H ₂ O	feição fraca, H ₂ O livre	Hunt <i>et al.</i> (1971)
gibsita		~1.452 ~1.521 ~1.549 1.915 2.200 ~2.268		diagnostico pode persistir fortemente na	Pontual <i>et al.</i> (1997)
	227 B	~2.356		mistura	
	228 B 226 B	2.2	ОН		Hunt <i>et al</i> . (1973)
halloisita	CM 13 NMNH 106236	1.40 1.80 1.90 2.16 2.20	OH H₂O AI-OH	quebra na curva Doublet	Clark <i>et al.</i> 1990 e Clark 1999
	DESIDRATADA (HIDRATADA)	~1.389 (1.394) ~1.410 (1.414) ~1.920 ~2.166 ~2.206	H ₂ O Al-OH	<i>doublet</i> mais intenso que da caulinita feição da água <i>doublet</i> diagnostico	Pontual <i>et al.</i> (1997)

Anexo G.4b: Tabela com a Revisão Bibliográfica das características espectrais dos principais minerais.

MINERAL	ESP	ÉCIE	λ (μ m)	MOLÉCULA	CARACTERÍSTICA	REFERÊNCIA		
illita	1 Mt-1	GDS4	(1.40) 1.41 1.90 (2.20) 2.22 (2.33) 2.34 2.45	OH H ₂ O Al-OH		Clark <i>et al.</i> 1990 e Clark 1999		
illita- sericita					~1.410 ~1.912 2.180-2.228	H ₂ O	pico de absorção simples absorção da água / ausênte na muscovita / cristalinidade aumenta este pico diminui pico de absorção simples / pode variar dependendo da composição / este pico aumenta com a	
			~2.347 ~2.440		duas diagnosticas absorções / persistem na mistura espectral	Pontual <i>et al</i> .		
NH₄ illita- sericita			~1.410absorção normal da illita1.554feição de absorção diagnostica do1.912NH4, são observados em qualquer mineral contendo amônia2.1120.0000		(1007)			
			2.350 2.450		mesmas feições e variações normais da illita			
microclíneo	103 B 107 B 151 B 108 B		1.4 1.9 2.2	OH H₂O OH AI-OH		Hunt <i>et al.</i> (1973)		
	20 222 B		20 222 B		1.4 1.9	H ₂ O	feições típicas da água	Hunt & Salisbury (1970)
	21 22 22	9 B 4 B 9 B	2.25	AI-OH		Hunt <i>et al.</i> (1973)		
lita	SA ST	z-1 x-1 1 27	1.41-1.42 1.46-1.47	OH H ₂ O	doublet			
orillor		1 26 /v-1	1.90-1.91	H ₂ O		Clark <i>et al.</i> 1990		
ontmo	CN SC	120 a-2	2.21-2.22	AI-OH				
Ē			~1.411 ~1.904	H ₂ O	feições profundas da água / no mínimo do pico a assimetria da curva é destacada			
			2.205-2.212	AI-OH	simples absorção tipicamente mais larga do que illita/muscovita, a profundidade desta feição é bem inferior as da água	Pontual <i>et al.</i> (1997)		
			2.340-2.460		falta de duas feições diferentemente da illita e muscovita			

Anexo G.4c: Tabela com a Revisão Bibliográfica das características espectrais dos principais minerais.

MINERAL	ESPÉCIE	λ (μ m)	MOLÉCULA	CARACTERÍSTICA	REFERÊNCIA	
		1.40				
rectorita	Por-1	1.40			Clark et al.	
	Nal-1	2.20			1990	
	1	2.20	AI-OH		1	
		1.39	OH			
		1.415	H ₂ O	doublet dos dois primeiros picos e	Clark at al	
		1.465		uni onbro da terceira leição		
	Ca-1	1.9	H ₂ O		1990	
		2.31		tipo de um doublet, sendo que o		
:		2 30		segundo é um abcesso que não		
saponita		2.00		torna a subir		
		1.416		feições profundas características		
		4 000	H ₂ O	da água / o mínimo do pico	Bontual at al	
		1.908		apresenta-se assimetico como na mont	Pontual <i>et al</i> .	
				feição diagnostica dentro da banda	(1997)	
		~2.309	Mg-OH	Mg-OH		
		~2.388		secundária absorção diagnostica		
		1.20				
		1.39	UH			
	N.T. 4	(1.40) 1.43	H ₂ O	tipo de um <i>doublet</i> com a primeira feição muito afinada, sem largura	Clark <i>et al</i> .	
vermiculita	V I X-1	1.92-1.93	H ₂ O		1990	
		2.26		noguenes feisãos		
		2.32		pequenas reições		

Anexo G.4d: Tabela com a Revisão Bibliográfica das características espectrais dos principais minera	ais.
---	------

MINA DO CRUZEIRO

- Tabela de Pontos Anexo MC.1
- Tabela de amostragem por bancada Anexo MC.2
- Abaco de cores das rochas investigadas Anexo MC.3
 - Resultados de FRX Anexo MC.4
 - FRX por bancada na FC Anexo MC.5
 - Minerais da DRX versus amostras Anexo MC.6
 - Difratogramas Anexo MC.7
 - DRX por bancada na FC Anexo MC.8
 - DRX e MeV Anexo MC.9
 - Dados de leitura espectral Anexo MC.10
 - Espectros VNSWIR Anexo MC.11

PON	то	Coordena	ada UTM	Alt (m)	REGIÃO	BANCADA	АМ	FOTO (visada)
1 011	10	W (long)	N (lat)			Braterie	7 (10)	
01		0.248.693 0.248.696	7.504.826 7.504.827	625	CS	BII	01 02 03 04 05	01(NW) 02 (NW) 03 (S) 04 (S) 05 (S)
02		0.248.696	7.504.827		CS	BII		06 (N)
03	}	0.248.775	7.504.924 615		CS	BII		07 (SW-240°)
04		0.248.716	7.505.076	618	CN	BI		08 (SW-190°)
05	5	0.248.727	7.505.062	600	CN	BI		09 (NW-330°)
06	5	0.248.965	7.505.330	628	Ν	BI		10
07		0.249.037	7.505.400	614	Ν	BI	06	11 (NW-300°) 12 (NW-300°)
08		0.249.133	7.505.390	579	N	BII		13 (NE-80°)
09)	0.249.145	7.505.422	598	Ν	BII	07 08	14 (NE-80°)
10)	0.249.028	7.505.566	636	N	B III	09 10	15 (NE-20°)
11		0.248.972	7.505.450	640	N	B III		16 (E-90°)
12	2	0.248.715	7.505.211	644	CN	BII		17 (S-180°) 18 (SE-130°)
13	3	0.249.088	7.505.485	620	N	BII	11A 11B	19 (NE-30°)
14		0.248.608	7.504.891	648	CS	B IV	12	
15	5	0.248.584	7.504.935	636	CS	ΒV	13 13v 14 14x	20 (NW)
16	5	0.248.659	7.505.020	640	CS	ΒV	15	
	а	0.248.554	7.504.884	676				
	b	0.248.546	7.504.919	660				
	с	0.248.543	7.504.922	662			16A	21 (NW-280°)
17	d	0.248.540	7.504.930	663	CS	B VI	16B	22 (NW-340°)
	e	0.248.540	7.504.935	663			17	23 24 (SE-140°)
	T	0.248.542	7.504.940	665				
	y h	0.248.552	7.504.941	667				
18	3	0.249.046	7.505.488	655	N	BII	19 20 21 22	
19)	0.248.981	7.505.430	636	N	BII	23 23A	
20)	0.248.920	7.505.410	640	N	BII	24 25	25 (NW) 26 (NW) 27 (SW) 28 (NW)
21		0.248.884	7.505.350	696	N	BII	26	
22	2	0.248.752 0.248.739	7.505.202 7.505.197	668 633	CN	BII	27	29
23	3	0.248.686 0.248.690	7.505.176 7.505.170	642 633	CN	BII	28	30 (NW)

Anexo MC.1a: Tabela com a descrição espacial dos pontos estudados ao longo da Lavra.

DON	то	Coordena	ada UTM	$\Delta lt (m)$	PECIÃO	RANCADA	0.14	FOTO (visada)
TON	10	W (long)	N (lat)		REGIAO	BANCADA		TOTO (visada)
		0.248.660	7.505.095	642				
PONTO 24 25 26 27 28 29 30 31 32 33 34 35 36 a b c d		0.248.658	7.505.094	639 638	CN	BII		31 (NEN)
		0.248.661	7.505.095	633				
25		0.248.664	7.505.080	634	CN	BII		
26	;	0.248.675	7.505.040	637	CS	ΒV		
27	,	0.248.637	7.505.026	624	20	R.V.		
21		0.248.653	7.505.008	649	03	БV		
28		0.248.641	7.504.968	641 645	CS	ΒV		
29	1	0.248.634	7.505.965	644	CS	ΒV		
30		0.248.585	7.504.952	646	CS	ВV		
		0.248.587	7.504.950	645		2.		
31		0.248.571	7.504.932 7.504.928	648	CS	ΒV		
32		0.248.591 0.248.590	7.504.858	637	CS	S BV		32 (NWN-350º)
33		0.248.586	7.504.851	637	CS	ΒV		
34		0.248.573	7.504.827	637	CS	ΒV	29 29v	
35		0.248.570	7.504.813	638	CS	ΒV		
		0.248.609	7.504.832	638				
	а	0.248.615	7.504.863	634			30	
26	b	0.248.610	7.504.851	637	00		31A	22 (NIM 270%)
30	С	0.248.605	7.504.813	638	03	DIV	31B 31C	33 (1907-270)
	d	0.248.610	7.504.639	639			33	
	е	0.248.625	7.504.753	640				
		0.248.603	7.504.820	627				
	а	0.248.734	7.504.703	631				
37	b	0.248.698	7.504.724	630	20	BIII	24	34 (SW)
57	С	0.248.661	7.504.744	629	00	Dill	54	35 (NW)
	d	0.248.631	7.504.772	629				
	е	0.248.617	7.504.790	628				
38		0.248.693	7.504.791	625	CS	B III		36 (WNW)
39		0.248.761	7.504.816	639	CS	B III		37 (NW-310º)
40		0.248.725	7.504.925		CS	BI	32A 32B 32C	
41		0.249.000	7.504.600		S			39 (NW)

Anexo MC.1b: Tabela com a deso	ição espacial dos pontos	s estudados ao longo da Lavra.	Continuação
--------------------------------	--------------------------	--------------------------------	-------------

				REGIÃ	o CS	DA LAVRA			
Bancada	Н			CARACT	ERÍSTICA	S DA ROCHA	ΑΜΟΩΤΡΑ	PONTO	
Dancaua	(m)	LIIU	nome	cor	granulometria	estruturas e texturas	AMOSTRA	FONTO	
				creme (amarelo claro)		sets de areia maiores e sets de argila milimétricos, topo da bancada	am 18		
B VI	7		arenito	rosa pele		laminações finas e médias, opacos na matriz a intercalações de argila	am 17	nt 17	
DVI	'			róseo claro a médio	fina	arenito finamente laminado, base da bancada	am 16A	ριι	
		, –		cinca claro arroxeado	lilla	silte na parte inferior, base da bancada	am 16B		
		ate	siltito	róseo escuro		maciço, amostra acima dos 4m e da am 13	am 14		
		p 9		cinza bem claro esverdeado		finamente laminado com lentes esverdeadas	am 14X		
		E n	siltito / argilito	róseo acizentado	fina (argila)	finamente laminado, com níveis mais claros e níveis róseos, veios de carbonato, amostra até 4m	am 13	pt 15	
ΒV	15	or	calcário	claro, leitoso e avermelhado	grossa	veio carbonático	am 13V		
		O	siltito	róseo	grossa (silte e areia muito fina)	silte com nódulos de carbonato, amostra até 5m	am 29	pt 34	
			calcário	avermelhado	grossa	nódulo carbonático	am 29V	•	
		ão	siltito	róseo carne (com manchas brancas)	fina	finamente laminado a maciço, base da bancada, 100m ao N do pt 15	am 15	pt 16	
		la ç	Sinto	róseo escuro c/ cinza esverdeado	lina	finamente laminado a maciço, fraturas irregulares, topo da BIV ou base da BV, (amostra do chão)	am 12	pt 14	
		rπ	siltito / argilito	amarelo e verde	fina (argila)	rajado e alterado, material desmontado	am 30		
BIV	11	0	siltito	verde oliva	<i>.</i>	maciço, fraturas irregulares, material desmontado	am 31A		
BIV			siltito alterado	róseo e verde claro com pintas brancas	média	formação de caulinita, rocha alterada com veio de carbonato, material desmontado	am 31B	pt 36	
					róseo com porções verdes		veio de carbonato deformado, base da bancada	am 31C	
				róseo		finamente laminada, quase maciça, base da bancada	am 33		
B III	8		siltito	cinza médio levem/e esverdeado	fina	maciço sem estruturas	am 34	pt 37	
		FSA		cinza claro		maciço	am 01		
				cinza médio	grossa	finamente laminado, bem compacto	am 02		
BII	7		folhelho com lentes de calcário	preta com nódulos (cinza esverdeados)		finamente laminado com lentes de carbonato	am 03	pt 01	
			folhelho	cinza muito escuro	fina	finamente laminado com glóbulos inseridos na matriz	am 04		
			calcário com glóbulos	cinza médio		maciço com glóbulos (divisões concêntricas)	am 05		
		FI	calcário e folhelho	cinza escuro	fina a grossa	porção maciça entre níveis de folhelho (com sulfetos - pirita), material desmontado	am 32A		
BI	10		calcário grafite	grossa	porção maciça de calcário c/ glóbulos de calcário e cristais alongados, entre níveis de folhelho, material desmontado	am 32B			
	10		folhelho intercalado por calcário nodular	escura / preta	fina	finamente foliada com nódulos estirados de carbonato, material desmontado	am 32C		

Anexo MC.2a: Tabela com a descrição das amostras de acordo com a região (CS) e a bancada da mina.

					REGIÃO	CN da lavra		
BANCADA H				C	ARACTERÍ	STICAS DA ROCHA		PONTO
BANCADA	(m)	LIIU	nome cor granulometria estruturas e texturas		estruturas e texturas	ANIOSTRA	FONTO	
BII		5 FC		róseo	média (siltito)	muito fraturado com fraturas esverdeadas	am 28	pt 23
	15		siltito	róseo e cinza	grossa (siltito)	intercalações finas, fino laminamento, este set do topo da bancada é mais compacto, ocorre dos 7 aos 12m da bancada	am 27	pt 22

Anexo MC	.2b: Tabel	a com a	descrição	das am	nostras d	e acordo	com a	região	(CN e	N) e a	bancada	da m	ina.

					REGIÃO	N DA	LAVRA						
SECÃO		Н			CARACTER	ÍSTICAS	DA ROCHA						
SEÇAU	BANCADA	(m)	LIIU	nome	cor	granulometria	estruturas e texturas	AMOSTRA	POINTO				
NI1	BII	15		siltito	róseo	média (siltito)	finamente laminado, níveis cinza, clivagem esferoidal (pastilhamento), ocorre dos 5 aos 10 m da bancada	am 25	nt 20				
		15		siltito esfoliado	róseo	fina	sets fraturados e outros maciços, fraturamento da clivagem esferoidal (pastilhamento)	am 24	ρι 20				
	BIII	3	aí	latossolo	vermelho intenso	grossa	solo laterítico rico em goethita, proveniente da decomposição de rocha intrusiva (básica)	am 09	pt 10				
-		•	ıbat	bauxita (alteração da rocha. intrusiva)	ocre amarelado		alteração de rocha básica (intrusiva), neste caso de um matacão (foto)	am 10	prio				
			Corum		róseo claro		parede da rocha intrusiva (seção vertical), macio e compacto	am 11A	nt 13				
				Co	U U	C	Co		amarelo		parede da rocha intrusiva (seção vertical), macio e compacto	am 11B	pt 13
									argilito	róseo acizentado (níveis cinza e róseo escuro)		finamente laminado, maciço e compacto, 50 m a SW da rocha intrusiva	am 19
NO			ã O		arroxeado	fino	elevado grau de alteração	am 20	nt 18				
INZ	BII	10	ů.		róseo	IIIa	material desmontado próximo a ocorrência da rocha intrusiva	am 21	prio				
	БШ	10	ma		branco (porções róseas e amareladas)		idem anterior	am 22					
			- C	siltito esfoliado	róseo		clivagem esferoidal (pastilhamento)	am 23A	nt 19				
			Ľ.	arenito	creme a cinza claro		fração arenosa intercalada no siltito	am 23B	prio				
			-	ш	-	argilito	róseo		material desagregado e fraturado, macio e ferruginoso, região da rocha intrusiva	am 07	pt 09		
				3	amarelo		material desagregado e fraturado, também macio, região da rocha intrusiva	am 08	P. 00				
	BI	7	FSA	siltito, folhelho e calcário	esverdeado e preto a cinza, (alteração)	fina a média	siltito com oóides (calcário), folhelho escuro e carbonato escuro	am 06	pt 07				

(%)	01	03*	06*	07	08	09	10	11A	11B
SiO ₂	73,37	65,62	65,43	64,67	65,46	42,04	15,40	66,14	68,24
TiO ₂	0,537	0,384	0,351	0,809	0,750	3,925	8,451	0,669	0,677
AI_2O_3	10,95	7,53	8,50	17,86	15,98	23,85	23,97	15,09	14,45
Fe ₂ O ₃	4,63	7,73	5,54	6,71	6,24	19,08	34,41	6,14	5,04
MnO	0,018	0,074	0,151	0,012	0,030	0,088	0,304	0,012	0,015
MgO	2,31	7,38	4,88	0,99	1,43	0,35	0,28	1,72	1,55
CaO	0,30	2,59	4,63	0,04	0,17	0,03	0,02	0,29	0,31
Na ₂ O	2,69	1,27	2,62	0,26	0,09	0,02	0,02	0,42	0,91
K ₂ O	2,71	1,06	1,01	2,42	3,18	0,37	0,01	3,96	3,98
P_2O_5	0,087	0,299	0,387	0,064	0,075	0,098	0,816	0,052	0,054
P.F.	2,15	5,08	6,22	6,21	5,83	10,56	14,68	5,14	4,85
Soma	99,87	99,0	99,7	100,0	99,2	100,4	98,4	99,6	100,1
Ва	445	497	353	282	543	135	128	696	768
Ce	45	39	46	68	102	57	63	58	57
Cr	42	31	28	60	59	118		53	47
Cs	< 11	< 11	< 11	< 11	< 11	< 11		< 11	< 11
Cu	35	8	13	30	48	87	61	34	36
Ga	15	12	11	27	21	49	89	21	18
La	26	< 4	13	43	53	29	46	33	34
Nb	12,3	9,7	9,4	16,8	16,3	29,9	5,5	14,5	13,8
Nd	18	36	34	19	50	< 8	< 8	20	19
Ni	13,7	4,1	< 1	6,8	22,3	16,3	4	17,0	14,2
Pb	18	38	28	28	17	16	2	23	18
Rb	124	40	37	183	215	28	3,7	225	203
Sc	5	5	< 5	19	21	140	586	12,9	12
Sn	< 3	< 3	< 3	< 3	< 3	< 3		3	< 3
Sr	144	300	304	24	42	7,3	5,1	62	73
Th	7,6	9	8,2	10,7	12,5	17,1	< 1,5	8,8	9,4
U	< 2	< 2	< 2	< 2	2,1	6,1	<2	< 2	< 2
V	61	71	55	92	87	242	104	91	89
Y	17,3	34	37	23,8	53	48	58	20	18,6
Zn	57	61	35	47	141	50	97	105	99
Zr	181	103	151	188	157	223	188	152	147

AMOSTRAS

(*): Amostra Quartiada

Anexo MC.4a

AMOSTRA 11A

(%)	A1.1	A1.2	A2.1	A2.2	B1.1	B1.2	B2.1	B2.2	Md	min	max	DM	σ	σ^2
SiO ₂	65,65	65,78	65,80	65,72	66,37	66,35	66,72	66,76	66,14	65,65	66,76	0,406	0,460	0,211
TiO ₂	0,669	0,667	0,668	0,665	0,667	0,668	0,675	0,672	0,669	0,665	0,675	0,002	0,003	0
AI_2O_3	14,97	15,00	14,99	15,01	15,15	15,15	15,24	15,24	15,09	14,97	15,24	0,101	0,114	0,013
Fe ₂ O ₃	6,09	6,11	6,11	6,11	6,14	6,14	6,21	6,19	6,14	6,09	6,21	0,032	0,042	0,002
MnO	0,011	0,012	0,012	0,011	0,012	0,012	0,012	0,012	0,012	0,011	0,012	0	0	0
MgO	1,70	1,70	1,71	1,72	1,73	1,71	1,73	1,72	1,72	1,7	1,73	0,010	0,012	0
CaO	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.30	0.29	0.29	0.3	0.002	0.004	0
Na ₂ O	0.41	0.42	0.42	0.42	0.43	0.42	0.43	0.43	0.42	0.41	0.43	0.006	0.007	0
K.O	3.02	3.04	3.02	3.04	3.08	3.07	4.00	3 00	3.06	3.02	4	0,000	0.032	0.001
	0.054	0.051	0.052	0.050	0.051	0.054	4,00	0.052	0.052	0.05	4	0,020	0,032	0,001
P ₂ O ₅	0,054	0,051	0,052	0,050	0,051	0,054	0,052	0,053	0,052	0,05	0,054	0,001	0,001	0
P.F.	5,14	5,14	5,14	5,14	5,14	5,14	5,14	5,14	5,14	5,14	5,14	0	0	0
Soma	98,9	99,1	99,1	99,1	99,9	99,9	100,5	100,5	99,6	98,9	100,5	0,575	0,658	0,434
Ва	692	697	696	695	700	690	698	697	696	690	700	2,469	3,249	10,55
Ce	62	59	55	60	61	60	53	54	58	53	62	3	3,464	12
Cr	54	54	51	51	54	53	53	52	53	51	54	1,063	1,282	1,643
Cs	<11	<11	<11	<11	<11	<11	<11	<11	<11					
Cu	34	35	34	34	34	34	34	34	34	34	35	0,219	0,354	0,125
Ga	20	21	20	21	22	20	20	21	21	20	22	0,625	0,744	0,554
La	34	33	32	33	35	33	31	31	33	31	35	1,063	1,389	1,929
Nb	14,4	14,5	14,1	14,7	14,7	14,5	14,5	14,6	14,5	14,1	14,7	0,125	0,193	0,037
Nd	24	22	17	23	20	22	17	17	20	17	24	2,5	2,915	8,5
Ni	17,8	18,6	16,0	15,7	16,8	16,6	17,5	16,6	17,0	15,7	18,6	0,763	0,962	0,926
Pb	24	24	22	22	24	24	22	22	23	22	24	1	1,069	1,143
Rb	225	228	221	225	225	226	224	227	225	221	228	1,406	2,1	4,411
Sc	14	11	13	12	14	13	13	13	12,9	11	14	0,688	0,991	0,982
Sn	<3	3	<3	3	3	<3	3	<3	3					
Sr	62	63	61	62	62	62	62	62	62	61	63	0,25	0,535	0,286
Th	9,3	8,7	7,9	9,3	8,3	9,8	7,9	8,8	8,8	7,9	9,8	0,55	0,693	0,480
U	<2	<2	<2	<2	<2	<2	<2	<2	<2					
V	91	88	93	93	88	91	90	91	91	88	93	1,469	1,923	3,696
Y	20,8	19,8	20,1	20,0	20,1	21,5	20,6	19,8	20	19,8	21,5	0,472	0,590	0,348
Zn	104	105	104	104	104	105	104	106	105	104	106	0,625	0,756	0,571
Zr	155	153	149	149	152	154	151	150	152	149	155	1,875	2,264	5,125

Md: média aritimética DM: desvio médio σ : variância / σ^2 : desvio padrão

Anexo MC.4b

(%)	12	13	13V	14	14X	15	16A	17	18
SiO ₂	68,67	65,80	68,51	68,93	68,04	68,29	72,57	73,03	70,21
TiO ₂	0,603	0,615	0,138	0,633	0,680	0,536	0,493	0,580	0,469
AI_2O_3	13,93	14,01	3,40	14,06	15,50	12,01	11,28	13,04	11,96
Fe ₂ O ₃	5,23	5,21	0,85	4,58	2,03	7,89	2,95	2,75	2,06
MnO	0,035	0,089	0,450	0,016	0,029	0,028	0,053	0,036	0,067
MgO	2,10	2,41	1,86	1,62	2,42	1,11	1,40	1,33	1,40
CaO	0,50	1,82	13,55	0,50	0,67	0,71	1,81	0,48	3,81
Na ₂ O	3,02	3,77	0,94	3,78	3,27	3,69	4,38	4,83	4,55
K ₂ O	3,42	3,25	0,65	3,36	4,08	2,31	1,67	1,71	1,36
P_2O_5	0,093	0,098	0,065	0,112	0,099	0,326	0,182	0,180	0,155
P.F.	2,76	3,60	12,30	2,38	3,34	1,98	3,34	2,04	4,77
Soma	100,4	100,7	102,7	100,0	100,2	98,9	100,1	100,0	100,8
Ba	439	476	709	509	478	481	365	447	423
Ce	51	52	44	52	49	51	40	48	45
Cr	45	66	20	108	17	35	25	28	25
Cs	< 11	12	< 11	16	< 11	12	< 11	< 11	< 11
Cu	33	30	21	28	39	37	23	13,5	12,4
Ga	19	19	5	19	22	18	15	17	14
La	27	25	12	29	34	19	20	25	20
Nb	13,7	14,5	3,6	14,1	14,3	13,7	11,2	12,7	11,8
Nd	21	25	38	21	11	29	19	20	26
Ni	17,4	12,9	< 1	14,6	11,7	15,5	< 1	< 1	< 1
Pb	25	25	12	23	35	57	16	19	21
Rb	199	172	33	180	231	123	69	65	45
Sc	8	12	< 5	8	14	9	8	10	7
Sn	< 3	4	5	4	< 3	< 3	< 3	< 3	< 3
Sr	163	175	398	158	148	220	134	118	150
Th	9,4	9,1	4,2	10,6	9,2	10,7	10,1	11,6	11,4
U	< 2	< 2	5,4	2,0	9,7	< 2	< 2	< 2	< 2
V	81	73	32	172	257	169	63	73	42
Y	16,5	17,9	9,4	18,1	15,6	35	22,9	23,4	29,5
Zn	88	79	33	73	88	52	40	52	37
Zr	150	167	107	141	171	165	211	232	239

AMOSTRAS

Anexo MC.4c

(%)	19	21*	22	23A	24*	25*	27*	28*	29V*
SiO ₂	67,55	65,08	73,38	69,60	67,98	68,75	68,70	65,89	44,69
TiO ₂	0,663	0,763	0,588	0,610	0,671	0,638	0,574	0,676	0,076
AI_2O_3	15,48	15,87	12,64	14,02	14,33	14,52	14,07	15,01	2,99
Fe ₂ O ₃	5,39	6,75	6,07	4,18	4,62	4,37	5,27	5,46	1,96
MnO	0,016	0,037	0,018	0,027	0,031	0,026	0,027	0,063	0,991
MgO	1,69	1,60	0,99	1,62	1,87	1,55	1,62	2,43	8,17
CaO	0,34	0,19	0,12	0,57	0,46	0,52	0,58	0,88	18,37
Na ₂ O	1,68	0,16	0,09	2,68	2,97	3,04	3,87	3,05	0,85
K ₂ O	3,94	4,04	2,21	3,52	3,55	3,54	3,10	3,72	0,70
P_2O_5	0,057	0,043	0,071	0,087	0,091	0,148	0,100	0,115	0,06
P.F.	4,88	5,06	5,28	3,06	2,77	2,89	2,24	3,03	23,29
Soma	101,7	99,6	101,5	100,0	99,3	99,9	100,1	100,3	101,8
Ba	582	546	359	567	493	470	454	498	564
Ce	59	79	78	55	55	61	39	59	45
Cr	46	59	47	42	44	40	41	48	13
Cs	< 11	< 11	< 11	< 11	< 11	< 11	< 11	16	< 11
Cu	35	30	52	42	30	32	44	29	29
Ga	20	21	17	19	20	19	19	21	4
La	33	45	37	33	32	35	20	30	8
Nb	14,6	16,5	13,3	13,9	15	14	13,7	14,9	2,3
Nd	22	30	40	19	21	23	18	26	43
Ni	16,4	21,6	19,9	8,6	16,7	14,6	16,9	19,9	< 1
Pb	22	26	14	19	21	20	17	26	21
Rb	218	235	153	191	195	206	171	206	29
Sc	13	13	10	9	10	11	8	12	< 5
Sn	3	3	< 3	3	< 3	< 3	3	4	4
Sr	103	43	33	164	161	165	147	150	533
Th	10,1	11,9	10,8	8,8	10,8	11,1	7,5	10,6	3,2
U	< 2	< 2	< 2	< 2	< 2	2,1	< 2	< 2	< 2
V	89	78	63	77	88	83	81	91	15,8
Y	17,9	28,3	46	14,1	18	17,8	17,6	19,6	7
Zn	105	115	97	74	85	81	75	93	60
Zr	136	160	162	161	146	158	145	142	164

AMOSTRAS

(*): Amostra Quartiada

Anexo MC.4d

(%)	30	31A	32B*	33*	34
SiO ₂	64,85	69,90	20,37	67,74	67,59
TiOB ₂	0,710	0,593	0,005	0,650	0,653
AI_2O_3	15,59	13,53	0,84	14,66	13,57
Fe ₂ O ₃	6,02	5,63	1,90	5,35	5,15
MnO	0,014	0,025	0,653	0,030	0,027
MgO	1,77	1,97	6,04	2,02	2,40
CaO	0,34	0,50	30,0	0,39	0,56
Na ₂ O	0,84	2,05	0,27	3,02	2,56
 K₂O	3,93	3,55	0,01	3,61	3,50
- P ₂ O ₅	0,082	0,153	0,07	0,107	0,144
P.F.	5,75	4,10	39,03	2,47	2,73
Soma	99,9	102,0	99,2	100,0	98,9
Ba	854	525	92	524	486
Ce	58	55	19	55	59
Cr	55	45	5	46	49
Cs	< 11	< 11	< 11	12	14
Cu	44	38	4,5	39	32
Ga	20	18	< 3	21	19
La	32	30	< 4	30	32
Nb	16	13,3	0,8	14,7	15,1
Nd	21	22	28	23	26
Ni	25	16,1	< 1	17,4	21,5
Pb	20	26	58	26	24
Rb	237	185	3,3	197	194
Sc	15	9	< 5	11	13
Sn	4	< 3	< 3	4	< 3
Sr	78	147	508	145	161
Th	8,2	11,8	3,4	10,3	12,8
U	< 2	< 2	< 2	< 2	< 2
V	91	84	28	87	86
Y	22,4	23,7	10,3	20	25,7
Zn	104	89	5,9	87	93
Zr	153	133	75	145	146

AMOSTRAS

(*): Amostra Quartiada

Anexo MC.4e

AMOSTRA 33

(%)	A1.1	A1.2	A2.1	A2.2	B1.1	B1.2	B2.1	B2.2	Md	min	max	DM	σ	σ^2
SiO ₂	68,00	68,00	67,58	67,68	67,77	67,73	67,59	67,53	67,74	67,53	68	0,141	0,182	0,033
TiO ₂	0,649	0,649	0,657	0,649	0,647	0,648	0,650	0,649	0,650	0,647	0,657	0,002	0,003	0
AI_2O_3	14,73	14,73	14,65	14,62	14,65	14,65	14,61	14,62	14,66	14,61	14,73	0,036	0,047	0,002
Fe ₂ O ₃	5,37	5,37	5,33	5,34	5,35	5,35	5,34	5,34	5,35	5,33	5,37	0,011	0,015	0
MnO	0,031	0,031	0,030	0,029	0,029	0,030	0,030	0,030	0,030	0,029	0,031	0,001	0,001	0
MgO	2,03	2,03	2,01	2,01	2,02	2,03	2,01	2,02	2,02	2,01	2,03	0,008	0,009	0
CaO	0,38	0,38	0,38	0,38	0,40	0,40	0,39	0,40	0,39	0,38	0,4	0.009	0,010	0
Na ₂ O	3.04	3.04	3.02	3.01	3.02	3.01	2.97	3.01	3.02	2.97	3.04	0.015	0.022	0
K ₂ O	3.62	3.62	3.61	3.62	3.60	3.60	3.62	3.62	3.61	3.6	3.62	0.008	0.009	0
P ₂ O ₅	0.100	0.100	0.100	0.101	0.113	0.115	0.112	0.114	0.107	0.1	0.115	0.007	0.007	0
P F	2 47	2 47	2 47	2 47	2 47	2 47	2 47	2 47	2 47	2 47	2 47	0	0	0
Soma	100.4	100.4	2,47 QQ 8	2,47 00 0	100.1	100.0	2,47 QQ 8	00.8	100.0	2,47 QQ 8	100 4	0 206	0 255	0.065
Sona	100,4	100,4	55,0	33,3	100,1	100,0	55,0	55,0	100,0	33,0	100,4	0,200	0,233	0,003
Ва	521		523		526		524		524	521	526	1,5	2,082	4,333
Ce	57	51	56	54	58	59	54	54	55	51	59	2,125	2,615	6,839
Cr	45		47		47		45		46	45	47	1	1,155	1,333
Cs	13	17	< 11	14	< 11	12	13	< 11	12	12	17	1,36	1,924	3,7
Cu	39	39	40	38	38	38	38	38	39	38	40	0,625	0,756	0,571
Ga	21	21	21	22	20	21	20	21	21	20	22	0,438	0,641	0,411
La	31	27	32	28	30	30	30	30	30	27	32	1,125	1,581	2,5
Nb	14,6	14,7	14,7	14,6	15,2	14,7	14,5	14,8	14,7	14,5	15,2	0,138	0,212	0,045
Nd	23	20	21	24	25	27	20	22	23	20	27	2	2,493	6,214
Ni	16,7	17,6	17,7	17,6	17,6	17,6	16,5	17,7	17,4	16,5	17,7	0,388	0,483	0,234
Pb	26	26	27	28	26	26	27	25	26	25	28	0,719	0,916	0,839
Rb	196	196	197	196	196	197	197	197	197	196	197	0,5	0,535	0,286
Sc	14	8	12	12	11	11	10	10	11	8	14	1,25	1,773	3,143
Sn	3	4	3	4	< 3	3	5	3	4	3	5	0,653	0,787	0,619
Sr	144	144	144	144	145	145	145	145	145	144	145	0,5	0,535	0,286
Th	10,3	9,8	9,6	10	11,4	9,7	11	10,4	10,3	9,6	11,4	0,5	0,643	0,414
U	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2					
V	87		88		87		87		87	87	88	0,375	0,5	0,25
Y	19,6	18,9	19,8	19,9	20,9	19,8	19,7	20,9	20	18,9	20,9	0,481	0,67	0,448
Zn	86	87	83	86	88	88	86	87	87	83	88	1,125	1,598	2,554
Zr	144	141	149	146	145	144	142	146	145	141	149	1,875	2,504	6,268

Md: média aritimética DM: desvio médio σ : variância / σ^2 : desvio padrão

Anexo MC.4f

						Elemente	os Maiore	es (Oxido	os) em %				P.F.	
BANG	CADA	AM	SiO ₂	TiO ₂	AI_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	(1000°C) %	Soma
		16A	72,57	0,493	11,28	2,95	0,053	1,40	1,81	4,38	1,67	0,182	3,34	100,1
	VI	17	73,03	0,580	13,04	2,75	0,036	1,33	0,48	4,83	1,71	0,180	2,04	100,0
		18	70,21	0,469	11,96	2,06	0,067	1,40	3,81	4,55	1,36	0,155	4,77	100,8
		13	65,80	0,615	14,01	5,21	0,089	2,41	1,82	3,77	3,25	0,098	3,60	100,7
		13V	68,51	0,138	3,40	0,85	0,450	1,86	13,55	0,94	0,65	0,065	12,30	102,7
	V	14	68,93	0,633	14,06	4,58	0,016	1,62	0,50	3,78	3,36	0,112	2,38	100,0
CS	v	14X	68,04	0,680	15,50	2,03	0,029	2,42	0,67	3,27	4,08	0,099	3,34	100,2
		15	68,29	0,536	12,01	7,89	0,028	1,11	0,71	3,69	2,31	0,326	1,98	98,9
		29V#	44,39	0,076	2,99	1,96	0,991	8,17	18,37	0,85	0,70	0,06	23,29	101,8
		12	68,67	0,603	13,93	5,23	0,035	2,10	0,50	3,02	3,42	0,093	2,76	100,4
	IV	30	64,85	0,710	15,59	6,02	0,014	1,77	0,34	0,84	3,93	0,082	5,75	99,9
	IV	31A	69,90	0,593	13,53	5,63	0,025	1,97	0,50	2,05	3,55	0,153	4,10	102,0
		33*#	67,74	0,650	14,66	5,35	0,030	2,02	0,39	3,02	3,61	0,107	2,47	100,0
		24#	67,98	0,671	14,33	4,62	0,031	1,87	0,46	2,97	3,55	0,091	2,77	99,3
CN	п	25#	68,75	0,638	14,52	4,37	0,026	1,55	0,52	3,04	3,54	0,148	2,89	99,9
		27#	68,70	0,574	14,07	5,27	0,027	1,62	0,58	3,87	3,10	0,100	2,24	100,1
		28#	65,89	0,676	15,01	5,46	0,063	2,43	0,88	3,05	3,72	0,115	3,03	100,3
		07	64,67	0,809	17,86	6,71	0,012	0,99	0,04	0,26	2,42	0,064	6,21	100,0
		08	65,46	0,750	15,98	6,24	0,030	1,43	0,17	0,09	3,18	0,075	5,83	99,2
		11A*	66,14	0,669	15,09	6,14	0,012	1,72	0,29	0,42	3,96	0,052	5,14	99,6
N	п	11B	68,24	0,677	14,45	5,04	0,015	1,55	0,31	0,91	3,98	0,054	4,85	100,1
		19	67,55	0,663	15,48	5,39	0,016	1,69	0,34	1,68	3,94	0,057	4,88	101,7
		21#	65,08	0,763	15,87	6,75	0,037	1,60	0,19	0,16	4,04	0,043	5,06	99,6
		22	73,38	0,588	12,64	6,07	0,018	0,99	0,12	0,09	2,21	0,071	5,28	101,5
		23A	69,60	0,610	14,02	4,18	0,027	1,62	0,57	2,68	3,52	0,087	3,06	100,0

Anexo MC.5: Tabela com resultados de perda ao fogo (P.F.) e fluorescência de raios X (FRX) dos elementos maiores em amostras da Formação Corumbataí, organizado de acordo com a bancada e a região da mina.

CS: região centro-sul, CN: região centro-norte e N: região norte

AM: número da amostra

*: amostras com resultados em valores médios, a partir de 8 duplicatas, ver Anexo 3

#: amostra quartiada após a britagem

valores discrepantes: 0 (positivos), 0 (medianos) e 0 (negativos)

27	octroc								SIGLAS					MINERAIS							
an	1051185	alb	cal	clin	dol	gib	goe	hal	hem	illi	ilm	kao	mag	mic	mont	qzo	rec	sap	ver	smec-kao	illi-mont
0 1	01	3								2		1				1		4			
0 2	03	3	1							4		1				2		6			
03	06	3	2							2		1			5	1		5			
04	07								2	2		1				1					
05	08	6								2						1				1	
06	09					2			1	3		4	1	2	3	1					
07	10					1	1				х		2			2					
08	11A	3		2					2	2		4				1					
09	11B	3								2						1					
10	12	3		1					2	4		4			3	2					
11	13	3	2						2	2						1					
1 2	13V	3	1		1					2						1					
13	14	3							2	2						1		2			
14	14X	3	2							2		4			3	1					
15	15	3							2	2					3	1					
16	16A	6			1				2	2						1		2			
17	17	3								2					4 e 5	1				1	
18	18	3	1							2					5	1		1			
19	19	3	2						2	2					4	1				1	
2 0	21								2	4		1		1	6	2		2			
2 1	22							2		4		1		1	4	2					
22	23A	5							2	4						1	2				
23	24	5							2	1		1			1 e 3	1		4			
24	25	3								2					2 e 6	1		2			
2 5	27	2							2	4		1			5	1		1 e 2			
26	28	5							2	4		1			4 e 6	1		4		1	2
27	29V	3	1		1										5	1					
28	30	4								2				1	6	1		4			
29	31A	3 e 5								2					3	1			1		
30	32B		1		1											1	1	5			
3 1	33	1 e 3							2	4		1			3 e 4	1					1
3 2	34	3 e 5								2		1			6	1		4			

Anexo MC.6: Mineralogia das amostras da MC, resultado da DRX. Sigla mineral conforme Anexo G.2.

Am 01 - FSA - BII/CS

Am 09 - SOLO - BIII/N

Am 11A - FC - BII/N

Am 08 - FC - BII/N

Am 11B - FC - BII/N

Am 14X - FC 3 - BV/CS

Am 19 - FC 6 - BII/N

Am 24 - FC 5 - BII/N

Am 25 - FC 5 - BII/N

Am 33 - FC 2 - BIV/CS

Am 34 - FSA - BIII/CS

BANC	CADA	AM	MINERAIS RESULTANTES DA DRX
SO	LO	09	gib / hem / illi / kao / mag / mic / mont / qzo
INTRU	JSIVA	10	gib / goe / ilm / mag / qzo
		16A	alb / dol / hem / illi / qzo / sap
	VI	17	alb / illi / kaosmec / mont / qzo
		18	alb / cal /illi / mont / qzo / sap
		13	alb / cal / hem / illi / qzo
		13v	alb / cal / dol / illi / qzo
	V	14	alb / hem / illi / qzo / sap
CS	v	14x	alb / cal / illi / kao / mont / qzo
		15	alb / hem / illi / mont / qzo
		29v	alb / cal / dol / mont / qzo
		12	alb / clino / hem / illi / kao / mont / qzo
	117	30	alb / illi / mic / mont / qzo / sap
	IV	31A	alb / illi / mont / qzo / ver
		33	alb / hem / illi / kao / mont / montilli / qzo
		23A	alb / hem / illi / qzo / rec
		24	alb / hem / illi / kao / mont / qzo / sap
CN	П	25	alb / illi / mont / qzo / sap
		27	alb / hem / illi / kao / mont / qzo / sap
		28	alb / hem / illi / kao / kaosmec / mont / montilli / qzo / sap
		07	hem / illi / kao / qzo
		08	alb / illi / kaosmec / qzo
		11A	alb / clino / hem / illi / kao / qzo
Ν	П	11B	alb / illi / qzo
		19	alb / cal / hem / illi / kaosmec / mont / qzo
		21	hem / illi / kao / mic / mont / qzo / sap
		22	hal / illi / kao / mic / mont / qzo

Anexo MC.8: Tabela com a análise mineralógica por difratometria de raios X (DRX) em amostras da fração total (rocha britada e moída) da Formação Corumbataí. Divisão por bancada e região da mina.

CS: região centro-sul, N: região norte

AM: número da amostra

simbologia mineral: albita (alb) / calcita (cal) / clinocloro (clino) / dolomita (dol) / gibsita (gib) / goethiita (goe) / halloisita (hal) / hematita (hem) / illita (illi) / ilmenita (ilm) / caulinita (kao) / smectita-caulinita (kaosmec) / maghemita (mag) / microclínio (mic) / montmorillonita (mont) / illita-montmorillonita (montilli) / quartzo (qzo) /

rectorita (rec) / saponita (sap) / vermiculita (ver)

		DI	FRAT	ΟΜΕ	TRIA	DE	RAI	os X		
AMOSTR	RAGEM		MINERAIS	6 POR NÍV	'EL / CARA	CTERÍST	ICAS DO N	IATERIAL		PADRÃO
amostra	coleta	MEb	MEt	ME*	AD	ASDb	ASDt	AM	SOLO	UNICER
TAL	-	cao mont alb hem qz	cao mont alb hem qz cal (Mg)	cao mont alb hem qz cal (Mg)	cao alb hem qz illi (tri) mont alb	cao alb hem qz illi (tri) mont alb.	cao mont alb hem qz illi (tri)	qz illi hem mic (inter)	cao hem qz gib	qz hem illi cao mont alb
.OL	II	(qz alb (Ca) cal (Mg)		hem alb (Ca) cal (Mg) qz illi (tri)	qz hem alb (Ca) cal (Mg)	cal (Mg) alb (Ca) hem qz	qz illi hem mont cao cal (Mg) alb (Ca)		
ÇÃO BILA	I	cao qz illi (Na) mont illi (Na) alb		qz cao illi (Na) mont.	qz cao illi (Na) mont	qz illi (Na) mont cao	qz cao illi (tri) mont hem	qz illi (tri) cao mont hem	qz cao mont illi (tri) hem	qz illi cao mont
FRA	II		qz alb (Ca) Ili		qz illi (tri) alb (Ca) cal (Mg)	qz illi (tri) alb (Ca) cao	cao qz illi (tri)	qz illi (tri) cao mont hem		
CORPC PRO QUEIM/ (1110 1123	DS DE VA ADOS °C e °C)		hem qz alb		hem qz alb	qz hem mic (inter)	hem qz	hem qz alb (Ca)	qz hem	

Anexo MC.9a:	Tabela com	as respostas	minerais	obtidas	através	de (difração	de ra	aios X	em	amostras	da Mina
	do Cruzeiro	. Analises rea	lizadas p	or Chris	tofoletti ((199	99)					

Coleta I: Caracterização Química e Mineralógica;

Coleta II: Ensaios Físicos-Cerâmicos;

ME: materiaL de empréstimo (b: base, t: topo);

AD: argila dura;

ASD: argila semi-dura (b: base, t: topo);

AM: argila mole;

*: nível de calcarenito

Anexo	MC.9b:	Tabela	com	as	respostas	miner	ais ob	tidas	através de	microsco	pia eletrônic	a de
		varredu	ra	das	amostras	da	Mina	do	Cruzeiro.	Análises	realizadas	por
		Christof	olett	i (19	999)							

MICROSCOPIA ELETRÔNICA DE VARREDURA								
ME	ME*	AD	ASDb	ASDt	AM			
cau mont	cau mont feds cal	cau mont	cau mont	cau mont	cau mont			

ME: materiaL de empréstimo;

AD: argila dura;

ASD: argila semi-dura (b: base, t: topo); AM: argila mole;

*: nível de calcarenito

* Senna J. A. 2003 *

	am	aran	S I	MIS
	am	gran	VNSWIR	SWIR
1			01e.1	01e.1_sw
2			01e.2	01e.2_sw
3	01	е	01e.3	01e.3_sw
4			01e.4	01e.4_sw
5			01e.5	01e.5_sw
6			03a.1	03a.1_sw
7		а	03a.2	03a.2_sw
8			03a.3	03a.3_sw
9	03	d	03d.1	03d.1_sw
0		-	03d.2	03d.2_sw
1			03e.1	03e.1_sw
2		eq	03e.2	03e.2_sw
3			03e.3	03e.3_sw
4		а	06a.1	06a.1_sw
5			06a.2	06a.2_sw
16		ام	060.1	06d.1_SW
7	06	a	060.2	06d.2_SW
8			060.3	060.3_SW
19		~	060.1	
20		eq	060.2	060.2_SW
22			070.1	072.1 sw
22		а	07a.1	07a.1_5w
24	07	h	078.2	07a.2_5w
24	07	U	070	070_SW
26		С	070.1	07c.1_sw
27			070.2	070.2_3W
28		а	00a.1	00a.1_3w
9		b	08b 1	08b 1 sw
80	08		08b.2	08b.2_sw
81			08c.1	08c.1 sw
32		С	08c.2	08c.2 sw
33		_	09a.1	
34		а	09a.2	09a.2_sw
35	00	h	09b.1	09b.1_sw
36	09	b	09b.2	09b.2_sw
87		<u> </u>	09c.1	09c.1_sw
88		C	09c.2	09c.2_sw
89		2	10a.1	10a.1_sw
10		a	10a.2	10a.2_sw
11		b	10b.1	10b.1_sw
12	10	~	10b.2	10b.2_sw
13			10c.1	10c.1_sw
14		С	10c.2	10c.2_sw
15			10c.3	10c.3_sw
6			11Aa.1	11Aa.1_sw
17		а	11Aa.2	11Aa.2_sw
18	44 ^		11Aa.3	11Aa.3_sw
19	11A		11Aa.4	11Aa.4_sw
50		-1	11Adll.1	11Adll.1_SW
51		d	11Adll.2	11Adll.2_sw
52			11Adll.3	11Adl1.3_SW
53			11Ba.1	11Ba.1_SW
54		b	11Ba.2	11Ba.2_SW
5	140		11Ba.3	11Ba.3_SW
56	IВ		11Ba.4	11Ba.4_SW
»/		_	11Be.1	11Be.1_SW
50		e	1100.2	11Bo 2 om
פו			1108.3	1100.3_SW

	am	aran	SIMIS		
	um	gran	VNSWIR	SWIR	
60	12	•	12e.1	12e.1_sw	
61	12	0	12e.2	12e.2_sw	
62			13a.1	13a.1_sw	
63		а	13a.2	13a.2_sw	
64	13		13a.3	13a.3_sw	
65		h	13b.1	13b.1_sw	
66		D	13b.2	13b.2_sw	
67			13Vd.1	13Vd.1_sw	
68		d	13Vd.2	13Vd.2_sw	
69	13\/		13Vd.3	13Vd.3_sw	
70	101		13Ve.1	13Ve.1_sw	
71		е	13Ve.2	13Ve.2_sw	
72			13Ve.3	13Ve.3_sw	
73		а	14a.1	14a.1_sw	
74		ŭ	14a.2	14a.2_sw	
75	14	b	14b.1	14b.1_sw	
76	• •	~	14b.2	14b.2_sw	
77		C	14c.1	14c.1_sw	
78		Ŭ	14c.2	14c.2_sw	
79			14Xa.1	14Xa.1_sw	
80		а	14Xa.2	14Xa.2_sw	
81			14Xa.3	14Xa.3_sw	
82			14Xb.1	14Xb.1_sw	
83	14X	b c	14Xb.2	14Xb.2_sw	
84			14Xb.3	14Xb.3_sw	
85			14Xc.1	14Xc.1_sw	
86			14Xc.2	14Xc.2_sw	
87			14Xc.3	14Xc.3_sw	
88			15a.1	15a.1_sw	
89		а	15a.2	15a.2_sw	
90	15		15a.3	15a.3_sw	
91			15dl	15dl_sw	
92		d	15dll.1	15dll.1_sw	
93			15dII.2	15d11.2_sw	
94		а	16Aa.1	16Aa.1_sw	
95			16Aa.2	16Aa.2_sw	
96		с	16AC.1	16AC.1_SW	
97	16A		16AC.2	16Ac.2_sw	
98		d	16Ad.1	16Ad.1_sw	
99			16Ad.2	16Ad.2_sw	
100		е	16Ae.1	16Ae.1_SW	
101			16Ae.2	16Ae.2_sw	
102	16B	а	16Ba.1	16Ba.1_SW	
103			16Ba.2	16Ba.2_SW	
104		а	17a.1	17a.1_sw	
105			17a.2	17a.2_sw	
106	17	с	170.1	170.1_SW	
107			170.2	17d 1	
108			170.1	170.1_SW	
109		d	174.2	17d 2 ow	
110			170.3	17d 4 ow	
111			170.4	170.4_SW	
112			170.0	170.2 ow	
113		е	170.2	170.2_SW	
114			170.4	170.4 SW	
113			176.4	170.4_SW	

Anexo MC.10a: Tabela com a relação dos espectros capturados em cinco granulometrias, para a seleção das interessantes à classificação espectral.

* Senna J. A. 2003 *

	am	aran	SIMIS		
	am	yran	VNSWIR	SWIR	
116			18a.1	18a.1_sw	
117		а	18a.2	18a.2_sw	
118			18a.3	18a.3_sw	
119			18b.1	18b.1_sw	
120		h	18b.2	18b.2_sw	
121		^D	18b.3	18b.3_sw	
122			18b.4	18b.4_sw	
123			18c.1	18c.1_sw	
124		С	18c.2	18c.2_sw	
125	18		18c.3	18c.3_sw	
126			18d.1	18d.1_sw	
132			18d.2	18d.2_sw	
128		d	18d.3	18d.3_sw	
129			18d.4	18d.4_sw	
130			18d.5	18d.5_sw	
131			18e.1	18e.1_sw	
132		6	18e.2	18e.2_sw	
133		C	18e.3	18e.3_sw	
134			18e.4	18e.4_sw	
135			19a.1	19a.1_sw	
136		а	19a.2	19a.2_sw	
137			19a.3	19a.3_sw	
138			19a.4	19a.4_sw	
139			19a.5	19a.5_sw	
140			19a.6 (*)	19a.6_sw (*)	
141	10		19a.7 (*)	19a.7_sw (*)	
142	19		19a.8 ^(*)	19a.8_sw ^(*)	
143			19b.1	19b.1_sw	
144		b	19b.2	19b.2_sw	
145			19b.3	19b.3_sw	
146			19c.1	19c.1_sw	
147		С	19c.2	19c.2_sw	
148			19c.3	19c.3_sw	
149			21a.1	21a.1_sw	
150		2	21a.2	21a.2_sw	
151		a	21a.3	21a.3_sw	
152			21a.4	21a.4_sw	
153	21		21b.1	21b.1_sw	
154	21	b	21b.2	21b.2_sw	
155			21b.3	21b.3_sw	
156			21c.1	21c.1_sw	
157		С	21c.2	21c.2_sw	
158			21c.3	21c.3_sw	

Anexo MC.10b: Tabela com a relação dos espectros capturados em cinco granulometrias, para a
seleção das interessantes à classificação espectral. Continuação.

	om	aron	S I	MIS		
	am	yran	VNSWIR	SWIR		
159			22a.1	22a.1_sw		
160		•	22a.2	22a.2_sw		
161		a	22a.3	22a.3_sw		
162			22a.4	22a.4_sw		
163	22		22b.1	22b.1_sw		
164	22	b	22b.2	22b.2_sw		
165			22b.3	22b.3_sw		
166			22c.1	22c.1_sw		
167		С	22c.2	22c.2_sw		
168			22c.3	22c.3_sw		
169		а	23Aa.1	23Aa.1_sw		
170		a	23Aa.2	23Aa.2_sw		
171		b	23Ab	23Ab_sw		
172			23Ac.1	23Ac.1_sw		
173		6	23Ac.2	23Ac.2_sw		
174	23A	C	23Ac.3	23Ac.3_sw		
175			23Ac.4	23Ac.4_sw		
176		e	23Ae.1	23Ae.1_sw		
177			23Ae.2	23Ae.2_sw		
178			23Ae.3	23Ae.3_sw		
179			23Ae.4	23Ae.4_sw		
180	23B	h	23Bb.1	23Bb.1_sw		
181	200	D	23Bb.2	23Bb.2_sw		
182			24a.1	24a.1_sw		
183		а	24a.2	24a.2_sw		
184			24a.3	24a.3_sw		
185	24	b	24b	24b_sw		
186			24c.1	24c.1_sw		
187		С	24c.2	24c.2_sw		
188			24c.3	24c.3_sw		
189		а	25a	25a_sw		
190		b	25b	25b_sw		
191	25		25c.1	25c.1_sw		
192		С	25c.2	25c.2_sw		
193			25c.3	25c.3_sw		
194			27a.1	27a.1_sw		
195		а	27a.2	27a.2_sw		
196			27a.3	27a.3_sw		
197	27	h	27b.1	27b.1_sw		
198		U	27b.2	27b.2_sw		
199		6	27c.1	27c.1_sw		
200		U U	27c.2	27c.2_sw		

* Senna J. A. 2003 *

	am	aran	S I	MIS		
	am	gran	VNSWIR	SWIR		
201		2	28a.1	28a.1_sw		
202		a	28a.2	28a.2_sw		
203		h	28b.1	28b.1_sw		
204	28	d	28b.2	28b.2_sw		
205	20		28c.1	28c.1_sw		
206		~	28c.2	28c.2_sw		
207		C	28c.3	28c.3_sw		
208			28c.4	28c.4_sw		
209		0	29a.1	29a.1_sw		
210		a	29a.2	29a.2_sw		
211	20	b	29b	29b_sw		
212	29		29c.1	29c.1_sw		
213		С	29c.2	29c.2_sw		
214			29c.3	29c.3_sw		
215		а	29Va.1	29Va.1_sw		
216			29Va.2	29Va.2_sw		
217			29Va.3	29Va.3_sw		
218			29Vd.1	29Vd.1_sw		
219		a	29Vd.2	29Vd.2_sw		
220	29V	u	29Vd.3	29Vd.3_sw		
221			29Vd.4	29Vd.4_sw		
222			29Ve.1	29Ve.1_sw		
223		0	29Ve.2	29Ve.2_sw		
224		eq	29Ve.3	29Ve.3_sw		
225			29Ve.4	29Ve.4_sw		
226			30a.1	30a.1_sw		
227		а	30a.2	30a.2_sw		
228			30a.3	30a.3_sw		
229			30b.1	30b.1_sw		
230	30	b	30b.2	30b.2_sw		
231			30b.3	30b.3_sw		
232			30c.1	30c.1_sw		
233		С	30c.2	30c.2_sw		
234			30c.3	30c.3 sw		

Anexo MC.10	: Tabela	com a	a relação	dos e	espectros	capturados	em	cinco	granulometrias,	para a	seleção
	das inte	eressa	intes à cla	ssifica	ação espe	ectral. Conti	nuaç	ção.			

	am	aran	SIMIS		
	am	gran	VNSWIR	SWIR	
235		0	31Aa.1	31Aa.1_sw	
236		a	31Aa.2	31Aa.2_sw	
237	31 ^	b	31Ab	31Ab_sw	
238	517		31Ac.1	31Ac.1_sw	
239		С	31Ac.2	31Ac.2_sw	
240			31Ac.3	31Ac.3_sw	
241			32Bd.1	32Bd.1_sw	
242		Ч	32Bd.2	32Bd.2_sw	
243		u	32Bd.3	32Bd.3_sw	
244			32Bd.4	32Bd.4_sw	
245	32B		32Be.1	32Be.1_sw	
246	520	e _q	32Be.2	32Be.2_sw	
247			32Be.3	32Be.3_sw	
248			32Be.4	32Be.4_sw	
249			32Be.5	32Be.5_sw	
250			32Be.6	32Be.6_sw	
251			33a.1	33a.1_sw	
252		а	33a.2	33a.2_sw	
253			33a.3	33a.2_sw	
254	33	d	33d	33d_sw	
255			33e.1	33e.1_sw	
256		eq	33e.2	33e.2_sw	
257			33e.3	33e.3_sw	
258			34a.1	34a.1_sw	
259		а	34a.2	34a.2_sw	
260	34		34a.3	34a.3_sw	
261		Ь	34dI	34dl_sw	
262		u	34dII	34dII_sw	

SIMIS	λ (μm)
VNSWIR	0.35-2.50
SWIR	1.30-2.50

amostra		tipo	granulometria média		
а		amostra de mão			
b		opminuido por mortelo	fração grossa	< 10 mm	
С		cominuido por maneio	fração fina	< 2 mm	
7	dl	britada	< 10m	5 - 10 mm	
u	dll	DIIIauu	< 1011	< 5 mm	
е		moído	< 0,062 mm		
eq		moído e quartiado			

Figura III.18c: Coleção espectral (curvas médias) das amostras da Formação Irati. (SWIR)

Figura III.20c: Coleção espectral (curvas médias) das amostras do grupo FC1. (VNSWIR)

λ (μm)

Figura III.24c: Coleção espectral (curvas médias) das amostras do grupo FC3. (VNSWIR)

Figura III.26c: Coleção espectral (curvas médias) das amostras do grupo FC4. (SWIR)

Figura III.28c: Coleção espectral (curvas médias) das amostras do grupo FC5. (VNSWIR)

Figura III.29c: Coleção espectral (curvas médias) das amostras do grupo FC6. (VNSWIR)

λ (μ**m**)

Figura III.30c: Coleção espectral (curvas médias) das amostras do grupo FC7. (VNSWIR)

Figura III.34c: Espectros (curvas médias) da bauxita (10) e do latossolo (09), alterações da FSG. (VNSWIR)

MINA MATEUS LEME – SÃO SIMÃO

Dados de leitura espectral e características das amostras - Anexo MML.1
* Senna J. A. 2003 *

Anexo MML.1a: Tabela com amostragem e descrição das diferentes leituras

* Senna J. A. 2003 *

Anexo MML.1b: Tabela com amostragem e descrição das diferentes leituras.