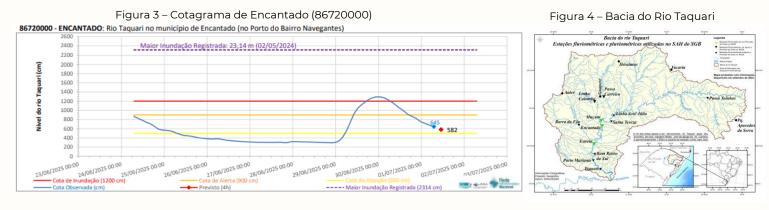
APLICAÇÃO DE REDE NEURAL LINEAR PARA MODELOS AUTORREGRESSIVOS EM ESTAÇÕES FLUVIOMÉTRICAS DA BACIA DO RIO TAQUARI NO RIO GRANDE DO SUL

- · Desastres cada vez mais frequentes.
- Grande importância dos modelos de previsão em eventos extremos.

Figuras 1 a 2 – Impactos da cheia de maio de 2024 no RS



- Entendimento da variação dos níveis dos rios.
- Geração e emissão de boletins para prevenção de danos à vida e ao patrimônio (SGB, c2024, Santos et al., 2019).
- Uso de modelos autorregressivos para previsão de cota (Lucas *et al.*, 2009; Moreira, 2016; Lappicy *et al.*, 2021) com mecanismo de *machine learning* (Antoniassi, 2022; Godinho, 2021).

Aplicação de Rede Neural Linear para obtenção de equação de regressão linear múltipla autorregressiva para previsão de nível em estações da Rede Hidrometeorológica Nacional (RHN) que também fazem parte do Sistema de Alerta Hidrológico (SAH) da Bacia do Rio Taquari.

Figura 5 – Cotagrama da estação Muçum (86510000) Fonte das figura: https://www.sgb.gov.br/sace

Área de estudo

 Compreende as estações fluviométricas da RHN que também fazem parte do SAH Taquari (Figura 6).

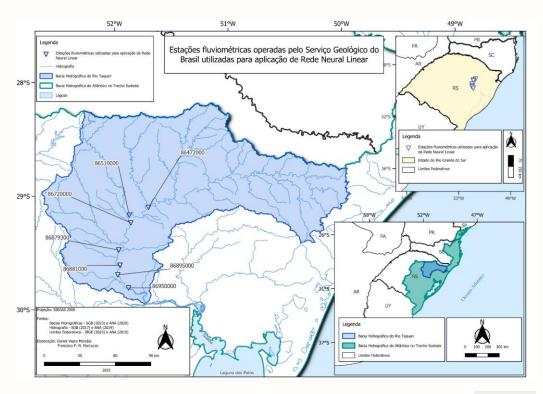


Figura 6 - Mapa de localização das estações utilizadas no estudo

Base de dados

• Compreende as estações fluviométricas da RHN que também fazem parte do SAH Taquari (Tabela 1).

Tabela 1- Estações fluviométricas utilizadas no estudo. Fonte: ANA (2024) e SGB (2025)

Bacia Hidrográfica (BH)	Estação fluviométrica	Código	Município	Latitude	Longitude	Período utilizado	Total de Anos
RIO TAQUARI	Linha José Júlio	86472000	Santa Tereza	-29.0978	-51.6997	Set/2015 – Mai/2024	5,87
RIO TAQUARI	Muçum	86510000	Muçum	-29.1672	-51.8686	Abr/2015 - Jul/2024	8,76
RIO TAQUARI	Encantado	86720000	Encantado	-29.2344	-51.8550	Jul/2015 – Jul/2024	8,26
RIO TAQUARI	Estrela	86879300	Estrela	-29.4733	-51.9622	Jul/2015 – Jul/2024	7,92
RIO TAQUARI	Bom Retiro do Sul	86881000	Bom Retiro do Sul	-29.6081	-51.9511	Nov/2018 - Jul/2024	3,77
RIO TAQUARI	Porto Mariante	86895000	Venâncio Aires	-29.6922	-51.9700	Nov/2014 - Out/2024	5,56
RIO TAQUARI	Taquari	86950000	Taquari	-29.8070	-51.8758	Jul/2015 – Jul/2024	6,32

Rede Neural Linear

- Modelagem em *Python* no Google Colab.
- Utilização do TensorFlow com API Keras para construção do modelo.
- Outras bibliotecas foram utilizadas para manipulação dos dados (pandas e numpy).
- Objetivou-se obter uma equação com aplicação direta com os valores de cota.

Parâmetros						
Camada densa	1					
Neurônios na camada	1					
Função de ativação	Nenhuma					
Regularização	L2 e Early Stopping					
Otimização	Adam					

Quadro 1 – Construção do Modelo de Rede Neural Linear

```
#@title REDES NEURAIS
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import EarlyStopping
```

Figura 7 – Bibliotecas utilizadas

Cenários e dados utilizados

- Utilizou-se todos os dados para calibração, para que se tivesse o melhor resultado possível (Shen et al. 2022, Arsenault et al., 2018).
- Foram fornecidos somente os dados de eventos de cheia, com base nos cenários da Figura 8.
- Horizontes de previsão de 2h, 3h e 4h (maior acurácia, Rio Taquari possui variação rápida).

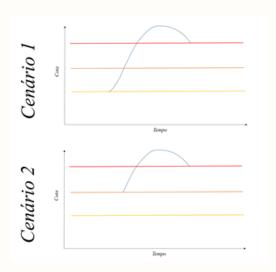


Figura 8 - Cenários de cheia analisados com base nas cotas de referência

Métricas e avaliações gráficas

- Para análise dos resultados de um modelo hidrológico, é necessário avaliar as métricas de desempenho (Antoniassi, 2022; Silva et al., 2023, Godinho, 2021).
- Conforme as tabelas 2, 3 e 4, verificou-se a melhoria dos parâmetros das previsões que se iniciam na cota de atenção, em relação às de alerta são: 86,1% dos parâmetros em 4h, 36,1% em 3h, e 63,9% em 2h. Isto é, usar dados de cheia que se iniciam na cota de atenção desempenham melhor que os que se iniciam na cota de alerta.

Métricas e avaliações gráficas

- Analiticamente, ao comparar os resultados de todas as equações de 4h para 3h (tabelas 2, 3 e 4), verifica-se que houve melhora em 98,7% dos parâmetros, ou seja, as métricas diminuíram, com exceção do R², que, pelo seu comportamento inverso, aumentou.
- De 3h para 2h, o valor de melhora compreendeu **96,2% dos parâmetros**. Isto é, verifica-se que **quanto menor o horizonte de previsão**, **melhores são os resultados**, mais assertivo é a estimativa, conforme também identificaram Magro (2021), Pedrollo (1999), Gorodetskaya et al. (2018), Bravo et al. (2008).
- Por meio das métricas (tabelas 2, 3 e 4), verifica-se que, de forma geral, conforme se move de **montante para jusante**, **os modelos tendem a ficar mais acurados**, os erros diminuem e o R² aumenta.

Tabela 2 – Métricas de desempenho para o horizonte de 4h.

Código	Nome da estação	Descrição do teste	Erro Médio	Erro Absoluto Médio	Erro Absoluto Máximo	Raiz do Erro Quadrático Médio	Desvio Padrão dos Erros	R²
86472000	LINHA JOSÉ JÚLIO		30.254	67.106	802.449	113.148	109.094	0.950
86510000	MUÇUM	Início: Cota	37.926	72.121	528.321	117.777	111.675	0.958
86720000	ENCANTADO	de Atenção	28.557	53.745	427.687	83.881	78.925	0.971
86879300	ESTRELA	Fim: Cota	14.048	31.344	248.514	48.379	46.316	0.987
86881000	BOM RETIRO DO SUL	de	0.467	26.413	331.114	46.027	46.084	0.983
86895000	PORTO MARIANTE	Inundação	1.847	24.808	217.729	38.567	38.571	0.984
86950000	TAQUARI		1.025	11.304	89.697	17.177	17.160	0.995
86472000	LINHA JOSÉ JÚLIO		-	-	-	-	-	-
86510000	MUÇUM	Início: Cota	38.514	72.637	542.037	118.991	112.759	0.958
86720000	ENCANTADO	de Alerta	19.890	53.938	423.414	82.943	80.579	0.971
86879300	ESTRELA	Fim: Cota	25.680	34.851	259.637	54.525	48.122	0.986
86881000	BOM RETIRO DO SUL	de	10.270	27.640	346.435	49.596	48.583	0.984
86895000	PORTO MARIANTE	Inundação	9.302	25.806	225.378	40.502	39.468	0.984
86950000	TAQUARI		5.025	11.833	101.614	18.426	17.742	0.994

Tabela 3 – Métricas de desempenho para o horizonte de 3h.

Código	Nome da estação	Descrição do teste	Erro Médio	Erro Absoluto Médio	Erro Absoluto Máximo	Raiz do Erro Quadrático Médio	Desvio Padrão dos Erros	R²
86472000	LINHA JOSÉ JÚLIO		29.533	52.757	623.304	88.574	83.556	0.970
86510000	MUÇUM		15.729	57.427	367.999	89.191	87.928	0.972
86720000	ENCANTADO	Início: Cota	18.797	36.231	326.098	58.208	55.127	0.985
86879300	ESTRELA	de Atenção	7.463	20.719	163.400	32.404	31.547	0.994
86881000	BOM RETIRO DO SUL	Fim: Cota de	-0.064	18.675	221.368	31.558	31.599	0.992
86859000	PORTO MARIANTE	Inundação	-0.979	19.303	141.856	29.003	29.023	0.991
86950000	TAQUARI		2.056	7.615	67.044	11.856	11.686	0.997
86472000	LINHA JOSÉ JÚLIO		-	-	-	-	-	-
86510000	MUÇUM	Início: Cota	28.150	47.003	386.162	78.056	72.915	0.981
86720000	ENCANTADO	de Alerta	15.486	36.149	313.692	58.126	56.064	0.985
86879300	ESTRELA	Fim: Cota	19.440	24.479	173.089	38.407	33.140	0.993
86881000	BOM RETIRO DO SUL	de	4.755	18.151	238.106	31.137	30.812	0.993
86859000	PORTO MARIANTE	Inundação	2.206	18.338	141.101	28.333	28.283	0.992
86950000	TAQUARI		1.320	7.409	63.352	11.459	11.392	0.998

Tabela 4 – Métricas de desempenho para o horizonte de 2h.

Código	Nome da estação	Descrição do teste	Erro Médio	Erro Absoluto Médio	Erro Absoluto Máximo	Raiz do Erro Quadrático Médio	Desvio Padrão dos Erros	R²
86472000	LINHA JOSÉ JÚLIO		16.805	30.682	369.279	50.082	47.206	0.990
86510000	MUÇUM	Início: Cota	11.909	23.762	248.211	40.421	38.667	0.996
86720000	ENCANTADO	de Atenção	9.127	20.242	205.076	34.118	32.897	0.995
86879300	ESTRELA	Fim: Cota	0.761	12.195	92.965	18.090	18.083	0.998
86881000	BOM RETIRO DO SUL	de Inundação	0.438	10.850	124.736	18.270	18.335	0.997
86859000	PORTO MARIANTE		0.238	10.907	84.834	16.789	17.290	0.997
86950000	TAQUARI		0.022	4.666	39.652	7.163	7.168	0.999
86472000	LINHA JOSÉ JÚLIO		-	-	-	-	-	-
86510000	MUÇUM	Início: Cota	17.708	26.161	260.091	44.097	40.428	0.996
86720000	ENCANTADO	de Alerta	4.785	21.525	199.054	35.130	34.827	0.994
86879300	ESTRELA	Fim: Cota de Inundação	4.903	11.310	89.315	18.222	17.558	0.998
86881000	BOM RETIRO DO SUL		0.587	10.000	129.133	17.569	17.581	0.997
86859000	PORTO MARIANTE		2.449	10.819	112.561	17.058	16.902	0.997
86950000	TAQUARI		0.812	4.994	49.969	7.832	7.796	0.999

Métricas e avaliações gráficas

- Graficamente (Figuras 9 e 10), com o exemplo da estação de Taquari (86950000), percebe-se que, tanto no cenário 1 quanto no cenário 2, os resultados foram muito bons, identificando grande proximidade entre os valores observados e preditos.
- Quanto mais se direciona para jusante (Moreira, 2016), ou quanto mais lento tende ser o rio, maior assertividade do modelo autorregressivo. Assim, a estação de Taquari (86950000) é a que tem o modelo mais preciso, dentre as estações analisadas.

Figura 9 - Comparação entre valores observados e preditos pelo modelo na estação Taquari (86950000) - Cenário 1

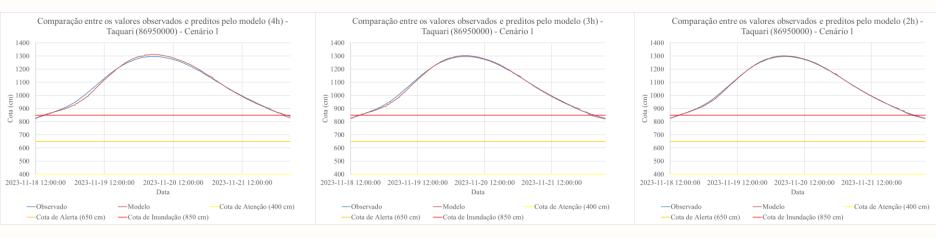
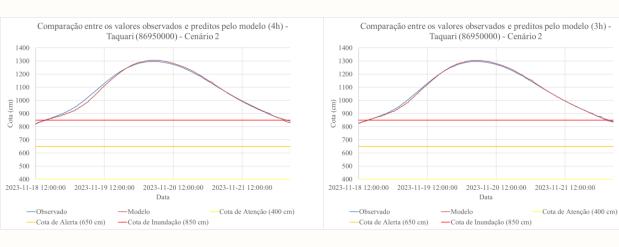
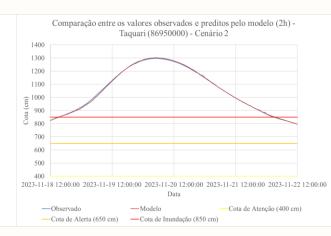




Figura 10 - Comparação entre valores observados e preditos pelo modelo na estação Taquari (86950000) - Cenário 2

Variáveis das equações

 As componentes das equações que tiveram maior peso, estão nas diferenças. Ao analisar as três variáveis que mais tinham influência em cada equação, de cada cenário, chegou-se aos valores da Tabela 5.

 A diferença C-C_{3h} (diferença da cota atual com a de 3h atrás) não significa que ela foi a que teve maior peso nas equações, mas sim que, ao analisar as três componentes que tiveram maior peso, ela ficou entre essas.

Tabela 5 – Distribuição das variáveis de maior influência nas equações

Variável da equação	Frequência
Cenário: Início: Co	ota de Atenção
$C-C_{3h}$	13
$C-C_{2h}$	12
$C-C_{4h}$	9
Cenário: Início: Co	ota de Atenção
$C-C_{3h}$	12
$C-C_{2h}$	10
C	9

Limitações

- A quantidade de dados e eventos apresenta-se como um fator limitante, visto que, quanto maior a série histórica disponível para treinamento, melhor é o aprendizado.
- · Além disso, é necessário que dados de entrada estejam consistidos, para não causar vieses.
- Um outro limitante que se tem é o modelo em si, que foi adotado como uma rede neural simples, de apenas uma camada, para que fosse possível obter uma equação de regressão, podendo, assim não conseguir capturar padrões mais complexos.

Conclusão

- Modelos que possuem dados de cheias a partir da cota de atenção tendem a ter melhores resultados do que aqueles a partir da cota de alerta.
- Quanto menor o horizonte de previsão, melhores os resultados fornecidos pelos modelos.
- □ Conforme se move de montante para jusante, melhores tendem a ser os resultados dos modelos.
- A metodologia apresentada se mostra eficaz na gestão de desastres hidrológicos, fornecendo modelos de aplicabilidade prática e direta no uso dos dados hidrológicos.

AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO – ANA. (2024). Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH) – Hidroweb. Disponível em: https://www.snirh.gov.br/hidroweb.

ANTONIASSI, R. A. dos S. (2022). Predição de nível de rios da Região Hidrográfica do Rio Paraguai utilizando algoritmos de Aprendizado de Máquina. Dissertação de Mestrado, 85p. Universidade Federal de Mato Grosso do Sul. Disponível em: https://repositorio.ufms.br/bitstream/123456789/4642/1/mestrado_defesa_rogerio_antoniassi.pdf. Acesso em 22 jun. 2025.

ARSENAULT, R.; BRISSETTE, F.; MARTEL, J. L. (2018). "The hazards of split-sample validation in hydrological model calibration". Journal of Hydrology, v. 566, pp. 346-362. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0022169418307145?via%3Dihub. Acesso em: 22 jun. 2025.

BRAVO, J. M.; PEDROLLO, O. C.; COLLISCHONN, W.; PAZ, A. R. da; UVO, C. B. (2008). "Previsões de Curto Prazo de Vazão Afluente ao Reservatório de Furnas Utilizando Redes Neurais Artificiais". Revista Brasileira de Recursos Hídricos, v. 13, n. 2, pp.77-88. Disponível em: Previsões de curto prazo de vazão afluente ao reservatório de Furnas utilizando redes neurais artificiais. Acesso em: 22 jun. 2025.

GODINHO, J. da S. (2021). Previsão Hidrológica na Bacia Hidrográfica do Rio Macaé com Redes Neurais. Trabalho de Conclusão de Curso, 61p. Universidade Federal do Rio de Janeiro. Disponível: https://engenharias.macae.ufrj.br/images/testetcc/2021/TCC_Julia_Godinho.pdf.

GORODETSKAYA, Y.; DA FONSECA, L. G.; RIBEIRO, C. B. de M. (2018). "Previsão de vazão de curto prazo utilizando Redes Neurais Artificiais. Estudo de Caso: Rio Paraíba do Sul" in Anais III Simpósio de Recursos Hídricos do Rio Paraíba do Sul, Juiz de Fora, Ago. 2018, 9p. Disponível em: https://anais.abrhidro.org.br/job.php?Job=3837. Acesso em 22 jun. 2025.

LAPPICY, T.; LIMA, C. H. R.; FIORUCCI, J. A. (2021). "Uso de modelos estocásticos para previsões de vazões mensais dos reservatórios ligados ao SIN utilizando o conceito de energia equivalente" in Anais do XXIV Simpósio Brasileiro de Recursos Hídricos, Belo Horizonte, Nov. 2021, 10p. Disponível em: https://anais.abrhidro.org.br/job.php?Job=13140. Acesso em 22 jun. 2025.

LUCAS, E. W. M.; DE SOUSA, F. de A. S.; SILVA, F. D. dos S.; LUCIO, P. S. (2009). "Modelagem Hidrológica Determinística e Estocástica aplicada à Gestão Hidrográfica do Xingu – Pará". Revista Brasileira de Meteorologia, v. 24, n. 3, pp. 308-322. Disponível em: https://www.scielo.br/j/rbmet/a/YSv5hcy3WDZKJPXtx9hzKYy/. Acesso em: 22 jun. 2025.

MAGRO, R. B. (2021). Aplicação de Redes Neurais Artificiais para Previsão de Inundação em uma área urbana. Dissertação de Mestrado, 134p. Universidade do Estado de Santa Catarina. Disponível em:

https://www.udesc.br/arquivos/cav/id_cpmenu/2846/1__Dissertacao_RenataBMagro_capa_16650821 216082_2846.pdf. Acesso em 22 jun. 2025.

MOREIRA, G. C. (2016). Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na Bacia do Rio Uruguai. Dissertação de Mestrado, 153p. Instituo de Pesquisas Hidráulicas. Universidade Federal do Rio Grande do Sul. Disponível em: https://lume.ufrgs.br/bitstream/handle/10183/147081/000998810.pdf;jsessionid=6C04A37BD9BDC7D7E09F86D934EF94BF?sequence=1. Acesso em: 22 jun. 2025.

PEDROLLO, O. C. (1999). "Previsão Hidrológica de curto prazo com chuvas efetivas determinadas pela função sigmóide". Revista Brasileira de Recursos Hídricos, v. 4, n. 2, pp. 19-30. Disponível em: https://lume.ufrgs.br/bitstream/handle/10183/232492/000234660.pdf?sequence=1. Acesso em: 22 jun. 2025.

SANTOS, A. C. N; TOMASELLA, J.; CARAM, R. C. (2019). "Simulação Hidrológica na Bacia do Rio Sapucaí com o Modelo Hidrológico Distribuído utilizando precipitação observada e dados do Produto Merge" in Anais XXIII Simpósio Brasileiro de Recursos Hídricos, Foz do Iguaçu, Nov. 2019, p. 10. Disponível em: https://anais.abrhidro.org.br/job.php?Job=5897. Acesso em: 22 jun. 2025.

SHEN, H.; TOLSON, B. A.; MAI, J. (2022). "Time to Update the Split-Sample Approach in Hydrological Model Calibration". Water Resources Research. 26p. Disponível em: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021WR031523. Acesso em 22 jun. 2025.

SILVA, V. A.; SOUZA, R. de F.; OLIVEIRA, M. P.; SANTOS, F. L. dos. (2023). "Aplicação de machine learning e deep learning para modelagem de uma bacia hidrográfica". Revista Paranoá, n 34, 21p. Disponível em: https://www.cbhmedioparaiba.org.br/conteudo/aplicacao-learning-deep-bacia.pdf. Acesso em 22 jun. 2025.

SERVIÇO GEOLÓGICO DO BRASIL – SGB. (c2024). Hidrologia. SGB – CPRM. Ministério de Minas e Energia Disponível em: https://www.sgb.gov.br/hidrologia.

SERVIÇO GEOLÓGICO DO BRASIL - SGB. (2025). SACE: SISTEMA DE ALERTA DE EVENTOS CRÍTICOS. Disponível em: https://www.sgb.gov.br/sace/.

https://drive.google.com/drive/u/2/folders/1qJWlyefG3hK0bDc_-vHhsvHmJDBTh4RN

