

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE PÓS-GRADUAÇÃO EM GEOLOGIA ÁREA DE PETROLOGIA APLICADA À PESQUISA MINERAL

TESE DE DOUTORADO

MAGMATISMO TRONDHJEMÍTICO PALEOPROTEROZÓICO NO NÚCLEO SERRINHA (LESTE DA BAHIA): BATÓLITO NORDESTINA

BASÍLIO ELESBÃO DA CRUZ FILHO

SALVADOR-BAHIA ABRIL-2004

Magmatismo Trondhjemítico Paleoproterozóico no Núcleo Serrinha (Leste da Bahia): Batólito Nordestina

por

Basílio Elesbão da Cruz Filho Geólogo (Universidade Federal da Bahia), 1998

TESE DE DOUTORADO

Submetida em satisfação parcial dos requisitos ao grau de

DOUTOR EM CIÊNCIAS - GEOLOGIA -

à

Câmara de Ensino de Pesquisa e Pós-Graduação

da

Universidade Federal da Bahia

Orientador: Dr. Herbet Conceição Co-orientadora: Dra. Maria de Lourdes da Silva Rosa

COMISSÃO EXAMINADORA:

(Dr. Herbet Conceição - UFBA)

(Dra. Débora C. Rios – UFBA)

(Dr. Hervé Martin – Univ. B. Pascal, França)

(Dr. Lauro V. S. Nardi - UFRGS)

(Dr. Roberto Dall'Agnol - UFPA)

Data de aprovação: 07/04/2004 Grau Conferido em: 28 /10 /2004

R 586 Cruz Filho, Basílio Elesbão da

Magmatismo Trondhjemítico Paleoproterozóico no Núcleo Serrinha (Leste da Bahia): Batólito Nordestina / Basílio Elesbão Da Cruz Filho. – Salvador: B. E. Cruz Filho, 2004

145f.: il.

Tese (Doutorado) - Curso de Pós-Graduação em Geologia - Instituto de Geociências da Universidade Federal da Bahia. 2004

- 1. Geoquímica 2. Geocronologia 3. Petrogênese 4. Rochas Ígneas
- I. Título II. Tese

CDU 552.3 (043.2)

"A vida nos foi dada por Deus para que a empreguemos em benefício da humanidade".

Giuseppe Mazzini

A Deus, Senhor da vida e Criador de todas as coisas Aos meus pais, Basílio e Joselita, meus maiores incentivadores A Lícia, minha esposa, e sua família pela paciência e apoio Aos meus irmãos Bernadete e Joelson (e família) pelo encorajamento

AGRADECIMENTOS

Ao final desta jornada não poderia deixar de externar minha gratidão às instituições, profissionais, amigos, colegas e familiares que proporcionaram meu crescimento profissional e humano.

Ao Prof. Dr. Herbet Conceição, que além de orientador, mostrou-se um bom companheiro de trabalho ao longo de dez anos de pesquisa (iniciação científica, mestrado e doutorado) e principalmente amigo.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão da bolsa de doutorado e pelos recursos da taxa de bancada. A Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES) por disponibilizar o portal periódico.

À Companhia Baiana de Pesquisa Mineral (CBPM), por ter financiado diferentes etapas desta pesquisa externo meu agradecimento. Ao Srs. Joel, "Tim Maia" e Aloísio motoristas desta companhia, pelo companheirismo e pela ajuda na coleta das amostras durante os trabalhos de campo.

Aos professores doutores Hervé Martin (Université Blaise Pascal, França), Jorge Plá Cid (CNPq), Moacyr Moura Marinho (CBPM/UFBA), Maria de Lourdes da Silva Rosa (UFBA), que formaram a banca do exame de qualificação prévio do presente trabalho. Em especial a professora Maria de Lourdes da Silva Rosa (UFBA) pelo incentivo durante toda a minha vida acadêmica e pelo grande apoio durante os trabalhos de obtenção de dados isotópicos que enriqueceram em muito esta pesquisa.

Ao Dr. Moacir J. B. Macambira do Laboratório de Geologia Isotópica da Universidade Federal do Pará (Pará-Iso) pela acolhida em seu laboratório e pelas facilidades obtidas para a realização de dados isotópicos de Pb-Pb em zircão e Rb-Sr e Sm-Nd em rocha total.

Ao Dr. Sílvio Roberto Farias Vlach e Marcus Mansueto pela disponibilidade do Laboratório de Microssonda Eletrônica do Instituto de Geociências da USP para que os trabalhos de química mineral fossem realizados. Ao antropólogo Ugo Maia e à geóloga Lidiane Teixeira pela amizade e acolhida em São Paulo durante os trabalhos de obtenção dos dados de química mineral.

Ao Dr. Léo Rodrigues Teixeira pelos ensinamentos iniciais sobre modelamento geoquímico e pelo acesso ao software Gênesis. Ao Dr. Hervé Martin pelas valiosas sugestões e discussões sobre a evolução geoquímica do Batólito Nordestina.

Aos professores do Curso Técnico de Geologia da Escola Técnica Federal da Bahia (atual CEFET), Graduação e Pós-Graduação na UFBA que em muito acrescentaram ao meu conhecimento através dos ensinamentos de suas disciplinas.

Aos colegas do Curso de Pós-Graduação em Geologia da UFBA: Éron, Ivana, Ioná, Iracema, Miguel e Violeta pelo estímulo.

Aos funcionários do Departamento de Geoquímica, em especial, ao Sr. Valfredo pela confecção de lâminas delgadas e à química Mônica Cunha pela dedicação na realização das análises químicas de rocha. Aos demais funcionários do Instituto de Geociências, e em especial aos do Curso de Pós-Graduação em Geologia (Gilsélio, Maria e Nilton) e aos da Biblioteca (Aládia, Helenita, Gil, Joseane e Josefa). Ao Joaquim B. Lago pelas valiosas dicas de informática.

A Dra. Débora Correia Rios pela amizade, apoio e discussões acerca do magmatismo do Núcleo Serrinha. A Dra. Prof.ª Ângela Menezes pelo auxílio no estudo petrográfico das rochas máficas.

Aos companheiros do Grupo de Petrologia Aplicada pela colaboração durante o desenvolvimento deste trabalho: Herbet, Maria de Lourdes, Débora, Márcio, Olga, Adriana, Emerson, Geraldo, Lívia, Graciela, Edson, Caio Graco, Amalvina, Mônica, Ricardo, Ritinha e Vilton.

Aos meus pais, Basílio e Joselita, e à minha irmã Bernadete pelo amor e confiança. Ao meu irmão Joelson pela amizade e suporte em informática. Aos meus sobrinhos Jáder, Débora e Davi pelos momentos agradáveis. Ao meu sogro, Cosme, à minha sogra, Lourdes, às minhas cunhadas Darjane, Ozana e Analéia, e ao meu cunhado Denilson pelo constante encorajamento em todos os momentos. Em especial à minha amada esposa e amiga Lícia, pelas alegrias e dificuldades compartilhadas.

RESUMO

O Batólito Nordestina localiza-se na parte centro-sul do Núcleo Serrinha, leste do Estado da Bahia, e cobre uma área de 720 km². É uma intrusão situada na interface tectônica entre os terrenos gnaíssico-migmatíticos arqueanos e as unidades vulcanossedimentares paleoproterozóicas do Greenstone Belt Rio Itapicuru. A forma alongada NS deste batólito, associada à presença de foliação interna concêntrica, que se intensifica em direção a sua periferia, e à idade de cristalização de 2,15 Ga, são interpretadas como produzida por colocação sintectônica a profundidades em torno de 13-15 km (4-5 kbar) durante o evento compressional transamazônico e concomitante ao fechamento da bacia Rio Itapicuru (2,2-2,1 Ga). Suas composições modais e químicas são aquelas de tonalitos, trondhjemitos e granodioritos (TTG). Com base em dados de campo duas fácies distintas foram reconhecidas e mapeadas: (i) uma com textura fanerítica, e outra (ii), com textura porfirítica, limitada à sua porção central. Diques trondhjemítico e granítico cálcio-alcalino ocorrem de forma subordinada no batólito. À parte sul do batólito é caracterizada pela presença de abundantes meladioritos toleiíticos que ocorrem como enclaves e diques sinplutônicos. As rochas trondhjemíticas estudadas apresentam estreita variação de SiO₂ (68-72%), baixos K₂O, Y, Nb e Rb/Sr, altos Al₂O₃ (15-17%) e Sr, espectros de ETR fracionados, fracas e variáveis anomalias em Eu, e os conteúdos de La e Yb são similares aos de trondhjemitos arqueanos. O Batólito Nordestina tem um zoneamento químico e mineralógico marcado por zonas que se tornam progressivamente mais félsicas em direção ao centro. Fe₂O₃t e MgO diminuem, enquanto SiO₂, K₂O e Rb aumentam de sua margem para o centro, refletindo o aumento de feldspato alcalino e da diferenciação. Porém, a assembléia mineral permanece invariável. Os modelamentos petrogenéticos efetuados permitiram explicar a formação dos trondhjemitos porfiríticos do centro do batólito a partir da cristalização fracionada ((1-F) <17) de plagioclásio, hornblenda, magnetita, e ilmenita, com pequenas quantias de allanita, zircão e apatita, a partir de líquidos trondhiemíticos com composições similares às das rochas das bordas do corpo. Os cumulatos calculados exibem características distintas daquelas dos enclaves meladioríticos. Modelamento geoquímico e composições isotópicas (baixas 87 Sr/ 86 Sr _{inicial} = 0,701-0,702 e epsilons Nd positivos = 0,39-1,12), permitem inferir que o magma parental Nordestina foi derivado da fusão parcial (F = 6) de crosta oceânica sob condições eclogíticas.

ABSTRACT

The Nordestina Batholith is located in the central part of Serrinha Nucleus (Eastern Bahia-Brazil) and crops out over an area of about 720 km². It intrudes the gneissic-migmatitic Archaean basement and the Paleoproterozoic volcano sedimentary sequences of the Rio Itapicuru Greenstone Belt. Its north-south elongated shape, associated with concentric internal foliation, which becomes more intense toward the border, and crystallization age of 2.15 Ga are interpreted as result of syn-tectonic emplacement at depths of ca 13-15 km (4-5 kbar) during the compressional Transamazonic event and concomitant to the closure of the Rio Itapicuru Basin (2.2-2.1 Ga). Its modal and chemical compositions are those of tonalites, trondhjemites and granodiorites (TTG). Based on field data, two distinct facies have been recognized and mapped: (i) medium-grained phaneritic rocks and (ii) porphyritic rocks, although the latter one is limited to the central portion of the massif. The NB is intruded by a few trondhjemitic and calc-alkaline granodioritic dykes. The Southernmost part of the batholith is characterized by presence of abundant tholeiitic meladiorites which occur as enclaves and synplutonic dykes. The studied TTG rocks show a narrow range of SiO₂ content (68-72 wt. %) and exhibit low K₂O, Y, Nb, and Rb/Sr, high Al₂O₃ (15-17 wt. %) and Sr, fractionated REE patterns, weak and variable Eu anomalies, and La and Yb contents similar to those reported for the Archaean trondhjemites. The Nordestina Batholith has a chemical and mineralogical zoned structure in which zones become progressively more felsic inward. Fe₂O₃t and MgO decrease, while SiO₂, K₂O and Rb increase from its margin to the core. Consequently, alkali feldspar becomes more abundant in inner zones. The mineral assemblage, however, remains unvaried. The petrogenetic models show that the porphyritic facies evolves by fractional crystallization ((1-F) < 17) of plagioclase, hornblende, magnetite, and ilmenite with small amounts of allanite, zircon and apatite, from trondhjemitic liquids compositionally similar to the ones of the border rocks. The theoretical cumulates display features distinct of the meladioritic enclaves. Geochemical modeling and isotopic compositions (low initial ⁸⁷Sr/⁸⁶Sr= 0.701-0.702 and positive epsilons Nd= 0.39-1.12) suggest that Nordestina parental magma was derived from partial melting (F=6) of oceanic crust transformed into eclogite.

ÍNDICE

DEDICATÓRIA	i
AGRADECIMENTOS	ii
RESUMO	iv
ABSTRACT	٧
ÍNDICE	vi
ÍNDICE DE FIGURAS	ix
ÍNDICE DE TABELAS	xii
ÍNDICE DE FOTOGRAFIAS	xiv
ÍNDICE DE FOTOMICROGRAFIAS	ΧV
ÍNDICE DE ANEXOS	xvii
LISTAGEM DE ABREVIATURAS	xviii
CAPÍTULO I - INTRODUÇÃO	01
I.1 - Motivação para Estudo do Tema	02
I.2 - Localização e Acesso	
I.3 - Aspectos Geográficos	
I.4 - Histórico	
I.5 - Objetivos	
I.6 - Estrutura da Tese	
CAPÍTULO II - METODOLOGIA DE TRABALHO	08
II.1 - Introdução	09
II.2 - Levantamento Bibliográfico	09
II.3 - Integração dos Dados e Confecção do Mapa Geológico	09
II.4 - Trabalhos de Campo	10
II.5 - Estudos Laboratoriais	10
II.5.1 - Preparação das Amostras	10
II.5.2 - Estudos Petrográficos	
II.5.3 - Estudos Geoquímicos	
II.5.3.1 - Litogeoquímica	
II.5.3.2 - Mineraloquímica	13

II.5.4 - Estudos Isotópicos	14
II.5.4.1 - Diluição Isotópica de Rb-Sr e Sm-Nd	14
II.5.4.2 - Evaporação de Pb em Monocristais de Zircão	14
CAPÍTULO III - GEOLOGIA REGIONAL	16
III.1 - Introdução	17
III.2 - Considerações Gerais Sobre o Cráton do São Francisco	17
III.3 - Geologia do Núcleo Serrinha	19
III.3.1 - Introdução	19
III.3.2 - Sucessão Lito-estratigráfica	20
III.3.3 - Deformação e Metamorfismo	35
III.3.4 - Ambiente Geotectônico	36
III.4 - Considerações Finais	36
CAPÍTULO IV - ARCABOUÇO GEOLÓGICO DO BATÓLITO NORDESTINA	38
IV.1 - Introdução	39
IV.2 - Encaixantes	39
IV.3 - Batólito Nordestina	41
IV.3.1 - Considerações Gerais Sobre os Aspectos Estruturais	41
IV.3.2 - Faciologia	43
IV.4 – Considerações Finais Sobre a Geologia do Batólito Nordestina	46
CAPÍTULO V - GEOCRONOLOGIA DO BATÓLITO NORDESTINA	47
V.1 - Introdução	48
V.2 - Resultados Pb-Pb: Evaporação em Monozircão	48
V.3 - Considerações Finais	51
CAPÍTULO VI - PETROGRAFIA E MINERALOGIA DO BATÓLITO NORDESTI	NA 52
VI.1 - Introdução	
VI.2 - Petrografia e Mineralogia do Batólito Nordestina	55
VI.2.1 - Fácies Fanerítica Média e Fácies Porfirítica	56
VI.2.2 - Diques Félsicos	66
VI.2.3 - Rochas Máficas	70
VI.3 - Petrografia e Mineralogia das Encaixantes	76
VI.4 - Parâmetros de Cristalização	
VI.5 - Considerações Petrográficas e Mineralógicas	82
VI.6 - Sumário da Petrografia e Mineralogia do Batólito Nordestina	86

CAPÍTULO VII - LITOGEOQUÍMICA E GEOQUÍMICA ISOTÓPICA DO BATÓ	LITO
NORDESTINA	88
VII.1 - Introdução	89
VII.2 - Litogeoquímica do Batólito Nordestina	89
VII.2.1 - Fácies Fanerítica Média e Fácies Porfirítica	89
VII.2.2 - Diques Félsicos	102
VII.2.3 - Rochas Máficas	106
VII.3 - Litogeoquímica das Encaixantes	110
VII.4 - Geoquímica Isotópica	111
VII.4.1 - Resultados Rb-Sr	111
VII.4.2 - Resultados Sm-Nd	113
VII.4.3 - Relações Rb-Sr e Sm-Nd	117
VII.5 - Sumário da Litogeoquímica e da Geoquímica Isotópica	117
CAPÍTULO VIII – PETROGÊNESE DO BATÓLITO NORDESTINA	120
VIII.1 - Introdução	121
VIII.2 - Modelamento Geoquímico	
VIII.2.1 - O Modelo de Cristalização Fracionada	122
VIII.2.2 - O Modelo de Gênese do Magma Parental	
VIII.3 - Considerações Finais	127
CAPÍTULO IX – CONCLUSÕES	128
REFERÊNCIAS BIBLIOGRÁFICAS	132

ÍNDICE DE FIGURAS

Figura 01:	(A) Localização geográfica do setor estudado no Estado da Bahia. (B) Principiais vias de acesso rodoviário para a área de estudo	03
Figura 02:	(A) Localização do Cráton do São Francisco no Estado da Bahia. (B) Esboço geológico do Cráton do São Francisco [modificado de Alkmim et al. (1993) apud Sampaio (2001)]. (C) Estruturação dos terrenos do embasamento do Cráton São Francisco no Estado da Bahia para o período Paleoproterozóico [Mascarenhas (1979) com limites modificados por Conceição (1990)]	18
Figura 03:	Mapa geológico simplificado do Núcleo Serrinha [adaptado de Rios <i>et al.</i> (1998) e Oliveira <i>et al.</i> (2002)]	21
Figura 04:	Mapa geológico simplificado do setor sul do NSer apresentando a sucessão estratigráfica de Rios <i>et al.</i> (1998) para a granitogênese	28
Figura 05:	Mapa geológico simplificado do Batólito Nordestina (modificado de Cruz Filho 2000)	40
Figura 06:	Diagrama Idade <i>versus</i> Etapa de Aquecimento de seis cristais de zircão da amostra 1851	50
Figura 07:	Diagrama Idade <i>versus</i> Etapa de Aquecimento de oito cristais de zircão da amostra 1898	50
Figura 08:	Mapa de amostragem do Batólito Nordestina e do seu embasamento	54
Figura 09:	[A] Nomenclatura de rochas ígneas segundo os critérios estabelecidos por Streckeisen (1976) aplicado às rochas da FFM e FP do Batólito Nordestina com base na mesonorma. [B] Diagrama Q-A+P-M	57
Figura 10:	Classificação química dos feldspatos de rochas do Batólito Nordestina e do seu embasamento	60
Figura 11:	Diagrama de classificação química para micas (segundo Rieder et al. 1998) aplicado às rochas do Batólito Nordestina e do seu embasamento	62
Figura 12:	Diagrama triangular Al ₂ O ₃ -Fe ₂ O ₃ -MgO (<i>apud</i> De Alburquerque 1973) aplicado às biotitas de rochas do Batólito Nordestina e do seu embasamento	63
Figura 13:	Diagramas discriminantes propostos por Abdel-Rahman (1994) para definir diferentes séries magmáticas a partir de análises de biotitas aplicados às rochas do Batólito Nordestina	65
Figura 14:	Composição e classificação dos anfibólios (Leake <i>et al.</i> 1997) das rochas do Batólito de Nordestina e do seu embasamento	67
Figura 15:	[A] Nomenclatura de rochas ígneas segundo os critérios estabelecidos por Streckeisen (1976) aplicados as rochas dos diques do Batólito Nordestina e do seu embasamento, com base na mesonorma, e dos	

	enclaves máficos do embasamento com base nos dados modais. (B) Diagrama Q-(A+P)-M	68
Figura 16:	(A) Nomenclatura de rochas ígneas segundo os critérios estabelecidos por Streckeisen (1976) aplicado as rochas máficas do BN, com base nos dados modais. (B) Diagrama Q-(A+P)-M	72
Figura 17:	Diagrama Enstatita (En) - Ferrossilita (Fe) - Wollastonita (Wo) de Morimoto et al. (1988) aplicado aos piroxênios do enclave do embasamento (Am 1915). Símbolo preenchido (centro); símbolo vazio (borda)	78
Figura 18:	Diagrama de Harker mostrando a evolução de P_2O_5 $vs.$ SiO_2 no Batólito Nordestina. As isotermas representam os contéudos de P_2O_5 (solubilidade de apatita) de fusões (líquidos) graníticos previstos pelo modelo de Harrison & Watson (1984)	80
Figura 19:	Diagrama Zr vs. M com isotermas definidas por Watson & Harrison (1983)	80
Figura 20:	Diagrama modal Q-A-P com as tendências evolucionais das principais séries magmáticas, segundo Lameyre & Bowden (1982)	84
Figura 21:	Diagrama de classificação de rochas plutônicas baseados em elementos maiores de Debon & Le Fort (1982), aplicado às rochas do BN	93
Figura 22:	Diagrama Al ₂ O ₃ /(Na ₂ O+K ₂ O) <i>versus</i> Al ₂ O ₃ /(CaO+Na ₂ O+K ₂ O), em moles, segundo Maniar & Piccoli (1989), aplicado às rochas do BN	93
Figura 23:	Triângulo normativo An-Ab-Or (O'Connor 1965), com campos de Barker (1979), aplicado às rochas do BN	95
Figura 24:	Diagrama AFM aplicado às rochas do Batólito Nordestina. Os campos são de Irvine & Baragar (1971)	95
Figura 25:	Diagrama normativo Q-Ab-Or segundo Barker & Arth (1976) aplicado às rochas do Batólito Nordestina	96
Figura 26:	Triângulo catiônico K-Na-Ca segundo Barker & Arth (1976). A área em cinza representa o campo dos TTGs (Tdh) arqueanos (Tdh; Martin 1994)	96
Figura 27:	Diagramas do tipo Harker (1909) mostrando a evolução química dos elementos maiores <i>versus</i> sílica aplicado às rochas do Batólito Nordestina	98
Figura 28:	Espectros para os elementos terras raras para das rochas do Batólito Nordestina, normalizados pelos valores de Evensen <i>et al.</i> (1978)	100
Figura 29:	Diagrama (La/Yb)N <i>versus</i> YbN de Martin (1985), aplicado as rochas do Batólito Nordestina	101
Figura 30:	Espectro dos elementos-traço aplicado às rochas do Batólito Nordestina, normalizadas pelo manto primitivo (Sun & McDonough	

	respectivamente as regiões dos espectros de elementos traços para as rochas da Fácies Fanerítica Média do BN e do GBRI	103
Figura 31:	Diagramas do tipo Harker (1909) mostrando a evolução química dos elementos-traço <i>versus</i> sílica, aplicados às rochas do Batólito Nordestina	104
Figura 32:	Diagrama SiO ₂ <i>versus</i> FeO _t /MgO de Miyashiro (1974), aplicado às rochas máficas do Batólito Nordestina e do seu embasamento	108
Figura 33:	Diagrama de evolução do Sr para o manto, considerando I_{Sr} de 0,699 para 4,6 Ga e de I_{Sr} = 0,7045 atualmente, com as amostras do Batólito Nordestina admitindo-se cristalização a 2155 Ma	112
Figura 34:	Diagrama de I_{Sr} $versus$ SiO_2 aplicado às rochas do Batólito Nordestina	114
Figura 35:	Diagrama de I _{Sr} versus 1/Sr aplicado às rochas do Batólito Nordestina	114
Figura 36:	Diagrama de evolução do Nd <i>versus</i> idade para as rochas do Batólito Nordestina no tempo de sua colocação. <i>DM</i> = <i>Depleted Mantle</i> ; <i>CHUR</i> = <i>CHondritic Uniform Reservoir</i>	116
Figura 37:	Diagrama de I _{Nd} <i>versus</i> SiO ₂ aplicado às rochas do Batólito Nordestina	116
Figura 38:	Correlação Sr-Nd (notação epsílon) para as rochas do Batólito Nordestina	118
Figura 39:	Padrões de elementos terras raras das rochas do Batólito Nordestina comparados com os resultados do modelo de cristalização fracionada	125
Figura 40:	Padrão de elementos terras raras do magma parental do BN (amostra 1836) comparado com os cálculos teóricos do modelo de fusão parcial de um basalto toleiítico arqueano tipo N-MORB	125

ÍNDICE DE TABELAS

Tabela 01:	Dados geocronológicos e isotópicos das rochas do Núcleo Serrinha	23
Tabela 02:	Idades aparentes ²⁰⁷ Pb/ ²⁰⁶ Pb para cristais de zircão da amostra 1851	49
Tabela 03:	Idades aparentes ²⁰⁷ Pb/ ²⁰⁶ Pb para cristais de zircão da amostra 1898	51
Tabela 04:	Relação do número de amostras estudadas petrograficamente e com análises de microssonda eletrônica por tipo de rocha	53
Tabela 05:	Relação das amostras de rochas do Batólito Nordestina e de algumas amostras do embasamento com análises de microssonda	53
Tabela 06:	Sumário da petrografia das rochas máficas e associadas no Batólito Nordestina e no embasamento	73
Tabela 07:	Geobarômetros de Hammarstrom & Zen (1986; HZ), Hollister <i>et al.</i> (1987; HO) e Schmidt (1992; SC) aplicados às rochas do BN	80
Tabela 08:	Geotermômetros de Holland & Blundy (1994; HB) aplicados às rochas do BN. Utilizando as pressões obtidas pelos geobarômetros de Hammarstrom & Zen (1986; HZ); Hollister <i>et al.</i> (1987; HO); Schmidt (1992; SC)	82
Tabela 09:	Distribuição das análises de química de rocha total do Batólito Nordestina	90
Tabela 10:	Análises químicas dos elementos maiores (% peso) e parâmetros normativos para as rochas da Fácies Fanerítica Média do Batólito Nordestina	91
Tabela 11:	Análises químicas dos elementos maiores (% peso) e parâmetros normativos para as rochas da Fácies Porfirítica do Batólito Nordestina	92
Tabela 12:	Composições médias dos elementos maiores (% em peso) e traços (ppm) das rochas do CLP e dos diques trondhjemíticos do BN comparadas com as médias de TTG arqueanos e com o padrão trondhejemítico de Barker (1979)	94
Tabela 13:	Análises químicas dos elementos terras raras (em ppm) de rochas da FFM, FP e dos diques (DT= dique trondhjemítico e DG= dique granodiorito) do Batólito Nordestina	99
Tabela 14:	Análises químicas dos elementos traços (em ppm) de rochas da FFM, FP e dos diques do Batólito Nordestina. O sinal de menor seguido de um número indica o limite de detecção do método utilizado	99
Tabela 15:	Análises químicas dos elementos maiores e de alguns traços (em % peso), e composição mineral normativa para os diques do Batólito de Nordestina e gnaisses do embasamento	106

Tabela 16:	Análises químicas dos elementos maiores (em % peso) e de alguns traços (em ppm), e composição mineral normativa das rochas máficas do Batólito Nordestina e de seu embasamento	109
Tabela 17:	Dados de Rb-Sr em rocha total de algumas amostras do Batólito Nordestina	113
Tabela 18:	Dados de Sm-Nd em rocha total de amostras do Batólito Nordestina	115
Tabela 19:	Modelamento de elementos maiores e traços da cristalização fracionada das rochas trondhjemíticas do Batólito Nordestina	124
Tabela 20:	Modelamento de elementos maiores e vários traços de fusão parcial de uma fonte toleiítica tipo N-MORB comparada com a composição do magma parental do Batólito Nordestina	126

ÍNDICE DE FOTOGRAFIAS

Foto 01:	Gnaisse de cor branca a cinza alterado intercalado com leito de anfibolito, localizado a oeste do BN (Ponto 615)	42
Foto 02:	Visão geral do afloramento de migmatito a norte do BN com presença de enclave de anfibolito angular e métrico cortado por veios félsicos (ponto 715)	42
Foto 03:	Quartzo-biotita xisto com porfiroblastos de granada, localizado a leste do maciço Maravilha dentro do GBRI (ponto 597/Amostra 1841)	42
Foto 04:	Afloramento da FFM com presença de estrutura de fluxo magmático (ponto 670, região centro-oeste do BN)	42
Foto 05:	Rocha da borda norte do BN com presença de estrutura gnáissica, caracterizada por um fino bandamento (ponto 587)	42
Foto 06:	Rocha de coloração cinza e granulação média típica da FFM (ponto 649/Amostra 1880)	42
Foto 07:	Feição de fluxo magmático marcada pela concentração de nível máfico (mais rico em biotita) dentro do BN (Ponto 594/Amostra 1839)	45
Foto 08:	Textura típica das rochas da FP caracterizada pela presença de fenocristais de plagioclásio em matriz similar as rochas da FFM (ponto 601/Amostra 1845)	45
Foto 09:	Detalhe de um fenocristal de plagioclásio da FP com contorno idiomórfico (ponto 653; 3 km a norte da cidade de Nordestina)	45
Foto 10:	Dique trondhjemítico (Am. 1826), com deslocamento dextral, intruso na FFM (ponto 578; 4 km a leste da cidade de Nordestina)	45
Foto 11:	Rocha da FFM, borda sul do BN, cortada por dique granítico (Am. 1864; ponto 620)	45
Foto 12:	Enclave microgranular máfico elipsoidal (Am. 1871), de tamanho métrico, concordante com a foliação magmática da rocha encaixante (ponto 626)	45

ÍNDICE DE FOTOMICROGRAFIAS

Fotomicrografia 01:	Textura hipidiomórfica a alotriomórfica. Presença de plagioclásio (PI) subédrico com alteração diferencial, microclina (Mc) anédrica e quartzo (Qz) anédrico (Am. 1869)	59
Fotomicrografia 02:	Textura protomilonítica com porfiroclasto de plagioclásio (PI) imerso numa matriz fina constituída por plagioclásio + quartzo (Qz) + biotita (Bt) (Am. 1407)	59
Fotomicrografia 03:	Concentração de titanita (Tn) anédrica em uma amostra de granodiorito (Am. 1855)	59
Fotomicrografia 04:	Presença de carbonato (Cb) nos interstícios e preenchendo fraturas (Am. 1856)	59
Fotomicrografia 05:	Textura mirmequítica presente no contato entre o plagioclásio (PI) e o feldspato pertítico (FP) (Am. 1869)	59
Fotomicrografia 06:	Plagioclásio (PI) zonado com zonas paralelas as faces do cristal e cristais de quartzo (Qz) com contatos suturados entre si (campo direito) (Am. 1862)	59
Fotomicrografia 07:	Cristal de plagioclásio (PI) geminado segundo a lei Albita com centro alterado e borda preservada. No lado esquerdo cristais de quartzo (Qz) anédricos (Am.1867)	69
Fotomicrografia 08:	Aglomerado de cristais de biotita subédricos e cristal de allanita (Al) (Am. 1836)	69
Fotomicrografia 09:	Cristal de hornblenda (Hb) subédrico (Am. DL-24)	69
Fotomicrografia 10:	Aglomerado máfico constituído por cristais de hornblenda (Hb) e de biotita (Bt) (Am. 1867)	69
Fotomicrografia 11:	Aglomerado máfico de cristais de hornblenda (Hb) com presença subordinada de biotita (Bt) (Am. 1831)	69
Fotomicrografia 12:	Cristal de zircão elíptico zonado e cristais de apatita prismáticos incluso em quartzo (Am. 1833)	69
Fotomicrografia 13:	Cristal de allanita com halo pleocróico incluso na biotita (Lam. DL24)	79
Fotomicrografia 14:	Textura protomilonítica do dique trondhjemítico (Am. 1863) .	79
Fotomicrografia 15:	Fenocristal de ortoclásio (Or) anédrico, poiquilítico, englobado por numa matriz fina (Am. 1864)	79

Fotomicrografia 16:	Detalhe da textura nematoblástica do enclave microgranular máfico do tipo I em uma faixa com pouca horblenda (Hb) e mais rica em plagioclásio (PI) (Amostra 1871)	79
Fotomicrografia 17:	Hornblenda (Hb) castanho-esverdeada com bordos verdes escuros e cristais de plagioclásio (Pl) alterados para minerais de argila (MA) (Am.1900)	79
Fotomicrografia 18:	Textura granoblástica do enclave máfico do embasamento. Hornblenda (Hb) verde, diopsídio (Dp), titanita (Tn), opaco (Op) (Am. 1915)	79

ÍNDICE DE ANEXOS

Anexo I: Listagem das Amostras Trabalhadas

Anexo II: Análises Químicas de Minerais

Anexo II.1: Feldspatos

Anexo II.2: Anfibólios

Anexo II.3: Micas

Anexo II.4: Piroxênios

Anexo II.5: Granadas

Anexo III: Análises Químicas de Rochas: Elementos Maiores

Anexo IV: Simulações do Modelamento Geoquímico

LISTA DE ABREVIATURAS

Anf= Anfibólio

B= Borda

BN= Batólito Nordestina

CHUR= CHondritic Uniform Reservoir

CLP= Conjunto Litológico Principal (FFM +FP)

CSF= Cráton do São Francisco

Cpx= Clinopiroxênio

DG= Dique Granodiorítico

DT= Dique Trondhjemítico

EMM = Enclave Microgranular Máfico

ETR= Elementos Terras Raras

FFM= Fácies Fanerítica

FP= Fácies Porfirítica

Fss= Feldspato

GBRI= Greenstone Belt do Rio Itapicuru

Gd= Granodiorito

Gn= Gnaisse

HFSE= High Field Strength Elements

LILE= Large Ion Lithophile Elements

Mic= Mica

nd= Não detectado

NSr= Núcleo Serrinha

N-S= Norte Sul

Tn= Titanita

Tdh=Td= Trondhjemito

TDM= Idade modelo manto depletado

To= Tonalito

TTG = Trondhjemito-Tonalito-Granodiorito

UR= Uniform Reservoir

vol.= volume modal

I.1 - MOTIVAÇÃO PARA ESTUDO DO TEMA

O termo trondhjemito foi empregado inicialmente por Goldschmidt (1916) para designar os granitos de cor branca da região, sul da cidade de Trondhjem, Noruega (o nome da cidade de Trondhjem foi mudado para "Nidaros" em 1930 e, posteriormente para "Trondheim", em 1931). Segundo a classificação da International Union Geological Sciences para as rochas ígneas (Le Maître et al. 2002), trondhjemitos correspondem a tonalitos com índice de cor menor que 10%.

As rochas tonalíticas e trondhjemíticas são importantes constituintes da crosta continental e, de acordo com Barker (1979), ocorrem largamente em terrenos de gnaisses cinzas arqueanos; nas periferias de *greenstones belts* arqueanos; e em margens continentais proterozóicas e paleozóicas.

No Estado da Bahia, as ocorrências de trondhjemitos têm se limitado ao período Arqueano, no interior de núcleos gnáissico-migmatíticos antigos (Marinho 1991, Santos Pinto 1996, Martin *et al.* 1997, Bastos Leal *et al.* 1998), ou como maciços retrabalhados nos cinturões móveis paleoproterozóicos (Teixeira 1997, Pinho 2000). As primeiras ocorrências, com idades entre 3,4-3,2 Ga, são interpretadas como fragmentos relativamente preservados de crosta arqueana continental (p.ex. Martin *et al.* 1997), enquanto aquelas que ocorrem nos cinturões móveis carecem ainda de informações para a compreensão exata de seu significado. Estudos recentes realizados no Núcleo Serrinha (NSer) identificaram a existência de intrusões paleoproterozóicas de natureza trondhjemítica [Batólito Nordestina (Cruz Filho 2000) e os maciços de Teofilândia e Barrocas (Rios 2002, Barrueto 2002)].

O interesse em ter dado continuidade ao estudo do Batólito Nordestina, iniciado durante o mestrado, reside no fato de que, a compreensão da origem do magmatismo trondhjemítico representa um passo-chave para a reconstrução do ambiente geodinâmico paleoproterozóico no NSer.

I.2 - LOCALIZAÇÃO E ACESSO

A área objeto deste estudo perfaz aproximadamente 1770 km² e localiza-se na porção nordeste do Estado da Bahia (Fig. 1A). Está definida pelas coordenadas 39°17′-39°35′ longitude WGr e 10°30′-11°00′ latitude S. Corresponde à parte das folhas topográficas 1:100.000 (30′x30′) de Itiúba (SC.24-Y-B-V) e Euclides da Cunha (SC.24-Y-B-VI), e situa-se dentro dos limites dos municípios de Monte Santo, Cansanção e Nordestina

Esta região dista cerca de 340 km de Salvador, capital do estado. O acesso rodoviário, partindo-se da capital baiana, pode ser feito utilizando-se a BR-324 até Feira de Santana, depois a BA-116 até Serrinha e, a partir desta cidade até a cidade de Cansanção, pela BA-120, passando pelos municípios de Conceição do Coité, Valente, Santa Luz e Queimadas (Fig. 1B).

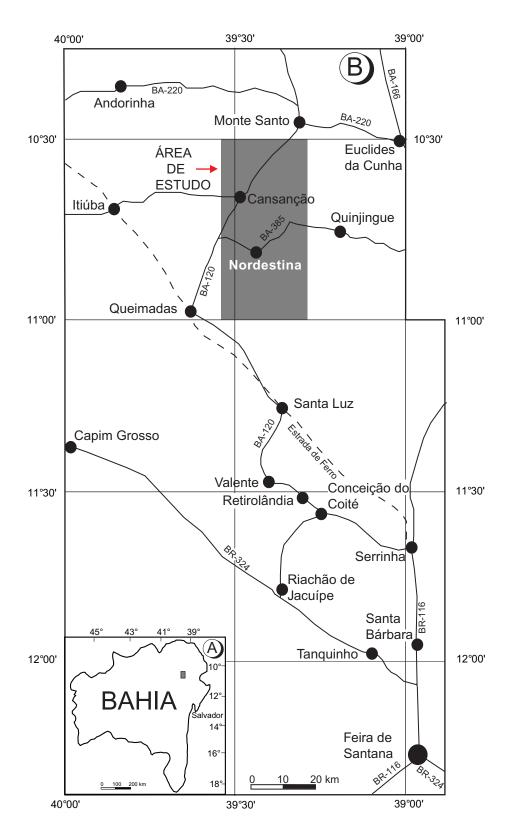


Figura 1. (A) Localização geográfica do setor estudado no Estado da Bahia. (B) Prinicipais vias de acesso rodoviário para a área de estudo, partindo da cidade de Feira de Santana.

O acesso local à área de estudo é feito pelas rodovias BA-120 (Cansanção-Monte Santo) e BA-385 (Nordestina-Quinjingue) e por uma vasta rede de estradas, não pavimentadas e de caminhos.

I.3 - ASPECTOS GEOGRÁFICOS

A área estudada sofre forte influência do clima semi-árido, com precipitação entre 500 a 750 mm/ano, estando inserida no chamado "Polígono das Secas". As temperaturas geralmente variam de 24°-38°C. Possui duas estações: uma seca, de maio a outubro, sendo o melhor período para os trabalhos de campo, e outra, chuvosa, de novembro a abril (CEI 1994).

A caatinga é a vegetação predominante na área. Além dela, existem matas em galerias e matas ciliares constituídas por árvores de grande porte que acompanham os cursos d'água, com destaque para aquelas existentes na faixa fluvial do Rio Itapicuru (Inda et al. 1976).

Nas áreas de rochas de composição granítica (senso lato) ocorre a formação de solos muito arenosos, porosos, e de cores claras, onde a vegetação típica é em parte substituída por atividades agropecuárias. Sobre as faixas de rochas básicas e ultrabásicas, desenvolvem-se solos de natureza argilosa a muito argilosa, de cores marrom ou avermelhada muito escuras. Em áreas de migmatitos e gnaisses com intercalações de anfibolitos formam-se solos síltico-argilosos, de coloração avermelhada (Inda *et al.* 1976, Lima *et al.* 1982, CEI 1994).

Na área do Batólito Nordestina (BN) ocorre certa escassez de afloramentos devido à presença de extensas coberturas arenosas secundárias. Os afloramentos neste batólito geralmente ocorrem sob a forma de lajedos e as melhores exposições encontram-se na cidade de Nordestina, onde ele aflora abundantemente, e nas vilas de Sítio das Flores, São Félix, Fazenda Macambira, Angico, Cacimba, Jatobá, Jacu e Quiba.

O relevo da área estudada é suavemente ondulado, estando em estágio intermediário de dissecação sobre os granitos e as rochas metamórficas, e em estágio final de dissecação sobre as rochas do *Greenstone Belt* do Rio Itapicuru (GBRI). As cotas médias variam de 400 a 500 metros (Inda *et al.* 1976, Lima *et al.* 1982, CEI 1994).

Os rios da região estudada são de caráter intermitente, possuem padrões do tipo dendrítico a sub-dendrítico, podendo às vezes exibir controles por fraturamento, e fazem parte da bacia hidrográfica do rio Itapicuru que atravessa a parte meridional do Batólito Nordestina no sentido oeste-leste (Inda *et al.* 1976, Lima *et al.* 1982, CEI 1994).

A principal atividade econômica da região é a plantação de sisal. Em nível de subsistência, são praticadas as culturas sazonais de feijão, milho e mandioca, que se concentram, principalmente, nas áreas granito-gnáissicas. Registra-se também a ocorrência

de garimpos de ouro, no setor sul da área de estudo, na interface das metavulcânicas máficas do *Greenstone Belt* do Rio Itapicuru com o BN. O granito constitui outra importante fonte de renda para alguns municípios, onde é utilizado principalmente na construção civil.

Na área em estudo existem registradas ocorrências de ouro, cobre, diamante, cromo e quartzo (Arcanjo & Dalton de Souza 1985).

Todas as cidades da área de estudo e a maioria dos distritos dispõem de energia elétrica e sistema de telefonia DDD e DDI. Agências bancárias estão presentes nas cidades de Cansanção e Monte Santo.

I.4 - HISTÓRICO

O Batólito Nordestina foi inicialmente denominado por Brito Neves (1969) como "Granito de Cansanção", tendo sido renomeado como Granodiorito de Nordestina por Mascarenhas *et al.* (1975), no relatório da 2ª Fase do Projeto Bahia, devido à descoberta de um outro granitóide na localidade de Cansanção, com características petrográficas diferentes e com extensão muito reduzida em relação ao primeiro.

Inda et al. (1976), no Projeto Rochas Básicas e Ultrabásicas de Euclides da Cunha, que teve como alvo principal às rochas máficas, forneceram informações sobre os aspectos estruturais e a primeira cartografia do BN e dos demais granitos desta região numa escala mais detalhada (1/50.000). Neste projeto, a maioria dos corpos graníticos do Núcleo Serrinha foi considerada como resultantes de anatexia, tendo sido descritos como diatexitos com núcleos graníticos.

Arcanjo & Dalton de Souza (1985), no âmbito do Projeto Mapas Metalogenéticos, confeccionaram, na escala de 1:250.000, a Folha Senhor do Bonfim (SC.24-Y-B) onde os limites do BN aparecem prolongados para sul e sudoeste.

Silva (1987) chama atenção para as semelhanças geoquímicas e a contemporaneidade entre as rochas do Batólito Nordestina e de outros granitos do NSer com a dos vulcanitos intermediários e félsicos (UVF) do GBRI.

Coube a Matos & Conceição (1993a,b) a proposta de um agrupamento dos diferentes corpos graníticos do Núcleo Serrinha, com base em dados estruturais e petrográficos. Segundo estes autores, o BN está inserido no grupo dos granitos (senso lato) sin-tectônicos.

Alves da Silva (1994) caracterizou o Batólito Nordestina sob o ponto de vista petrográfico e estrutural, e obteve uma idade de 2100 ± 10 Ma para suas rochas através da análise isotópica 207 Pb/ 206 Pb em monocristal de zircão. Segundo este autor, duas fácies são reconhecidas: a mais abundante corresponde a hornblenda-granodioritos faneríticos que tendem a mostrar diminuição no tamanho dos cristais em direção aos contatos; a outra,

menos expressiva, situa-se na região centro-norte e apresenta textura porfirítica, definindo o núcleo deste maciço.

Nascimento (1996), em sua dissertação de mestrado, considerou o maciço de Cansanção como um corpo monzonítico tardio, intrusivo no BN.

Rios *et al.* (1998), com base em novos dados petrográficos, geoquímicos e geocronológicos oriundos dos corpos graníticos, somados aos dados já existentes das seqüências vulcanossedimentares descreve, o contexto tectônico do Núcleo Serrinha como uma ambiência de arco vulcânico.

Cruz Filho (2000), em sua dissertação de mestrado, realizou a caracterização petrográfica e geoquímica do BN, demonstrando que esta intrusão, até então classificada como um granodiorito corresponde a um corpo trondhjemítico com dimensões batolíticas, passando a denominá-lo de Batólito Nordestina (BN).

I.5 - OBJETIVOS

O presente estudo - faz parte de um projeto maior desenvolvido pelo Grupo de Petrologia Aplicada à Pesquisa Mineral, da Universidade Federal da Bahia, desde 1998, tendo como meta estudar a granitogênese no Núcleo Serrinha - visa investigar o estudo das rochas do Batólito Nordestina a partir da caracterização geológica, geocronológica (Pb-Pb em monozircão), petrográfica, mineraloquímica, litogeoquímica (elementos maiores, alguns elementos traços incluindo terras raras) e geoquímica isotópica (Rb-Sr e Sm-Nd), e, com isto, contribuir para uma melhor compreensão do magmatismo e da evolução geodinâmica do NSer, segmento crustal, que hospeda importantes mineralizações no Estado da Bahia.

Ao final deste estudo é esperado: [1] realizar a cartografia faciológica do BN; [2] caracterizar as rochas do BN sob o ponto de vista petrográfico, geoquímico, mineraloquímico e isotópico; [3] determinar filiações geoquímicas destas rochas; [4] compreender a evolução petrológica do BN; e [5] qualificar e quantificar os processos petrogenéticos que controlaram a evolução do BN.

I.6 - ESTRUTURA DA TESE

Os resultados obtidos neste estudo estão estruturados em nove capítulos e quatro anexos (Anexo I: Listagem das Amostras Trabalhadas; Anexo II: Análises Químicas de Minerais; Anexo III: Análises Químicas de Rocha – dados brutos; Anexo IV: Simulações do Modelamento Geoquímico). Abaixo segue sumário dos capítulos desta Tese:

- Capítulo I: discorre sobre a motivação e os objetivos do estudo do tema abordado, localiza a área estudada e apresenta um breve histórico sobre estudos anteriores realizados no BN;
- Capítulo II: aborda os aspectos metodológicos utilizados;

Capítulo III: faz uma síntese dos aspectos inerentes às unidades geológicas do Núcleo Serrinha;

- Capítulo IV: trata dos aspectos geológicos do BN;
- Capítulo V: apresenta os dados geocronológicos do BN;
- Capítulo VI: descreve os aspectos petrográficos e mineraloquímicos das rochas do batólito;
- Capítulo VII: traz os resultados do estudo geoquímico (elementos maiores, menores, traços e dados isotópicos de Rb-Sr e Sm-Nd) das rochas do BN;
- Capítulo VIII: discute sobre a petrogênese das rochas do BN;
- Capítulo IX: apresenta as principais conclusões da pesquisa; e
- ➤ Bibliografia: disponibiliza as referências bibliográficas citadas ao longo de todo o trabalho.

II.1- INTRODUÇÃO

A presente pesquisa visando aprofundar o conhecimento geológico sobre o magmatismo trondhjemítico paleoproterozóico do Núcleo Serrinha (NSer), tem como foco o Batólito Nordestina e, para atingir os objetivos, aplicou-se a metodologia apresentada a seguir.

II.2 - LEVANTAMENTO BIBLIOGRÁFICO

A despeito da área selecionada para estudo nesta pesquisa corresponder apenas ao Batólito Nordestina (BN) e às suas encaixantes imediatas, o levantamento bibliográfico estendeu-se a todo o Núcleo Serrinha, buscando desta forma situar o BN no contexto regional. As informações obtidas compreenderam descrições de afloramentos e petrográficas, mapas geológicos, dados geoquímicos e geocronológicos, ocorrências minerais, etc., disponíveis em projetos de pesquisa, teses de mestrado e doutorado, resumos e artigos científicos. Pesquisou-se igualmente no contexto da literatura internacional dados geoquímicos, mineraloquímicos e isotópicos, de ocorrências clássicas de rochas trondhjemíticas, para fins de estudos comparativos.

II.3 - INTEGRAÇÃO DOS DADOS E CONFECÇÃO DO MAPA GEOLÓGICO

Para a confecção do mapa geológico da área de estudo utilizou-se as folhas topográficas Euclides da Cunha (SC.24-Y-B-VI) e Itiúba (SC.24-Y-B-V) do IBGE (1968a,b), na escala de 1:100.000. Sobre estas bases foram lançadas as informações relevantes obtidas de mapeamentos geológicos anteriores, tais como limites dos corpos, dados estruturais e ocorrências minerais.

Dentre os mapas geológicos utilizados nesta compilação destacam-se, por terem fornecido a cartografia básica sobre a qual foram realizadas as atualizações, aqueles do Projeto Rochas Básicas e Ultrabásicas de Euclides da Cunha (Folhas Nordestina, Lagoa das Pedras, Rio do Monteiro e Jacurici, todas na escala de 1:50.000; Inda *et al.* 1976).

Ao final da pesquisa, após as atualizações, correções, cheques de campo e integração das informações oriundas das missões de campo executadas (contatos, fácies petrográficas, foliações, pontos amostrados...) foi realizada a digitalização destas cartas topográficas através de um *scanner*. A partir da imagem digitalizada utilizou-se o *software* Adobe Illustrator 7.0[®] para a elaboração da arte-final do mapa geológico que é apresentado ao longo deste volume.

Os limites do BN referem-se à integração dos dados disponíveis na bibliografia, salvo aqueles de sua borda sudoeste que foram reinterpretados após informações obtidas durante as missões de campo realizadas.

II. 4 - TRABALHOS DE CAMPO

Os trabalhos de campo visaram o reconhecimento geológico da área em estudo e teve como propósitos: (1) reavaliar os dados obtidos nos levantamentos realizados a partir da interpretação de mapas pré-existentes e publicações; (2) estudar as relações de contato do Batólito Nordestina com as suas encaixantes; (3) cartografar as feições faciológicas e estruturais deste corpo, objetivando melhorar a cartografia existente; e (4) amostrar espécimes representativos dos diferentes tipos de rochas presentes no Batólito Nordestina para os estudos de laboratório.

Em aproximadamente 20 dias de trabalhos de campo, distribuídos em diferentes missões, foi possível descrever 174 afloramentos, coletar 100 amostras de rochas representativas e obter 122 fotografias em slides. Para localização dos pontos estudados na área de detalhamento foi utilizado o aparelho GPS (*Global Position System*), que possibilitou obter uma precisão de ± 20 m na localização dos mesmos. A relação das amostras trabalhadas encontra-se no Anexo I (Listagem das Amostras Trabalhadas) e a distribuição delas pode ser visualizada no mapa de amostragem (Fig. 8).

II. 5 - ESTUDOS LABORATORIAIS

Os estudos laboratoriais envolveram análises petrográficas, geoquímicas (elementos maiores, alguns traços e terras raras), mineraloquímicas (elementos maiores e alguns traços), geocronológicas (Pb-Pb) e isotópicas (Rb-Sr e Sm-Nd) de amostras de rochas representativas do objeto de estudo.

II. 5.1 - PREPARAÇÃO DAS AMOSTRAS

Esta etapa foi realizada nos Laboratórios de Preparação de Amostras do Instituto de Geociências da UFBA. Inicialmente, as rochas coletadas em campo foram reavaliadas macroscopicamente no laboratório, a fim de descartar do estudo aquelas que apresentassem indícios de alteração. De toda amostra separou-se dois fragmentos de bom tamanho: um para confecção de lâminas delgadas, visando o estudo petrográfico e de química mineral, e outro para arquivo de reserva. Para as análises geoquímicas, incluindo as dosagens dos isótopos de Rb-Sr e Sm-Nd, uma parte de cada amostra foi fragmentada em um britador de mandíbulas (marca WEDAG) até a obtenção de fragmentos com tamanhos em torno de 3 centímetros. Em seguida, cerca de 150g desse material, obtido via quarteamento, foi reduzido até uma granulometria inferior a 200 *mesh* em um moinho de anéis (modelo SPEX 8510), com pratos de carbeto de tungstênio.

Os concentrados de cristais de zircão para análises geocronológicas foram obtidos segundo a seguinte sistemática: (i) moagem das amostras britadas até a granulometria de 80 *mesh*; (ii) pré-concentração dos minerais pesados em bateia mecânica; (iii) separação

magnética com imã de mão e por meio do Separador Eletromagnético *Frantz* (modelo L-20), com 5º de inclinação frontal e 10º de inclinação lateral, sendo a amostra processada nas amperagens de 0,5; 1,0; 1,5 e 1,8; (iv) separação com líquidos densos (bromofórmio e díiodo de metileno); (v) separação magnética através do *Frantz*, agora com 5º de inclinação frontal e com 0º a 5º de inclinação lateral sob a condição de 1,8A e; (vi) seleção através de lupa binocular, com a finalidade de obter cristais de zircão que não apresentassem efeitos de metamitização.

II. 5.2 - ESTUDOS PETROGRÁFICOS

Foram confeccionadas 95 seções delgadas das diferentes rochas amostradas na região em estudo nos laboratórios de laminação da Companhia Baiana de Pesquisa Mineral (CBPM) e do Departamento de Geoquímica do IGEO-UFBA.

A descrição das lâminas delgadas de rochas foi feita com o auxílio de microscópio binocular de luz polarizada de fabricação *Leitz*, modelo Labor Lux Pol 12 S. As informações obtidas neste estudo permitiram: (1) identificar as assembléias minerais; (2) descrever as texturas presentes (grau de cristalização, tamanho do grão e as relações geométricas, etc.), possibilitando a compreensão da seqüência de cristalização dos minerais e, (3) determinação da nomenclatura das rochas máficas a partir da análise modal, segundo os parâmetros estabelecidos pela IUGS para as rochas ígneas (Streckeisen 1976, Le Maître *et al.* 2002). As composições modais destas rochas foram estimadas através da média de estimativas visuais de dez campos por lâmina delgada.

No estudo petrográfico foram também utilizadas as descrições petrográficas realizadas por Cruz Filho (2000).

II. 5.3 - ESTUDOS GEOQUÍMICOS

Nesta etapa foram empregados dois tipos de abordagens: (1) litogeoquímica e (2) mineraloquímica, para as rochas do Batólito Nordestina.

II. 5.3.1 - Litogeoquímica

As análises químicas de rochas foram realizadas nos laboratórios do consórcio *Lakefield* Geosol Ltda e do Departamento de Geoquímica do Instituto de Geociências da UFBA. A discriminação dos métodos analíticos utilizados para a dosagem dos elementos é apresentada a seguir. O limite de detecção dos elementos maiores é em torno de 0,01% e a dos elementos traços é apresentado entre parênteses e expresso em ppm.

Nos laboratórios do consórcio *Lakefield* Geosol Ltda, por fluorescência de raios-X, utilizando fusão por tetraborato de lítio, foram analisados elementos maiores (Si, Ti, Al, Fe⁺³ total, Mg, Mn, Ca, Na, K, P) e elementos traços [Sn (5), Ta (5), Ba (10) Sr (5), Th (5), W (10),

Cs (5), Ga (5), U (10), Cl (20), Hf (10), Y (3), S (50), Nb (5), V (10), Sc (10), Rb (5), Zr (5)]. Absorção atômica foi empregada para dosagem de outros elementos traços usuais [Co (2), Cr (2), Cu (2), Ni (2), Pb (5), Zn (2)], sendo a digestão multi-ácida (ácido clorídrico, ácido fluorídrico e ácido perclórico) a metodologia utilizada no ataque químico. Os elementos terra-raras (ETR) [La (0,5), Ce (1), Nd (0,5), Sm (0,1), Eu (0,05), Gd (0,2), Dy (0,1), Ho (0,05), Er (0,05), Yb (0,05), Lu (0,03)] foram determinados por espectrometria de plasma indutivamente acoplado, com pré-concentração através de resinas de troca catiônica. Outras determinações complementares foram ainda realizadas em algumas rochas: CO_2 pela medida do gás evoluído durante o ataque com HCl sob aquecimento em banho de óleo a 120° C; Óxido Ferroso (FeO), por titulação; H_2O^+ (água de constituição); Perda ao Fogo (PF), por calcinação a 1000° C até peso constante; flúor, pela técnica de íon específico com limite de detecção de 30 ppm.

No Laboratório do ICP-AES do IGEO-UFBA os elementos maiores (Si, Ti, Al, Fe⁺³ total, Mg, Mn, Ca, Na, K, P) foram determinados por espectrometria de emissão atômica com fonte de plasma indutivamente acoplado (ICP-AES) com abertura por ataque tri-ácido. O equipamento utilizado foi o modelo Liberty 150 següencial da Varian.

No processamento dos dados químicos de rocha, além do *sofware* Excel®, foram utilizados o software *Minpet* 2.02® (Richard 1994) e o *freeware* NEWPET® (Clarke *et al.* 1994) desenvolvido pelo *Centre for Earth Resources Research do Dept. of Earth Sciences da Memorial University of Newfoundland.*

Dentre os objetivos da utilização destas análises destacam-se: (i) cálculo da mesonorma das rochas félsicas do BN, a fim determinar nomenclatura, e cálculo da norma CIPW das rochas máficas; (ii) definição da litogeoquímica das diferentes rochas presentes no Batólito Nordestina no contexto das principais séries magmáticas, (iii) análise das possíveis afinidades genéticas entre estas rochas e (iv) modelamento e compreensão dos processos petrogenéticos responsáveis pela geração e evolução do(s) magma(s).

As composições mineralógicas normativas para as rochas supersaturadas em sílica do BN e do embasamento foram calculadas pela mesonorma de Barth (1962) (apud Mielke & Winkler 1979) baseada no algoritmo MSONRM® de Kosinowski (1982) através do NEWPET® (Clarke *et al.* 1994). As composições mesonormativas foram alocadas no diagrama QAP e as rochas foram nomeadas de acordo com a classificação de Le Maître *et al.* (2002). A fim de melhor ajustar a composição normativa à moda da rocha foram adotados os seguintes procedimentos no cálculo da mesonorma: (i) como em algumas amostras apenas o Fe₂O₃ total tinha sido determinado, assumiu-se para todas as amostras o Fe como FeO_{total}; (ii) cada análise foi recalculada para 100% em uma base anidra e , (iii) nenhum recálculo para partição de ferro entre FeO e Fe₂O₃ foi feito, ou seja, o Fe foi utilizado como

FeO_{total}. Este último critério foi fundamentado na assembléia mineral da suíte TTG do BN, marcada pela ausência de óxidos que acomodam tanto o Fé (II) como o Fe (III), e na presença de apenas dois minerais silicáticos que contêm quantidades significantes de Fe (biotita e hornblenda), que incorporam o Fe (II) em preferência ao Fe (III). Os cálculos da norma CIPW para as rochas máficas do BN e do embasamento foram efetuados também através do programa NEWPET® (Clarke *et al.* 1994), onde os valores de Fé, dosados como Fe₂O_{3total}, foram particionados segundo a razão Fe₂O₃/FeO = 0,20 de acordo com as recomendações de Middlemost (1989).

Os valores de manto primitivo (expressos em ppm) usados para normalização em *spiderdiagramas* são aqueles de Sun & McDonough (1989): Rb = 0,64; Ba = 7,0; K = 250; Nb = 0,713; La = 0,687; Ce = 1,775; Sr = 21,1; P = 96; Nd = 1,354; Zr = 11,2; Sm = 0,444; Eu = 0,168; Ti = 1300; Gd = 0,596; Dy = 0,737; Er = 0,480; Yb = 0,493. Já os parâmetros de normalização para os padrões dos elementos terras raras são aqueles propostos por Evensen *et al.* (1978) (em ppm): La = 0,24460; Ce = 0,63790; Nd = 0,47380; Sm = 0,15400; Eu = 0,05802; Gd = 0,20430; Dy = 0,25410; Er = 0,16600; Yb = 0,16510; Lu = 0,02539.

II. 5.3.2 - Mineraloquímica

Análises químicas de minerais silicáticos foram realizadas utilizando-se o equipamento do Laboratório de Microssonda Eletrônica do Instituto de Geociências da Universidade de São Paulo, sob a supervisão do Professor Silvio Roberto Farias Vlach. O aparelho utilizado foi o JEOL JXA-8600S acoplado a um sistema de automação. As condições analíticas para os minerais foram aceleração de voltagem de 15 kV e corrente de feixe de 20 nA. Foram utilizados como padrões analíticos minerais e compostos sintéticos e as correções para os efeitos de matriz seguiram a sistemática PROZA. Os resultados apresentados são referidos ao intervalo de confiança de 2 σ (95%). Contudo, em duas das amostras (números 1867 e 1851), os dados mineraloquímicos foram obtidos no *Laboratoire* de *Pétrologie da l'Université de Paris Sud, Centre d'Orsay-França* pelo Msc. Márcio Mattos Paim.

As análises químicas em minerais realizadas visaram a classificação química, a estimativa das condições geo-termobarométricas envolvidas durante a história de resfriamento e cristalização do(s) magma(s), e o estudo das condições de fugacidade de oxigênio.

II. 5.4 - ESTUDOS ISOTÓPICOS

II. 5.4.1 - Diluição Isotópica de Rb-Sr e Sm-Nd

Composições isotópicas de Rb-Sr e de Sm-Nd obtidas para as rochas do BN (quatro amostras de biotita-trondhjemitos e duas de rochas máficas) foram determinadas, durante estágio de 10 dias no Laboratório de Geologia Isotópica da Universidade Federal do Pará (PARÁ-ISO), sob a supervisão do Dr. Moacir J.B. Macambira, por espectrometria de massa e procedimentos de diluição isotópica de rotina empregada no PARÁ-ISO.

As amostras foram analisadas em laboratório do tipo *clean*. Neste tipo de laboratório todo o ar é filtrado, no mínimo duas vezes, e existe no seu interior uma pressão positiva relativa às condições externas.

Os procedimentos analíticos incluíram técnicas de digestão ácida, extrações seletivas através de pequenas colunas de troca catiônica e medidas dos conteúdos e razões isotópicas do Sr e do Nd em rocha total, utilizando-se um espectrômetro de massa, modelo MAT 262, por ionização termal, com sistemas de coletores simples e múltiplos.

As razões 87 Sr/ 86 Sr e 143 Nd/ 144 Nd foram normalizadas pelos valores de 86 Sr/ 88 Sr = 0,1194 e 146 Nd/ 144 Nd = 0,7219 e posteriormente ajustadas pelos padrões NBS987 e La Jolla, respectivamente. Durante o período de aquisição de dados, o padrão NBS987 deu 87 Sr/ 86 Sr = 0,710226±0,000024 [n=3;2 σ], enquanto o padrão La Jolla forneceu 143 Nd/ 144 Nd = 0,511835±0,000035 [n=3;2 σ]. A precisão das leituras tanto para 87 Sr/ 86 Sr quanto para 143 Nd/ 144 Nd das amostras foram dadas no nível de 1 sigma, ou seja, 65% de confiança.

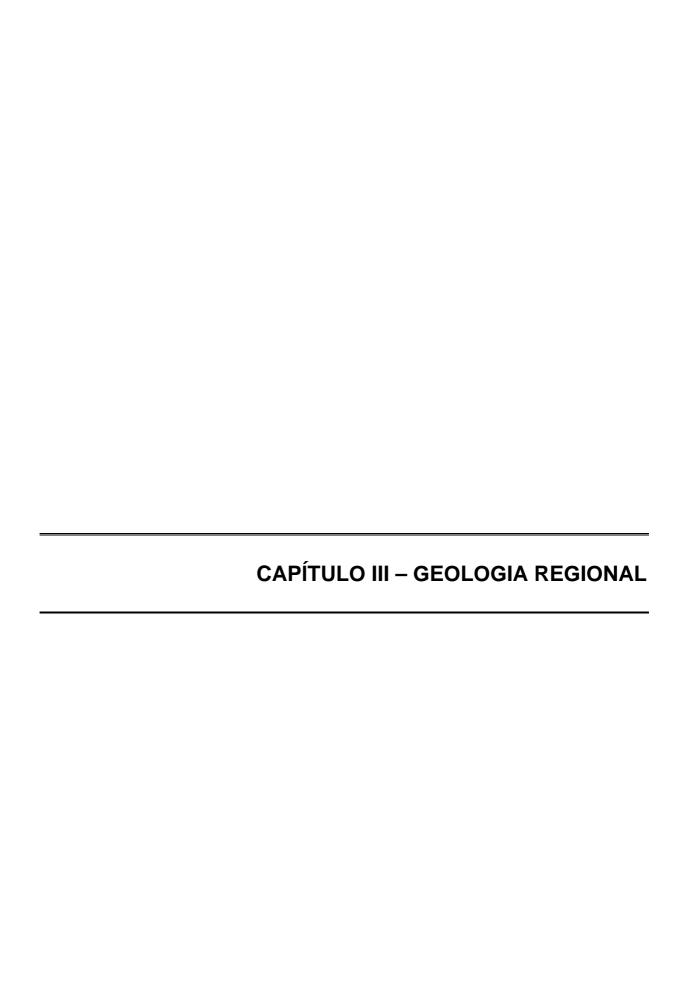
As constantes de decaimento usadas nos cálculo das idades e demais parâmetros geoquímicos são aquelas recomendadas por Steiger & Jager (1977), ⁸⁷Rb=0,0142 Ga⁻¹, e Lugmair & Marti (1978), ¹⁴⁷Sm=0,00654 Ga⁻¹.

II. 5.4.2 - Evaporação de Pb em Monocristais de Zircão

Visando a obtenção das idades de cristalização do Batólito Nordestina (Amostra 1851) e de uma injeção trondhjemítica presente em um dique máfico sinplutônico do BN (Amostra 1898) foram realizadas análises isotópicas de ²⁰⁷Pb/²⁰⁶Pb em 9 cristais de zircão por amostra. Estas análises foram efetuadas igualmente no Laboratório de Geologia Isotópica do Centro de Geociências da Universidade Federal do Pará (Pará-Iso) em um espectrômetro de massa do tipo FINNIGAM MAT 262, sob a supervisão do Dr. Moacir J. B. Macambira.

O método de método de evaporação/ionização de Pb em monocristal de zircão foi desenvolvido por Köber (1986). Segundo Gaudette *et al.* (1998), as idades ²⁰⁷Pb/²⁰⁶Pb obtidas em monocristais de zircão - em amostras de rochas ígneas precambrianas com pouca ou nenhuma evidência de deformação - são similares às idades U-Pb em zircões, com a vantagem de ser mais rápido e simples por não envolver tratamentos químicos, já

que a análise é realizada com as amostras no estado sólido. Entretanto, o elevado erro analítico nas razões ²⁰⁷Pb/²⁰⁶Pb dos zircões pode se constituir em limitação, a precisa determinação da idade de cristalização, particularmente no caso de rochas do Neoproterozóico ou mais jovens. Como os teores de U-Pb não são determinados, os dados isotópicos não podem ser lançados em diagrama concórdia e, conseqüentemente, o grau de discordância dos pontos analíticos não pode ser avaliado. Assim, a idade ²⁰⁷Pb/²⁰⁶Pb deve, portanto, ser considerada como a idade mínima da cristalização ou recristalização do zircão analisado (Andsdell & Kyser 1991).


O espectrômetro de massa empregado possui dois filamentos posicionados frente a frente, sendo um filamento em forma de canoa, onde o zircão é colocado, e um outro filamento de ionização, no qual o Pb é retido e analisado.

Antes do aquecimento do filamento de evaporação faz-se a limpeza prévia do filamento de ionização aquecendo-o para a liberação de algum possível Pb residual.

Em seguida, faz-se o aquecimento do filamento de evaporação, que promove a liberação do chumbo da estrutura cristalina do zircão e a sua deposição no filamento de ionização. Um mesmo cristal de zircão é aquecido a diferentes temperaturas em etapas distintas (1450 °C, 1500 °C, 1550 °C). O tempo de evaporação do zircão para cada temperatura dura em média até 5 minutos.

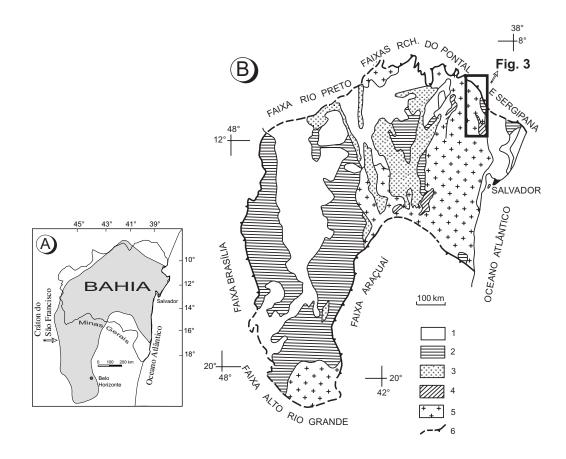
Após cada etapa de aquecimento do filamento de evaporação em temperaturas preestabelecidas, desliga-se o filamento de evaporação e inicia-se o aquecimento gradativo do filamento de ionização, a partir de 1050 °C até 1150 °C. Desta forma, o Pb nele retido é então ionizado. As intensidades dos diferentes isótopos de Pb (204, 206, 207, 208) emitidos são então medidas por um contador de íons, chegando a cinco blocos de leitura, onde cada bloco de leitura equivale a um conjunto de 10 varreduras. Em cada bloco faz-se o cálculo da idade por intermédio da razão ²⁰⁷Pb/²⁰⁶Pb e, por fim, se obtêm a idade média da etapa de aquecimento pela média das razões ²⁰⁷Pb/²⁰⁶Pb dos blocos.

Espectros ²⁰⁷Pb/²⁰⁶Pb são apresentados por amostra em diagrama Idade (Ma) *versus* Etapas de Aquecimento. Este diagrama permite avaliação visual da distribuição dos dados onde se observa que, em geral, cada etapa de aquecimento fornece um platô de idade. As idades obtidas nas diferentes etapas de aquecimento podem diferenciar-se entre si, sendo que, em certos casos, observa-se um acréscimo nas idades no sentido das etapas realizadas às temperaturas mais altas. Quando isso ocorre, são consideradas apenas as idades obtidas nas temperaturas mais altas, pois, nesse caso, o Pb analisado é proveniente das porções mais internas do cristal de zircão e, interpretado como, mais representativo da idade de cristalização deste mineral.

III.1- INTRODUÇÃO

Na porção nordeste do Cráton do São Francisco (CSF - Almeida 1977), localizada no leste do Estado da Bahia, ocorre uma volumosa granitogênese paleoproterozóica, onde foram recentemente identificadas associações tonalítico-trondhjemíticas (Cruz Filho 2000, Rios 2002, Barrueto 2002). A caracterização litogeoquímica e o estudo dos processos petrogenéticos responsáveis pela origem destes tipos de rochas, constitui-se no escopo desta tese, tendo como caso de estudo o Batólito Nordestina.

Neste capítulo será apresentada uma síntese sobre a geologia do CSF e do Núcleo Serrinha, no qual se localiza o Batólito de Nordestina.


III.2 - CONSIDERAÇÕES GERAIS SOBRE O CRÁTON DO SÃO FRANCISCO

O CSF (Almeida 1977) é uma entidade geotectônica do Escudo Pré-Cambriano Brasileiro consolidada no final da Orogenia Transamazônica (1,8-2,2 Ga, Almeida *et al.* 2000), com limites estruturados no final da Orogenia Brasiliana (680-550 Ma, Almeida *et al.* 2000) por colisões que geraram suas faixas de dobramentos marginais. O CSF abrange quase todo o Estado da Bahia e grande parte do Estado de Minas Gerais (Fig. 2A).

O embasamento do CSF pode ser individualizado em associações granitogreenstone e terrenos metamórficos de alto-grau arqueano-paleoproterozóicos. A maior parte deste embasamento encontra-se encoberto por metassedimentos e sedimentos de idades mesoproterozóicas a neoproterozóicas e fanerozóicas, respectivamente (Fig. 2B).

Comparando as características composicionais e deformacionais das regiões de alto grau metamórfico com aquelas dos terrenos granito-greenstone, Mascarenhas (1979) propôs um modelo geotectônico para o Paleoproterozóico no Estado da Bahia. Nele, Mascarenhas (1979) advoga a existência de três núcleos arqueanos (Guanambi a oeste; Remanso ao centro; Serrinha a leste) de natureza granito-greenstone, que se comportaram como um conjunto relativamente rígido aos processos colisionais durante a Orogenia Transamazônica. Resultaram deste evento colisional a estruturação dos terrenos metamórficos de alto-grau entre os núcleos arqueanos (cinturões móveis). O Cinturão Costeiro Atlântico (Silva Filho & Leal 1978, Mascarenhas 1979) situa-se encaixado entre os núcleos Serrinha e Remanso, e o Cinturão Urandi-Paratinga (Rosa et al. 1996) entre os núcleos Remanso e Guanambi (Fig. 2C).

Os núcleos (ou continentes) arqueanos são essencialmente constituídos por rochas polideformadas, migmatizadas e gnaissificadas, que exibem evidências de metamorfismo que variam desde Fácies Anfibolito a Xisto-Verde. Sobre estes terrenos repousam seqüências supracrustais arqueano-paleoproterozóicas, algumas das quais foram caracterizadas como *greenstone belts*, e variadas intrusões graníticas paleoproterozóicas.

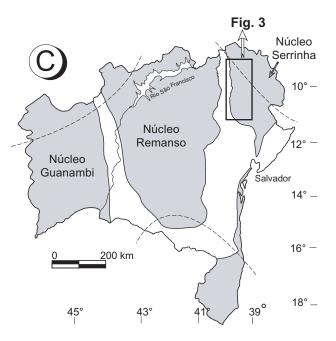


Figura 2. (A) Localização do Cráton do São Francisco no Estado da Bahia. (B) Esboço geológico do Cráton do São Francisco [modificado de Alkmim et al. (1993) apud Sampaio (2001)] com a indicação dos cinturões móveis Brasilianos. Legenda: 1- Sedimentos Fanerozóicos; 2 - Neoproterozóico: Supergrupo São Francisco; 3 - Mesoproterozóico: Supergrupo Espinhaço; 4 - Paleoproterozóico a Arqueano: Grupo Jacobina e complexos vulcano-sedimentares; 5 - Arqueano: Terrenos gnáissicos-migmatíticos; 6 - Limite do cráton; triângulos: Falhas contracionais. (C) Estruturação dos terrenos do embasamento do Cráton São Francisco no Estado da Bahia para o período Paleoproterozóico [Mascarenhas (1979) com limites modificados por Conceição (1990)].

Os cinturões móveis, que correspondem a terrenos metamórficos de alto-grau, são constituídos dominantemente por rochas equilibradas ou re-equilibradas às condições da Fácies Granulito e, subordinadamente, por seqüências meta-vulcanossedimentares (Mascarenhas 1979, Barbosa 1986, Teixeira *et al.* 2000). A questão da idade do metamorfismo granulítico é controversa. Alguns autores advogam que ele seja arqueano (Rb-Sr em rocha total - 2700-2900 Ma; por exemplo, Brito Neves *et al.* 1980, Mascarenhas *et al.* 1984), outros sustentam que ele seja paleoproterozóico (Pb-Pb em monozircão - 2086±18 Ma - 2100±11 Ma; p.ex. Ledru *et al.* 1994, Sabaté *et al.* 1994).

A terminologia Bloco de Jequié, como definida por Pedreira *et al.* (1976) tem posicionamento ainda duvidoso. Para Mascarenhas (1979), este bloco seria apenas uma continuação do Núcleo de Remanso intensamente erodido, embora o mesmo autor em trabalhos anteriores (Mascarenhas 1973,1976) e Almeida (1977) tenham admitido que referido bloco fazia parte de um cinturão móvel, no caso o Cinturão Móvel Costeiro Atlântico.

O modelo geotectônico apresentado por Mascarenhas (1979, 1981) encontra suporte nos levantamentos gravimétricos realizados por Gomes & Mota (1978). Modelos recentes, como, por exemplo, o proposto por Barbosa & Sabaté (2002), acrescentam importantes dados sobre a estrutura interna da parte interiorana do Cinturão Móvel Costeiro Atlântico, renomeado por estes autores como Orógeno Itabuna-Salvador-Curaçá. Todavia, a concepção básica de Mascarenhas (1979) para a estruturação destes dois conjuntos de terrenos no CSF, foi revolucionária em sua época e continua bem atual: existência de núcleos arqueanos colidindo durante a Orogenia Transamazônica.

O Projeto Gavião-Serrinha (Melo 1991, Pereira 1992, Sampaio 1992, Melo *et al.* 1995) caracterizou a evolução do ramo norte do cinturão móvel Costeiro Atlântico, nomeado Cinturão Salvador-Curaçá por Santos & Dalton de Souza (1983), a partir de uma possível crosta oceânica, instalada quando da individualização e separação dos núcleos Remanso e Serrinha, no Neoarqueano, com posterior colisão oblíqua e soldagem de blocos, e tectônica final gerando geometria de flor positiva, durante o período Paleoproterozóico.

III.3 - GEOLOGIA DO NÚCLEO SERRINHA

III. 3.1 - INTRODUÇÃO

O Núcleo Serrinha (Fig. 2C) é uma entidade geotectônica (21.000 km²) alongada N-S que alcança até 100 km de largura. Este núcleo está situado na porção nordeste do CSF, no Estado da Bahia, limita-se a oeste e a sul com os terrenos do Cinturão Móvel Salvador-Curaçá (CMSC; Santos & Dalton de Souza 1983), que representa uma ramificação nortenordeste do Cinturão Móvel Costeiro Atlântico. E, a leste, por um contato tectônico com os

metassedimentos neoproterozóicos, estando parcialmente encobertos por sedimentos fanerozóicos. O NSer é considerado similar ao Núcleo Remanso (também denominado na literatura como cráton ou núcleo Gavião, Lençóis ou ainda de Bloco Gavião) devido às semelhanças litológicas existentes (p. ex. Cordani *et al.* 2000).

O NSer configura-se, portanto, como um segmento de crosta intermediária, de natureza granito-*greenstone*, constituída por rochas granítica-gnáissico-migmatíticas que abriga associações básico-ultrabásicas, corpos de granitos e rochas químico-sedimentares (*metacherts*, calcissilicáticas, quartzitos, mármores), metamorfisadas nas condições da Fácies Anfibolito. Estas rochas servem de embasamento para as seqüências vulcanossedimentares paleoproterozóicas, denominadas de Grupo Capim e *Greenstone Belt* do Rio Itapicuru, e para um variado cortejo de intrusões graníticas (Fig. 3).

Nesta síntese sobre o NSer será dado um maior enfoque aos aspectos geológicos do setor sul deste núcleo, que além ser o mais estudado, abriga a área do presente estudo.

III. 3.2 - SUCESSÃO LITO-ESTRATIGRÁFICA

Embasamento

Os terrenos do embasamento do NSer têm sido individualizados em dois complexos tectono-metamórficos distintos, a saber, Complexo Metamórfico Uauá (CMU - Figueiredo & Barbosa 1993, Bastos Leal *et al.* 1994, Alves da Silva 1994), a nordeste, e Complexo Santa Luz (CSL - Davison *et al.* 1988, Melo *et al.* 1995), a sudoeste, separados entre si por um cinturão quartzito-gnaíssico denominado de Cinturão Caldeirão (CC - Jordan 1972) (Fig. 3). O CMU e o CC são limitados por uma importante zona de cisalhamento de direção geral NNW-SSE, localizado entre a cidade de Uauá e a vila Caldeirão da Serra, com cerca de 2 km de largura e denominada de Zona de Cisalhamento Pedra Grande (Oliveira *et al.* 1999a) (Fig. 3). Já o contato entre o CC e o CSL é descrito como sendo gradacional por Oliveira *et al.* (2002). As relações precisas entre estes segmentos do embasamento permanecem ainda em aberto, carecendo de estudos petrográficos, litogeoquímicos, geocronológicos e isotópicos detalhados.

Complexo Metamórfico Uauá

O CMU, situado na borda nordeste do NSer, abrange rochas gnáissicomigmatíticas com predomínio de gnaisses bandados na direção NW (a oeste), e uma estreita faixa de rochas granulíticas (a leste), que representam o embasamento siálico da seqüência Grupo Capim. Esta diversidade de características litológicas e metamórficas expostas no CMU representa segundo Jardim de Sá *et al.* (1984) a

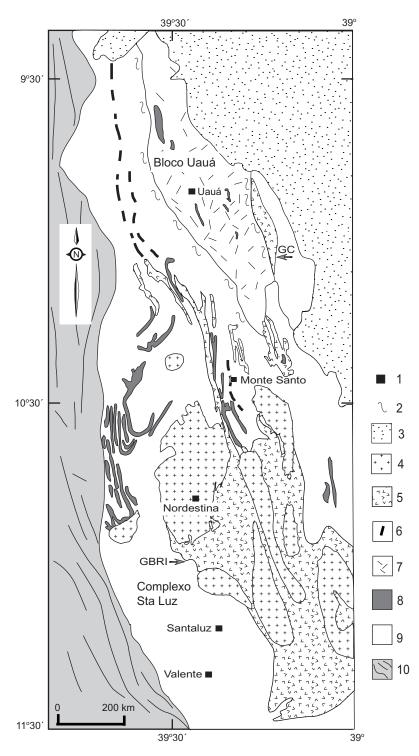


Figura 3. Mapa geológico simplificado do Núcleo Serrinha [adaptado de Rios *et al.* (1998) e Oliveira *et al.* (2002)]. Legenda: 1. Cidades; 2. Zona de cisalhamento; 3. Rochas Metassedimentares do Fanerozóico e Neoproterozóico; 4. Granitóides; 5. Seqüências vulcanossedimentares: *Greenstone Belt* do Rio Itapicuru (GBRI) e Grupo Capim (GC); 6. Quartzitos Caldeirão; 7. Diques máficos; 8. Corpos máficos e ultramáficos; 9. Embasamento gnáissico-migmatítico; 10. Cinturão Móvel Salvador-Curaçá.

exposição de diferentes níveis crustais ladeados através de duas zonas de cisalhamento com direção norte-sul. Estas estruturas limitam parcialmente o Grupo Capim, sendo responsáveis por sua forma sigmoidal e sugerem a existência de uma pequena fossa tectônica que o abrigaria.

No CMU as rochas exibem uma xistosidade (S1) de plano axial bem desenvolvida segundo a orientação NNW-SSE e que apresentam mergulhos geralmente fortes (70° a 80°) para NE, a norte, e para SW, a sul (Winge & Danni 1980, Winge 1981, Jardim de Sá *et al.* 1984).

Os gnaisses bandados ocorrem limitados por zonas de cisalhamento com a sequência Grupo Capim, a leste, e com o CC, a oeste. Eles afloram como um bloco soerguido com forma de paralelogramo ou sigmóide (Jardim de Sá et al. 1984). Oliveira et al. (1982) o tem denominado de Bloco Uauá. Segundo Mello et al. (1999a) e Oliveira et al. (1999a, 2002) os gnaisses bandados são de idade desconhecida, entretanto alguns autores (p.ex. Mascarenhas & Sá 1982, Mascarenhas & Garcia 1989, Bastos Leal 1992) definem o intervalo de 2,7-3,1 Ga (Rb-Sr em rocha total) como principal período de evolução tectono-metamórfica destas rochas. gnaisses abrigam o Complexo Anortosítico de Lagoa da Vaca (3,16 Ga, Pb-Pb em rocha total; Paixão & Oliveira, 1998), complexos peridotíticos e dioríticos arqueanos, e corpos tonalítico-granodioríticos (3,12 Ga a 2,9 Ga; Rb-Sr e Pb-Pb em rocha total, U-Pb em zircão; Mascarenhas & Sá 1982; Cordani et al. 1999; Oliveira et al. 1999a; Tab. 1). Muitas destas rochas encontram-se metamorfisadas a altura da Fácies Granulito e, posteriormente, retrometamorfisadas na Fácies Anfibolito. Após os principais episódios de intrusão de granitos e de metamorfismo granulítico, com idade mínima de 3,07 Ga (Pb-Pb em zircão - Paixão et al. 1995), este embasamento arqueano foi transectado por enxames de diques máficos noríticos, de natureza toleiítica, pegmatitos e uns poucos corpos graníticos de idade desconhecida (p.ex. corpo granítico Riacho do Traga; Tezini & Oliveira 2002). Estas rochas são os embasamentos da seqüência vulcanossedimentar Rio Capim dos metassedimentos continentais da Faixa Sergipana (Oliveira et al. 1999a, 2002). Com base nas relações de campo Oliveira et al. (1999b, 2000) identificaram a existência de dois enxames principais de diques máficos. O conjunto mais antigo (2,7 Ga e 2,9 Ga, Oliveira et al. 1999b) tem orientação EW a NW e compreende diques básicos fortemente deformados e metamorfisados (anfibolitos). O segundo conjunto de diques é mais jovem (2,38 Ga e 1,98 Ga - Bastos Leal et al. 1994 e 2,6 Ga - Oliveira et al. 1999b), tem orientação NNE e não se encontra afetado por deformações dúcteis. Esses diques máficos não cortam a sequência Rio Capim (2,2-2,1 Ga -Oliveira et al. 1998). Idades K-Ar de 1,8-2,2 Ga em anfibólios e biotitas em

Tabela 1. Dados geocronológicos e isotópicos do Núcleo Serrinha.

Unidade	Litol.	Mat.	Método	Idade(Ma)	Observações	Re
Bloco Uauá		A = 4 = D4	16. A.,	4000 0000	Communicate Transportation	
Ortognaisses Gnaisse	gd gd	Anf e Bt RT	K-Ar Rb-Sr	1800-2200 2700-3100	Superposição Transamazônica RI=0.701 a 0.704	7
Complexo máfico-ultramáfico	gu	Κī	KD-SI	2700-3100	KI=0,701 a 0,704	,
Anortosito Lagoa da Vaca	Anort.	RT	Pb/Pb	3161±65		1
onalito-granodioritos intrusivos	Alloit.	IXI	r b/r b	3101±03		
Fonalito Rio Capim JM-BA 180/182	to	RT	Rb-Sr	3016±109	Afl.;RI=0,7036; MSWD =1,01(n=5)	2
Fonalito Rio Capim	to	RT	Rb-Sr	3120	Contém enclaves máficos	;
Fonalito Rio Capim	to	Zr	U/Pb (SHRIMP)	3050-3130±50	Contem chelaves manees	
Fonalito Rio Capim	to	Zr	U/Pb (SHRIMP)	3120	intercepto inferior 700 ma	
Ortogranulito Rio da Vargem (EO-44,44.1)	to	Zr	Pb/Pb	3072	Idade mínima para o met. granulítico	
Ortogranulitos Rio da Vargem (EO-44)	to	RT	Sm-Nd	3278	TDM; eNd(3072) = -0,57	
Ortogranulitos Rio da Vargem (EO-44.1)	to	RT	Sm-Nd	3336	TDM; $eNd(3072) = -2,22$	·
Gnaisse porfirítico Caratacá (UA96-3.1)	gd	Zr	U/Pb (DI)	3070 ± 3	1 DIVI, CIVO(3012) = 2,22	
Gnaisse porfirítico Carataca (UA96-3.1)	gd	RT	Sm-Nd	3256	TDM; eNd(3070) = -1,81	
Enderbito da pedreira de Uauá (EO-137.3)	End.	Zr	U/Pb (DI)	2933 ± 3	1 DIVI, e14d(3070) = -1,01	
Enderbito da pedreira de Uauá (EO-137.3)	End.	RT	Sm-Nd	3126	TDM; eNd(2933) = -0,69	
		IXI		2991 ± 22	1 DIVI, e14d(2333) = -0,03	
Ortognaisses a SE de Uauá (EO-132)	gd	рт	U/Pb (DI)		TDM: aNd(2004) +4.64	;
Ortognaisses a SE de Uauá (EO-132)	gd	RT	Sm-Nd	3047 ?	TDM; eNd(2991) = +1,61	
Gnaisse cinza S de Uauá (UA96-2.3)	gd	Zr	U/Pb (DI)	2956 ± 39	c/ xenólitos dos gnaisses bandados	
Gnaisse cinza S de Uauá (UA96-2.3)	gd	RT	Sm-Nd	2965	TDM; $eNd(2956) = +1,69$	•
Enxame de diques máficos Uauá		A . *	12 A .	04 44 4000	Destrict the second of the sec	
Dique anfibolítico com trend NW		Anf.	K-Ar	2144-1930	Resfriamento regional do CT	1
Dique anfibolítico com trend NW		RT	Sm-Nd	2895±170		
Dique piroxenítico-norítico com trend NW		RT	Sm-Nd	2744±65		
Dique norítico-toleítico com trend N-NE		RT	Sm-Nd	2586±66	D	
Dique máfico NNE - 1ª G		RT;CM;CF	Rb-Sr	2384±114	RI=0,7008; MSW D=0,8	1
Dique máfico NNE - 2ª G		RT;CM;CF	Rb-Sr	1983±31	RI=0,702; MSWD=2,6	1
Dique máfico NNE deformado a Sul de Uauá		sp-met.	U/Pb (DI)	2039±2	borda;idade de deform. e metamorf.	
Dique máfico NNE deformado a Sul de Uauá		Zr	U/Pb (DI)	2519-2793	centro do dique	1
Dique máfico NNE deformado		RT	K-Ar	2000	prox. zona de cis. Galo do Ouro	1
Seqüência do Grupo Capim						
Diques félsicos do Rio Capim		RT	Pb/Pb	2293±114	Intrude embasamento CU	-
Diorito do Rio Capim		Zr	U/Pb	2148±23		
Leucogabro do Rio Capim		Zr	U-Pb	2143±21		
Metavulcânica félsica	And	RT	Pb/Pb	2153±79		
Metapelito Rio Capim (UA96-8.4)		RT	Sm-Nd	2522	TDM	
Cinturão Caldeirão						
Ortognaisses do Cinturão Caldeirão	gd	bt	K-Ar	722±36	Leste de Mte. Sto	1
Ortognaisses do Cinturão Caldeirão (EO-150A)	gd	Zr	U/Pb (SHRIMP)	3152±5	idad. cristal. do protólito gran.	1
Ortognaisses do Cinturão Caldeirão (EO-150A)	gd	RT	Sm-Nd	3144	TDM; eNd(3000?) = -0,32	
Quarzito de Monte Santo	•	Zr (b)	U/Pb (SHRIMP)	2076±10	BSC; n=7; met.transamazônico	1
Quarzito de Monte Santo		Zr (n)	U/Pb (SHRIMP)	3051±13	n=6; idade da fonte do gzito	1
Quarzito de Monte Santo		Zr (n)	U/Pb (SHRIMP)	3097±11	n=7;idade da rxa fonte do qzito	1
Quarzito de Monte Santo		Zr (n)	U/Pb (SHRIMP)	3204±9	n=2	1
Quarzito de Monte Santo		Zr (n)	U/Pb (SHRIMP)	2687±16	n=1;início da depososição	1
Metapelito		RT	Sm-Nd	3185	TDM	
Metapelito		RT	Sm-Nd	3223	TDM	
Setor Sul		IX1	Sili i Vu	3223	i Divi	
Complexo Santa Luz						
Somplexo Santa Euz Snaisse	gd	RT	Rb-Sr	2500±300		1
Gnaisse Gnaisse	gd gd	RT	Rb-Sr	3000±300		-
anaisse Gnaisse	_	Zr	Pb/Pb	2050±100	²⁰⁴ Pb/ ²⁰⁷ Pb<0,0010	1
	gd	Zr		3102±5		3
Snaisse-migmatito			U/Pb (DI)	3102±5 2093±4	n=3 n=1:sobrecrescimento no zircão	
Gnaisse-migmatito		Zr	U/Pb (DI)		,	3
Anfibolito		Zr	U/Pb (DI)	2078±1	n=4; zircões metamórficos	3
Greenstone Belt do Rio Itapicuru		F.=	DI /C:	0000 00	MOWD 4 5	
Unidade Metavulcânica Máfica	ba	RT	Pb/Pb	2209±60	MSWD=1,5; μ_1 = 8,1	1
Unidade Metavulcânica Máfica	ba	RT	Sm-Nd	2200	TDM; _E Nd=+4(7 ams) e _E Nd=-3,5 (1 am)	
Unidade Metavulcânica Félsica	And	RT	Rb-Sr	2080±90	RI=0.7017;MSWD=1,03	1
Unidade Metavulcânica Félsica	And	Zr	Pb-Pb	2178±23		1
Unidade Metavulcânica Félsica	And	RT	Pb/Pb	2109±80	MSW D=2; μ_1 = 8,0	1
Unidade Metavulcânica Félsica	And	RT	Sm-Nd	2120	TDM;eNd=+2	1
Unidade Metassedimentar	Grauv.	RT	Sm-Nd	2000	TDM;eNd=-1,5	1
Unidade Metassedimentar	Pelito	RT	Sm-Nd	2488	TDM	
Unidade Metassedimentar	Pelito	RT	Sm-Nd	2442	TDM	
netavulcânicas		RT	K-Ar	1956±60		1
netavulcânicas		RT	K-Ar	2085±45		1
Mineralização Aurifera						
Mina da Fazenda Brasileiro	Min.	Bt-Mc	Ar-Ar	2031-2084	Zona hidrotermal	1
Mina da Fazenda Brasileiro	Sch	Mc	Ar-Ar	2054±2	Alteração hidrotermal	1
	Sch	Mc	Ar-Ar	2050±4	Alteração hidrotermal	1
Mina da Fazenda Brasileiro						
Mina da Fazenda Brasileiro Mina da Fazenda Brasileiro	Sch	RT	Rb-Sr		RI=0,70238 a 0,70597	1

Unidade	Litol.	Mat.	Método	Idade(Ma)	Observações	Re
Magmatismo Granítico no Setor Sul						
Magmatismo Arqueano (3,2-2,7Ga)						
- Araci	gd/to	RT	Rb-Sr	2233±84	Afl.;RI=0,7025, MSWD=0,1180, n=4	1
- Araci	gr	Zr	U/Pb	3072±2	n=3	3
- Araci	_	RT	Sm-Nd	3120	TDM;εNd(3070)= +0,93	2
	gr					
- Ambrósio	gr	RT	Rb-Sr	2596±272	Afl.;RI=0,7084;MSWD=6,24, n=4; N gr	1
- Ambrósio		RT	Rb-Sr	1900	RI=0,708	1
- Ambrósio	to	Zr	Pb/Pb	1948±28	²⁰⁴ Pb/ ²⁰⁷ Pb _{monozircão} <0,0001	1
- Ambrósio		Zr	Pb/Pb	2500-1850	monoziroao ,	2
						2
Ambrósio		Mz	Pb/Pb	2100		
- Ambrósio	gn	Zr	U/Pb	2930±32	borda do maciço	1
- Ambrósio	to	Zr	U/Pb	> 3070		1
- Ambrósio	gd-mac.	Zr	U/Pb (SHRIMP)	2937-3162	n=11;Granodiorito maciço	2
· Ambrósio	gd-mac.	Zr	Ù/Pb ´	2077±22	n=4; Zr. metamórfico	2
· Ambrosio	•	Zr	U/Pb	3190	n=3; excesso de espalhamento	2
	gd-porf				· · · · · · · · · · · · · · · · · · ·	
Ambrósio/gd porfirítico	gd-porf	Zr	U/Pb	2063±55	n=3; excesso de espalhamento	2
· Ambrósio	gn-mig	Zr (b,n)	U/Pb (SHRIMP)	3094-3159	Enclave gnaissico	2
Ambrósio	Tdh	Zr	U/Pb (DI)	3088±6	n=5	3
- Ambrósio	Tdh	Zr	U/Pb (DI)	3169±7	n=1;xenocristal	3
					II= I,XeIIOCIIStai	
Pegmatito em Ambrósio	pegmat	RT	Rb-Sr	2031±59	_,	2
Pegmatito em Ambrósio	pegmat	RT	Rb-Sr	2015±59	RI= 0,70993; MSWD =1,42	2
Dique em Ambrósio	gd	X	U/Pb (SHRIMP)	2080±2	n=17	2
Dique em Ambrósio	lc-gr	Zr	Ù/Pb ´	2079±47		1
Pedra Alta	gn	bt	K-Ar	2040±69		1
	_					
Pedra Alta	gn	musc	K-Ar	2012±38		1
Pedra Alta	to	Zr	U/Pb	3000	2 grãos; ICP-MS/LA	2
Pedra Alta	to	Zr	U/Pb	2900	2 grãos; ICP-MS/LA	2
Pedra Alta	to	Zr	U/Pb	2650	2 grãos; ICP-MS/LA	2
Pedra Alta	to	Zr	U/Pb	2000	1 grão; ICP-MS/LA	2
					9	
Pedra Alta	gd	RT	Sm-Nd	3170	TDM; $eNd(3078) = +0.23$; $Sri=0.700$	3
Requeijão	gd	Zr	U/Pb (DI)	2870	n=5	3
- Poço Grande		Mc	Ar-Ar	2023±13		2
- Poço Grande		Mz	U/Pb	2079±47		1
Poço Grande		Zr	U/Pb	2645±70		1
		۷.	U/Fb	2045±10		'
Magmatismo Cálcio-alcalino (2,16-2,12 Ga)						
- Eficeas	Tdh	Zr	U/Pb (DI)	2163±5	n=3	3
- Eficeas		RT	Sm-Nd	2330	TDM; $eNd(2163) = +1,64$	3
-Trilhado	gd	Mz	U/Pb (SHRIMP)	2152±6	n=13	2
	-					
-Trilhado	gd	Zr (b,n)	U/Pb (SHRIMP)	2155±9	n=7	2
-Trilhado	gd	RT	Sm-Nd	2198	TDM; eNd(2152) = 2,65; Sri = 0,7017	2
-Trilhado	gd	RT	Sm-Nd	2216	TDM; $eNd(2152) = 2,41$	2
- Lagoa dos Bois		Bt	K-Ar	2030±100		2
- Lagoa dos Bois	ar	RT	Rb-Sr	1800±60		25
<u> </u>	gr					
- Lagoa dos Bois		Zr	U/Pb	2107±23		1
- Lagoa dos Bois	gr	Zr	U/Pb (DI)	2067±142	n=2	3
- Nordestina		RT	Rb-Sr	2000	RI=0.703	1
- Nordestina		RT	Rb-Sr	2114±103	RI=0.705	1
Nordestina	_	Zr	Pb-Pb	2100±10	dispersos; n=4	2
- Nordestina	Tdh	Zr	Pb-Pb	2004±103		2
- Quijingue	gd	Zr	U/Pb (DI)	2155±3	n=6	3
· Quijingue	gd	Zr	U/Pb (DI)	3614-3620	n=3; xenocristal	3
			٠,,			
- Quijingue	gd	Zr	U/Pb (DI)	2892±2	n=1; xenocristal	3
Quijingue	gd	RT	Sm-Nd	3270	TDM; eNd(2155) = -11,6; Sri=0,7051	3
- Barrocas		Bt	K-Ar	2029±13		2
- Barrocas		Zr	Pb/Pb	2127±5	n=5	2
	to.					
- Teofilândia	to	Zr	U/Pb (SHRIMP)	2130±7	n=10	2
- Teofilândia	to	RT	Sm-Nd	2206	TDM; $eNd(2130) = 2,14$; $Sri = 0,7025$	2
- Teofilândia-dique	to	Zr	U/Pb (SHRIMP)	2128±8	Qzo-Fss Pórfiro;n=5	2
- Teofilândia-dique		RT	Sm-Nd	2184	TDM; $eNd(2128) = 2,45$	2
•	~-					
- Cipó	gr	Zr	U/Pb (DI)	2164±2	n=3	3
Cipó	gr	Zr	Pb/Pb	2050±51		3
Magmatismo Shoshonítico (2,10-2,08 Ga)						
- Euclides		Zr	U/Pb (DI)	2097±8		3
			, ,			
Araras		Zr	U/Pb (DI)	2076±1,5		3
- Cansanção	monz	RT	Rb-Sr	2025±47	RI=0.7033;MSWD=0,74	2
- Cansanção	monz	Zr	Pb/Pb	2105±3		2
- Cansanção	monz	RT	Sm-Nd	2380	TDM;εNd=-3,0	2
	1110112					
		Zr	U/Pb (DI)	2106±2		3
		_	Pb/Pb	2097±16		1
Magmatismo Sienítico (2,10-2,07Ga)	lc-sn	Zr	1 6/1 6			
Magmatismo Sienítico (2,10-2,07Ga) · Morro do Afonso					zircão herdado	
Magmatismo Sienítico (2,10-2,07Ga) · Morro do Afonso · Morro do Afonso	lc-sn	Zr	Pb/Pb	2641±4	zircão herdado	
Magmatismo Sienítico (2,10-2,07Ga) - Morro do Afonso - Morro do Afonso - Morro do Afonso	lc-sn sn-mes.	Zr Zr	Pb/Pb Pb/Pb	2641±4 2081±27	²⁰⁴ Pb/ ²⁰⁷ Pb _{monozircão} <0,001	1
Magmatismo Sienítico (2,10-2,07Ga) - Morro do Afonso - Morro do Afonso - Morro do Afonso	lc-sn	Zr	Pb/Pb	2641±4	²⁰⁴ Pb/ ²⁰⁷ Pb _{monozircão} <0,001	1
- Itareru Magmatismo Sienítico (2,10-2,07Ga) - Morro do Afonso - Morro do Afonso - Morro do Afonso - Agulhas-Bananas - Agulhas-Bananas	lc-sn sn-mes.	Zr Zr	Pb/Pb Pb/Pb	2641±4 2081±27	zircão herdado ²⁰⁴ Pb/ ²⁰⁷ Pb _{monozircão} <0,001 ²⁰⁴ Pb/ ²⁰⁷ Pb _{monozircão} <0,0004	2 1 1 1

Unidade	Litol.	Mat.	Método	Idade(Ma)	Observações	Ref.
Magmatismo Granítico no Setor Sul						
Magmatismo granito-K (2,08-2,07Ga)						
- Marmota (Granitos tipo Morro do Lopes)	gr	bt	K-Ar	1791±53		16
- Marmota (Granitos tipo Morro do Lopes)		Zr	Pb/Pb	2003±2	²⁰⁴ Pb/ ²⁰⁷ Pb _{monozircão} <0,0004	27
- Marmota (Granitos tipo Morro do Lopes)		Zr	Pb/Pb	3002±1	(Zr herdado)	27
- Fazenda Bananas (GML)	gr-grd	zr	U/Pb (DI)	2072±1	Dil. Isotópica	14
- Alto do Bonito		zr	U/Pb (DI)	2076±6Ma		30
- Maravilha	hb-gr	zr	U/Pb (DI)	2071±1Ma		30
-Pedra Vermelha		zr	U/Pb (DI)	2080±7Ma		
-Barroquinha		RT	Rb-Sr	1962	RI= 0,7466	29
- Santa Luz	gr	bt	K-Ar	1791±53		16
- Santa Luz		zr	U/Pb	2100	GML??? ou LB	17
- Poço Grande		musc	Ar-Ar	2023±13		14
- Curral	gd	Zr	Pb/Pb	2076±19		14
- Curral	gd	Zr	Pb/Pb	2468±3		14
- Curral	gd	Zr	Pb/Pb	2862±5		14

Abreviaturas utilizadas: Afl. (Isócrona de Afloramento); And (Andesito); Anf (Anfibólio); Anort. (Anortosito); ba (basalto); Bt (Biotita); CT (Ciclo Transamazônico); DI (Diluição Isotópica); End (Enderbito); Ic-gr (Ieuco-granito); gd (granodiorito); gd-mac (granodiorito maciço); gd-porf (granodiorito porfirítico); gn (gnaisse); gn-mig (gnaisse migmatítico); Grauv (Grauvaca); gr (granito); hb-gr (hornblenda granito); Ic-sn (Ieuco-sienito); Mat (Material Analisado); Min (Mineralização); monz (Monzonito); MSWD (Mean Squares of Weighted Deviates); Mz (Monazita); Mc=musc (muscovita); n (número de análises); pegmat (pegmatito); RI (Razão Inicial); RT (rocha total); Sch (Scheelita); sn (sienito); sn-mes (sienito mesocrático); Tdh (Trondhjemito); TDM (Idade modelo manto depletado); to (tonalito); X (xenótimo); Zr (zircão); Zr (b,n) (zircão borda, núcleo).

Referências: 1. Paixão & Oliveira 1998; 2. Cordani et al. 1999; 3. Mascarenhas & Sá 1982; 4. Paixão et al. 1995; 5. Oliveira et al. 1999a; 6. Oliveira et al. 1998; 7. Bastos Leal 1992; 8. Oliveira et al. 2002; 9. Oliveira et al. 2000; 10. Bastos Leal et al. 1994; 11. Mascarenhas & Garcia 1987; 12. Mello et al. 1999a; 13. Oliveira et al. 1999b; 14. Rios et al. 2000; 15. Silva 1992b; 16. Brito Neves et al. 1980; 17. Gaal et al. 1987; 18. Silva 1992a; 19. Vasconcelos & Becker 1992; 20. Mello 2000; 21. Batista et al. 1998; 23. Teixeira 1993; 24. Mello et al. 1999b; 25. Alves da Silva 1994; 26. Cordani et al. 1969; 27. Rios et al. 1998; 28. Sabaté et al. 1990; 29. Pereira 1992; 30. Rios 2002.

ortognaisses e diques máficos indicam atuação da Orogenia Transamazônica nesta região (Bastos Leal 1992, Bastos Leal *et al.* 1994).

Oliveira et al. (2001, 2002) têm advogado que este bloco representa uma extrusão tectônica que ocorre em resposta ao esforço de acomodação após o evento colisional entre os núcleos arqueanos Remanso e Serrinha que resultaram na estruturação do CMSC no paleoproterozóico.

No bloco leste entre a seqüência vulcanossedimentar Grupo Capim e a Faixa Sergipana aflora uma estreita faixa de rochas granulíticas, com retrometamorfismo anfibolítico e com intensa migmatização, interpretada por Jardim de Sá *et al.* (1984) e Mascarenhas *et al.* (1984) como remanescentes de rochas granulíticas e restos de seqüências supracrustais do Complexo Capim.

Cinturão Caldeirão

Este cinturão (Jordan 1972) é formado por um conjunto de rochas supracrustais siliciclásticas (quartzitos com metapelitos associados) - com mergulhos abruptos para leste - gnaisses migmatíticos e rochas graníticas e máficas deformadas, localizadas a oeste da zona de cisalhamento Pedra Grande. Segundo

alguns autores (p.ex. Alves da Silva 1994) essa unidade marcaria a interface entre os Complexos Uauá e Santa Luz. Oliveira et al. (2002) consideram que este cinturão, metamorfisado na Fácies Anfibolito, pertencente ao CSL. Os cristais de zircão de ortognaisses deste cinturão forneceram uma idade de 3,1 Ga (U-Pb SHRIMP - Mello et al. 1999a). Um quartzito, próximo a Monte Santo, tem cristais de zircão detríticos com idades U-Pb (SHRIMP) entre 2,7 Ga e 3,2 Ga em seus núcleos preservados e de 2,08 Ga em suas bordas (Melo et al. 1999a). O primeiro conjunto de idade é interpretado como de fontes arqueanas (p.ex. Bloco Uauá ou áreas similares), enquanto que a segunda população de cristais caracteriza o tempo de deformação e metamorfismo regional de alto grau das rochas e a inversão da bacia onde foram depositados os sedimentos (Oliveira et al. 2002).

Complexo Santa Luz

O conjunto gnáissico-granítico-migmatítico que ocorre no sul-sudoeste do NSer foi incluído por Seixas *et al.* (1975) no Complexo Metamórfico-Migmatítico, sendo denominado por Davison *et al.* (1988) de "Complexo Gnáissico Santa Luz" e considerado como o embasamento do GBRI (Fig. 4). Melo *et al.* (1995) individualizaram neste complexo quatro agrupamentos distintos de rochas, dois dos quais são considerados como embasamento por outros autores (p.ex. Pereira 1992, Rios 2002). Os conjuntos litológicos considerados embasamento são: (i) os gnaisses e migmatitos com anfibolitos associados e (ii) os gnaisses bandados, gnaisses a granada e sillimanita e rochas cálcio-silicáticas. Todo este conjunto encontra-se afetado por metamorfismo na Fácies Anfibolito (Pereira 1992).

Segundo Rios (2002) os gnaisses bandados parecem contornar os núcleos gnáissico-migmatíticos, os quais são intrudidos por inúmeros maciços graníticos. Os dados químicos das rochas gnáissico-migmatíticas evidenciaram afinidades com suítes TTG e cálcio-alcalina normal (Rios 2002). Os anfibolitos, que ocorrem ora como enclaves ora como níveis concordantes ou discordantes nas rochas gnáissico-migmatíticas correspondem quimicamente a monzodioritos, dioritos e quartzo-dioritos, com afinidades toleiítica e cálcio-alcalina, sendo que os anfibolitos toleiíticos apresentam quimismo semelhante aos basaltos do GBRI, diferenciando-se deles pelo maior conteúdo de elementos terra raras (Rios 2002).

Os dados geocronológicos disponíveis (Tab. 1) para este setor do embasamento, por exemplo, Mascarenhas & Garcia (1987, Rb-Sr) e Rios (2002, U-Pb em monozircão), apontam para idades em torno de 3,1 Ga. Entretanto, idade mais antiga para o embasamento foi documentada em xenocristais de zircão no Maciço de Quinjingue, com valor de 3,6 Ga (Rios 2002). Já aquelas idades de 2,0 Ga

(U-Pb; Rios 2002) e 2,05 Ga (Pb-Pb; Rios *et al.* 2000) obtidas em cristais de zircão de anfibolitos e gnaisses do embasamento, respectivamente, são interpretadas como a expressão de metamorfismo transamazônico (Rios 2002).

O **Complexo Santa Luz** é considerado o embasamento do GBRI, embora segundo Melo *et al.* (1995) não sejam observadas em campo as relações de contato entre estas duas unidades. Todo este conjunto de rochas encontra-se intrudido por plutões de granitos sincrônicos e tardios que marcam os passos da evolução transamazônica no setor sul do NSer (Fig. 4). Neste embasamento encontram-se ainda a presença de corpos estreitos de rochas ultramáficas cromitíferas, nas proximidades de Santa Luz e em Queimadas (Kishida 1979).

Sequências Vulcanossedimentares

O Grupo Capim (Winge & Danni 1980, Winge 1981; Fig. 3), situa-se no setor nortenordeste do NSer, a leste da Cidade de Uauá, e corresponde a uma següência de rochas vulcanossedimentares (130 km²) estruturadas na forma de um sinclinório sigmoidal alongado na direção NW-SE e delimitado com o embasamento por falhas transcorrentes a inversas (Winge 1984). Neste grupo predominam rochas meta-máficas na base, seguidas por meta-vulcânicas ácidas e meta-vulcanoclásticas (Winge 1984). As rochas desta sequência mostram, de oeste para leste, um zoneamento metamórfico da Fácies Xisto-Verde à Fácies Granulito de baixa pressão (Jardim de Sá et al. 1984, Oliveira et al. 1998). A presença de meta-cherts, sulfetos e carbonatos ocorrendo de forma ampla nos terrenos deste grupo apontam, segundo Winge (1984), para um ambiente predominantemente marinho. A presença de vulcanismo basáltico toleiítico e ácido cálcio-alcalino conduziram Winge (1984) a propor para esta sequência um modelo evolutivo do tipo bacia de back-arc ensiálica. As rochas do Grupo Capim forneceram através de uma isócrona Rb-Sr de referência a idade de 2,17 Ga (Brito Neves et al. 1980). Oliveira et al. (1998) obtiveram a idade de 2,1 Ga para as rochas vulcânicas félsicas e de 2,2 Ga para os diques félsicos intrusivos no embasamento. Verifica-se que todas estas idades se superpõem ao limite proposto por Silva (1991) para a formação da Bacia do Rio Itapicuru (2,2-2,1 Ga) descrita a seguir. Alguns autores sugerem a possibilidade do Grupo Capim representar um prolongamento ou ser um equivalente em grau metamórfico mais elevado do GBRI (Kishida & Riccio 1981, Mascarenhas 1976, Oliveira et al. 1998).

O *Greenstone Belt* do Rio Itapicuru (Kishida 1979), localizado na porção meridional do NSer ao longo do curso médio do rio homônimo, tem estrutura alongada (170 km de extensão por 15 km de largura) na forma de sinformes de direção norte-sul e com mergulhos suaves, porém com tendência a contornar os domos graníticos (Fig. 4). Na região ao sul da cidade de Araci os eixos das estruturas orientam-se E-W (Melo *et al.* 1995). A xistosidade é

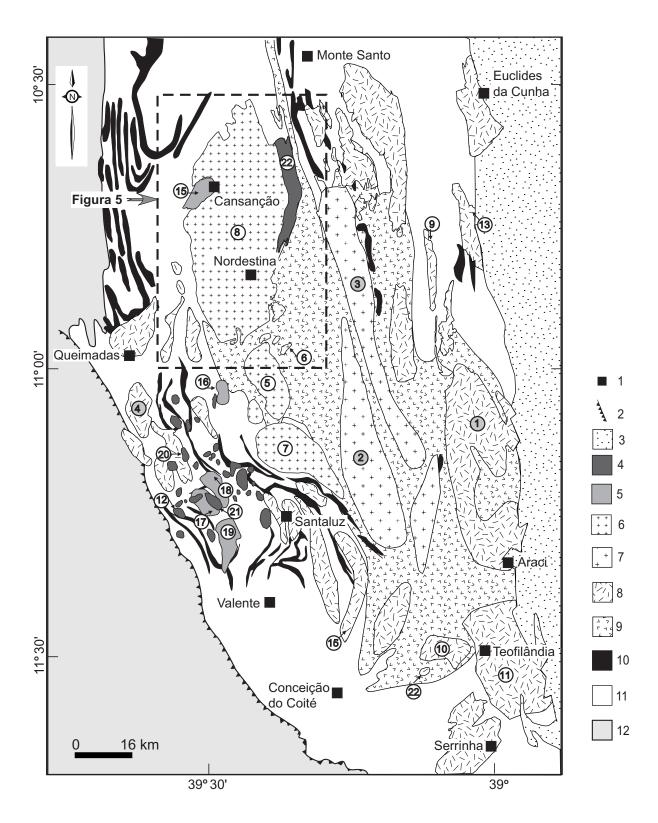


Figura 4. Mapa geológico simplificado do setor sul do NSer apresentando a sucessão estratigráfica de Rios *et al.* (1998) para a granitogênese. Legenda: 1. Cidades; 2. Falhas de empurrão; 3. Coberturas; 4. Granito tipo G5; 5. Granito tipo G4; 6. Granito tipo G3; 7. Granito tipo G2; 8. Granito tipo G1; 9. GBRI; 10. Anfibolitos; 11. Embasamento gnáissico-migmatítico; 12. Cinturão Móvel Salvador-Curaçá. Os números correspondem a proposta de Rios (2002): (i) Magmatismo Arqueano (círculos preenchidos) [1.Araci, 2. Ambrósio, 3. Pedra Alta, 4. Requeijão]; e (ii) Magmatismo Paleoproterozóico (círculos vazios) [(Granitos cálcio-alcalinos: 5. Eficéas, 6. Trilhado, 7. Lagoa dos Bois, 8. Nordestina, 9. Quijingue, 10. Barrocas, 11. Teofilândia, 12. Cipó; Monzonitos Shoshoníticos: 13. Euclides da Cunha, 14. Cansanção, 15.Itareru; Sienitos: 16. Morro do Afonso, 17. Agulhas, 18. Bananas, 19. Serra do Pintado; Granitos Peraluminosos ricos em Potássio: 20. Marmota, 21. Fazenda Bananas, 22. Barroquinhas e 23. Maravilha)].

a foliação estrutural mais conspícua em afloramento, geralmente com forte mergulho para W (60° a 70°), quando a direção é N-S, e para S (30° a 40°), quando a mesma é para E-W (Melo *et al.* 1995). Seu contato com as rochas do embasamento é inferido por falhas ou interrompido por intrusões, e raramente, quando exposto, não apresenta evidências de efeito térmico (Melo *et al.* 1995). O GBRI foi subdivido em três unidades ou domínios litológicos distintos por Kishida (1979) e Silva (1983): meta-vulcânico máfico, ocupando a base do empilhamento vulcânico; meta-vulcânico félsico, na porção intermediária; e meta-sedimentar no topo.

O **Domínio Meta-vulcânico Máfico**, representa cerca de 50% das rochas do GBRI, sendo composto por derrames basálticos com diferentes texturas, onde em alguns locais observam-se estruturas do tipo *pillow*-lavas (Silva 1983). Apresenta intercalações sedimentares representadas por formações ferríferas bandadas, com leitos silicosos e ferruginosos alternados, e localmente é cortada por intrusões grabróicas. Os basaltos exibem geoquímica semelhante aos toleiítos de assoalhos oceânicos recentes (Kishida 1979, Silva 1992a) e possuem idade Pb-Pb em rocha total de 2,2 Ga (Silva 1992b) e idade modelo T_{DM} de 2,2 Ga (sistema Sm-Nd, Silva 1996).

O **Domínio Meta-vulcânico Félsico** ocorre como corpos lenticulares, sendo constituído por lavas andesíticas a dacíticas e rochas piroclásticas, com intercalações meta-sedimentares. As lavas félsicas exibem assinatura geoquímica semelhante à reportada para as rochas cálcio-alcalinas de margem continental (Kishida 1979, Silva 1992a). Os andesitos foram datados e forneceram idades de 2,08 Ga (Rb-Sr - Brito Neves *et al.* 1980) e 2,18 Ga (U-Pb em zircão - Gaal *et al.* 1987). Apresentam também idades Pb-Pb em rocha total e modelo T_{DM} de 2,1 Ga (Silva 1992b, 1996).

O **Domínio Meta-sedimentar** é formado por espessos pacotes imaturos de psamitos, psefitos e pelitos, além de *cherts* e formações ferríferas bandadas. Silva (1996) encontrou para este domínio sedimentar uma idade modelo (Sm-Nd) T_{DM} de 2,0 Ga.

Segundo Kishida (1979) o GBRI diverge dos *greenstones belts* arqueanos clássicos pela ausência da seqüência ultramáfica basal e de textura *spinifex*. Rochas ultramáficas são raras neste *greenstone belt* (Kishida 1979; Silva 1983, 1987). Ainda, segundo Kishida (1979), o GBRI é geoquimicamente correlato ao *greenstone belt* de Yilgar, Austrália, (Hallberg *et al.* 1976), caracterizado pela escassez de andesitos basálticos e pelo hiato geoquímico entre os meta-basaltos toleiíticos e a seqüência superior. Segundo Silva (1992b) os basaltos do GBRI correspondem ao assoalho de

uma bacia do tipo *back-arc* e as lavas félsicas representam um arco de margem continental adjacente à bacia.

Corpos Intrusivos

O NSer é transectado por uma diversidade de rochas com naturezas distintas e que podem ser reunidas sob a terminologia de corpos subvulcânicos, corpos máficos e graníticos.

Os **corpos subvulcânicos** são essencialmente constituídos por dioritos e dacitos porfiríticos, que ocorrem como chaminés nas rochas vulcânicas félsicas e possuem aspecto maciço, tendo fenocristais imersos numa matriz fina (Silva 1983). Além destas rochas, estão presentes filões quartzo-fesdpato pórfiros, álcali-traquitos (Barrueto *et al.* 1996) e lamprófiros (Correia & Conceição 1994, Conceição *et al.* 1995, Rios & Conceição 1996, Barrueto *et al.* 1996, Rios 1997). Estas últimas rochas estão associadas às mineralizações de ouro e de sulfetos, que normalmente ocorrem na interface destas rochas ou ao longo de zonas de cisalhamento que as cortam.

Os **corpos máficos** apresentam-se como diques e sills, com natureza variando de máfica até ultramáfica. Eles exibem texturas ofítica a sub-ofítica e abundância de olivina e clinopiroxênio nos termos ultramáficos. Em um complexo básico-ultrabásico localizado nas proximidades da cidade de Santa Luz ocorre um importante depósito de cromo, do tipo estratiforme (Carvalho Filho *et al.* 1986).

As **rochas graníticas** (senso lato, s.l.) atribuídas ao Paleoproterozóico ocorrem no setor sul do NSer e possuem um amplo espectro composicional. Elas intrudem o embasamento gnáissico-migmatítico e o GBRI ou se colocam na interface entre estas duas unidades.

Segundo Rios *et al.* (1998) as rochas graníticas representam mais de 30% das rochas aflorantes no NSer. Contudo, um número limitado de maciços graníticos (Ambrósio - Matos 1988, Lacerda 2000, Cansanção - Nascimento 1996, Morro do Afonso - Rios 1997, Agulhas-Bananas - Burgos 1999, Nordestina - Cruz Filho 2000, Morro do Lopes - Peixoto 2000, Itareru — Carvalho 2001, Araras - Oliveira 2001, Teofilândia e Barrocas — Barrueto 2002), tem sido alvo de trabalhos específicos de mapeamento e caracterizações petrográfica e geoquímica, nem sempre acompanhadas de informações geocronológicas e isotópicas.

A primeira síntese sobre os granitos (s.l.) da parte meridional-oriental do NSer foi realizada por Matos & Conceição (1993a,b) e posteriormente por Rios *et al.* (1998, Fig. 4). Nestes estudos os autores propuseram uma disposição estratigráfica para estes corpos, agrupando-os em cinco grupos principais, nomeados, do mais velho para o mais novo, como: G1 (tonalitos e granodioritos); G2 (granodioritos); G3

(granodioritos com termos monzoníticos e monzodioritos), G4 (sienitos, monzonitos e monzodioritos) e G5 (monzogranitos) (Fig. 4). Os três primeiros grupos de granitos foram considerados pré a sin-tectônicos, com os registros deformacionais diminuindo de G1 para G3, enquanto que os dois últimos grupos (G4 e G5) foram classificados como tardios a pós-tectônicos, apresentando pouca ou nenhuma deformação.

Rios (2002) a partir de idades Pb-Pb e U-Pb em cristais de zircão, análises litogeoquímicas e dados isotópicos Sm-Nd apresenta modificações na proposta estratigráfica para os corpos graníticos do NSer. Segundo esta pesquisadora, do ponto de vista geocronológico, a granitogênese na região do GBRI pode ser dividida em dois conjuntos maiores representados por um magmatismo arqueano (3,2-2,7 Ga) e outro paleoproterozóico (2,16 a 2,07 Ga) (Fig. 4).

Magmatismo Arqueano

Os maciços arqueanos (3,2-2,7 Ga) correspondem aos domos granitognáissicos de Ambrósio, Pedra Alta, Poço Grande e Araci, intrusivos no GBRI, e ao Maciço Requeijão, que se encontra encravado no embasamento gnáissicomigmatítico na margem oeste do CSL.

Os domos granito-gnáissicos são elipsoidais, alongados na direção NW-SE (Fig. 4), e ocupam as zonas centrais de grandes antiformes que afetam o GBRI (Silva 1983; Matos & Conceição 1993a, b). Eles apresentam margens fortemente gnaissificadas, de composição granítica e granodiorítica, contrastando com centros mais isotrópicos, de natureza granodiorítica (Matos & Davison 1987, Matos 1988). Com exceção dos Maciços Araci e Requeijão, estas rochas correspondem a granitos do tipo G2 de Matos & Conceição (1993a,b) e Rios *et al.* (1998). Dentre os domos granito-gnáissicos destaca-se o de Ambrósio, por ser o melhor estudado. Ele tem sido interpretado como um embasamento soerguido (Jardim de Sá 1982), ou como uma intrusão ígnea sincrônica à compressão regional, de oeste para leste, sob condições de cisalhamento puro (Matos & Davison 1987) ou de cisalhamento simples (Alves da Silva 1994, Chauvet *et al.* 1997).

No Domo Ambrósio, Gaal *et al.* (1987) obtiveram idades U-Pb, em monocristais de zircão, de 2,9 Ga para xenólitos de rochas gnáissicas presentes na sua borda, e de 2,08 Ga para um dique granítico localizado no centro. A primeira idade foi interpretada como correspondendo a formação dos gnaisses do embasamento, enquanto que a segunda, como a de cristalização deste domo. Posteriormente, novos dados de U-Pb SHRIMP em zircão no Domo Ambrósio e em corpos relacionados (Pedra Alta e Poço Grande) forneceram idades variando de 2,6 até 3,1 Ga (U-Pb, Tab. 1). Estes dados revelam que a distribuição de cristais de

zircão antigos não se limita unicamente a enclaves nestes corpos. Por outro lado, os diques graníticos tardios, isótropos, que cortam o Domo Ambrósio foram datados a 2080±2 Ma (Mello 2000) e pela descrição apresentada correspondem aos granitos tipo Morro do Lopes (Rios 2002). Os vários grupos de idades presentes em cristais de zircão no Domo Ambrósio levaram Cordani *et al.* (2000) a suporem uma evolução palingenética autóctone para o mesmo, a partir de fusões parciais sucessivas do embasamento gnáissico, herdando variados conjuntos de cristais de zircão desta fonte. Os dados isotópicos disponíveis para os domos de Araci e Pedra Alta apontam para idades modelos TDM (Sm-Nd) entre 3,12 a 3,17 Ga, e valores de εNd positivos (0,23-0,93) (Rios 2002).

O Maciço Requeijão tem idade de 2,87 Ga (U-Pb, Rios 2002) e apresenta forma ovalar, alongada N-S, sendo interpretado como um dos granitos do tipo G1 de Matos & Conceição (1993a) e Rios *et al.* (1998).

As rochas do magmatismo arqueano apresentam uma pequena variação de SiO₂ (69-74%), exibem caráter dominantemente sódico (0,2 < K₂O/Na₂O < 1,2) e possuem afinidades com suítes trondhjemítica e cálcio alcalina normal (médio potássio, Rios 2002). Estas rochas exibem um enriquecimento relativo dos LILE (*Large Íon Lithophile Elements*), em relação aos HFSE (*High Field Strength Elements*), associado as proeminentes anomalias negativas de Nb e Ti. Os padrões de elementos terra raras (ETR) são fortemente fracionados em ETRP (Elementos Terra Raras Pesadas), sendo comuns fracas anomalias negativas em európio e apresentando a terminação côncava voltada para cima, similar àquelas das rochas TTGs arqueanas. As composições isotópicas de Sr e Nd são próximas aos valores mantélicos no tempo de suas colocações (Rios 2002). Estes granitos arqueanos foram posteriormente re-trabalhados pela Orogenia Transamazônica (Rios 2002).

Magmatismo Paleoproterozóico

Os maciços paleoproterozóicos (2,16-2,07 Ga) foram subdivididos por Rios (2002) em dois conjuntos principais: (i) maciços cálcio-alcalinos (2,16-2,12 Ga) e (ii) maciços alcalinos (2,10-2,07 Ga), que reúne corpos sieníticos potássico-ultrapotássicos e shoshoníticos.

O magmatismo cálcio-alcalino paleoproterozóico é representado por oito corpos (Eficéas, Lagoa dos Bois, Nordestina, Quinjingue, Barrocas, Teofilândia, Trilhado e Cipó; Fig. 4), além de diversos corpos menores que ocorrem como satélites. Os plutões são intrusivos tanto em rochas gnáissico-migmatíticas do embasamento do NSer, quanto nos terrenos vulcanossedimentares do GBRI onde chegam a desenvolver metamorfismo

de contato que atinge condições anfibolíticas (Conceição & Otero 1996). Eles possuem forma alongada segundo a direção NW-SE, com exceção do Maciço Barrocas (parte SW do GBRI) que se alonga na direção E-W e possui estrutura interna orientada segundo as estruturas tectônicas das rochas hospedeiras. Suas composições são, em geral, tonalítico-granodiorítica a granítico-granodiorítica (Rios 2002). Eles apresentam constantemente bordas gnaissificadas ricas em enclaves e filões (Matos & Conceição 1993a), que evoluem para centros isotrópicos. Esta estruturação é interpretada como resultado de uma colocação sincrônica ao fechamento da Bacia Itapicuru (Matos & Conceição 1993a, b; Alves da Silva 1994; Rios et al. 1998). A idade deste plutonismo varia de 2,16 Ga até 2,12 Ga (Tab. 1), enquanto que as idades em torno de 2,0 Ga, observadas em alguns deles, são interpretadas por Rios (2002) como o reflexo de um metamorfismo termal, provocado pela colocação dos corpos tardios no NSer. Os dados químicos obtidos para este magmatismo revelaram sua natureza cálcio-alcalina e apontam para a existência de duas suítes distintas, uma de natureza TTG (cálcio-alcalina de baixo-K), e outra de natureza cálcio-alcalina normal (ou de médio-K). A primeira suíte é representada pelos maciços de Nordestina, Teofilândia e Barrocas que possuem baixos valores de Yb_N (< 8 ppm) típicos de rochas TTGs arqueanas (Rios 2002), enquanto que a outra suíte é representada pelos maciços de Eficéas, Lagoa dos Bois, Quinjingue, Trilhado e Cipó.

O magmatismo alcalino é composto por inúmeros maciços localizados, sobretudo, na porção SW do GBRI, onde ocorrem truncando as estruturas das rochas do embasamento granito-gnáissico. Estes maciços são constituídos por sienitos potássicos associados a lamprófiros ultrapotássicos (2,10-2,08 Ga), monzonitos shoshoníticos (2,10-2,07 Ga) e granitos potássicos peraluminosos (~ 2,07 Ga) que representam a expressão final do magmatismo no NSer.

Os maciços sieníticos correspondem a corpos elipsóides e são representados pelas intrusões de Morro do Afonso, Agulhas-Bananas, Serra do Pintado (Rios 1998, Rios et al. 1998, Burgos 1999). Eles são essencialmente constituídos por álcali-fedspatosienitos porfiríticos que exibem variadas figuras geradas por fluxo magmático. A ausência de cristalização de plagioclásio nestes magmas, e a presença de minettes e voguesitos são interpretadas como fruto da afinidade lamprofírica destes conjuntos plutônicos (Conceição et al. 2002).

Os corpos monzoníticos são representados pelos maciços Cansanção, Euclides, Araras e Itareru (Fig. 4). Estes corpos possuem geometria elipsoidal, ligeiramente alongada na direção N-S, granulação média a grossa e textura porfirítica (Matos & Conceição 1993a,b; Rios *et al.* 1998). Petrograficamente distinguem-se dos maciços sieníticos pela presença sistemática de cristais de plagioclásio (Rios 2002).

Segundo Rios (2002), as rochas sieníticas e monzoníticas apresentam características químicas semelhantes, exceto pelos conteúdos mais baixos de álcalis e menores razões K₂O/Na₂O das últimas. Quimicamente tais rochas apresentam caráter metaluminoso, saturado em sílica, afinidade shoshonítica, com forte enriquecimento nos LILE, baixos teores de HFSE, Nb e Ti, e moderados valores de alumínio, indicando magmas associados a envolvimentos orogênicos profundos, gerados em zonas de subducção com retenção de granada na fonte, sendo caracterizados como pós-colisionais.

Os granitos potássicos (2,08-2,07 Ga) são representados por cerca de 35 pequenos corpos (< 8 km²) arredondados e numerosos diques (Fig. 4) que cortam as rochas do embasamento e os granitos mais antigos. Estes corpos são constituídos por biotita-monzogranitos leucocráticos, de cor cinza e granulação fina a muito fina, que se encontram concentrados na porção sudoeste dos terrenos gnáissicomigmatítico do NSer (Matos & Conceição 1993a,b; Rios et al. 1998). Internamente exibem abundantes estruturas de fluxo magmático marcadas por concentrações de mica e minerais opacos, sugerindo um caráter posterior para estas intrusões em referência às fases de deformação na história transamazônica da região (Matos & Conceição 1993a, Peixoto dados geoquímicos disponíveis 2000). Os caracterizam estes granitos como potássicos peraluminosos e os dados de elementos-traço apontam para uma assinatura de arco e forte influência do processo AFC na sua evolução (Peixoto 2000).

III. 3.3 - DEFORMAÇÃO E METAMORFISMO

Segundo Oliveira *et al.* (2001), o Complexo Santa Luz e o GBRI foram fortemente deformados pela Orogenia Transamazônica (2,1-1,8 Ga), enquanto que o Bloco Uauá foi menos deformado. A estruturação do CSL e do GBRI é atribuída à colocação dos granitos transamazônicos (Silva 1987, Alves da Silva 1994).

De acordo com Alves da Silva (1994) e Chauvet *et al.* (1997), o GBRI sofreu três eventos deformacionais. O mais antigo (D1), de natureza compressiva, datado de 2.127±5 Ma, é marcado por cavalgamentos na direção SE, responsável pelo desenvolvimento da foliação principal (S1) nas supracrustais e pelo fechamento da bacia vulcanossedimentar do Itapicuru. O evento (D2), caracterizado pela colocação diapírica de um importante volume de rochas graníticas que promoveram a verticalização da foliação, concomitantemente bloqueando o desenvolvimento dos cavalgamentos D1 e favorecendo o desenvolvimento de uma tectônica transcorrente sinistral nos planos orientados norte-sul. Já o ultimo evento (D3) é atribuído a uma tectônica tardi transamazônica, representada por eventos dúcteis-quebradiços ou apenas quebradiços, que desenvolvem clivagens de crenulação, dobras en chevron e falhamentos.

A mineralização aurífera, que constitui um dos principais interesses econômicos da região, foi por Alves da Silva (1994) interpretada como relacionada ao evento D3, posterior à deformação principal D2, sugerindo que os corpos de minério tenham se colocado aproveitando as anisotropias pré-existentes (zonas de cisalhamentos e/ou contatos litológicos) e paralelas à lineação de estiramento.

A presença de uma zona de cisalhamento regional de *trend* NS (Zona de Cisalhamento Principal – ZCP, Alves da Silva 1994), localizada na parte central do GBRI, mostra uma relação direta com o grau de deformação dos corpos graníticos. A maior parte dos domos (Ambrósio, Pedra Alta, Poço Grande) exibe uma forma alongada NS e está localizada na porção central do GBRI. Mais a oeste, os granitos localizados na periferia do GBRI apresentam uma forma menos alongada (Nordestina, Eficéas, Lagoa dos Bois). Na parte SW do GBRI o Maciço Barrocas alonga-se na direção E-W e possui estrutura interna similar às estruturas tectônicas das rochas hospedeiras (Alves da Silva 1994). Já as pequenas intrusões situadas no extremo oeste da zona de cisalhamento, nas proximidades da cidade de Santa Luz, mostram estrutura isotrópica e são interpretadas como intrusões tardias na evolução do GBRI (Alves da Silva 1994).

Três eventos metamórficos distintos são reconhecidos por Silva (1983, 1987) na porção central do GBRI. O primeiro, de natureza hidrotermal (metamorfismo de fundo oceânico), foi responsável pela espilitização dos basaltos e afetou parte das vulcânicas félsicas, gerando paragêneses da fácies xisto-verde. O segundo, de natureza dinamotermal, foi contemporâneo à colocação dos principais domos granito-gnáissicos, e superpôs-se ao

evento anterior, obliterando muitas de suas evidências. A fácies xisto-verde é geograficamente dominante, mas nas bordas dos corpos ocorrem rochas na fácies anfibolito. O terceiro e último evento metamórfico, de natureza térmica estaria, relacionado à intrusão dos pequenos corpos tardios a pós-tectônicos.

III. 3.4 - AMBIENTE GEOTECTÔNICO

Existem atualmente quatro modelos geodinâmicos que buscam explicar a evolução tectono-estrutural do NSer. Estes modelos são:

- estruturação da Bacia Capim em um rift continental em decorrência de esforços compressivos segundo o trend N-S, associados à existência de uma subducção tipo oceano-continente com vergência para oeste (Winge & Danni 1980);
- (ii) Silva (1987,1991,1992) propõe que o conjunto granito-*greenstone* na parte sul do NSer tenha sido gerado num ambiente de colisão do tipo margem continental ativa-bacia de *back-arc* com vergência da placa oceânica para leste;
- (iii) formação da Bacia Itapicuru em um ambiente de rift continental associado à subida do manto com posterior fechamento desta bacia em dois eventos deformacionais, relacionados a um mega cisalhamento com vergência para oeste. O fechamento desta bacia estaria ligado a eventos de colisão dos núcleos continentais no arqueano e que seriam responsáveis pelas estruturas atualmente observadas (Alves da Silva 1994);
- (iv) Rios et al. (1998) associam o plutonismo do setor sul do NSer a um ambiente de arco vulcânico, com formação de uma bacia oceânica sobre o centro deste arco, havendo posteriormente a atuação de uma tectônica colisional associada à subducção da placa oceânica com mergulhos de nordeste para sudoeste.

Os três primeiros modelos foram construídos essencialmente a partir de dados estruturais, petrográficos e geoquímicos obtidos durante o estudo das seqüências vulcanossedimentares e de suas encaixantes (Jardim de Sá 1982; Silva 1992a, b; Alves da Silva 1994), uma vez que os dados litogeoquímicos e isotópicos referentes aos granitos e ao embasamento gnáissico eram praticamente inexistentes.

III.4 - CONSIDERAÇÕES SOBRE A GEOLOGIA REGIONAL

O Núcleo Serrinha apresenta uma evolução geológica eminentemente arqueanopaleoproterozóica. No Arqueano, um importante episódio de formação de crosta ocorreu no NSer, resultando na colocação de diversas intrusões máficas e graníticas entre 2,8 a 3,1 Ga, em uma provável proto-crosta ainda mais antiga, cujos vestígios são registrados na forma de xenocristais de zircões datados a 3,6 Ga. Sobre este embasamento mesoarqueano ocorre importante magmatismo fissural máfico (diques de Uauá) em dois períodos distintos (2,8-2,6 Ga e 2,4-2,0 Ga, Tab. 1), com a instalação e fechamento das bacias Grupo Capim (setor norte), e *Greenstone Belt* do Rio Itapicuru (setor sul) durante o ciclo Transamazônico (2,2-2,1 Ga). Segundo Rios (2002) dois períodos principais de magmatismo félsico tem sido documentado no NSer: (i) um magmatismo arqueano, incluindo o embasamento gnáissico-migmatítico e os granitos arqueanos TTG/cálcio alcalinos e (ii) um magmatismo paleoproterozóico representado pelos corpos TTG/cálcio-alcalinos, shoshoníticos e potássico-ultrapotássicos. É importante ressaltar que a idade das rochas meta-vulcânicas e dos maciços Teofilândia e Barrocas nessa região situam-se no intervalo entre 2,1-2,2 Ga, que coincide com as suas idades modelos Sm-Nd (Barrueto 2002).

Nos últimos anos, estudos estruturais, geoquímicos e geocronológicos têm ampliado e promovido grande avanço na compreensão da evolução geodinâmica do setor sul do NSer. Todavia, diversas incertezas ainda permanecem sobre o modelo geodinâmico de evolução do GBRI, notadamente no que concerne à polaridade da zona de subducção e da localização exata da mesma.

IV.1 - INTRODUÇÃO

O Batólito Nordestina (BN) está situado na porção central do Núcleo Serrinha no limite entre os terrenos gnáissico-migmatíticos arqueanos de composição granítica (senso lato) do Complexo Santa Luz (a norte e oeste) e as rochas meta-vulcânicas básicas paleoproterozóicas do *Greenstone Belt* do Rio Itapicuru (GBRI; a leste e sul; Fig. 5), metamorfisadas nas condições das Fácies Anfibolito e Xisto-Verde, respectivamente.

Os contatos do BN com os terrenos gnáissicos arqueanos a NW se faz por uma falha de direção SW-NE, enquanto que a SW e NE os contatos são transicionais, gradando das bordas foliadas do batólito para os gnaisses migmatizados das encaixantes.

A sudeste e a sul o BN está em contato com as meta-vulcânicas básicas do GBRI. Estes limites são capeados por um manto de intemperismo, sendo inferidos pela mudança de solo arenoso-amarelado para um solo vermelho argiloso.

A seguir é apresentada uma descrição das principais feições das rochas encaixantes do BN, assim como dos tipos litológicos constituintes deste batólito.

IV.2 - ENCAIXANTES

Aos arredores do BN o embasamento arqueano tem como rochas representativas gnaisses de coloração cinza a branca e migmatitos. O primeiro litotipo é mais freqüente a oeste do BN, possui granulação média (ocasionalmente com níveis de granulação grossa) e estão associados a anfibolitos alongados, concordantes com a foliação regional, cujas espessuras variam de 25 cm até 3 metros (Foto 1). O segundo conjunto de rochas localizase predominante a norte do BN e apresenta estruturas estromáticas e *schlieren*. Nas exposições onde a migmatização parece ter sido mais intensa ocorrem estruturas nebulíticas e tipos mais homogêneos com presença de restitos de gnaisses e de anfibolitos (Foto 2). Os restitos de gnaisses ocorrem como fragmentos em torno de 30 cm, por vezes rotacionados, já os anfibolitos possuem formas angulosas, tamanhos centimétricos a métricos e são invadidos por filetes de composição félsica (Foto 2). Ocorrem de forma isolada bandas de cisalhamento com deslocamento sinistral. Próximo ao limite com o BN os migmatitos encontram-se intrudidos por diques de cor cinza, geralmente incorporados à trama gnáissica, e por intrusões irregulares de pegmatitos que truncam a foliação dominante.

Aflora como corpo irregular, a norte do BN (ponto 586; Fig. 5) dentro dos migmatitos, um gnaisse bandado resultante da alternância de uma faixa leucocrática e outra mais rica em minerais máficos, essencialmente biotita. As espessuras das faixas são da ordem de milímetros a poucos centímetros, atingindo ocasionalmente até 30 cm.

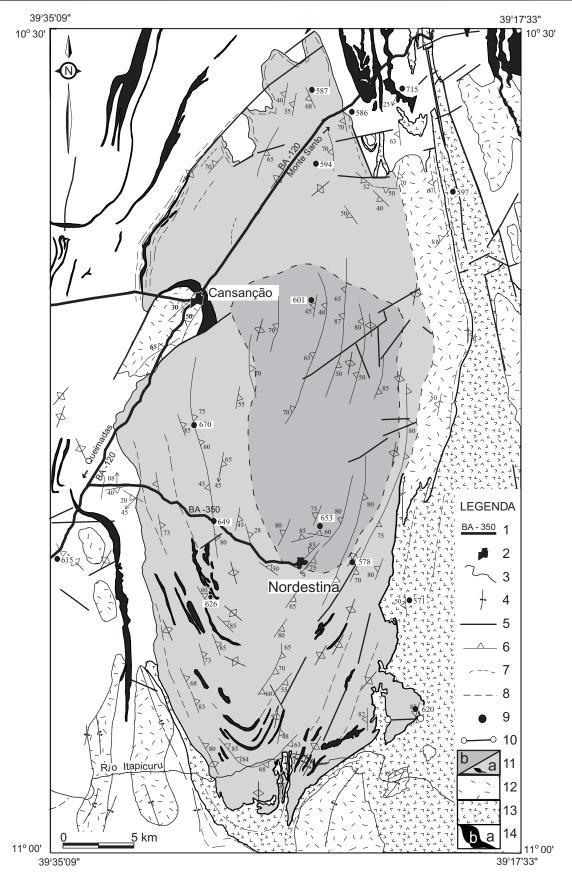


Figura 5. Mapa geológico simplificado do Batólito Nordestina (modificado de Cruz Filho 2000). Legenda: 1.Estradas; 2. Cidades; 3. Rio; 4. Traço axial de dobra; 5. Falhas e Fraturas; 6. Foliação; 7. Lineação geológica; 8. Contato inferido; 9. Pontos citados no texto e nas pranchas; 10. Diques; 11. Corpo estudado: (a) Fácies fanerítica média e enclaves máficos, (b) Fácies porfirítica; 12. Outros granitos; 13. GBRI; 14. Embasamento: (a) gnáissico-migmatítico; (b) leitos anfibolíticos.

A sudeste da cidade de Nordestina, na Fazenda Maria Preta, ao longo do riacho Encantado (ponto 571; Fig. 5), ocorre uma boa exposição da unidade máfica basal do GBRI, representada por rocha maciça de coloração cinza-esverdeada, granulação fina e foliação fraca. Na parte norte, a cerca de um 1,5 km do limite entre o maciço de Maravilha e as metavulcânicas máficas, na Faz. Frutuoso, no leito do rio Cariáca, foi encontrado um micaxisto (Foto 3; ponto 597; Fig. 5) de granulação média, cor cinza-escura a preta, com presença de porfiroblastos de granada (Foto 3), originado provavelmente pela atuação do metamorfismo em protólito pelítico da unidade sedimentar do GBRI.

IV. 3 - BATÓLITO DE NORDESTINA

IV. 3.1 - CONSIDERAÇÕES GERAIS SOBRE OS ASPECTOS ESTRUTURAIS

O Batólito Nordestina tem uma forma alongada ligeiramente elipsoidal com eixo maior na direção norte-sul e possui uma área de aproximadamente 720 km². Segundo Inda *et al.* (1976) ele ocupa a zona central de um grande antiforme com mergulho para sul e vergência para leste.

No interior do BN as rochas apresentam anisotropia incipiente marcada pela orientação dos eixos maiores dos prismas de plagioclásio, hornblenda, e também das palhetas de biotita. A presença de cristais de quartzo arredondados nestas rochas foi interpretada por Cruz Filho (2000) como evidência do caráter magmático desta foliação, sendo bem mais visíveis em afloramentos alterados e com estruturas de fluxo magmático (Foto 4). Em direção às margens do batólito, a foliação magmática é gradualmente superposta por uma foliação gnáissica, cuja intensidade torna-se mais acentuada quando esta alcança as zonas periféricas do batólito (Foto 5).

A disposição das foliações internas no batólito tendem a ser concêntricas com a sua geometria (Alves da Silva 1994), com caimentos variados (> 55º), quase sempre para leste, e ao mesmo tempo, parecem respeitar a foliação regional N-S do NSer (Fig. 5). Em campo, os gnaisses de borda do BN e as rochas gnáissicas do embasamento do NSer se distinguem pelo caráter discretamente foliado do primeiro em contraste com a presença de fortes foliações, dobramentos e abundantes níveis anfibolíticos no último.

Superimposto as feições primárias do BN ocorre cisalhamento dúctil segundo o *trend* NE-SW, com deslocamento de massa para NE (dextral).

Apesar de, neste trabalho, não ter sido desenvolvido nenhum levantamento estatístico acerca das fraturas, parece existir no BN um sistema de falhas subverticais com *trends* E-W, N-NW e N-NE preferenciais, que provocam deslocamentos centimétricos dos

Foto 1. Gnaisse de cor branca a cinza alterado intercalado com leito de anfibolito, localizado a oeste do BN (Ponto 615).

Foto 2. Visão geral do afloramento de migmatito a norte do BN com presença de enclave de anfibolito angular e métrico cortado por veios félsicos (ponto 715).

Foto 3. Quartzo-biotita xisto com porfiroblastos de granada, localizado a leste do maciço Maravilha dentro do GBRI (ponto 597/Amostra 1841).

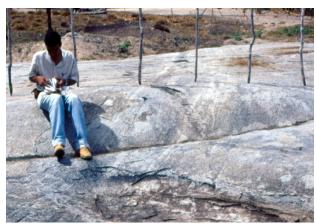


Foto 4. Afloramento da FFM com presença de estrutura de fluxo magmático (ponto 670, região centro-oeste do BN).

Foto 5. Rocha da borda norte do BN com presença de estrutura gnáissica, caracterizada por um fino bandamento (ponto 587).

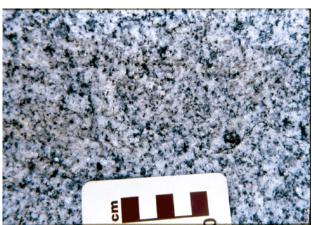


Foto 6. Rocha de coloração cinza e granulação média típica da FFM (ponto 649/Amostra 1880).

veios de quartzo e dos diques, sugerindo condições de *strain* sob baixas temperaturas. Esta deformação pode corresponder à fase de deformação D3 descrita por Alves da Silva (1994).

IV. 3.2. FACIOLOGIA

O BN é constituído dominantemente por trondhjemitos (Cruz Filho 2000). Com base nas informações obtidas nos trabalhos de campo, foi possível identificar no BN dois conjuntos principais de rochas, que foram nomeados de: Fácies Fanerítica Média (FFM) e Fácies Porfirítica (FP), ocorrendo ainda de forma subordinada diques félsicos e rochas máficas.

A FFM abrange cerca de 70% da área aflorante do BN (Fig. 5), apresenta rochas de cor cinza esbranquiçada a cinza com granulação média, texturalmente homogêneas e equigranulares (Foto 6). Os afloramentos desta fácies exibem, dominantemente, aspecto monótono, que é modificado pela presença de diques pegmatíticos e veios de quartzo. Em alguns deles, observou-se ainda a presença de feições de fluxo magmático marcadas pela concentração de níveis máficos com comprimento métrico e espessura centimétrica (Foto 7).

A FP, menos expressiva, situa-se na parte central do batólito (Fig. 5) e difere da anterior por possuir fenocristais de plagioclásio, subédricos a euédricos, com tamanhos variando de 2 a 4 cm, imersos numa matriz com aparência similar às rochas da FFM (Fotos 8 e 9). Esta fácies apresenta uma textura dominantemente isotrópica em amostra de mão, embora em alguns afloramentos observe-se uma orientação de fluxo magmático incipiente, com *trend* N-S, indicada pelos fenocristais de plagioclásio. Os melhores afloramentos estão localizados nos povoados de Sítio das Flores, Sítio do Félix, Cacimba, Angico e Cedro. Embora a real dimensão e delimitação desta fácies com a anterior não tenham sido observadas diretamente em campo, devido à presença de extensas coberturas arenosas, foi inferido um limite aproximado entre as mesmas com base no aumento de tamanho e abundância modal dos fenocristais de plagioclásio em direção ao centro do corpo.

Os diques ocorrem em três grupos distintos e, aparentemente, estão distribuídos de forma errática. O primeiro grupo é constituído por rochas de cor cinza média, granulação fina a média, com composição trondhjemítica (Cruz Filho 2000; Foto 10). Estes diques são geralmente corpos tabulares verticais a subverticais, paralelos a subparalelos à foliação geral do BN. Eles têm limites bem definidos e mostram contatos retos a suavemente sinuosos. Suas espessuras variam entre 25 a 40 cm. A presença de margem de resfriamento em alguns deles sugere diferença de temperatura com as rochas encaixantes. Foi observado localmente que alguns deles são deslocados por falhas dextrais (Foto 10). O segundo grupo de diques é constituído por granitos de cor branca (Foto 11). Eles exibem contatos retos e bruscos e truncam a foliação do corpo principal. Em um afloramento notouse a presença de um dique granítico com 2 metros de espessura (Ponto 620; Fig. 5). Ainda

neste afloramento foi possível observar a presença de um fragmento de dique trondhjemítico englobado pelo dique granítico. O terceiro grupo de diques é constituído por pegmatitos graníticos com biotita e por veios de quartzo com espessuras centimétricas, que cortam aleatoriamente as rochas deste batólito.

Dois tipos de intrusões entram em contato com as rochas do BN. Na sua porção noroeste tem-se a intrusão monzonítica de Cansanção (Mascarenhas et al. 1975), com cerca de 24 km² e com idade ²⁰⁷Pb/²⁰⁶Pb em monozircão de 2105 ± 3 Ma (Rios *et al.* 1998, 2000, Rios 2002). A nordeste ocorre o maciço granodiorítico Maravilha, de natureza cálcioalcalina de alto-K e com idade U/Pb em monozircão de 2068 ± 1 Ma (Rios 2002). As rochas máficas ocorrem inseridas no BN sejam como enclaves microgranulares ou como diques sinplutônicos. Estas rochas mostram cor verde-escura, são essencialmente formadas por anfibólio e plagioclásio e alteram para um solo de cor vermelho escuro. Os enclaves microgranulares possuem tamanhos variando de decimétricos (ocorrendo como pontos escuros "salpicando" a rocha encaixante) a hectométricos. Aqueles de tamanhos centimétricos a métricos encontram-se dispersos no BN, embora sejam mais fregüentes na borda sul. Eles possuem granulação fina a média e fina a muito fina, foliação incipiente a bem definida naqueles de granulação mais fina. A forma destes enclaves é, no geral, lenticular a elipsoidal estando condicionado localmente pelo fluxo magmático presente na rocha hospedeira (Foto 12). Os enclaves posicionados próximos às bordas encontram-se fortemente estirados no sentido da foliação dominante, enquanto que aqueles localizados nas porções intermediárias e centrais mostram-se menos deformados. Os contatos com a rocha encaixante são geralmente bruscos, embora na porção central do BN tenham sido encontrados enclaves centimétricos de 1 a 3 cm e um enclave métrico (amostra 1886) com uma auréola de contato enriquecida em biotita. Os enclaves hectométricos e os diques sinplutônicos ocorrem na parte sul (Fig. 5) do BN, onde levantamentos geofísicos de aeromagnetometria apontaram para a existência de fortes anomalias magnéticas (Lima et al. 1982). Eles constituem faixas alongadas com direções aproximadas N30º-60ºE e N30º-60°W que se estendem por até 5 km, e cujas espessuras variam de 50 m até aproximadamente 500 m. As faixas mais longas, representadas em mapa, mostram formas em "bumerangue" com larguras médias em torno de 500 m concordantes com a foliação magmática presente no batólito. Eles possuem granulação média a fina, são isotrópicos a fracamente orientados e preservam as características ígneas com textura maciça e gabróica. Dentre os diques máficos visitados, em apenas um foi observada a presença de fenocristais de plagioclásio dispersos, que em volume chegam a 5%. Este mesmo dique é cortado por intrusões máficas e félsicas.

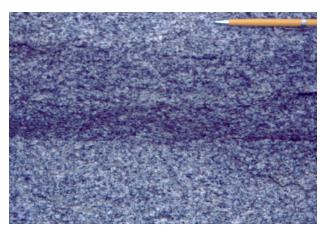


Foto 7. Feição de fluxo magmático marcada pela concentração de nível máfico (mais rico em biotita) dentro do BN (Ponto 594/Amostra 1839).

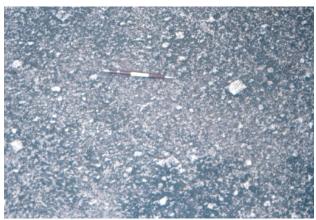


Foto 8. Textura típica das rochas da FP caracterizada pela presença de fenocristais de plagioclásio em matriz similar as rochas da FFM (ponto 601/Amostra 1845).

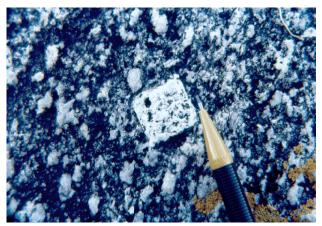


Foto 9. Detalhe de um fenocristal de plagioclásio da FP com contorno idiomórfico (ponto 653; 3 km a norte da cidade de Nordestina).

Foto 10. Dique trondhjemítico (Am. 1826), com deslocamento dextral, intruso na FFM (ponto 578; 4 Km a leste da cidade de Nordestina).

Foto 11. Rocha da FFM, borda sul do BN, cortada por dique granítico (Am. 1864; ponto 620).

Foto 12. Enclave microgranular máfico elipsoidal (Am. 1871), de tamanho métrico, concordante com a foliação magmática da rocha encaixante (ponto 626).

Trabalhos de integração de dados sísmicos, gravimétricos e aeromagnéticos associados à amostragem de sedimentos de corrente e solo realizados por De Beers Brasil, conduziram, em 1992, à descoberta de uma província kimberlítica (província kimberlítica de Braúna; 682 ± 20 Ma, Rb-Sr em flogopita) a sul da cidade de Nordestina, no riacho Grande na bacia do rio Itapicuru. Esta província é constituída por 15 corpos (pipes e diques) com um *trend* de aproximadamente N30°W (Pisani *et al.* 2001).


IV.4 - CONSIDERAÇÕES FINAIS SOBRE A GEOLOGIA DO BATÓLITO NORDESTINA

O contexto geológico do BN compreende: (i) terrenos granito-gnáissicos arqueanos a oeste e norte; (ii) *greenstone belt* do Rio Itapicuru a leste e sul. As feições de campo sugerem que os contatos do BN com os terrenos granito-gnáissicos são de natureza transicional, enquanto que os contatos do BN com o GBRI não são ainda bem conhecidos.

O BN é constituído por rochas cinzas, isotrópicas a incipientemente orientadas na parte central, e que progadam para rochas orientadas em suas bordas, assumido feições gnáissicas.

A forma concordante do BN com as estruturas das rochas encaixantes e a tendência de distribuição concêntrica de suas foliações internas aponta para um estilo de colocação do tipo diapírico, sob a atuação de tensores regionais, provavelmente correlacionadas à fase D2 descrita por Alves da Silva (1994).

Esquematicamente, o BN consiste de duas unidades litológicas principais: Fácies Fanerítica Média (FFM) e Fácies Porfirítica (FP), ocorrendo ainda, em menor proporção, diques trondhjemíticos e granodioríticos, enclaves microgranulares e diques sinplutônicos máficos. A FFM, a principal unidade, é constituída por rochas cinzas homogêneas de granulometria média. A FP difere da anterior pela presença de fenocristais de plagioclásio, e está situada no centro do batólito. O aumento dos pórfiros de plagioclásio em tamanho e em volume modal das bordas para o centro do corpo, bem como a presença do zoneamento nestes cristais, podem ser interpretados como resultado do processo de cristalização fracionada. Os diques félsicos e máficos correspondem a eventos magmáticos tardios nesta área. Os enclaves máficos freqüentemente exibem formas elipsoidais e contatos nítidos com as rochas hospedeiras. Segundo Didier (1987) estas características em enclaves podem refletir os efeitos de deformação e erosão causados pelos movimentos convectivos do magma hospedeiro durante sua ascensão.

V.1 - INTRODUÇÃO

Neste capítulo serão apresentadas e discutidas as idades Pb-Pb em monozircão obtidas para duas amostras (1851 e 1898; mapa de amostragem, Fig. 8, p. 54) do Batólito Nordestina.

Os dados geocronológicos disponíveis na literatura para as rochas do BN, indicam idades paleoproterozóicas, 2100 ± 10 Ma (Alves da Silva 1994) e 2004 ± 100 Ma (Rios *et al.* 1998) Ma, obtidas também pelo método de evaporação Pb-Pb em monozircão.

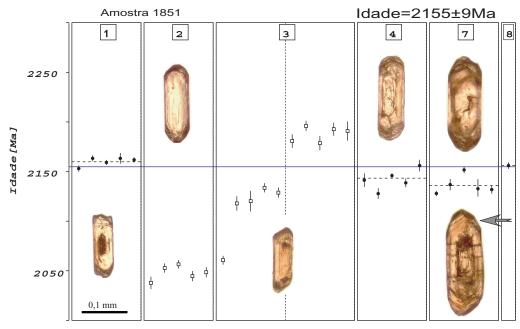
V.2 - RESULTADOS Pb-Pb: EVAPORAÇÃO EM MONOZIRCÃO

AMOSTRA 1851

A amostra 1851 foi coletada na vila de Sítio das Flores na parte central do BN. É um biotita-granodiorito exibindo textura fanerítica média com presença de fenocristais de plagioclásio de até 4 cm. Contém 60% de oligoclásio, 30% de quartzo, 4% de biotita, 5% de microclina e 1% de minerais acessórios (titanita, apatita e zircão).

Os cristais de zircão desta amostra possuem cor castanho-mel, são subédricos a euédricos, translúcidos a transparentes, mostrando uma combinação simples de prisma e pirâmide, com predomínio dos tipos alongados (comprimento/largura 3:1) e, subordinadamente, de tipos curtos (comprimento/largura 2:1). O tamanho destes cristais varia de 150 a 300 µm. Verifica-se, em alguns deles, a presença de um zoneamento cíclico estreito, como também a existência de núcleos internos envolvidos por uma borda de sobrecrescimento, a qual geralmente encontra-se também zonada, e inclusões de cristais prismáticos (apatita?). Microfraturas ou bordas translúcidas indicativas da alteração metamíctica incipiente foram observadas em alguns cristais.

Nove dos melhores grãos foram selecionados para serem estudados. Três deles não forneceram chumbo suficiente para análise. Dentre os seis cristais de zircão analisados apenas quatro apresentaram bons resultados analíticos, todos obtidos durante a primeira etapa de aquecimento (1450 °C), fornecendo idades muito próximas umas das outras entre 2,14 e 2,16 Ga (Tab. 2). Estes quatro cristais analisados forneceram 106 razões isotópicas que foram usadas para calcular uma idade média de 2155 ± 9 Ma (MSWD = 3,3; Fig. 5) que é considerada a idade mínima de cristalização da parte central de BN (Fig. 7). As idades obtidas pelos cristais 1851/2 e 1851/3 foram descartadas por causa dos resultados discrepantes que forneceram em relação às idades dos outros cristais de zircão, associado ao fato de que na primeira etapa de aquecimento estes cristais exibiram altas razões (204Pb/206Pb) > 0,012, implicando a presença de altos conteúdos de chumbo comum.


Tabela 2. Idades aparentes 207 Pb/ 206 Pb para cristais de zircão da amostra 1851. Incertezas são dadas em 2σ . Descrição dos cristais de zircão: Eu = euédrico; Se= subeuédrico; prc = prismático curto (c/l = 2); prl = prismático longo (c/l = 3); tl = translúcido; * etapa não considerada para cálculo da idade; (207 Pb/ 206 Pb)c= corrigida para contaminação de Pb comum.

Zircão	Descrição	Temp. de Evaporação	Nº de Razões	²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	(²⁰⁷ Pb/ ²⁰⁶ Pb)c	Idade (Ma)
1851/1	Eu,prl,tl	1450	38/38	0,000448	0,07374	0,14069	0,13466	2.160 ± 4
1851/2	Se,prc,tl	*1450	0/40	0,001298	0,15478	0,14384	0,12645	2.051 ± 6
1851/3	Eu,prl,tl	*1450	0/40	0,002540	0,12176	0,16151	0,13060	2.111 ± 31
		*1500	0/40	0,000692	0,08322	0,14566	0,13692	2.189 ± 7
1851/4	Eu, prl, tl	1450	32/32	0,000834	0,09597	0,14464	0,13339	2.143 ± 7
1851/7	Se, prc,tl	1450	32/32	0,000845	0,08917	0,14381	0,13282	2.136 ± 10
1851/8	Eu, prl,tl	1450	4/4	0,000968	0,11601	0,14705	0,13436	2.156 ± 7
			106/226				Média	2.155 ± 9

AMOSTRA 1898

A amostra 1898 corresponde a uma injeção trondhjemítica intrusiva em um dique sinplutônico máfico situado na borda sul do BN. Esta intrusão apresenta textura fanerítica média, consistindo principalmente de oligoclásio e quartzo, tendo como silicato ferromagnesiano a hornblenda (< 10% em volume modal). O concentrado de zircão desta amostra forneceu cristais subédricos a euédricos, alongados no geral, translúcidos a transparentes, de coloração castanho mel, com alguns cristais apresentando núcleos internos e outros partes esbranquiçadas, resultado provavelmente dos efeitos de metamictização. Nove cristais foram selecionados para análise. Destes, oito forneceram chumbo suficiente para análise (Tab. 3).

Estes oito cristais analisados forneceram resultados relativamente dispersos (Tab. 3) caracterizados por: (i) idades mais antigas próximas a 2,15 Ga [segunda etapa de aquecimento (1500 °C) do zircão 2] e 2,16 Ga [primeira etapa de aquecimento (1450 °C) do zircão 7]; (ii) idades intermediárias entre 2,10 e 2,12 Ga fornecidas em duas etapas sucessivas de aquecimento (1450 °C e 1500 °C) para o zircão 8, e para uma única etapa de aquecimento (1450 °C) para os zircões 6 e 9; e (iii) idades jovens próximas a 2,0 Ga e 2,05 Ga foram fornecidas pelos zircões 1, 3 e 5 em um única etapa de aquecimento (1450 °C) e pelo zircão 2 na primeira etapa de aquecimento. A perda de chumbo radiogênico pode ser considerada como uma explicação plausível para essas idades jovens. Diante disso, uma idade média de cristalização de 2135 ± 25 Ma (Fig. 6) foi calculada para esta amostra, não levando em conta os resultados obtidos pelos cristais que forneceram as idades mais jovens.

Etapas de Aquecimento

Figura 6. Diagrama Idade *versus* Etapa de Aquecimento de seis cristais de zircão da amostra 1851. Círculo cheio= bloco de razões isotópicas utilizado para o cálculo da idade; quadrado= bloco eliminado subjetivamente; barra vertical= desvio experimental a 2σ ; $\boxed{1}$ = número do zircão analisado.

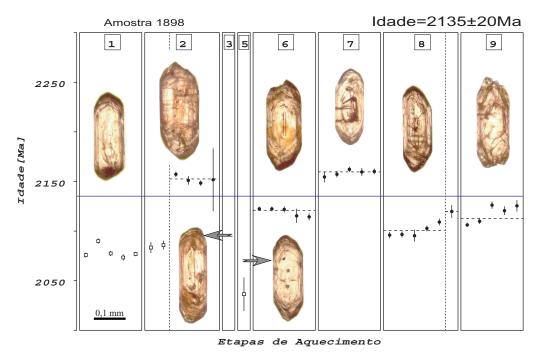


Figura 7. Diagrama Idade *versus* Etapa de Aquecimento de oito cristais de zircão da amostra 1898. Círculo cheio= bloco de razões isotópicas utilizado para o cálculo da idade; quadrado= bloco eliminado subjetivamente; barra vertical= desvio experimental a 2σ ; $\boxed{1}$ = número do zircão analisado.

Tabela 3. Idades aparentes 207 Pb/ 206 Pb para cristais de zircão da amostra 1898. Incertezas são dadas em 2σ . Descrição dos cristais de zircão: Se= subeuédrico; prc = prismático curto (c/l = 2); prl = prismático longo (c/l = 3); tr= transparente; # 204 Pb/ 206 Pb > 0,0004; * etapa não considerada para cálculo da idade; (207 Pb/ 206 Pb)c= corrigida para contaminação de Pb comum.

Zircão	Descrição	Temp. de Evaporação	Nº de Razões	²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	(²⁰⁷ Pb/ ²⁰⁶ Pb)c	Idade (Ma)
1898/1	Se,prl,tr	*1500	0/32	0,000120	0,05868	0,13031	0,12856	2.079 ± 6
1898/2	Se,prl,tr	*1450	0/16	0,000358	0,07086	0,13399	0,12903	2.085 ± 7
		1500	26/26	0,000095	0,09024	0,13534	0,13410	2.153 ± 5
1898/3	Se,prl,tr	*1450	0/4	0,000146	0,07722	0,12479	0,12284	1.998 ± 11
1898/5	Se,prl,tr	*1450	0/8	0,000000	0,06651	0,12552	0,12552	2.036 ± 34
1898/6	Se,prc,tr	1500	40/40	0,000033	0,05088	0,13215	0,13169	2.121 ± 3
1898/7	Se,prl,tr	1450	40/40	0,000174	0,08619	0,13704	0,13465	2.160 ± 3
1898/8	Se,prl,tr	1450	34/34	0,000103	0,06060	0,13161	0,13017	2.101 ± 5
		1500	04/04	0,000163	0,08455	0,13375	0,13161	2.120 ± 13
1898/9	Se,prc,tr	1450	32/32	0,000183	0,08573	0,13363	0,13108	2.113 ± 8
			176/236				Média	2.135 ± 20

V.3 - CONSIDERAÇÕES FINAIS

A idade mínima de cristalização para as rochas do Batólito Nordestina é de 2155 ± 9 Ma. A idade Pb-Pb em zircão de 2135 ± 20 Ma, obtida para a injeção trondhjemítica, superpõe-se dentro do intervalo de erro à idade obtida para a parte central do BN.

Além do Batólito Nordestina, com idade de 2155 ± 9 Ma (Pb-Pb em monozircão), ocorrem também outros corpos TTGs no NSer, a saber, os maciços de Barrocas e Teofilândia no sul do NSer com idades de 2127± 5 Ma (Pb-Pb em monozircão; Alves da Silva 1994) e 2130 ± 5 Ma (U-Pb em zircão, Mello 2000), respectivamente, que permite estabelecer um período plausível de 2127 a 2155 Ma para o evento magmático paleoproterozóico trondhjemítico no Núcleo Serrinha.

VI.1 - INTRODUÇÃO

Neste capítulo são apresentados os aspectos texturais (tamanho, forma e arranjo geométrico dos componentes minerais nas rochas), e as associações minerais de diferentes rochas representativas do Batólito Nordestina e de algumas amostras de rochas de seu embasamento. As informações petrográficas foram obtidas com base no exame de 95 lâminas delgadas (Tab. 4), realizadas com auxílio de microscópio petrográfico. Deste estudo foram selecionadas 15 rochas onde foram obtidas análises químicas de seus minerais. Na tabela 5 encontram-se listadas as rochas que tiveram minerais analisados por microssonda eletrônica. A distribuição espacial das amostras estudadas pode ser visualizada no Mapa de Amostragem (Fig. 8).

Tabela 4 - Relação do número de amostras estudadas petrograficamente e com análises de microssonda eletrônica por tipo de rocha. FFM (Fácies Fanerítica Média) e FP (Fácies Porfirítica).

Local da Amostra	Lâminas Delgadas	Lâminas Delgado-Polidas
FFM (BN)	49	06
FP(BN)	19	03
Dique (BN)	07	-
Rochas Máficas (BN)	14	02
Embasamento	05	02
GBRI	01	01
Total	95	14

Tabela 5 - Relação das amostras de rochas do Batólito Nordestina (BN) e de algumas amostras do embasamento (Em) com análises de microssonda. Feldspatos (Fss); mica (Mic); anfibólio (Anf); granada (Grt); clinopiroxênio (Cpx).

Número	Local da Amostra	Nomenclatura	Minerais Analisados
1333	BN (FFM)	Biotita-Trondhjemito	Fss, Mic
1336	BN (FP)	Biotita-Granodiorito	Fss, Mic
1406	BN (FFM)	Biotita-Tonalito	Fss, Mic
1831	BN (FFM)	Biotita-Trondhjemito	Fss, Mic, Anf
1833	BN (FFM)	Biotita-Trondhjemito	Fss, Mic
1836	BN (FFM)	Biotita-Tonalito	Fss, Mic
1841	GBRI (SVS)	Xisto pelítico com granada	Fss, Mic, Grt
1851	BN (FP)	Biotita-Granodiorito	Fss, Mic
1856	BN (FP)	Biotita-Granodiorito	Fss, Mic
1867	BN (FFM)	Biotita-Granodiorito	Fss, Mic, Anf
1871	Enclave Microgranular (BN)	Mela-diorito	Fss, Anf
1876	Interface Em/BN	Biotita-Trondhjemito	Fss, Mic
1900	Dique sinplutônico (BN)	Mela-diorito	Fss, Anf
1914	Embasamento gnáissico	Granodiorito	Fss, Mic
1915	Enclave do embasamento	Meso-diorito	Fss, Anf, Cpx

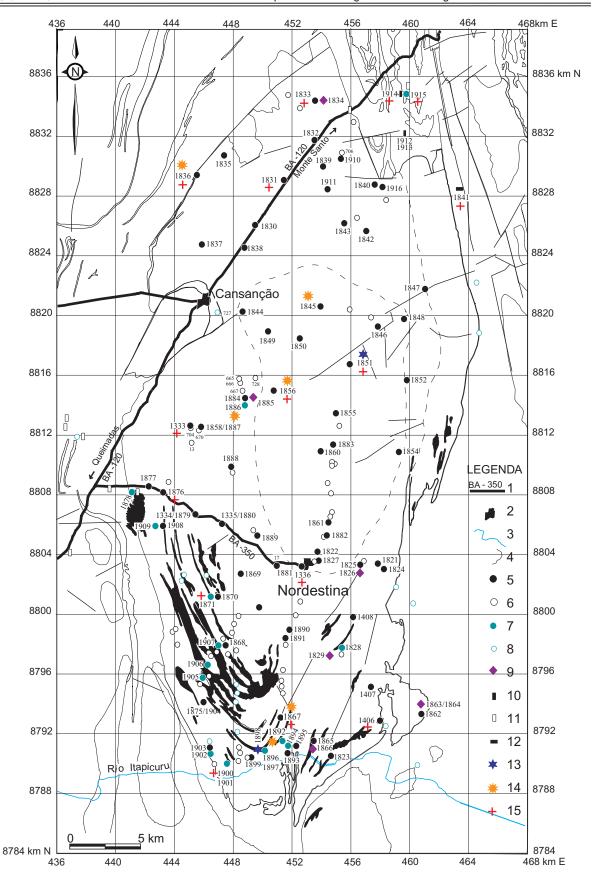


Figura 8. Mapa de amostragem do Batólito Nordestina (BN) e do seu embasamento. Legenda: 1.Estradas; 2. Cidades; 3. Rio; 4. Contornos litológicos; 5. FFM e FP (pontos analisados); 6. FFM e FP (pontos descritos); 7. Rochas Máficas do BN e do embasamento (pontos analisados); 8. Rochas Máficas do BN e do embasamento (pontos descritos); 9. Diques (pontos analisados); 10. Embasamento Félsico (pontos analisados); 11. Embasamento Félsico (pontos descritos); 12. Xisto do *Greenstone Belt* do Rio Itapicuru; 13. Ponto com idade Pb-Pb; 14. Ponto com dados isotópicos (Rb-Sr e Sm-Nd); 15. Ponto com dados de química mineral.

A classificação petrográfica de uma rocha pode ser expressa em termos de percentuais do volume de suas fases minerais (análise modal) ou de seus componentes químicos modificados (p.ex. norma ou mesonorma). Neste trabalho optou-se pela classificação de rochas graníticas (senso lato) com base no conteúdo de seus minerais mesonormativos (mesonorma de Barth 1962 *apud* Mielke & Winkler 1979), apoiados pelas análises petrográficas de suas respectivas lâminas delgadas. Já as rochas máficas foram classificadas com base nas composições modais obtidas pela média de estimativas visuais de dez campos por lâmina delgada. Estas composições mesonormativas e modais foram alocadas nos diagramas QAP e Q-A+P-M, e as rochas foram nomeadas de acordo com a nomenclatura sugerida por Streckeisen (1976) e Le Maître *et al.* (2002). A terminologia utilizada para a granulação neste estudo refere-se as seguintes dimensões: muito fina (< 0,1 mm), fina (0,1 a 1 mm), média (1 a 5 mm) e grossa (5 mm a 3 cm).

Os dados de química mineral são apresentados conjuntamente com as descrições petrográficas. As análises químicas e as fórmulas estruturais dos minerais analisados constituem o Anexo II. Sempre que possível foram realizadas análises na borda e no centro dos cristais. Para cada espécime mineral foram analisados 3 a 4 cristais por amostra. Esta sistemática objetivou identificar a presença de variações composicionais nos minerais analisados. Com estas informações será possível identificar, caso existam, desequilíbrio químicos (p.ex. zoneamentos). Foram analisados cristais com limites bem definidos, de maneira que os dados químicos obtidos representassem verdadeiramente as composições de equilíbrio entre os minerais co-existentes.

Programas de computador foram utilizados para calcular as proporções de cátions em piroxênios (Pyrox: Yavuz 2001), anfibólios (Newamphcal: Yavuz 1999) e em biotitas (Bioterm: Yavuz & Öztas 1997). O cálculo do Fe³⁺ das análises por microssonda eletrônica nos dois primeiros minerais foi realizado através de programas específicos, segundo os procedimentos sugeridos por Droop (1987). Segundo Yavuz (1999), os resultados estequiométricos de Fe⁺³ em anfibólios obtidos pelo programa Newamphcal correspondem à estimativa de "ferro férrico mínimo" do método recomendado pelo IMA97 (Leake *et al.* 1997). Os dados de Fe⁺² e Fe⁺³ da biotita foram obtidos utilizando-se o programa Bioterm, em consonância às recomendações de Dymek (1983).

VI. 2 - PETROGRAFIA E MINERALOGIA DO BATÓLITO NORDESTINA

Com base nas observações de campo, as rochas do BN podem ser agrupadas em quatro conjuntos: (i) Fácies Fanerítica Média (FFM); (ii) Fácies Porfirítica (FP); (iii) rochas máficas e (iv) intrusões tardias em forma de diques.

VI.2.1 - FÁCIES FANERÍTICA MÉDIA E FÁCIES PORFIRÍTICA

O Batólito Nordestina é constituído por rochas de cor cinza clara, inequigranulares a equigranulares (FFM; Foto 6), e rochas porfiríticas (FP; Fotos 8 e 9). Petrograficamente as rochas da FFM e da FP mostram similaridades nas composições minerais e feições texturais. As diferenças restringem-se apenas à presença de fenocristais de plagioclásio, com tamanhos variando de 2 até 4 cm, nas rochas da FP. Nestas rochas os fenocristais perfazem até 10% do volume modal, exibem tendência a se orientarem segundo o fluxo magmático e sobressaem numa matriz de granulação fanerítica média semelhante à da FFM. Ante às semelhanças petrográficas existentes entre as rochas das diferentes fácies, elas serão tratadas conjuntamente.

As rochas deste batólito são constituídas essencialmente por plagioclásio e quartzo, com quantidades subordinadas de biotita, microclina, hornblenda e de minerais acessórios (titanita, zircão, apatita e allanita). Sob o microscópio observa-se mudança nos conteúdos de microclina, marcados pelo aumento na quantidade deste mineral em direção à porção central do batólito. Esta variação composicional resulta na presença de tipos petrográficos que correspondem predominantemente a trondhjemitos (tonalitos hololeucocráticos) com tonalitos e granodioritos hololeucocráticos subordinados (Fig. 9). Na FFM ocorre a expressiva predominância de trondhjemitos e tonalitos, enquanto que os granodioritos hololeucocráticos são as rochas dominantes na FP. Estes últimos tipos de rochas são, em geral, mais ricos em titanita (Fotomicrografia 3) e podem conter muscovita pós-magmática.

Microscopicamente as rochas do BN apresentam textura hipidiomórfica a alotriomórfica (Fotomicrografia 1) que, em direção às bordas, grada para textura protomilonítica. Em rochas que sofreram um maior grau de deformação, os cristais de plagioclásio tornam-se porfiroclastos envolvidos por uma matriz fina constituída de plagioclásio + quartzo + mica (Fotomicrografia 2). Esta feição é a responsável pela estrutura gnáissica observada em campo (Foto 5). A presença de textura milonítica em rochas do BN é creditada, em parte, à tectônica externa e ao aumento da viscosidade do magma influenciada pela diminuição da temperatura nas proximidades dos contatos. Ocasionalmente estas rochas possuem fraturas e interstícios preenchidos por carbonatos (Fotomicrografia 4).

> Plagioclásio

O *plagioclásio* representa a fase mineral mais abundante nas rochas do BN. Certos indivíduos são particularmente bem desenvolvidos e conferem à rocha uma textura porfirítica na porção central do batólito em estudo (Fotos 8 e 9). A morfologia destes cristais é subédrica a anédrica, onde o caráter idiomórfico parece aumentar com o tamanho. Nas bordas do maciço, os cristais de plagioclásio apresentam feições de deformação sob

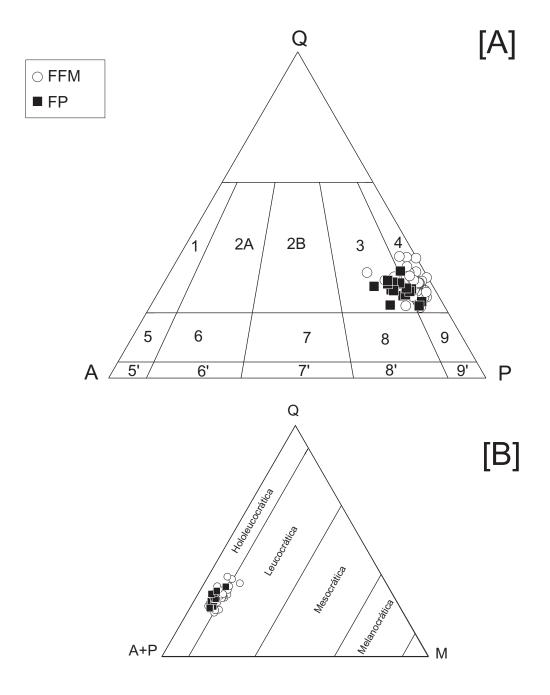
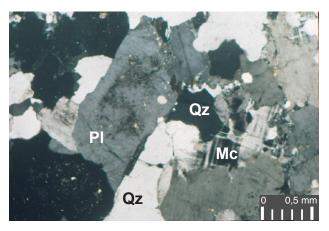
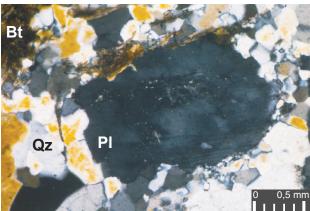


Figura 9. [A] Nomenclatura de rochas ígneas segundo os critérios estabelecidos por Streckeisen (1976) aplicado às rochas da FFM e FP do Batólito Nordestina com base na mesonorma. Q= quartzo; P= plagioclásio (>5% An); A= feldspato alcalino + albita (<5% An); M= minerais máficos; álcali-feldspato-granito (1); sienogranito (2A); monzogranito (2B); granodiorito (3); tonalito (se M > 10%), trondhjemito (se M < 10%) (4); quartzo-álcali-feldspato-sienito (5), quartzo-sienito (6), quartzo-monzonito (7); quartzo-monzodiorito (se An do P < 50%), quartzo-monzogabro (se An do P > 50%) (8); quartzo-diorito (se An do P < 50%), quartzo-gabro (se An do P > 50%) (9); os números 5', 6', 7', 8' e 9' correspondem às variedades com quartzo < 5%. [B] Diagrama Q-A+P-M.

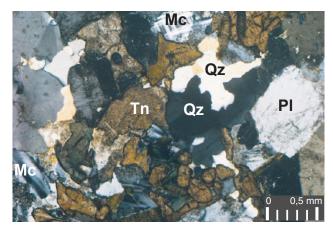
condições relativamente rígidas, como evidenciam os bordos triturados, mantendo, entretanto, contorno prismático. Seus tamanhos variam de 0,4 a 6,1 mm, predominando aqueles na faixa de 2,8 até 3,2 mm. Estes cristais apresentam contatos retos e irregulares. Geralmente estão geminados segundo a lei Albita, embora existam geminações combinadas segundo as leis Albita-Carlsbad que ocorrem esporadicamente. Alguns cristais, particularmente aqueles com menores tamanhos e anédricos, apresentam textura mirmequítica quando em contato com os cristais de microclina (Fotomicrografia 5). Microscopicamente, os cristais de plagioclásio, principalmente os das rochas próximas da borda do batólito, exibem zoneamento oscilatório com zonas bem definidas e paralelas às faces cristalinas (Fotomicrografia 6). Isto sugere que seu crescimento no magma processouse por alargamento paralelo às suas faces cristalinas, registrando uma morfologia euédrica precoce, anterior ao final de seu crescimento. Posteriormente, por competição de espaço com os cristais adjacentes, alguns dos cristais adquiriram limites irregulares. Em outros cristais o zoneamento se expressa pela presença de extinção ondulante concêntrica ou por alterações diferenciadas com zonas centrais mais cálcicas (Fotomicrografias 1 e 7), implicando também na existência de zonação normal.

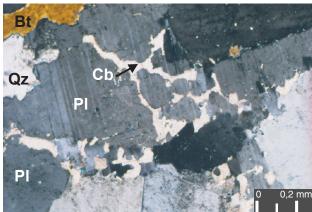

A zonação em plagioclásio ocorre quando as condições físico-químicas da cristalização são pertubadas impedindo o equilíbrio da difusão cristal-líquido. Sibley et al. (1976) sugerem que estas feições seriam facilitadas pela existência de fluxos de convecção no magma.

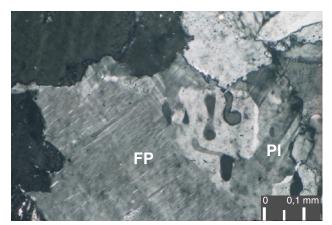
Quimicamente, os cristais de *plagioclásio* têm composição de oligoclásio (Fig. 10) e não mostram indicação clara de variação composicional entre as duas fácies, sendo marcados pela presença de zonas mais cálcicas ora no núcleo, ora na borda (Anexo II). É digno de nota a presença de um tonalito (amostra 1406), localizado na borda sul, e que possui cristais de plagioclásio mais cálcico, com bordas An₂₂₋₂₅ e centros com An₂₁₋₂₉. É comum em cristais de plagioclásio a presença de inclusões de biotita marrom, zircão e apatita prismática.


O plagioclásio nestas rochas exibe pouca alteração e encontra-se, ocasionalmente, desestabilizado para pistacita e minerais de argila.

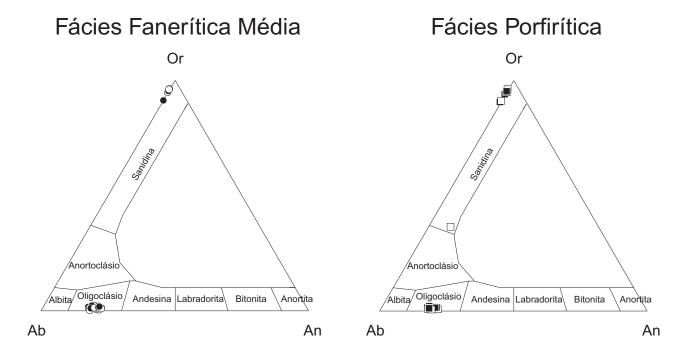
Quartzo


Os **cristais de quartzo** são anédricos (Fotomicrografias 1, 3 e 7) e ocorrem com tamanhos variáveis, mas inferiores a 5,0 mm, sejam sob a forma de grãos isolados ou como agregados. Os estudos de campo e microscópicos demonstraram um aumento das feições de deformação nos cristais de quartzo das regiões centrais para as periféricas, onde sobressaem os seguintes aspectos: (i) passagem de formas aproximadamente arredondadas para alongadas; (ii) diminuição granulométrica; (iii) aumento da intensidade da


Fotomicrografia 1. Textura hipidiomórfica a alotriomórfica. Presença de plagioclásio (PI) subédrico com alteração diferencial, microclina (Mc) anédrica e quartzo (Qz) anédrico (Am. 1869).


Fotomicrografia 2. Textura protomilonítica com porfiroclasto de plagioclásio (PI) imerso numa matriz fina constituída por plagioclásio + quartzo (Qz) + biotita (Bt) (Am. 1407).

Fotomicrografia 3. Concentração de titanita (Tn) anédrica em uma amostra de granodiorito (Am. 1855).


Fotomicrografia 4. Presença de carbonato (Cb) nos interstícios e preenchendo fraturas (Am. 1856)

Fotomicrografia 5. Textura mirmequítica presente no contato entre o plagioclásio (PI) e o feldspato pertítico (FP) (Am. 1869).

Fotomicrografia 6. Plagioclásio (PI) zonado com zonas paralelas às faces do cristal e cristais de quartzo (Qz) com contatos suturados entre si (campo direito) (Am. 1862).

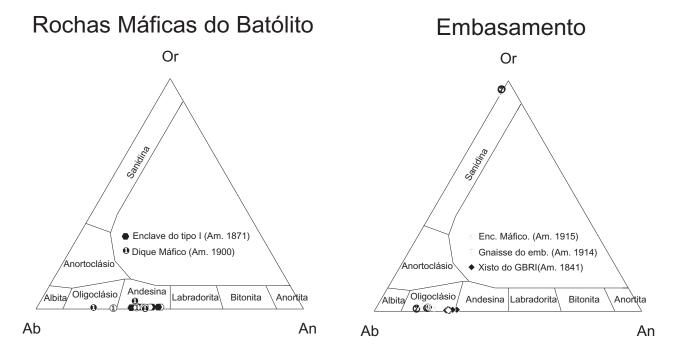


Figura 10. Classificação química dos feldspatos de rochas do Batólito Nordestina e do seu embasamento. Ortoclásio (Or); albita (Ab); anortita (An). Símbolo preenchido (centro); símbolo vazio (borda).

extinção ondulante; (iv) mudança de um arranjo inequigranular com limites irregulares para um arranjo seriado, com limites interlobados (Fotomicrografia 6); e (v) desenvolvimento de pontos tríplices (arranjos pseudo-hexagonais). As feições de (i) a (iv) podem ser atribuídas à ascensão e/ou alojamento de um magma com aumento do percentual de cristais. A feição (v) traduz, necessariamente, a existência de período de calmaria tectônica, sob condições de temperaturas ainda importantes, responsáveis pela recristalização do quartzo onde os cristais alcançam o equilíbrio entre as tensões de interface, gerando contatos retos e com geometrias formando ângulos de 120º (Spry 1969).

As inclusões usuais nos cristais de quartzo são biotita, apatita e zircão.

Biotita

Os **cristais de biotita** apresentam cor castanho-amarronzada ou castanho-esverdeada, com pleocroísmo variando de castanho-amarronzado claro a escuro ou de castanho-esverdeado claro a escuro. Eles possuem hábito subédrico a anédrico, granulometria fina a média (0,1-2,8 mm), e exibem contatos predominantemente retilíneos e microserrilhados (Fotomicrografia 8).

A biotita é o mineral máfico principal nas rochas estudadas, com volume variando de 5 até 10%, estando comumente associada a cristais anédricos de titanita, que se localizam em suas clivagens, fraturas e periferia.

Os cristais de biotita estão, em geral, orientados e conferem à rocha uma foliação, que se torna mais expressiva próxima às bordas do maciço. Quando presente na matriz protomilonítica à biotita ocorre como palhetas finas, exibindo planos de clivagens deformados e contorcidos, e extinção ondulante com movimento em leque.

Observa-se como inclusão em biotita cristais de: zircão elipsóide e zonado; zircão subédrico a euédrico; apatita subédrica a euédrica e ocasionalmente fraturada. Os cristais de titanita posicionam-se nos planos de clivagem e em suas bordas, indicando cristalização tardia.

A alteração da biotita é incipiente e marcada pela substituição pseudomórfica dela por clorita.

As análises químicas efetuadas nos cristais de biotita revelaram composições muito próximas para os grãos das diferentes amostras, com relação aos conteúdos de FeO, MgO e Al_2O_3 (20,95 a 22,97%, 7,59 a 9,49 e 14,15 a 16,29%, respectivamente), exceto para os cristais de biotita da amostra 1406, que contêm conteúdos levemente mais elevados de Al_2O_3 (16,25 a 17,18%) e MgO (9,23 a 9,59%) e mais baixo de FeO (20,36 a 20,99%).

Segundo a classificação de Rieder *et al.* (1998) as micas do BN posicionam-se no campo da biotita, sendo moderadamente enriquecidas em Fe $[0,52 < [Fe_2/(Fe_2+Mg) < 0,6;$ Fig. 11]. No diagrama Al_2O_3 -Fe O_t -MgO (Fig. 12), os cristais de biotita da FFM e da FP

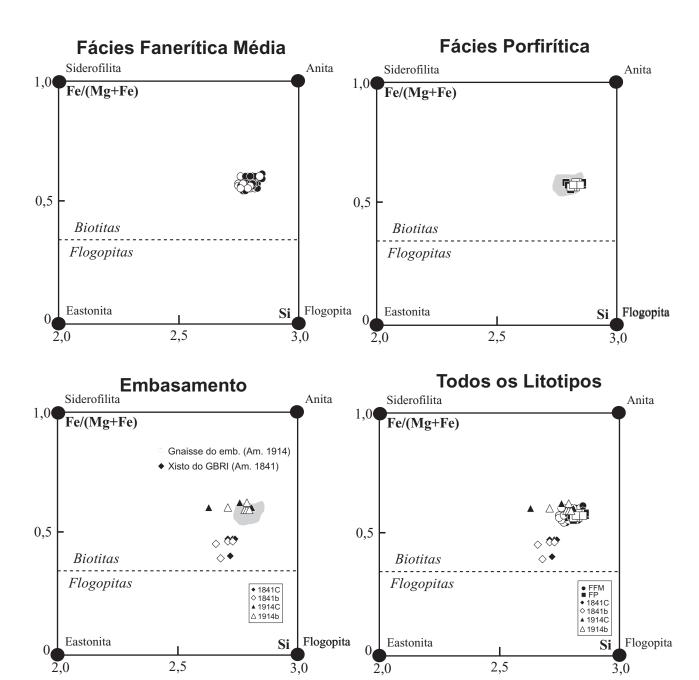


Figura 11. Diagrama de classificação para micas (segundo Rieder *et al.* 1998) aplicado às rochas do Batólito Nordestina e do seu embasamento. Símbolo preenchido (centro); símbolo vazio (borda). O campo cinza campo corresponde aos das micas da Fácies Fanerítica Média.

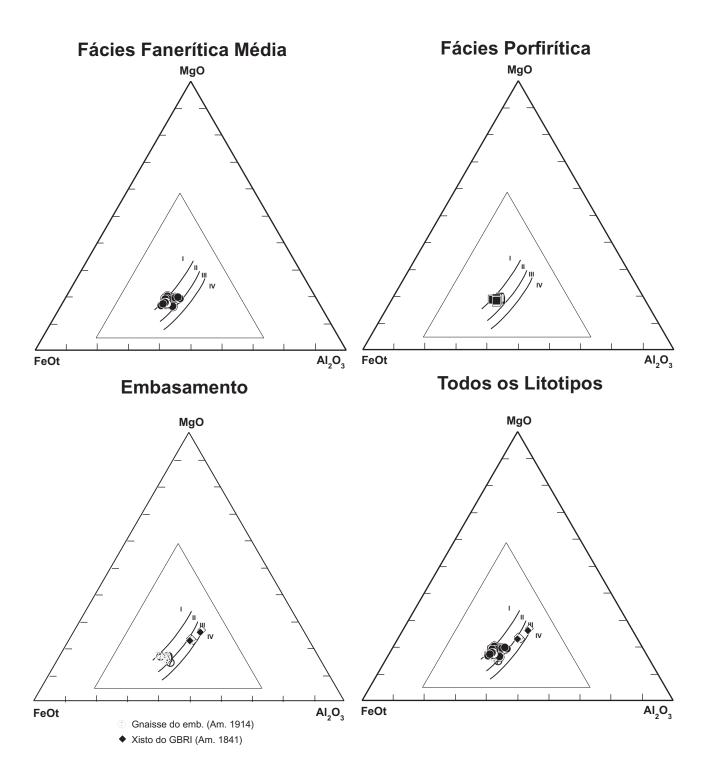


Figura 12. Diagrama triangular Al₂O₃ - FeOt - MgO (*apud* De Alburquerque 1973) aplicado às biotitas de rochas do Batólito Nordestina e do seu embasamento. Campo I: biotitas cristalizando em equilíbrio com anfibólios; campo II: biotitas como única fase mineral máfica; campo III: biotitas co-existindo com muscovita; campo IV: biotitas co-existindo com aluminossilicatos. Símbolos são os mesmos da figura anterior.

posicionam-se no campo (II), que corresponde à biotita de rochas onde ela, é o único mineral máfico. Nota-se, contudo que, de forma discreta, existe tendência das composições migrarem para o campo I (biotita associada com hornblenda). Estes resultados estão em de acordo com aqueles obtidos na petrografia.

Abdel-Rahman (1994) desenvolveu alguns diagramas para identificação de biotita pertencente a rochas de diferentes séries magmáticas (Fig. 13). Todas as análises de cristais de biotita do BN posicionam-se no campo das micas de magmas cálcio-alcalinos.

> Feldspato Alcalino

O principal **feldspato alcalino** presente nas rochas do BN é a microclina. O feldspato alcalino pode ocorrer ainda como cristais tabulares de ortoclásio caracterizados pela geminação segundo a lei Carlsbad. Cristais pertíticos são presentes nas rochas mais evoluídas (Fotomicrografia 5).

Nas rochas trondhjemíticas e tonalíticas a microclina é anédrica, intersticial, e seus contatos são irregulares e difusos (Fotomicrografias 1 e 3). Nos cristais maiores, seus contatos tendem a ser retos a curvos. Normalmente a microclina ocorre geminada segundo as leis Albita-Periclina, com tamanhos e volumes inferiores a 1 mm e a 5% da moda, respectivamente.

Em algumas rochas granodioríticas a microclina apresenta granulação superior a 1 mm e encontra-se, aparentemente, fogacitando cristais de quartzo, plagioclásio anédrico e palhetas de mica. Foram também observadas nestas rochas, megacristais tabulares com geminação Albita-Periclina de nitidez difusa e distribuição irregular.

O *feldspato alcalino* nas rochas da FFM e da FP mostra variação composicional restrita (95 < Or < 97%; Fig. 10) e seus conteúdos de BaO estão compreendidos entre 0,46 e 1,28%.

> Anfibólio

Os **cristais de anfibólio** são subédricos a anédricos, possuem cor verde e pleocroísmo verde-escuro (Z´), verde-acastanhado, verde-oliva (Y´), e verde-pálido (X´). Exibem contatos retos, curvos e irregulares, e seus tamanhos variam de 0,2 até 1,6 mm. Estes cristais ocorrem isolados (Fotomicrografia 9) ou formando aglomerados com a biotita (Fotomicrografias 10 e 11). O anfibólio não é freqüente nas rochas do BN, estando presente apenas em algumas amostras (p.ex. as de números 1836 e 1867), com volume subordinado, nunca superior a 3%. As fases minerais inclusas nos cristais de anfibólio são: apatita euédrica a subédrica e quartzo anédrico.

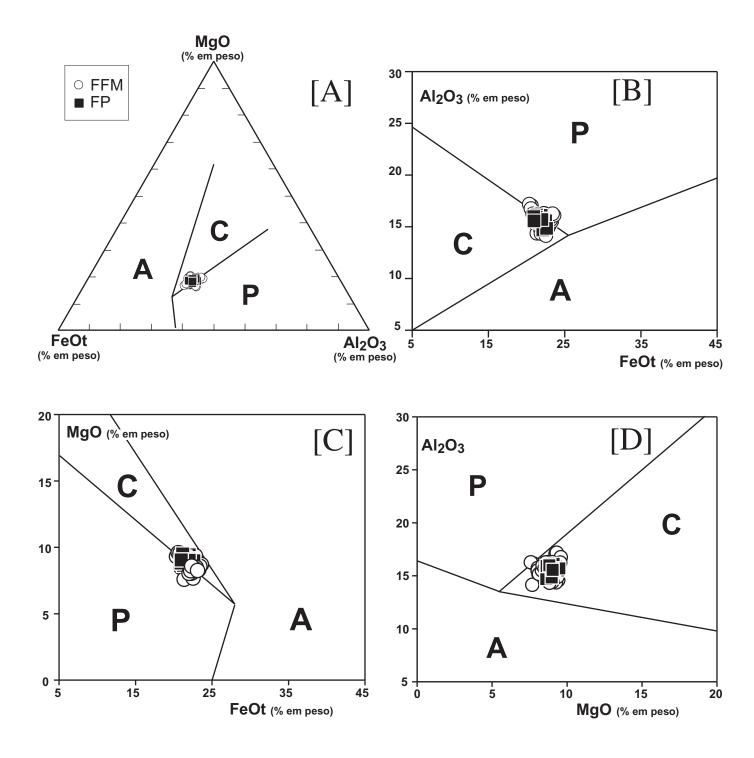


Figura 13. Diagramas discriminantes propostos por Abdel-Rahman (1994) para definir diferentes séries magmáticas a partir de análises de biotitas aplicado às rochas do Batólito Nordestina. Campo A: biotitas de suites alcalinas anorogênicas; campo P: biotitas de suítes peraluminosas (incluindo tipo S); campo C: biotitas de suítes orogênicas cálcio-alcalinas.

De acordo com a classificação de Leake *et al.* (1997) os **anfibólios** do BN correspondem a Fe-hornblenda (amostras 1831 e 1867). Apenas um cristal apresentou composição de Fe-edenita (cristal da amostra 1867), evidenciando conteúdo de (Na + K) no sítio A (Leake *et al.* 1997) superior a 0,5% (Fig. 14).

Os cristais analisados não apresentam variações composicionais significativas: SiO_2 (42,5 a 46,7%), TiO_2 (0,30 a 1,11%), Al_2O_3 (8,7 a 10,8%), FeO (19,7 a 20,9%), MgO (7,91 a 9,03%), CaO (11,23% a 11,75%), Na_2O (0,86 a 1,17%) e K_2O (0,92 a 1,09%).

Minerais Acessórios

Os **minerais acessórios** comuns nestas rochas são: apatita, zircão, titanita e ocasionalmente allanita. Eles ocorrem com volume inferior a 1% e estão inclusos em vários dos silicatos descritos anteriormente.

A apatita é subédrica a euédrica (Fotomicrografia 12) e tem granulação variando de 0,007 até 0,2 mm. O zircão é subédrico a euédrico, zonado, elipsóide (Fotomicrografia 12) e tem tamanho compreendido entre 0,005 e 0,1 mm. A titanita é anédrica, com tamanho inferior a 0,1 mm e encontra-se freqüentemente reunida em agregados granulares que se mostram intimamente relacionados com a biotita. Esta relação de contato sugere que a titanita tenha se formado à custa da biotita. A allanita, subédrica e com tamanho em torno de 0,1mm, é mais comumente encontrada nas rochas granodioríticas (Fotomicrografias 8 e 13).

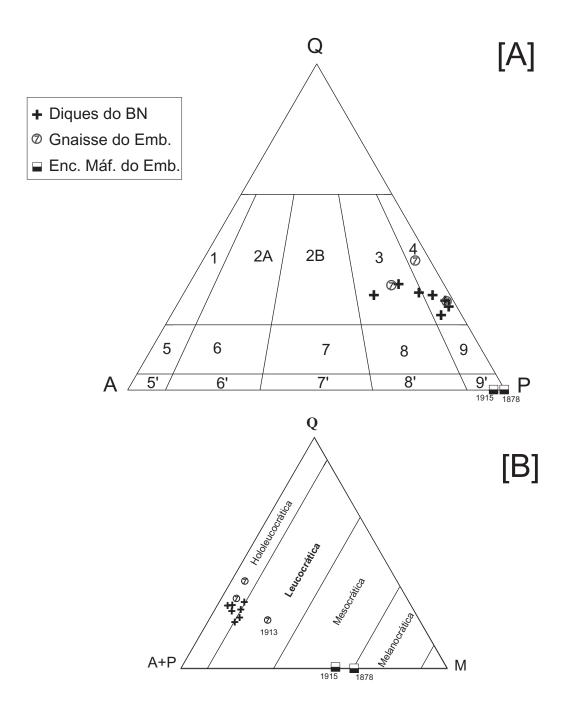
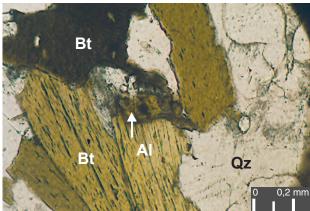
VI.2.2 - DIQUES FÉLSICOS

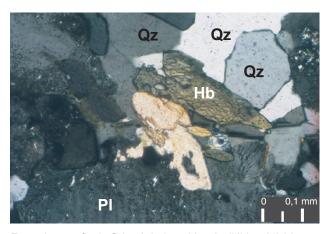
Os **diques félsicos** no BN apresentam duas populações distintas: (i) diques trondhjemíticos, com cor cinza, e (ii) diques granodioríticos, com cor branca (Fig. 15).

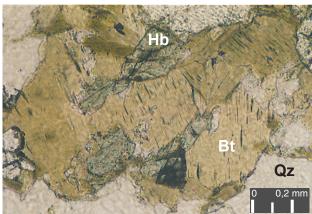
Os diques trondhjemíticos têm textura protomilonítica (Fotomicrografia 14). Eles são constituídos por cristais de oligoclásio (16% An), agregados de quartzo (com extinção por setores) e de biotita, numa matriz de granulação fina de mesma composição mineral e com microclina (< 5%). Os minerais acessórios nestas rochas são: apatita, zircão e titanita.

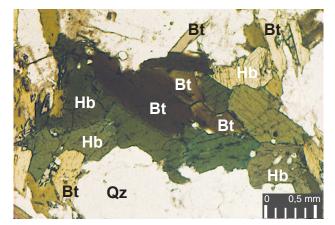
Os diques granodioríticos têm textura porfirítica, caracterizada pela presença de fenocristais de ortoclásio poiquilítico imersos numa matriz mais fina formada por oligoclásio (16% An), quartzo, biotita, feldspato alcalino (microclina, feldspato pertítico) (Fotomicrografia 15). Os minerais acessórios são: apatita, zircão e titanita.

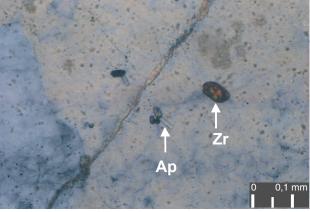
Figura 14. Composição e classificação dos anfibólios (Leake *et al.* 1997) das rochas do Batólito Nordestina e do seu embasamento. Símbolo preenchido (centro); símbolo vazio (borda).


Figura 15. [A] Nomenclatura de rochas ígneas segundo os critérios estabelecidos por Streckeisen (1976) aplicados as rochas dos diques do Batólito Nordestina e do seu embasamento, com base na mesonorma, e dos enclaves máficos do embasamento com base nos dados modais. Q= quartzo; P= plagioclásio (>5% An); A= feldspato alcalino + albita (<5% An); M= minerais máficos; álcalifeldspato-granito (1); sienogranito (2A); monzogranito (2B); granodiorito (3); tonalito (se M > 10%), trondhjemito (se M < 10%) (4); quartzo-álcali-feldspato-sienito (5), quartzo-sienito (6), quartzo-monzonito (7); quartzo-monzodiorito (se An do P < 50%), quartzo-monzogabro (se An do P > 50%) (8); quartzo-diorito (se An do P < 50%), quartzo-gabro (se An do P > 50%) (9); os números 5', 6', 7', 8' e 9' correspondem às variedades com quartzo < 5%. [B] Diagrama Q-A+P-M.


Fotomicrografia 7. Cristal de plagioclásio (PI) geminado segundo a lei Albita com centro alterado e borda preservada. No lado esquerdo, cristais de quartzo (Qz) anédricos (Am.1867).


Fotomicrografia 8. Aglomerado de cristais de biotita subédricos e cristal de allanita (Al) (Am. 1836).


Fotomicrografia 9. Cristal de hornblenda (Hb) subédrico (Am. DL-24).

Fotomicrografia 10. Aglomerado máfico constituído por cristais de hornblenda (Hb) e de biotita (Bt) (Am. 1867).

Fotomicrografia 11. Aglomerado máfico de cristais de hornblenda (Hb) com presença subordinada de biotita (Bt) (Am. 1831).

Fotomicrografia 12. Cristal de zircão elíptico zonado e cristais de apatita prismáticos inclusos em quartzo (Am. 1833).

VI.2.3 - ROCHAS MÁFICAS

As rochas máficas ocorrem inseridas no BN como enclaves microgranulares com tamanhos centimétricos a hectométricos, mais comumente na forma elipsoidal, e diques sinplutônicos. A localização, modo de ocorrência, assembléia mineral e textura destas rochas são detalhados na tabela 6.

Os enclaves microgranulares máficos (EMM), com tamanhos centimétricos a métricos, petrograficamente variam de meso a mela-dioritos (Ams.1871, 1907, 1909, 1902, 1905, 1906), e de leuco a meso-dioritos (Ams. 1894 e 1886) (Fig. 16).

De acordo com a granulação os **EMM meso a mela-dioríticos** podem ser reagrupados em: (i) tipo I (granulação fina a muito fina) e (ii) tipo II (granulação fina a média ou média a fina).

Os EMM do tipo I (Ams.1871,1907,1909) são rochas de cor preta a verdeescura e com granulação fina a muito fina. Elas exibem textura nematoblástica a
granonematoblástica e são constituídas por 60-82% de anfibólio e 17-38% de
plagioclásio. Os cristais de anfibólio aparecem como prismas alongados, subédricos,
com bordos irregulares e apresentam cor verde e pleocroísmo variando de verdeescuro a verde-amarelo. Quimicamente os anfibólios da amostra 1871 forneceram
composições de Fe-pargasita potássica (Fig. 14). O plagioclásio pode exibir em
alguns espécimes geminação Albita (p.ex. amostra 1871; Fotomicrografia 16) e
encontra-se ocasionalmente alterado para epídoto e minerais de argila. Análises
químicas de microssonda eletrônica em cristais de plagioclásio da amostra 1871
permitiram a identificação de andesina com teor de anortita de 47%, na borda, e
38%, no centro (Fig. 10). Ocorrem como acessórios, por ordem crescente de
abundância, nestes enclaves: titanita, minerais opacos, apatita prismática e acicular,
e zircão anédrico.

Os **EMM do tipo II** (Ams. 1902, 1905, 1906) são rochas de cor pretoesverdeada escura, com granulação fina a média e textura granonematoblástica.
Eles são constituídos principalmente por: anfibólio (62-72% vol.); andesina (36-40%
An, 25-36% vol.). As propriedades óticas dos anfibólios mostram que estes
correspondem a hornblenda (*s.l.*). Eles são cristais prismáticos subedrais a euedrais
de cor verde-acastanhado com bordos verde-claro, pleocroísmo verde-acastanhado
a verde-amarelo e encontram-se usualmente formando aglomerados. Na amostra
1905 observaram-se cristais de hornblenda parcialmente pseudomorfisados para
biotita. Os cristais de plagioclásio ocorrem dispersos, intersticiais aos de anfibólio ou
encontram-se reunidos em bandas mais leucocráticas. Eles freqüentemente não
estão geminados, exibem contatos irregulares, e raramente estão zonados e
geminados segundo a lei Albita. Acham-se em geral pouco alterados para epídoto e

minerais de argila. Observou-se ainda a presença de inclusões de cristais de titanita, minerais opacos e, mais raramente, de apatita e zircão.

O EMM meso-diorítico (Am. 1886; Fig. 16) corresponde a uma rocha de cor verdeescura, com granulação fina, textura granoblástica poligonal, sendo constituída por oligoclásio (An 28%; 63% vol.) e hornblenda (34 % vol.), tendo como acessórios (biotita 2,5% vol.; titanita + apatita acicular, 0,5% vol.). Este enclave apresenta uma coroa de reação constituída por cristais de biotita de granulação média no contato com a rocha hospedeira.

O **EMM** leuco-quartzo-diorítico (Am. 1894; Fig. 16) tem cor cinza escura, granulometria fina a média, sendo composto por: oligoclásio (30%An; 65,7%vol.), hornblenda (16,2%vol.), biotita (10,3%vol.), quartzo (4,3%vol.); titanita (1,3%vol.); feldspato alcalino (1,2%vol.), com apatita, zircão e ilmenita totalizando menos que 1% do volume. Apresenta textura protoclástica, com predomínio de fenoclastos de oligoclásio de contorno *augen* sobre os de hornblenda e biotita. Estes cristais mostram-se com comprimento maior paralelo à foliação e estão coroados por matriz fanerítica fina, essencialmente quartzo-feldspática.

Os EMM **hectométricos** consistem de mela-diorito (Am. 1892) e mela-quartzo-diorito (Am. 1828) de granulação fina à média (Fig. 16). Estes enclaves compõem-se de hornblenda (78-84%) e andesina (13-18%), com teores de anortita de 32-34%. Neles os cristais de hornblenda são curtos (0,5 a 1,2 mm), e em grande parte dominam sobre plagioclásio o intersticial. Ocorrem também minerais opacos, titanita e apatita. A amostra 1828 apresenta ainda quartzo intersticial e zircão anédrico, sendo a mais rica em minerais opacos (ilmenita; 2,5% vol.) quando comparada com os outros enclaves estudados.

Os diques sinplutônicos máficos ocorrem como corpos alongados com tamanhos hectométricos e largura inferior a 500 m. Estas intrusões exibem granulação fina a média, coloração preta a verde-escura, textura blasto-ofítica a blasto-subofítica (Ams. 1900 e 1901). Ocasionalmente ocorre textura porfirítica (Am. 1896), sendo caracterizada pela presença de fenocristais de plagioclásio, com tamanhos variando de 0,5 cm até 2 cm, dispersamente distribuídos em matriz similar em moda a das amostras 1900 e 1901. Estes diques apresentam composição de mela-dioritos (Ams. 1900 e 1901; Fig. 16). São compostos por prismas de anfibólio (0,6-1,0 mm) com dimensões até duas vezes maiores que as das ripas de plagioclásio (0,3-0,4 mm). Alguns cristais de anfibólio exibem geminação simples. Análises químicas de anfibólio da amostra 1900 revelaram composição de magnésio-hornblenda (Fig. 14). Observa-se ainda nestes cristais um pleocroísmo castanho-pálido e verde-acastanhado e bordas de cor verde-escura (Fotomicrografia 17). Quimicamente isto é refletido por bordas mais pobres em SiO₂ e mais ricas em Al₂O₃ em relação ao núcleo (Fig. 14; Anexo II.2), o que sugere a presença de reequilíbrio químico marcado por substituição do AI por Si. Os cristais de plagioclásio mostram-se alterados, tendo como produtos de

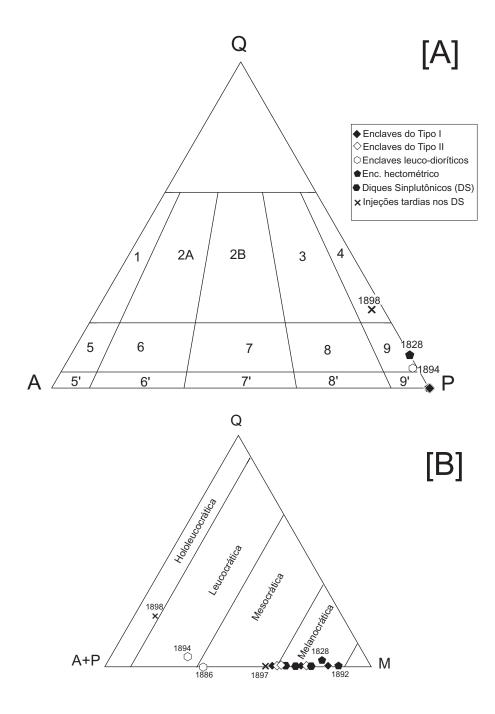


Figura 16. [A] Nomenclatura de rochas ígneas segundo os critérios estabelecidos por Streckeisen (1976) aplicado as rochas máficas do BN, com base nos dados modais. Q= quartzo; P= plagioclásio (>5% An); A= feldspato alcalino + albita (<5% An); M= minerais máficos; álcali-feldspato-granito (1); sienogranito (2A); monzogranito (2B); granodiorito (3); tonalito (se M > 10%), trondhjemito (se M < 10%) (4); quartzo-álcali-feldspato-sienito (5), quartzo-sienito (6), quartzo-monzonito (7); quartzo-monzodiorito (se An do P < 50%), quartzo-monzogabro (se An do P > 50%) (8); quartzo-diorito (se An do P < 50%), quartzo-gabro (se An do P > 50%) (9); os números 5', 6', 7', 8' e 9' correspondem às variedades com quartzo < 5%. [B] Diagrama Q-A+P-M.

Tabela 6. Sumário da petrografia das rochas máficas e associadas no Batólito Nordestina e no embasamento.

ENCLAVES MICROGRANULARES MESO A MELA-DIORÍTICOS DO TIPO I: GRANULOMETRIA FINA A MUITO FINA

Amostra	Localização	Forma de Ocorrência	Minerais em ordem de abundância decrescente, (% em vol).	Textura e Características Macroscópicas e Microscópicas Relevantes
1871	Borda W do BN, Faz. Três Lagoas, 7km a SW da cidade de Nordestina.	Enclave métrico (1m x 6m) fusiforme.	Fe-pargasita** (60%); andesina**, 38-47% An, (38%); minerais opacos (1%); titanita + apatita + zircão anédrico + biotita (<1%).	Rocha de cor preta, granulometria fina a muito fina, textura nematoblástica. Os cristais de anfibólio são prismas finos de cor verde. As biotitas têm cor verde e marrom e ocorrem na forma de ripas e de secções pseudo hexago-nais (<1%).
1907 Encaixante com fluxo magmático.	Borda SW do BN, Faz. do Quiba, 6,5km a SW da cidade de Nordesti- na.	Enclave métrico (1m x 4 m).	Hornblenda* (82%); andesina* (17%); titanita + minerais opacos + apatita (1%).	Rocha de cor preta, cortada por filetes (< 1mm) subparalelos à foliação da rocha. Apresenta granulometria fina a muito fina, textura nematoblástica. Os cristais de anfibólio são prismas finos de cor verde. Alguns cristais exibem bordas com cor verde-pálida.
1909	Borda W do BN entre as Fazendas Tanqui- nho e Gentil.	Enclave métrico	Hornblenda* (72%); andesina*, 38% An, (27%); minerais opacos + titanita + apatita + zircão (<1%).	Rocha de cor preta com presença ocasional de veios félsicos milimétricos, subparalelos à foliação. Sua granulometria é fina a muito fina, textura nematoblástica. O anfibólio ocorre como prismas finos de cor verde.

ENCLAVES MICROGRANULARES MESO A MELA-DIORÍTICOS DO TIPO II: GRANULOMETRIA FINA A MÉDIA

1902	Borda S/SW do BN, próximo ao Rio Itapi- curu	Enclave com trend NW/SE	Hornblenda* (72%); andesina*, 36% An, (25%); titanita (2,0%); minerais opacos + apatita (1%).	Rocha de cor verde-escura, granula- ção média a fina, textura grano- nematoblástica. A hornblenda tem cor verde-parda e exibe bordas com cor verde-escura. A titanita encontra- se orientada no sentido do anfibólio. Esta amostra é mais rica em titanita do que as outras amostras.
1905	Borda SW do BN, 10km a SW da cidade de Nordes- tina.	Enclave métrico invadido por veios félsicos da rocha hospedei- ra.	Hornblenda* (62%); andesina*, 40% An, (36%); minerais opacos (1,0%); titanita + apatita (<1,0%).	Rocha de cor verde-escura, granulo- metria média a fina, inequigranular, textura granonematoblástica mos- trando-se pouco cataclasada com presença de fenoclastos de plagio- clásio. A hornblenda tem cor verde- parda e exibe bordas com cor verde- escura e encontra-se substituída pseudomorficamente pela bio-tita. Alguns cristais de andesina em- contram-se alterados para minerais de argila e epídoto.
1906	Borda SW do BN, 1km a NE do ponto 695 (amostra 1905).	Enclave orienta- do segundo à di- reção NW-SE.	Hornblenda* 64 %; andesina*, 40% An, (34%); apatita (1,0%); minerais opacos + titanita + zircão (<1,0%).	Rocha de cor verde-escura invadida por microveios (<3,0 mm de espessura) félsicos (quartzo e plagioclásio) da rocha hospedeira truncando ou subparalelos à foliação, granulometria fina a média, textura granonematoblástica. O anfibólio é verdepardo e apresenta bordos verdeclaros e dispõem-se imbricados uns sobre os outros. A andesina apresenta-se ligeiramente alongada.

Tabela 6 (CONTINUAÇÃO). Sumário da petrografia das rochas máficas e associadas no Batólito Nordestina e no embasamento.

ENCLAVES MICROGRANULARES LEUCO E MESO-CRÁTICOS

Amostra	Localização	Forma de Ocorrência	Minerais Em ordem de abundância decrescente, (% em vol).	Textura e Características Macroscópicas e Microscópicas Relevantes
1894	Borda sul de Nordestina	Enclave métrico incorporado à tra- ma gnáissica dú- ctil.	Oligoclásio*, 30% An, (65,7%); hornblenda* (16,2%); biotita (10,3%); quartzo (4,3%); titanita (1,3%); feldspato alcalino (1,2%); apatita + zircão + opacos (< 1%).	Rocha de cor cinza escura, granulometria fina a média. Apresenta textura clástica com presença de fenoclastos de oligoclásio. A hornblenda tem cor verde e encontra-se algumas vêzes sendo pseudomorfisada para biotita a partir de suas bordas e fraturas, passando a ter forma tabular.
1886	Faz. São Domingo, aproximadamente 7km a SE da cidade de Cansanção	Enclave centimé- trico (de 5-10 cm x 20 cm) com cristais de biotita no endocontato.	Oligoclásio*, 28% An, (63%); hornblenda (34 %); biotita associada ao anfibólio (2,5%); titanita + apatita (0,5%).	Rocha de cor verde-escura, granulometria fina, textura granoblástica poligonal. A biotita aumenta em quantidade em direção à rocha hospedeira ao longo de uma borda de contato. O anfibólio é verde-escuro.

ENCLAVES HECTOMÉTRICOS MELA-DIORÍTICOS: COM FOLIAÇÃO INCIPIENTE

1828	Borda leste do BN, 6km a SE da cidade de Nordes- tina.	Corpo alongado (100m x 2100m) segundo o <i>trend</i> NE-SW.	Hornblenda* (78%); andesina*, 34%An (18%); quartzo intersticial (2,0%); minerais opacos (1,5%); apatita+ zircão + biotita marrom e verde (0,5%).	Rocha de cor verde-escura, granulo- metria fina a média, textura granonema- toblástica. A hornblenda tem cor verde e ocorre como prismas curtos e grossos formando aglomerados compactos.
1892	S/SE do BN, na Faz. Salina próxi- mo ao Rio Itapi- curu.	Corpo alongado (100 m x 2500 m) com trend NE/SW.	Hornblenda* (84%); andesina*, 32%An, (13%); titanita (2%); minerais opacos + apatita (1%).	Rocha de cor verde-escura cortada por veios félsicos subparalelos à orienta-ção principal. Granulação fina a média, textura granonematoblásitca. O anfibólio é verde-claro e exibe bordos de cor verde-escura. A andesina encontra-se substituída por minerais de epídoto.

	DIQUES SINPLUTÔNICOS MELA-DIORÍTICOS: COM TEXTURA ÍGNEA PRESERVADA							
1900	S/SW do BN, Faz. Mãe da Chica, próxi- mo à margem es- querda do Rio Itapi- curu.	Intrusão (100 x 200 m) com trend NW/SE.	Mg-hornblenda** (68,1%); andesina**, 30-42%An (28,9%); titanita (2,0%); minerais opacos + apatita (< 1,0%).	Rocha de cor verde-escura, gra- nulometria fina a média, textura blasto-ofítica a blasto-subofítica, fra- tura preenchida por carbonatos. A hornblenda tem cor verde-parda, exibe bordos de cor verde-escura e alguns grãos mostram geminação simples. A andesina é ripiforme e encontra-se totalmente caolinizada com raros cristais remanescentes.				
1901	Borda S do BN	Bordo do dique anterior	Hornblenda* (75%); andesina*, 30%An (23%); titanita (1,5%); apatita + opacos (0,5%).	Rocha de cor verde-escura, inequi- granular, isotrópica, textura grano- blástica com tendência blasto- ofítica, granulação fina a média. A hornblenda tem cor verde-parda, exibe bordos de cor verde-escura e alguns grãos mostram geminação simples. A andesina é ripiforme e encontra-se totalmente caolinizada com raros cristais remanescentes.				

Tabela 6 (CONTINUAÇÃO). Sumário da petrografia das rochas máficas e associadas no Batólito Nordestina e no embasamento.

	DIQUES SINPLU	JTÔNICOS MELA-DIOR	<u> (ÍTICOS: COM TEXTURA ÍGN</u>	
1896 (e pontos 736,735,73		Corpo (100 x 5000 m) em forma de bumerangue com trend NW/SE flexionado para trend NE/SW.	Hornblenda*, 63,0%; andesina*, 38% An (33,0%); titanita (3,0%); apatita + opacos + zircão (< 1%).	Rocha de cor verde-escura, textura porfirítica marcada pela presença de fenocristais de feldspato de até 2 cm, granulometria média, com texturas blastoporfirítica e maciça com tendência blasto-ofítica. O anfibólio é verde com inclusões de quartzo e a andesina tem hábito ripiforme e com alguns grãos alterados para minerais de argila.
		INTRUSÕES NOS	DIQUES SINPLUTÔNICOS	
1897	Sul do BN próximo ao Rio Itapicuru, Faz. São Roque.	Dique máfico com cerca de 10 m de espessura intrusa no corpo 1896.	Hornblenda tremolítica-actinolítica* (58%); andesina*, 31%An, (40,2%); titanita (1,2%); minerais opacos + apatita (0,6%).	Rocha de cor verde-escura, inequi- granular, com textura maciça, blas- to-ofítica a blasto-subofítica, gra- nulometria média a fina. O anfibólio é verde-pálido e a andesina é ripi- forme e encontra-se caolinizada, poucos são os grãos remanescen- tes.
1898 (e ponto 73	Sul do BN próximo ao Rio 37) Itapicuru, Faz. São Roque.	Dique na intrusão 1896	Oligoclásio*, 25%An (67%); quartzo (22%); hornblenda* (7,0%); feldspato alcalino (3%); titanita + zircão + apatita, (1,0%).	Rocha de cor branca, textura hipidiomórfica granular, hololeucocrática, isotrópica, granulometria media, constituída por cristais de oligoclásio, quartzo, hornblenda, feldspato alcalino e minerais acessórios (zircão, apatita, titanita).
		ANFIBOLITOS	S DO EMBASAMENTO	
1878	Embasamento a SW do BN	Faixa métrica no embasamento	Hornblenda* (63,5%); andesina*, 32%An, (35,5%); opacos (1,0%); titanita + apatita + zircão (< 1,0%).	Rocha de cor verde-escura cortada por veios félsicos truncando e para- lelos à foliação da rocha, inequi- granular, textura granonematoblás- tca, fanerítica fina a média.
1915	Enclave do emba- samento NE do BN.	Enclave	Fe-pargasita** (51,5%); oligoclásio**, 28%An, (41%); diopsídio** (4%); titanita (1,5%); microclina (1%); minerais opacos + apatita + zircão anédrico	Rocha de cor verde-escura, textura granoblástica, fanerítica média. A hornblenda é verde e o diopsídio ocorre associado à hornblenda.

^{*} Determinações óticas, ** Determinações com base na química mineral.

alteração epídoto e minerais de argila (Fotomicrografia 17). Em alguns cristais, os resultados químicos exibiram bordos com composição variando de 30-42% An e núcleos com 23-43% An (Fig. 10). Como acessórios ocorrem titanita anédrica, minerais opacos, alterando para leucoxênio, e apatita.

Em alguns locais observou-se que os diques máficos porfiríticos são intrudidos por injeções máficas (Am. 1897) e félsicas (Am. 1898) com espessuras inferiores a 10 e 0,5 metros, respectivamente. As injeções máficas são rochas de cor verde-escura com matiz de cor branca, textura blasto-ofítica a blasto-subofítica. Apresentam composição meso-diorítica (Fig. 16) e são constituídos por hornblenda actinolítica prismática e andesina ripiforme (31% An), esta última quase que

totalmente alterada para minerais de argila. As injeções félsicas correspondem a trondhjemitos (Fig. 16). Elas são de cor branca, granulação média, textura hipidiomórfica e compostas por oligoclásio zonado, freqüentemente turvo (67% vol.), quartzo (22% vol.), hornblenda substituída por clorita (7% vol.), feldspato alcalino (3% vol.) e minerais acessórios (titanita, zircão e apatita, <1% vol.).

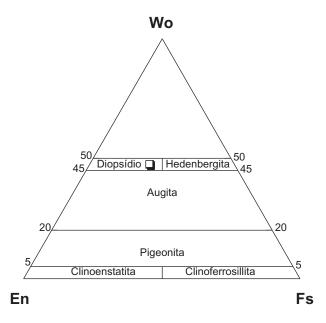
VI.3 - PETROGRAFIA E MINERALOGIA DAS ENCAIXANTES

Para estudos petrográficos, geoquímicos e geotermobarométricos foram coletadas amostras representativas das rochas encaixantes nas vizinhanças do Batólito Nordestina: (i) em um afloramento (a norte do BN), em rocha gnáissico-migmatítica, onde a migmatização mostrava-se incipiente, foi coletada uma amostra de gnaisse cinza (Am. 1912) e uma de paleossoma (Am. 1913); (ii) em outro afloramento (a norte do anterior) de rocha gnáissico-migmatítica, coletou-se uma amostra de neossoma (Am.1914) e outra amostra de enclave anfibolítico (Am. 1915); e, (iii) em um afloramento (a oeste do BN, próximo do entroncamento da BA-120 com a BA-350) gnáissico-migmatítico rico em enclaves e faixas anfibolíticas, foi coletado uma amostra de anfibolito (amostra 1878). Os estudos macroscópicos e microscópicos, bem como as composições mesonormativas destas amostras revelaram que:

- (i) o gnaisse cinza (Am. 1912) tem granulação média, composição trondhjemítica (Fig. 15), sendo constituído por: oligoclásio (26%An; 53,8% vol.), quartzo (39,2% vol.), microclina (3,3% vol.), biotita (3,2% vol.) e minerais acessórios (apatita + ilmenita, 3,2% vol.);
- (ii) o paleossoma (Am. 1913) é uma rocha gnáissica de granulação média, cor cinza escura, textura granoblástica, composição biotita-tonalítica (Fig. 15), constituída por: oligoclásio (29%An; 55,4% vol.), quartzo (21,9% vol.), biotita (20,5% vol.) feldspato alcalino (1,1% vol.) e minerais acessórios (opacos + apatita, 1,1% vol.);
- (iii) o neossoma (Am. 1914) é uma rocha hololeucocrática, com granulação média a grossa, composição granodiorítica (Fig. 15) apresentando a seguinte composição: plagioclásio (18%An; 50,6% vol.), quartzo (31% vol.), feldspato alcalino (12,9% vol.), biotita (5% vol.) e apatita e minerais opacos como acessórios (0,5% vol.). Análises químicas mostram que o plagioclásio é oligoclásico (17% An na borda e 17-19%An no núcleo) (Fig. 10). A biotita apresenta composições similares às encontradas nas rochas do BN (Fig. 11). O feldspato alcalino tem conteúdos de ortoclásio de 95 e 97% (Fig. 10) e conteúdos de BaO de 0,49 a 1,05%;
- (iv) o enclave de anfibolito (Am. 1915; Fotomicrografia 18) é uma rocha de cor preta a preto-esverdeada, equigranular, granulação fina a média, textura granoblástica,

constituída por hornblenda (51,5%vol.), plagioclásio (41%vol.), diopsídio (4%vol., Fig. 17) e minerais acessórios (titanita, 1,5%vol.; microclina, 1%vol.; opacos + apatita + zircão anédrico perfazem 1%vol.). Análises químicas em cristais de anfibólio permitiram classificá-los como Fe-pargasita (Fig. 14), enquanto que as do plagioclásio, mostram que este é o oligoclásico (21-24% An, Fig. 10) com zoneamento normal.

(V) o enclave de anfibolito (amostra 1878) possui cor preta, granulação fina a média, textura nematoblástica, constituída por hornblenda (63,5 %vol.), andesina (32%An; 35,54% vol.), opacos (1% vol.) e tendo como acessórios comuns titanita + apatita + zircão (< 1% vol.).

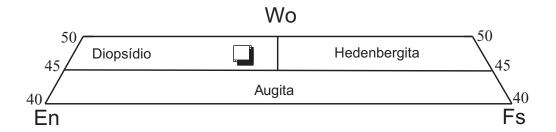
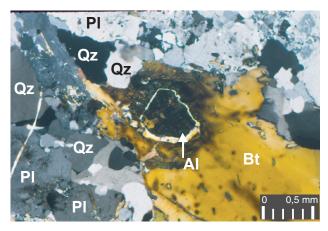
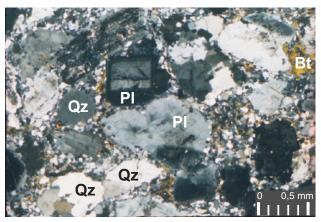

No quadrante leste da área, no interior do GBRI, foi encontrado um xisto (amostra 1841) com presença de porfiroblastos de granada em matriz fina e granolepidoblástica, constituído por plagioclásio (57%vol.), mica (21%vol.), quartzo (19% vol.), minerais acessórios (opacos 2%vol. e titanita + apatita + zircão anédrico < 1%vol.). Os porfiroblastos de granada são normalmente ricos em inclusões de quartzo e minerais opacos, ocasionalmente tendo cristais de biotita inclusos, sugerindo que a granada pode ter sido formada por reação envolvendo plagioclásio e mica. Neste xisto pelítico foram analisados cristais de granada, biotita, feldspato potássico e de plagioclásio (Tab. 5). A granada é uma solução sólida entre os membros finais almandina (Alm; 70,3-72,9%), piropo (Py; 15,6-17,8%), espessartita (Sp; 6,5-7,1%) e grossulária (Grs; 3,1-5,6 %) com teores de uvarovita e andradita muito pequenos. Estes cristais exibem zoneamento químico caracterizado por enriquecimento das concentrações Alm e Grs e empobrecimento Py e Sps em direção às bordas do cristal. A mica é a biotita (Fig. 11) com Al^{VI} e Ti^{VI} entre 0,36-0,39 e 0,09-0,11. respectivamente. Os cristais de biotita em contato com a granada são relativamente mais magnesianos [Mg/(Mg+Fe) entre 0,59 e 0,60] do que os outros cristais da matriz [Mg/(Mg+Fe) entre 0,52 e 0,54]. Segundo Spear (1993), este enriquecimento em Mg é comum em biotita afetada por processos de troca iônica. O plagioclásio apresenta conteúdos de anortita nas bordas entre 28% e 29% e nos núcleos de 28% a 32% (Fig. 10). A concentração de potássio no plagioclásio é baixa, entre 0,25% e 0,51%.

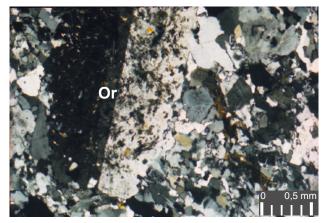
VI.4 - PARÂMETROS DE CRISTALIZAÇÃO

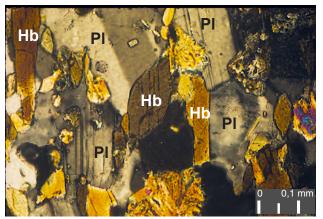
- Pressão

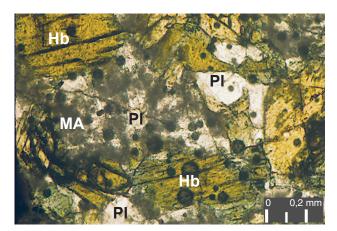
As pressões de colocação do BN foram obtidas por meio do barômetro Al_{total} em hornblenda, utilizando as calibrações de Hammarstron & Zen (1986), Hollister *et al.* (1987) e Schmidt (1992). Este barômetro tem sido calibrado para uma assembléia mineral granítica em equilíbrio com seu magma. Segundo Hollister *et al.* (1987) apenas as composições de

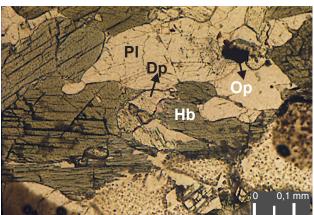
Enclave Máfico do Embasamento


Figura 17. Diagrama Enstatita (En) - Ferrossilita (Fe) - Wollastonita (Wo) de Morimoto *et al.* (1988) aplicado aos piroxênios do enclave do embasamento (Am 1915). Símbolo preenchido (centro); símbolo vazio (borda).


Fotomicrografia 13. Cristal de allanita com halo pleocróico incluso na biotita (Lam. DL24).


Fotomicrografia 14. Textura protomilonítica do dique trondhjemítico (Am. 1863).


Fotomicrografia 15. Fenocristal de ortoclásio (Or) anédrico, poiquilítico, englobado por uma matriz fina (Am. 1864).

Fotomicrografia 16. Detalhe da textura nematoblástica do enclave microgranular máfico do tipo I em uma faixa com pouca hornblenda (Hb) e mais rica em plagioclásio (PI) (Amostra 1871).

Fotomicrogrifia 17. Hornblenda (Hb) castanhoesverdeada com bordos verdes escuros e cristais de plagioclásio (Pl) alterados para minerais de argila (MA)(Am.1900).

Fotomicrografia 18. Textura granoblástica do enclave máfico do embasamento. Hornblenda (Hb) verde, diopsídio (Dp), titanita (Tn), opaco (Op) (Am. 1915).

hornblenda inalteradas adjacentes a diferentes minerais devem ser utilizados para aplicação do geobarômetro, porque este foi o procedimento adotado para a obtenção das curvas de calibração deste geobarômetro. Assim sendo, e baseando-se no princípio de que apenas as composições na borda dos cristais é que devem ter estado em equilíbrio com o magma, elas foram utilizadas nos cálculos. Os valores encontrados para as amostras do BN forneceram pressões de cristalização entre 4 e 5 kbar (Tab. 7).

Tabela 7: Geobarômetros de Hammarstrom & Zen (1986; HZ), Hollister *et al.* (1987; HO) e Schmidt (1992; SC) aplicados às rochas do BN.

				Pressão (kbar)			
Amostra	Análise	contato	Al total	HZ	НО	SC	
1831	159	(bt)	1,62	4,2	4,4	4,7	
1831	152	(bt)	1,6	4,1	4,3	4,6	
1831	155	(qzo)	1,66	4,4	4,6	4,9	
1831	158	(bt)	1,61	4,2	4,3	4,7	
1867	74	(bt)	1,58	4,0	4,2	4,5	

-Temperatura

A presença de apatita e zircão como inclusões euédricas nos minerais de cristalização precoce tais como plagioclásio, hornblenda e biotita nas rochas da FFM, FP e nos diques félsicos do BN sugere que os magmas foram saturados com respeito à apatita e zircão no início da cristalização. Portanto, as temperaturas de saturação serão próximas daquelas do *liquidus*. Estimativas de temperaturas baseadas em saturação de apatita (Harrison & Watson 1984) e de zircão (Watson & Harrison 1983) sugerem respectivamente temperaturas entre 900-850°C (Fig. 18) e em torno de 830°C (Fig. 19). Esses valores são consistentes com os resultados experimentais de fusão de desidratação de fontes toleiíticas em que fundidos tonalíticos e trondhjemíticos são produzidos (p.ex. Rapp *et al.* 1991, Rapp & Watson 1995). As temperaturas da saturação de apatita forneceram valores maiores que aquelas do termômetro de saturação em zircão. Isto indica que a saturação da apatita ocorreu anteriormente à do zircão. A presença de apatita inclusa em zircão suporta estes resultados.

As estimativas de temperatura *solidus* foram realizadas através do geotermômetro hornblenda-plagioclásio com as calibrações de Holland & Blundy (1994), tendo-se o cuidado de utilizar o mesmo esquema de normalização para anfibólio empregado em sua calibração. Ele apresenta duas opções de cálculo: (i) edenita-tremolita (para rochas com quartzo) e (ii) edenita-richterita (para rochas sem quartzo). Utilizando-se as composições das bordas dos cristais de plagioclásio e de hornblenda, e pressões entre 4 e 5 kbar foram obtidas através

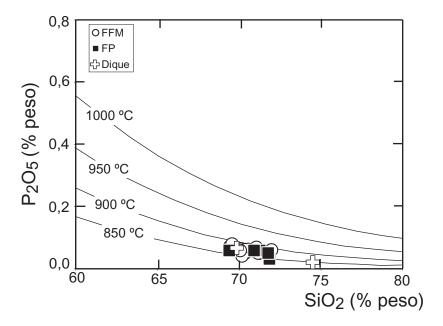


Figura 18. Diagrama de Harker mostrando a evolução P₂O₅ *vs.* SiO₂ no Batólito Nordestina. As isotermas representam os contéudos de P₂O₅ (solubilidade de apatita) de fusões (líquidos) graníticas previstas pelo modelo de Harrison & Watson (1984).

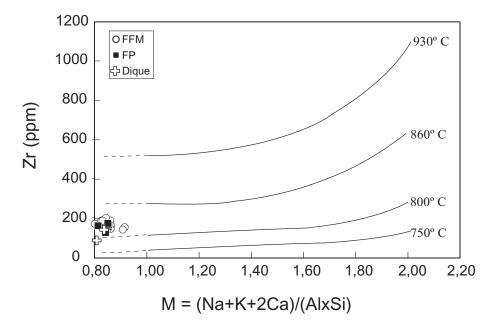


Figura 19. Diagrama Zr vs. M com isotermas definidas por Watson & Harrison (1983).

da fórmula edenita-tremolita, temperaturas de cristalização próximas ao *solidus* entre 651°C a 676°C e 633 a 635°C para as amostras 1831 e 1867, respectivamente (Tab. 8).

Tabela 8: Geotermômetros de Holland & Blundy (1994; HB) aplicados às rochas do BN. Utilizando as pressões obtidas pelos geobarômetros de Hammarstrom & Zen (1986; HZ); Hollister *et al.* (1987; HO); Schmidt (1992; SC).

				Temperatura (°C) – BH			
Amostra	Análise	Contato	Xab	HZ	НО	sc	
1831	159	(bt)	0,78	674	672	671	
1831	152	(bt)	0,78	667	666	664	
1831	155	(qzo)	0,78	653	652	651	
1831	158	(bt)	0,78	676	675	673	
1867	74	(bt)	0,78	635	635	633	

- Fugacidade de Oxigênio (fO₂)

Levantamentos aeromagnéticos realizados na parte centro-sul do NSer indicam que a área de exposição do BN corresponde a um domínio não-magnético (Lima *et al.* 1982). Análises petrográficas das rochas deste batólito revelam a ausência de magnetita e ilmenita, que são as principais fases responsáveis pela resposta magnética. Este fato pode indicar, ao menos preliminarmente, que as condições redutoras (baixa fugacidade de oxigênio) foram reinantes durante a cristalização de seus magmas. Por outro lado, as razões Fe/(Mg+Fe⁺²) não muito elevadas de biotita (Fig. 11) e anfibólio (Fig. 14), associada a ausência de titanita magmática, podem sugerir cristalização em condições de fugacidade de oxigênio abaixo do tampão Fe₂SiO₄-SiO₂-Fe₃O₄.

VI. 5 - CONSIDERAÇÕES PETROGRÁFICAS E MINERALÓGICAS

- Evolução Modal

Comparando a distribuição geral das amostras das FFM, FP e dos diques félsicos do BN no diagrama Q-A-P, com as tendências evolucionais estabelecidas por Lameyre & Bowden (1982), verifica-se que as rochas do BN distribuem-se próximo ao lado Q-P (Fig. 20), coincidindo com parte da evolução descrita para a Série Cálcio-Alcalina com baixo conteúdo de K. Este resultado reforça as conclusões obtidas utilizando-se os dados químicos dos cristais de biotita.

No diagrama Q-(A+P)-M (Fig. 9B), verifica-se que os minerais máficos parecem ter um papel aparentemente discreto na evolução das rochas em estudo.

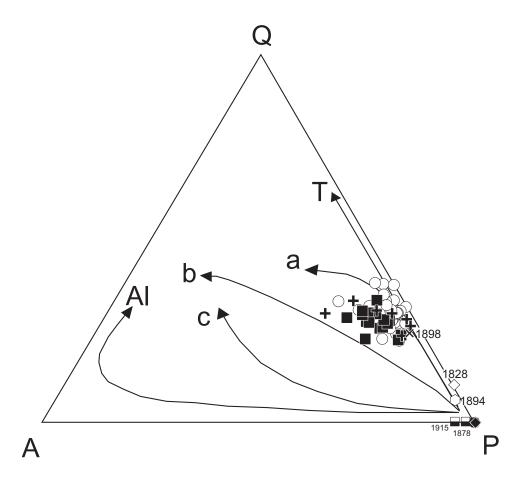


Figura 20. Diagrama modal Q-A-P com as tendências evolucionais das principais séries magmáticas segundo Lameyre & Bowden (1982) aplicado as rochas do Batólito Nordestina e do seu embasamento: T, toleiítica; a, cálcio-alcalina de baixo potássio; b, cálcio-alcalina de médio potássio; c, cálcio-alcalina de alto potássio; Al, alcalina. Os símbolos utilizados correspondem aos mesmos que estão nas figuras 9, 15 e 16.

- Ordem de Cristalização

Conforme estudado até aqui, o BN representa um sistema magmático granítico de filiação cálcio-alcalina de baixo-K, também denominada de trondhjemítica por Arth *et al.* (1978), constituído por minerais acessórios (apatita, zircão, titanita, allanita), dois feldspatos (oligoclásio e um feldspato alcalino), quartzo, e minerais máficos. A seqüência de cristalização deste sistema foi estabelecida a partir das relações texturais dos minerais das rochas, que evidenciaram o caráter cronológico relativo entre os mesmos. As semelhanças na mineralogia e nas relações texturais da FFM e FP do batólito de Nordestina sugerem que suas histórias de resfriamento sejam muito próximas.

O zircão e a apatita possuem formas euédricas e subédricas, e ocorrem inclusos em todos os minerais, sendo que na microclina tendem a estar ausentes. Estes minerais representam provavelmente os primeiros termos da fase precoce dos estágios da evolução magmática. Como a apatita está inclusa no zircão, interpreta-se que seja a primeira fase a cristalizar. A cristalização da apatita indica que o magma atingiu a saturação em fósforo precocemente e, segundo Watson (1979a), traduz a baixa fO_2 do magma na etapa inicial. O zircão é o segundo mineral a cristalizar nestas rochas e, de acordo Watson (1979b), indica o caráter metaluminoso do magma. O zoneamento observado em alguns destes cristais pode evidenciar variações nas condições termodinâmicas na câmara magmática ou na razão álcalis/alumina no magma.

Os cristais de oligoclásio apresentam-se como indivíduos hipidiomórficos a alotriomórficos. Sua cristalização inicia-se logo após a fase precoce e persiste longamente. Durante os primeiros estágios de sua cristalização, o seu tamanho cresce para formar alguns fenocristais. Com a evolução da cristalização ele passa a cristalizar simultaneamente com o quartzo e devido à disputa de espaço, o seu tamanho é reduzido, assim como sua perfeição, formando cristais alotriomórficos. A cristalização do plagioclásio, que é um mineral anidro, pode ter enriquecido o magma trondhjemítico em água, favorecendo a cristalização de minerais hidratados, tais como a hornblenda e a biotita.

A preferência da cristalização por biotita ou hornblenda pode estar ligada a maior ou menor atividade, respectivamente, em potássio e água (Speer *et al.* 1980).

O tamanho dos cristais de quartzo, em geral bem maiores que os do feldspato alcalino, e a sua morfologia anédrica, indicam que eles começaram a cristalizar bem após o oligoclásio e antes do feldspato potássico. A origem do mecanismo que provocou a catáclase no quartzo é interpretada como mudança nas condições térmicas adquiridas quando do resfriamento e ascensão do batólito, que neste caso incluiu ainda um liquido residual enriquecido em álcalis. Na fase tardia, é representadoa pelo seu intercrescimento no oligoclásio. Esta fase é marcada ainda pela formação da clorita, à custa da biotita, da mica branca às custas do feldspato alcalino, e do epídoto as custas do plagioclásio.

A microclina ocorre preferencialmente nos interstícios entre os grãos. Isto sugere que o seu desenvolvimento esteja relacionado ao estágio final da cristalização. Todavia, a ocorrência de feldspato alcalino como cristais tabulares de ortoclásio em algumas amostras indica que a cristalização deste foi simultânea a do quartzo e aos estágios finais do plagioclásio, e em alguns casos nota-se que o ortoclásio é invertido para microclina com o abaixamento da temperatura.

Os minerais de titanita são anédricos e ocorrem associados ao anfibólio e a mica, seja em agregados ou em texturas que lembram as exsoluções, sendo, portanto considerados como formados em estágio pós-magmático.

- Rochas Máficas

Os EMMs são mais finos e escuros que as rochas do corpo hospedeiro. Eles variam em composição de mela-diorito a leuco-quartzo-diorito.

Diferentes tipos de enclaves foram distinguidos com base no tamanho dos grãos, composição, textura e morfologia externa, com todos apresentando as mesmas fases minerais, com conteúdos também não muito diferentes. Então, levando em conta as esperadas diferenças na reologia, temperatura, volume e duração relativa do contato entre o magma máfico e o magma félsico hospedeiro, muitas das variações acima observadas entre os enclaves podem ser explicadas.

Nos diques sinplutônicos texturas ígneas podem ser reconhecidas e permitem sugerir que seus prototólitos sejam de origem ígnea. Contudo, piroxênios reliquiares ou evidências de substituição de piroxênio por hornblenda não foram observados nestas rochas. Assim, dificilmente, pode-se distinguir, com base na petrografia, se estas rochas formaram pelo retrometamorfismo de um gabro na fácies anfibolito, ou pela cristalização direta de um magma diorítico.

No conjunto, as associações paragenéticas (anfibólio cálcico + andesina + titanita + opacos) metamórficas presentes nas rochas máficas inseridas no BN são similares e indicativas da fácies anfibolito. Por outro lado, a presença de actinolita associada à alteração de plagioclásios nas injeções máficas tardias (Am. 1897) pode estar relacionada aos efeitos de autometamorfismo ao invés da recristalização metamórfica retrógrada.

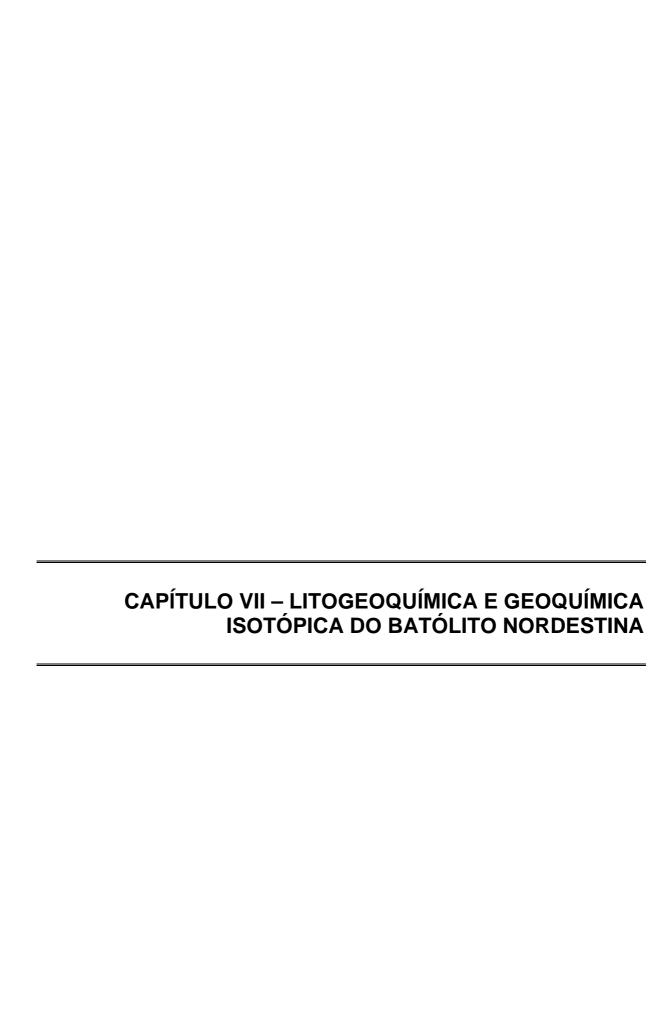
- Encaixantes

A paragênese de metamorfismo regional nos metapelitos consiste de oligoclásioandesina + quartzo + biotita + granada + opacos, compatíveis com a Fácies Anfibolito. Onde a granada se desenvolve as expensas da paragênese: plagioclásio + biotita. O fracionamento de Fe-Mg entre os cristais de granada e de biotita coexistentes forneceram temperaturas de 630°C (calibração de Ferry & Spear 1978) assumindo uma pressão de 5 kbar.

VI.6 - SUMÁRIO DA PETROGRAFIA E MINERALOGIA DO BATÓLITO NORDESTINA

Em geral as rochas do Batólito Nordestina são de granulação média a grossa, com textura granular hipidiomórfica a alotriomórfica, que exibem em direção às margens aumento de feições miloníticas que geram a estrutura gnáissica. Pressupõe-se, com base nas informações obtidas, que este fato está relacionado às diferenças no comportamento reológico das rochas formadoras da borda e do centro do batólito a medida que avança a sua cristalização. Como conseqüência disto encontram-se nas rochas de suas bordas cristais de plagioclásios com bordos triturados, onde alguns se tornam fenoclastos ovóides, podendo ainda apresentar planos de composição de geminação deformados e extinção ondulante. Estas feições são praticamente ausentes nas rochas do centro do batólito.

Internamente no Batólito Nordestina identificaram-se dois conjuntos litológicos maiores (FP na região central, e FFM nas regiões de borda) cujos estudos petrográficos e mineraloquímicos mostraram um comportamento monótono, dos pontos de vista textural e composicional.


A composição mineralógica das duas fácies petrográficas mais expressivas no batólito pode ser definida da seguinte forma: (i) minerais essenciais, representados por oligoclásio (An16-30), quartzo, biotita, anfibólio (com composição ferro-hornblenda) e feldspato alcalino, e (ii) minerais acessórios, correspondendo à apatita, zircão, titanita e ± allanita. Como minerais secundários ocorrem, ocasionalmente, em algumas amostras clorita, epídoto e mica branca. A amostra 1406, na borda sul do BN, mostra teores de CaO no plagioclásio e de Al₂O₃ e MgO na biotita ligeiramente superiores aos das outras amostras, o que pode indicar contaminação a partir das encaixantes máficas do GBRI.

As relações texturais evidenciaram a seguinte ordem de cristalização: (zircão, apatita) → oligoclásio → (anfibólio, mica) → quartzo → feldspato alcalino. Posteriormente, ocorreram processos de substituição da mineralogia, com a formação de titanita, mica branca, epídoto e clorita.

De acordo com a nomenclatura de Le Maître *et al.* (1989) as rochas do corpo principal do Batólito Nordestina classificam-se como trondhjemitos (tonalitos com índice de cor <10%), com tonalitos e granodioritos hololeucocráticos subordinados. A evolução modal destas rochas permitiu enquadrá-las na Série Cálcio-Alcalina de baixo potássio ou série trondhjemítica, evoluindo para os termos de médio potássio.

As rochas máficas ocorrem sob a forma de enclaves microgranulares e diques sinplutônicos que, ao serem analisadas petrograficamente, mostraram uma composição meso a mela-diorítica com termos leuco a meso-dioríticos subordinados.

As pressões reinantes durante a colocação das rochas da FFM foram estimadas na base da barometria AI em hornblenda entre 4 e 5 kbar. As estimativas das temperaturas dos *liquidus*, usando modelos de saturação, sugeriram valores entre 850 e 900 °C (saturação de apatita), e em torno de 830°C (saturação de zircão). Os cálculos das condições de *solidus* usando a técnica de geotermometria de hornblenda-plagioclásio de Holand e Blundy (1994) forneceram temperaturas entre 633-676 °C.

VII.1 - INTRODUÇÃO

Estudar a origem e a história de evolução de uma rocha ígnea envolve o tratamento e a combinação de dados de campo, petrográficos (textura e classificação), geocronológicos, mineralógicos e geoquímicos. As informações adquiridas nos capítulos anteriores mostraram que o Batólito Nordestina é constituído por um conjunto principal de rochas com composição TTG (tondhjemítica, tonalítica e granodiorítica) que foi subdividido em duas unidades principais, a saber: (i) Fácies Fanerítica Média e (ii) Fácies Porfirítica. Estas unidades são cortadas por diques trondhjemíticos e granodioríticos, e hospedam rochas máficas que ocorrem sob a forma de enclaves microgranulares e diques sinplutônicos, sendo que nos últimos estão presentes, ainda que de forma discreta, injeções máficas e félsicas tardias. Petrograficamente os enclaves, diques sinplutônicos e injeções máficas tardias correspondem a meso a mela-dioritos, com termos leuco a meso-dioríticos subordinados, enquanto que a injeção félsica tardia é trondhjemítica.

Neste capítulo a caracterização geoquímica foi direcionada para fins petrológicos, tendo como principal foco as rochas das FFM e FP do BN. Um total de 95 amostras foi selecionado para este estudo. Nestas amostras foram dosados elementos maiores, e alguns elementos traços, dentre os quais se encontram os Elementos Terras Raras (ETR) (Tab. 9). Dentre estas amostras, em 6 delas, foram feitas determinação das composições isotópicas de Rb-Sr e Sm-Nd, com o objetivo de identificar a fonte e os processos relacionados à evolução das rochas do BN. Os locais e os tipos de rochas amostradas encontram-se listados no Anexo I e a distribuição espacial destas pode ser visualizada no mapa de amostragem (Fig. 8).

As discussões dos dados dos elementos maiores a seguir são baseadas em análises recalculadas em uma base anidra, sendo o ferro total expressado sob a forma de $Fe_2O_3^*$ ($Fe_2O_3^* = Fe_2O_3 + 1,11^*FeO$). As análises químicas completas para elementos maiores estão disponibilizadas no Anexo III.

VII. 2 - LITOGEOQUÍMICA DO BATÓLITO NORDESTINA

VII.2.1 - FÁCIES FANERÍTICA MÉDIA E FÁCIES PORFIRÍTICA

Elementos Maiores

As rochas do conjunto litológico principal (CLP) do BN (FFM e FP) serão tratadas ao longo deste texto conjuntamente, pois, no geral, não mostram diferenças geoquímicas significativas. As principais diferenças entre elas consistem nos conteúdos de ferromagnesianos ($Fe_2O_3^* + MgO + MnO + TiO_2$, em geral < 4,5%) e de álcalis ($Na_2O + K_2O$) que são, respectivamente, ligeiramente mais altos nas rochas da FFM em relação às rochas

da FP (Tabs. 10 e 11), o que é interpretado como devido ao efeito da diferenciação das bordas para o centro do BN.

Unidade	Maiores	Traços	Terras Raras	Isótopos
Fácies Fanerítica Média	50	14	12	02
Fácies Porfirítica	18	05	05	02
Diques Félsicos	07	02	02	-
Enclaves do Tipo I	03	01	01	-
Enclaves do Tipo II	05	03	03	01
Enclaves leucocráticos ou intermediários	02	01	01	01
Rocha máfica em dique sin-plutônico	02	-	-	-
Rocha máfica em dique sin-plutônico com pórfiros	01	-	-	-
Injeção máfica tardia	01	01	01	-
Injeção félsica tardia	01	01	01	-
Gnaissse (Gn) do embasamento	03	-	-	
Enclave Máfico do Embasamento	02	02	02	-
Total de análises efetuadas	95	30	28	06

Tabela 9. Distribuição das análises de química de rocha total do BN.

Em diagrama de classificação baseada em elementos maiores (Fig. 21), as rochas do CLP localizam-se quase que exclusivamente no campo dos tonalitos-trondhjemitos, com apenas duas amostras posicionadas no campo dos granodioritos.

As rochas do CLP apresentam uma estreita variação nos conteúdos de SiO₂ (68,8-72,7%). São metaluminosas a levemente peraluminosas (A/CNK < 1,1; Fig. 22) e com coríndon normativo inferior a 1,3%.

O baixo conteúdo em ferromagnesianos (Fe $_2$ O $_3^*$ + MgO + MnO+ TiO $_2$, em geral < 4,5%), associado ao baixo Mg# (0,28-0,48) traduzem o alto grau de fracionamento das rochas deste batólito. Os conteúdos de Al $_2$ O $_3$ situam-se entre 15 e 18 %, (Tabs. 10 e 11) o que permite classificar as rochas do CLP como pertencentes ao grupo dos trondhjemitos de alto-Al (Al $_2$ O $_3$ > 15% para SiO $_2$ \cong 70%), segundo a classificação de Barker & Arth (1976). Os dados obtidos a partir da petrografia, e que permitiram classificar as rochas do BN como pertencentes à Suíte Cálcio-Alcalina de baixo-K encontram confirmação aqui pelas baixas razões K $_2$ O/Na $_2$ O, que são predominantemente menores do que 0,5%. A tabela 12 mostra que as composições médias dos elementos maiores da FFM e da FP do BN são similares a dos TTGs arqueanos e às principais características geoquímicas dos trondhjemitos clássicos como definidos por Barker (1979), exceto pelos menores teores de Fe $_2$ O $_3$ *, MgO, P $_2$ O $_5$ e ETR.

O'Connor (1965) propôs uma classificação normativa baseada no diagrama triangular An-Ab-Or para as rochas plutônicas que contivessem mais do que 10% de quartzo modal ou normativo (Fig. 23). Neste diagrama, cujos campos composicionais foram posteriormente redefinidos por Barker (1979), as rochas do CLP situam-se no domínio das rochas trondhjemíticas, com apenas uma amostra da FFM (Am. 1904) alocando-se no campo dos tonalitos.

Tabela 10. Análises químicas dos elementos maiores e de alguns traços (em % peso) e composição mineral normativa para as rochas da Fácies Fanerítica Média do Batólito Nordestina. Local das análises: a. GEOSOL; b. IGEO-UFBA; Abreviatura da nomenclatura das rochas: Trondhjemito (Td), Tonalito (To); Granodiorito (Gd). Soma dos Minerais Félsicos Normativos (SMF) = Q + Or + Ab + An; Índice de Cor Normativo (Ind. cor) = Bi + Hb + Mt + Hm + II + CC + Ap; Plagioclásio Normativo (% An;Plag(An)) = [An/ (An + Ab)*100].

Decision 1	Plagioclásio																		
Nonemark 15	No. amostra																		
SSC). 68.79 68.86 68.34 68.15 69.2 69.44 69.50 69.77 69.70 69.89 69.99 70.07 70.07 70.17 70.10 70.12 70.13 70.19 70.19 70.10 70.12 70.10 70.10 70.12 70.10 7																			
AGO, 17,86 16,90 18,90 18,77 16,81 16,20 18,94 18,72 18,94 18,02 18,94 18,02 18,95 18,02 18,95 18,02 18,95 18,02 18,95 18,02 18,95 18,02 18,95 18,02 18,03 18,02 18,03 18,02 18,03 18,02 18,00 1	SiO ₂																		
Fig. 5. 208 2.22 2.20 164 2.73 3.08 2.12 3.01 2.30 10.00 2.74 2.77 2.83 1.97 2.48 1.89 2.40 2.70 2.00 10.00	TiO ₂																		
Medical Control of the Control of th																			
MgO																			
GGO SEP 337 338 331 300 280 333 300 300 300 300 300 300 300 300 3	MgO																		
K-G G G G G G G G G G G G G G G G G G G	CaO																		
P.O.	Na ₂ O			-															
Semia 100 100 100 100 100 100 100 100 100 10				-															
K.Ö-Hag.Q 7.68 7.42 6.96 7.42 6.83 6.36 7.17 7.41 7.02 7.23 7.28 6.94 6.90 7.35 7.08 7.37 7.73 6.75 K.O-Mag.Q 2.29 2.22 0.23 0.24 0.24 0.24 0.25 0.21 0.23 0.24 0.27 0.30 0.25 0.47 0.23 0.47 0.23 0.40 0.24 0.32 0.27 0.27 0.37 7.73 0.75 K.O-Mag.Q 2.89 3.26 3.36 0.34 0.22 0.37 4.19 2.22 3.73 3.20 2.07 3.58 0.25 3.34 1.273 3.23 2.00 3.14 3.71 7.75 0.75 K.O-Mag.Q 2.89 3.25 3.35 0.50 3.58 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3																			
K.Ö-Hag.Q 7.68 7.42 6.96 7.42 6.83 6.36 7.17 7.41 7.02 7.23 7.28 6.94 6.90 7.35 7.08 7.37 7.73 6.75 K.O-Mag.Q 2.29 2.22 0.23 0.24 0.24 0.24 0.25 0.21 0.23 0.24 0.27 0.30 0.25 0.47 0.23 0.47 0.23 0.40 0.24 0.32 0.27 0.27 0.37 7.73 0.75 K.O-Mag.Q 2.89 3.26 3.36 0.34 0.22 0.37 4.19 2.22 3.73 3.20 2.07 3.58 0.25 3.34 1.273 3.23 2.00 3.14 3.71 7.75 0.75 K.O-Mag.Q 2.89 3.25 3.35 0.50 3.58 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3																			
FigO-Nag-00																			
Fig.Q-1-MpQ 2 69 3,69 3,49 229 3,73 4,19 202 3,73 4,00 2.67 3,58 2,03 3,41 2,73 3,22 2,00 3,14 3,71 Fig.Q-1-MpQ 3,22 3,58 2,14 2,25 2,51 2,72 2,73 2,52 4,02 3,14 2,73 3,22 2,00 3,14 3,71 Fig.Q-1-MpQ 3,22 3,58 3,55 2,59 4,15 4,58 3,28 4,02 3,54 2,107 3,58 3,77 3,70 3,06 3,51 2,90 3,64 3,57 4,00 4,00 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0																			
Fishiof 3.22 3.55 3.86 2.96 4.15 4.56 3.28 4.02 3.54 2.97 3.86 3.27 3.70 3.05 3.51 2.90 3.84 4.05 4.00NN 4.0NN 4.0	Fe ₂ O ₃ *+MgO																		
Composição miseral incomando Métaconomo de Billingo Miseral Mi	Fe ₂ O ₃ */MgO																		
Composiçio mireral normaliva (Mesonoma de Barth apuz Mesonoma de B																			
Q	AVCINK	1,05	0,90	1,02	1,05	1,00	1,02	1,00	0,94	1,03	1,01	1,00	1,00	1,00	1,01	1,00	1,01	0,94	1,00
Q																			
Ab May 19 51,36 46,32 51,02 45,75 44,59 49,52 51,87 45,92 49,75 42,00 47,69 47,37 47,64 49,83 49,79 51,15 45,00 CP 29,75 5,50 3,74 49,2 2,06 10,16 3,51 5,39 4,77 1 3,03 4,54 3,33 2,77 6,36 4,41 4,40 8,41 14,00 14,0	Composição mi Q									25.70	24.17	27.14	25.54	26.29	24.28	25.28	24.08	21.07	27.41
An	Ab																		
C	Or	2,97	5,50	3,47	4,92	2,80	0,16	3,51	5,39	4,71	3,93	8,45	3,33	2,77	6,36	2,40		8,93	2,98
B	An																		
He																			
MM	Hb																		
I	Mt																		
CC	Hm							-											
Ap																			
H ₂ O -0.29 -0.29 -0.34 -0.23 -0.36 -0.41 -0.29 -0.29 -0.31 -0.27 -0.34 -0.28 -0.32 -0.27 -0.31 -0.26 -0.24 -0.35				-				-				-	-						
SMF Ind. cor	H₂O	-0,29	-0,29	-0,34	-0,23	-0,36	-0,41	-0,29	-0,29		-0,27	-0,34	-0,28	-0,32	-0,27	-0,31	-0,26	-0,24	-0,36
Indication 1,78	Soma																		
Plag(An) 24,843 19,8 26,195 21,868 23,341 26,528 24,049 15,973 24,622 23,047 22,395 24,969 23,732 23,665 22,141 22,433 14,408 24,992 EFe,Qs* = Fe,Qs* =																			
No. amostra 1842 1833 1832 1839 1334 1862 1884 1875 1831 1916 1876 1903 1835 1858 1408 1869 1887 1838 Dados	Plag(An)																		
Dados Dado	$Fe_2O_3^* = Fe_2O_3$	+ 1.11 F	eO; nd=	não dete	ectado; m	g# = Mg(O/ (MgO-	+FeO*) e	m moles	·FMMT=I	-e₂O₂*+	MaO+Mr	Ω+TiΩ ₀ .	A/CNK=	Al ₂ O ₂ /(C	aO+Na ₂	O+K ₂ O) (m moles	S.
Nomenclatury Td							. •	, -	III IIIOIC3	,	0203	ivigo · ivii		A CIVIL	, u ₂ O ₃ , (O		, .		
Sio_ 70_21 70_25 70_28 70_34 70_37 70_37 70_38 70_51 70_57 70_68 70_95 70_95 71_02 71_06 71_08 71_09 71_07_00_10_00 71_00_10_00 71_00_10_00 71_00_10_00 71_00_10_00 71_00_10_00 71_00_10_00 71_00_10_00 71_00_10_00 71_00_10_00 71_00_10_0	No. amostra	1842	1833	1832	1839	1334		-											
TIO_	Dados	b	а	b	b	а	1862 a	1884 b	1875 b	1831 a	1916 b	1876 b	1903 b	1835 b	1858 b	1408 a	1869 a	1887 b	1838 b
Al ₂ O ₃ 16,64 16,15 16,51 18,56 15,47 15,95 16,42 14,93 16,19 15,58 16,27 16,05 16,40 16,24 15,95 18,37 12,00 2.59 2,10 1.89 3,18 2,45 2,04 3,94 2,24 3,12 2,01 2,31 1,95 1,93 3,12 2,68 2,03 1,98 MnO 0,03 0,02 0,03 0	Dados Nomenclatura	b Td	a Td	b Td	b Td	a To	1862 a Td	1884 b Td	1875 b To	1831 a Td	1916 b Td	1876 b Td	1903 b Gd	1835 b Td	1858 b Td	1408 a To	1869 a Gd	1887 b Td	1838 b Td
MnO 0,3 0,02 0,02 0,02 0,16 0,03 0,02 0,07 0,02 0,04 0,02 0,04 0,02 0,09 0,02 0,09 0,02 0,09 0,09 0,00 0,00	Dados	b Td 70,21	a Td 70,25	b Td 70,28	b Td 70,34	a To 70,37	1862 a Td 70,37	1884 b Td 70,38	1875 b To 70,51	1831 a Td 70,57	1916 b Td 70,65	1876 b Td 70,75	1903 b Gd 70,78	1835 b Td 70,95	1858 b Td 70,95	1408 a To 71,02	1869 a Gd 71,06	1887 b Td 71,08	1838 b Td 71,09
MgC Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃	b Td 70,21 0,28 16,64	a Td 70,25 0,23 16,15	b Td 70,28 0,30 16,51	b Td 70,34 0,27 16,56	a To 70,37 0,27 15,47	1862 a Td 70,37 0,23 15,95	1884 b Td 70,38 0,32 16,42	1875 b To 70,51 0,36 14,93	1831 a Td 70,57 0,23 16,19	1916 b Td 70,65 0,35 15,58	1876 b Td 70,75 0,20 16,27	1903 b Gd 70,78 0,31 16,05	1835 b Td 70,95 0,26 16,40	1858 b Td 70,95 0,28 16,24	1408 a To 71,02 0,31 15,21	1869 a Gd 71,06 0,21 15,54	1887 b Td 71,08 0,30 16,07	1838 b Td 71,09 0,29 16,12
CaO 2,93 2,83 3,11 3,01 2,60 2,93 3,00 3,30 2,61 3,32 2,78 2,71 2,98 2,66 2,72 2,51 2,98 3,13 Na ₂ O 5,60 5,60 5,60 5,60 5,60 5,60 5,60 5,60	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	b Td 70,21 0,28 16,64 2,00	a Td 70,25 0,23 16,15 2,59	b Td 70,28 0,30 16,51 2,10	b Td 70,34 0,27 16,56 1,89	a To 70,37 0,27 15,47 3,18	1862 a Td 70,37 0,23 15,95 2,45	1884 b Td 70,38 0,32 16,42 2,04	1875 b To 70,51 0,36 14,93 3,94	1831 a Td 70,57 0,23 16,19 2,24	1916 b Td 70,65 0,35 15,58 3,12	1876 b Td 70,75 0,20 16,27 2,01	1903 b Gd 70,78 0,31 16,05 2,31	1835 b Td 70,95 0,26 16,40 1,95	1858 b Td 70,95 0,28 16,24 1,93	1408 a To 71,02 0,31 15,21 3,12	1869 a Gd 71,06 0,21 15,54 2,68	1887 b Td 71,08 0,30 16,07 2,03	1838 b Td 71,09 0,29 16,12 1,98
Na ₂ O 5,60 5,96 5,96 5,76 5,74 5,59 5,45 5,69 4,53 5,83 4,85 6,03 4,84 5,46 5,59 5,04 5,31 5,54 5,50 5,05 0,06 1,57 1,31 1,25 1,40 1,60 1,72 1,39 1,18 1,51 1,29 1,13 2,17 1,35 1,23 1,61 2,00 1,26 1,17 P ₂ O ₅ 0,01 0,05 nd 0,05 0,05 0,06 nd 0,09 0,06 0,01 0,04 nd nd 0,09 0,06 0,07 nd 0,01 Soma 100 100 100 100 100 100 100 100 100 10	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	b Td 70,21 0,28 16,64 2,00 0,03	a Td 70,25 0,23 16,15 2,59 0,02	b Td 70,28 0,30 16,51 2,10 0,02	b Td 70,34 0,27 16,56 1,89 0,02	a To 70,37 0,27 15,47 3,18 0,16	1862 a Td 70,37 0,23 15,95 2,45 0,03	1884 b Td 70,38 0,32 16,42 2,04 0,02	1875 b To 70,51 0,36 14,93 3,94 0,07	1831 a Td 70,57 0,23 16,19 2,24 0,02	1916 b Td 70,65 0,35 15,58 3,12 0,04	1876 b Td 70,75 0,20 16,27 2,01 0,02	1903 b Gd 70,78 0,31 16,05 2,31 0,04	1835 b Td 70,95 0,26 16,40 1,95 0,02	1858 b Td 70,95 0,28 16,24 1,93 0,02	1408 a To 71,02 0,31 15,21 3,12 0,09	1869 a Gd 71,06 0,21 15,54 2,68 0,02	1887 b Td 71,08 0,30 16,07 2,03 0,02	1838 b Td 71,09 0,29 16,12 1,98 0,02
P ₂ O ₅	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	b Td 70,21 0,28 16,64 2,00 0,03 0,73	a Td 70,25 0,23 16,15 2,59 0,02 0,62	b Td 70,28 0,30 16,51 2,10 0,02 0,75	b Td 70,34 0,27 16,56 1,89 0,02 0,71	a To 70,37 0,27 15,47 3,18 0,16 0,71	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69
Soma 100 100 100 100 100 100 100 100 100, 100, 100, 100, 100, 100, 100, 100,	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13
mg#	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17
K_OHNa_O 7,16 7,27 6,92 7,14 7,19 7,17 7,08 5,71 7,34 6,15 7,16 7,01 6,81 6,83 6,65 7,32 6,80 6,67 K_ONa_O 0,28 0,22 0,22 0,22 0,24 0,29 0,31 0,24 0,26 0,26 0,26 0,27 0,19 0,45 0,25 0,22 0,32 0,38 0,23 0,21 Fe_O_3*HMGO 2,74 3,21 2,85 2,60 3,89 3,25 2,78 5,02 2,98 3,91 2,78 3,10 2,57 2,64 3,93 3,28 2,75 2,66 Fe_O_3*HMGO 2,74 3,21 2,78 2,66 4,49 3,08 2,75 3,66 3,06 3,99 2,62 2,95 3,13 2,71 3,82 4,46 2,84 2,88 FMMT 3,04 3,46 3,18 2,90 4,32 3,51 3,12 5,45 3,23 4,29 3,00 3,44 2,85 2,94 4,34 3,51 3,07 2,97 A/CNK 1,02 0,99 1,01 1,01 0,99 0,99 1,01 1,01 1,01	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01
K ₂ ON ₁ A ₂ O 0.28 0.22 0.24 0.29 0.31 0.24 0.26 0.26 0.26 0.27 0.19 0.45 0.25 0.22 0.32 0.38 0.23 0.21 Fe ₂ O ₃ **MgO 2.74 3.21 2.85 2.60 3.89 3.25 2.78 5.02 2.98 3.91 2.78 3.10 2.57 2.64 3.93 3.28 2.75 2.66 2.78 5.06 3.08 3.99 2.62 2.95 3.13 2.71 3.82 4.66 2.84 2.88 FMMT 3.04 3.46 3.18 2.90 4.32 3.51 3.12 5.45 3.23 4.29 3.00 3.44 2.85 2.94 4.34 3.51 3.07 2.97 A/CNK 1.02 0.99 1.01 1.01 0.99 0.99 1.01 1.01 1.01	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01
Fe_2O_3*+MgO	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg#	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100	1875 b T0 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00
FMMT 3,04 3,46 3,18 2,90 4,32 3,51 3,12 5,45 3,23 4,29 3,00 3,44 2,85 2,94 4,34 3,51 3,07 2,97 A/CNK 1,02 0,99 1,01 1,01 0,99 0,99 1,01 1,01 1,01	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01	1835 b Td 70,95 0,26 16,40 1,95 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80	1838 b Td 71,09 0,29 16,12 1,98 0,62 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67
A/CNK 1,02 0,99 1,01 1,01 0,99 0,99 1,01 1,01 1,01	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg#	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21
Composição mineral normativa (Mesonorma de Barth apud Mielke & Winkler 1979) Q 25,43 24,50 25,90 25,33 26,25 25,90 25,59 32,76 25,50 30,48 25,54 28,54 27,68 27,64 29,98 27,37 27,68 27,96 Abb 47,52 50,57 48,11 48,69 47,50 46,29 48,29 38,54 49,50 41,23 51,19 41,12 46,31 47,46 42,80 45,11 47,02 46,69 Or 5,06 3,60 3,01 4,28 4,03 5,56 3,93 0,00 4,47 1,97 2,42 8,13 4,13 3,24 3,75 7,22 3,25 2,88 An 14,50 13,11 15,47 14,62 12,19 13,77 14,91 15,28 12,59 16,45 13,58 13,49 14,82 14,15 13,14 12,02 14,82 15,48 C 0,44 0,00 0,15 0,22 0,00 0,00 0,00 0,08 0,50 0,33 0,16 0,12 0,78 0,51 0,50 0,36 0,21 0,14 0,11 Bi 7,07 7,13 7,35 6,74 9,35 7,77 7,18 12,23 7,53 9,72 7,13 7,94 6,53 6,81 9,91 8,01 7,08 6,84 Hb 0,00 1,04 0,00 0,00 0,00 0,00 0,00 0,00	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO	b Td 70,21 0,28 16,64 2,00 0,03 0,73 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,26 2,66	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49	1862 a Td 70,37 0,23 15,95 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 2,75	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 100,00 0,40 7,01 0,40 7,01 0,45 3,10 2,95	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84	1838 b Td 71,09 0,29 16,12 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88
Q	Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24 2,66 2,90	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,99 4,29	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94	1408 a To 71,02 0,31 15,21 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,68 2,88 2,97
Q	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24 2,66 2,90	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,99 4,29	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,68 2,88 2,97
Ab	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18 1,01	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24 2,66 2,90 1,01	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12 1,01	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 5,06 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,99 4,29	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,68 2,88 2,97
An	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK	b Td 70,21 0,28 16,64 2,00 0,03 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02	a Td 70,25 0,23 16,15 2,59 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18 1,01	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24 2,60 2,66 2,90 1,01	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 0,05 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 2,75 3,12 1,01	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,62 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 3,91 3,91 4,29 1,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01	1838 b Td 71,09 0.29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01
C	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 0,01 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18 1,01 Mesonori	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,26 2,66 2,90 1,01	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 2,75 3,12 1,01	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,99 4,29 1,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,02 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02	1408 a To 71,02 0.31 15,21 3,12 0,09 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01	1869 a Gd 71,06 0,21 15,54 2,68 0,02 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01	1838 b Td 71,09 0.29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01
Bi	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02 neral nor 25,43 47,52 5,06	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18 1,01 Mesonori 25,90 48,11 3,01	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24 2,66 2,90 1,01 ma de Ba 25,33 48,69 4,28	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 2,75 3,12 1,01 8 Winklet 25,59 48,29 3,93	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,06 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 49,50 4,47	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 3,99 4,29 1,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,77 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01	1838 b Td 71,09 0.29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,68 2,88 2,97 1,01
Hb	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or An	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa ((24,50 50,57 3,60 13,11	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,85 2,78 3,18 1,01 Mesonon 25,90 48,11 3,01	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 1,40 0,05 100 0,43 7,14 2,60 2,66 2,90 1,01 25,33 48,69 4,28	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 0,05 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 46,29 5,90 46,29 5,13,77	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 2,78 2,75 3,12 1,01 \$\text{Winklet}\$ \text{Winklet}\$ 25,59 48,29 3,93 3,14,91	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01 -1979) 32,76 38,54 0,00 15,28	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 49,50 49,47 12,59	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 3,99 4,29 1,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01
Hm 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02 neral nor 25,43 47,52 5,06 14,50 0,40	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa ((24,50 50,57 3,60 13,11 0,00	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,85 2,78 3,18 1,01 Mesonon 25,90 48,11 3,01 15,47 0,15	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,26 2,66 2,90 1,01 25,33 48,69 4,28 14,62 0,22	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 0,05 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,00	1862 a Td 70,37 0,23 15,95 2,45 0,03 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke & 25,90 46,29 5,56 13,77 0,00	1884 b Td 70,38 0,32 16,42 2,04 0,02 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 2,75 3,12 1,01 8. Winklet 25,59 48,29 3,93 14,91 0,08	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 49,50 4,47 12,59 0,33	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 4,29 1,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12	1903 b Gd 70,78 0,31 16,05 2,31 0,04 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,40 7,01 0,40 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 4,34 1,01 29,98 42,80 3,75 13,14 0,36	1869 a Gd 71,06 0,21 15,54 2,68 0,02 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 0,21	1887 b Td 71,08 0,30 16,07 2,03 0,02 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01 27,96 46,69 2,88 15,48 0,11
II 0,27 0,22 0,29 0,26 0,26 0,22 0,30 0,35 0,22 0,33 0,19 0,30 0,25 0,27 0,30 0,20 0,28 0,28 0,28 0,20 0,00 0,00 0,0	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or An C	b Td 70,21 0,28 16,64 2,00 0,03 2,93 5,60 0,01 1,57 0,01 100 0,42 7,16 0,28 2,74 1,02 neral nor 25,43 47,52 5,06 14,50 0,40 0,03	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa (0 24,50 13,11 0,05 11,00 12,00 13,11 0,09	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18 1,01 Mesonor 25,90 48,11 3,01 15,47 0,15 7,35	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 2,60 2,90 1,01 25,33 48,69 4,28 14,62 0,22 6,74	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,00 9,35	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke { 25,90 46,29 5,56 13,77 0,00 7,77	1884 b Td 70,38 0,32 16,42 2,04 0,02 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12 1,01 8. Winklet 25,59 48,29 3,93 14,91 0,08 7,18	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 4,47 12,59 0,33 7,53	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 4,29 1,01	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12 7,13	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,02 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02	1408 a To 71,02 0,31 15,21 3,12 0,09 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 0,21 8,01	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01 27,96 46,69 2,88 15,48 0,11 6,84 0,84 0,84 0,84 0,84 0,84 0,84 0,84 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ * Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02 neral nor 25,43 47,52 5,66 14,50 0,40 7,07 0,00 0,00	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa ((24,50) 50,57 3,60 13,11 0,00 7,13 1,04 0,00	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,85 2,78 3,18 1,01 Mesonon 25,90 48,11 3,01 15,47 0,15 7,35 0,00	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 2,60 2,66 2,90 1,01 25,33 48,69 4,28 14,62 0,22 6,74 0,00	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 0,05 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,10 9,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 46,29 5,56 13,77 0,00 7,77 0,65 0,00	1884 b Td 70,38 0,32 16,42 2,04 0,02 2,074 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 2,75 3,12 1,01 8 Winklet 25,59 48,29 3,93 14,91 0,08 7,18 0,00 0,00	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,45 1,01 1979) 32,76 38,54 0,00 15,28 0,50 12,23 0,50 0,00 0,00 0,00 0,00 0,00 12,23 0,00	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 49,50 4,47 12,59 0,33 7,53 0,00 0,00	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 3,99 4,29 1,01 30,48 41,23 1,97 16,45 0,16 9,72 0,00 0,00	1876 b Td 70,75 0,20 16,27 2,01 0,02 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12 7,13 0,00 0,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,02 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03 27,68 46,31 4,13 14,82 0,51 6,53 0,00 0,00	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02 27,64 47,46 3,24 47,46 3,24 41,415 0,50 6,81 0,00 0,00	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91 0,00 0,00	1869 a Gd 71,06 0,21 15,54 2,68 0,02 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 4,46 3,51 1,00 27,37 45,11 7,22 0,21 8,01 0,00 0,00	1887 b Td 71,08 0,30 16,07 2,03 0,02 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14 7,08 0,00 0,00	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01 27,96 46,69 2,88 0,11 6,84 0,00 0,00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ */MgO Fe ₂ O ₃ */MgO Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt Hm	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 0,01 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02 neral nor 25,43 47,52 5,06 14,50 0,40 7,07 0,00 0,00 0,00	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa ((24,50 50,57 3,60 13,11,00 7,13 1,04 0,00 0,00	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,285 2,78 3,18 1,01 Mesonon 25,90 48,11 3,01 15,47 0,15 7,35 0,00 0,00 0,00	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,26 2,66 2,90 1,01 25,33 48,69 4,28 14,62 0,22 6,74 0,00 0,00 0,00	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,10 9,05 1,00 9,35 0,05 1,00 0,05 0,05	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 46,29 5,56 13,77 0,00 7,77 0,65 0,00 0,00	1884 b Td 70,38 0,32 16,42 2,04 0,02 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12 1,01 8 Winklet 25,59 48,29 3,93 14,91 0,08 7,18 0,00 0,00 0,00	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01 -1979) 32,76 38,54 0,00 15,28 0,50 12,23 0,59 0,00 0,00	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 4,47 12,59 4,47 12,59 0,33 7,53 0,00 0,00 0,00	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 4,29 1,01 30,48 41,23 1,97 16,45 0,16 9,72 0,00 0,00 0,00	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12 7,13 0,00 0,00 0,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,02 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02	1408 a To 71,02 0.31 15,21 3,12 0.09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91 0,00 0,00 0,00	1869 a Gd 71,06 0,21 15,54 2,68 0,02 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 12,02 18,01 0,00 0,00 0,00	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14 7,08 0,00 0,00 0,00	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,68 2,97 1,01 27,96 46,69 2,88 15,48 0,11 6,84 0,00 0,00 0,00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ * Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt Hm	b Td 70,21 0,28 16,64 2,00 0,03 2,93 5,60 0,01 1,57 0,01 100 0,42 7,16 0,28 2,74 1,02 0,28 2,74 3,04 1,02	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa ((24,50 13,11 0,00 13,11 0,00 13,11 0,00 0,01 0,01	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,85 2,78 3,18 1,01 Mesonori 25,90 48,11 3,01 15,47 0,15 7,35 0,00 0,00 0,00 0,09	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 2,66 2,90 1,01 25,33 48,69 4,28 14,62 0,22 6,74 0,00 0,00 0,00 0,026	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,06 0,06 0,06 0,09 0,09 0,09 0,09 0,0	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 46,29 46,29 7,77 0,65 0,00 0,02	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12 1,01 \$\frac{3}{4}\text{Winklet}\$ 25,59 48,29 48,29 48,29 3,93 14,91 0,08 7,18 0,00 0,00 0,30	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01 1979) 32,76 38,54 0,00 15,28 0,50 15,28 0,50 0,00 0,35	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 4,47 12,59 0,33 7,53 0,00 0,00 0,00 0,02	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 4,29 1,01 30,48 41,23 1,97 16,45 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12 13,58 0,12 13,58 0,12 0,00 0,00 0,00 0,019	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05 28,54 41,12 8,13 13,49 0,78 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1835 b Td 70,95 0,26 16,40 1,95 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03 27,68 46,31 4,13 14,82 0,51 6,53 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,0	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02 27,64 47,46 3,24 14,15 0,50 6,81 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1408 a To 71,02 0.31 15,21 3.12 0.09 0.82 2,72 5,04 1,61 0,06 100,00 0.34 6,65 0,32 3,93 3,82 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91 0,00 0,00 0,30	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 0,21 8,01 0,00 0,00 0,00 0,20	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14 7,08 0,00 0,00 0,00 0,00 0,028	1838 b Td 71,09 0.29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,68 2,88 2,97 1,01 27,96 46,69 2,88 15,48 0,11 6,84 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
SMF 92,51 91,78 92,49 92,92 89,97 91,52 92,72 86,58 92,06 90,13 92,73 91,28 92,94 92,49 89,67 91,72 92,77 93,01 ind. cor 7,37 8,50 7,64 7,12 10,40 8,78 7,48 13,39 7,89 10,08 7,41 8,24 6,78 7,28 10,35 8,37 7,36 7,15 Plag(An) 23,38 20,587 24,332 23,093 20,422 22,927 23,592 28,391 20,277 28,519 20,966 24,702 24,243 22,967 23,489 21,04 23,965 24,899	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ */MgO Fe ₂ O ₃ */MgO Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt Hm	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02 0,28 2,74 2,73 3,04 1,02	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 0,99 0,00 50,57 3,60 13,11 0,00 7,13 1,04 0,00 0,02 0,02 0,02 0,02 0,02 0,03 0,03	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,85 2,78 3,18 1,01 Mesonori 25,90 48,11 3,01 15,47 0,15 7,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24 2,60 2,66 2,90 1,01 25,33 48,69 4,28 14,62 0,22 6,74 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,00 9,35 0,67 0,00 0,06 0,00 0,00 0,00 0,00 0,00	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 46,29 46,29 6,20 6,20 7,77 0,65 0,00 0,00 0,00 0,02 0,00	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 2,78 2,75 3,12 1,01 & Winklet 25,59 48,29 48,29 48,29 14,91 0,08 7,18 0,08 7,18 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01 -1979) 32,76 38,54 0,00 15,28 0,50 12,23 0,50 12,23 0,50 0,00 0,00 0,05 0,00	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 49,50 44,47 12,59 0,33 7,53 7,53 7,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 3,99 4,29 1,01 30,48 41,23 1,97 16,45 0,16 9,72 0,00 0,00 0,00 0,00 0,00 0,33 0,00 0 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1876 b Td 70,75 0,20 16,27 2,01 0,02 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12 7,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1903 b Gd 70,78 0,31 16,05 2,31 0,04 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05 28,54 41,12 8,13 13,49 0,78 7,94 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03 27,68 46,31 4,13 14,82 0,51 6,53 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 1,02 27,64 47,46 47,46 6,81 0,50 6,81 0,50 6,81 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01 29,98 42,80 43,75 13,14 0,36 9,91 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 0,21 8,01 0,00 0,00 0,00 0,00 0,00 0,00 0,0	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 47,02 27,68 47,02 14,82 0,14 7,08 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01 27,96 46,69 2,88 0,11 6,84 0,00 0,00 0,00 0,00 0,00 0,00
Índ. cor 7,37 8,50 7,64 7,12 10,40 8,78 7,48 13,39 7,89 10,08 7,41 8,24 6,78 7,28 10,35 8,37 7,36 7,15 Plag(An) 23,38 20,587 24,332 23,093 20,422 22,927 23,592 28,391 20,277 28,519 20,966 24,702 24,243 22,967 23,489 21,04 23,965 24,899	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ * Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */MgO FMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt Hm II CC Ap H ₂ O	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 0,01 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02 neral nor 25,43 47,52 5,06 14,50 0,40 0,00 0,00 0,00 0,00 0,00 0,00	a Td 70,25 0,23 16,15 2,59 0,02 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa (i 24,50 50,57 3,60 13,11 0,00 7,13 1,04 0,00 0,02 0,00 0,01 0,02 0,00 0,01 0,00 0,	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 0,22 2,85 2,78 3,18 1,01 25,90 48,11 3,01 15,47 0,15 7,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,26 2,66 2,90 1,01 25,33 48,69 4,28 14,62 0,22 6,74 0,00 0,00 0,00 0,02 6 0,00 0,00 0,00 0,	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,00 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,00 9,35 0,67 0,00 0,06 0,00 0,01 0,01 0,01 0,01 0,01	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 46,29 5,56 13,77 0,00 7,77 0,65 0,00 0,00 0,22 0,00 0,14 -0,31	1884 b Td 70,38 0,32 16,42 2,04 0,02 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12 1,01 3. Winklet 25,59 48,29 3,93 14,91 0,08 7,18 0,00 0,00 0,00 0,30 0,00 0,00 -0,27	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 4,47 12,59 0,33 7,53 0,00 0,00 0,00 0,02 0,00 0,14 -0,29	1916 b Td 70,65 0,35 15,58 3,12 0,04 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 4,29 1,01 30,48 41,23 1,97 16,45 0,72 0,00 0,00 0,03 0,00 0,33 0,00 0,33 0,00 0,33 0,00 0,36	1876 b Td 70,75 0,20 16,27 2,01 0,02 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 3,00 1,00 25,54 51,19 2,42 13,58 0,12 7,13 0,00 0,00 0,00 0,19 0,00 0,09 -0,27	1903 b Gd 70,78 0,31 16,05 2,31 0,04 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05	1835 b Td 70,95 0,26 16,40 1,95 0,02 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03 27,68 46,31 4,13 14,82 0,51 6,53 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 47,46 3,24 14,15 0,50 6,81 0,00 0,00 0,27 0,00 0,22 0,71 2,94 10,50 0,71 2,94 10,50 1	1408 a To 71,02 0.31 15,21 3.12 0.09 0.82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91 0,00 0,00 0,30 0,00 0,30 0,00 0,30 0,00 0,37	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 0,21 8,01 0,00 0,00 0,00 0,00 0,00 0,00 0,16 -0,30	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14 7,08 0,00 0,00 0,00 0,28 0,00 0,00 0,00 0	1838 b Td 71,09 0.29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01 27,96 46,69 2,88 15,48 0,10 16,42
Plag(An) 23,38 20,587 24,332 23,093 20,422 22,927 23,592 28,391 20,277 28,519 20,966 24,702 24,243 22,967 23,489 21,04 23,965 24,899	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ */MgO FeMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt Hm II Cc Ap H ₂ O Soma	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 2,74 2,73 3,04 1,02 eneral nor 25,43 47,52 5,06 0,40 7,07 0,00 0,00 0,00 0,00 0,00 0,00	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa (0 24,50 50,57 50,57 1,00 7,13 1,00 7,13 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,85 2,78 3,18 1,01 Mesonon 25,90 48,11 3,17 0,15 7,35 7,35 7,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 1,40 0,05 100 0,43 7,14 2,60 2,66 2,90 1,01 ma de Bi 25,33 48,69 4,28 6,74 4,62 0,22 6,74 0,00 0,00 0,00 0,00 0,12 -0,26 100	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 0,05 1,00 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,58 3,51 0,99 Mielke 8 25,90 46,29 0,06 13,77 0,05 13,77 0,06 13,77 0,06 0,00 0,00 0,04 0,34 0,34 100	1884 b Td 70,38 0,32 16,42 2,04 0,02 0,74 3,00 5,69 1,39 nd 100 0,42 2,78 3,12 1,01 8. Winklet 25,59 48,29 48,29 48,19 10,00 0,00 0,00 0,00 0,00 0,00 0,00	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 49,50 4,47 12,59 0,33 7,53 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 3,99 4,29 1,01 30,48 41,23 1,97 16,45 0,16 9,72 0,00 0,00 0,00 0,03 0,03 0,03 0,03 0,0	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12 7,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05 28,54 41,12 8,13 13,49 0,78 7,94 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1835 b Td 70,95 0,26 16,40 1,95 0,02 0,62 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03 27,68 46,31 4,13 14,82 0,51 6,53 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02 27,64 47,46 3,24 14,15 0,50 0,00 0,00 0,00 0,00 0,00 0,00 0	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1869 a Gd 71,06 0,21 15,54 2,68 0,02 0,60 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 0,21 8,01 0,00 0,00 0,00 0,00 0,00 0,00 0,0	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14 7,08 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1838 b Td 71,09 0.29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,68 2,97 1,01 27,96 46,69 2,88 15,48 0,11 6,84 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
	Dados Nomenciatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ *+MgO Fe ₂ O ₃ */NgO FMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt Hm II Cc Ap H ₂ O Soma SMF	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 1,57 0,01 100 0,42 7,16 0,28 2,74 2,73 3,04 1,02 neral nor 25,43 47,52 5,06 14,50 0,40 7,07 0,00 0,00 0,00 0,03 0,00 0,03 0,03	a Td 70,25 0,23 16,15 2,59 0,02 0,62 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa (f 24,50 50,57 3,60 13,11 0,00 7,13 1,04 0,00 0,00 0,00 0,00 0,11 -0,29 0,00 0,11 -0,29 0,00 0,11 -0,29 0,00 0,00 0,11 -0,29 0,00 0,00 0,11 -0,29 0,00 0,00 0,00 0,00 0,00 0,00 0,00	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,85 2,78 3,18 1,01 25,90 48,11 3,01 15,47 0,15 7,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 2,60 2,66 2,90 1,01 25,33 48,69 4,28 14,62 0,22 6,74 0,00 0,00 0,00 0,01 2,02 0,00 0,01 0,00 0,01 0,00 0,00	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 0,05 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,00 9,35 0,00 0,00 0,00 0,01 0,00 0,01 0,00 0 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1862 a Td 70,37 0,23 15,95 2,45 0,03 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 46,29 5,56 13,77 0,00 7,77 0,65 10,00 7,77 0,65 0,00 0,00 0,14 -0,31 1,00 91,52	1884 b Td 70,38 0,32 16,42 2,04 0,02 2,074 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 2,75 3,12 1,01 8. Winklet 25,59 48,29 3,93 14,91 0,08 7,18 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01 1979) 32,76 38,54 0,00 15,28 0,50 12,23 0,59 12,23 0,59 0,00 0,00 0,00 0,02 0,00 0,02 0,00 0,00 0,00 0,22 -0,24 100 86,58	1831 a Td 70,57 0,23 16,19 2,24 0,02 0,73 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 49,50 4,47 12,59 0,33 7,53 0,00 0,00 0,00 0,00 0,14 -0,29 0,00 92,06	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 3,99 4,29 1,01 30,48 41,23 1,97 16,45 0,16 9,72 0,00 0,00 0,03 0,03 0,03 0,03 0,03 0,0	1876 b Td 70,75 0,20 16,27 2,01 0,02 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 25,54 51,19 2,42 13,58 0,12 7,13 0,00 0,00 0,00 0,00 0,09 -0,27 100 92,73	1903 b Gd 70,78 0,31 16,05 2,31 0,04 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05 28,54 41,12 8,13 13,49 0,78 7,94 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1835 b Td 70,95 0,26 16,40 1,95 0,02 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03 27,68 46,31 4,13 14,13 14,13 10,51 6,53 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02 27,64 47,46 3,24 14,15 0,50 6,81 0,00 0,00 0,20 0,20 0,20 0,20 0,20 0,2	1408 a To 71,02 0,31 15,21 3,12 0,09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1869 a Gd 71,06 0,21 15,54 2,68 0,02 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 4,46 3,51 1,00 27,37 45,11 7,22 12,02 0,21 8,01 0,00 0,00 0,00 0,00 0,00 0,00 0,0	1887 b Td 71,08 0,30 16,07 2,03 0,02 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14 7,08 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01 27,96 46,69 2,88 15,48 0,11 6,84 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
	Dados Nomenclatura SiO2 TiO2 Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Soma mg# K ₂ O+Na ₂ O K ₂ O/Na ₂ O Fe ₂ O ₃ */MgO FeMMT A/CNK Composição mi Q Ab Or An C Bi Hb Mt Hm II Cc Ap H ₂ O Soma	b Td 70,21 0,28 16,64 2,00 0,03 0,73 2,93 5,60 0,1,57 0,01 1,00 0,42 7,16 0,28 2,74 2,73 3,04 1,02 neral nor 25,43 47,52 5,06 14,50 0,40 7,07 0,00 0,00 0,03 0,03 0,03 0,03 0,0	a Td 70,25 0,23 16,15 2,59 0,062 2,83 5,96 1,31 0,05 100 0,32 7,27 0,22 3,21 4,21 3,46 0,99 mativa ((24,50 50,57 3,60 13,11 0,00 7,13 1,04 0,00 0,00 0,02 0,00 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,02 0,00 0,11 0,09 1,00 0,11 0,09 1,00 0,11 0,00 0,00 0,11 0,00 0,00 0,11 0,00 0,00 0,11 0,00 0,00 0,00 0,17 0,00 0,00 0,00 0,17 0,00 0,00 0,17 0,00 0,00 0,17 0,00 0,00 0,17 0,00 0	b Td 70,28 0,30 16,51 2,10 0,02 0,75 3,11 5,67 1,25 nd 100 0,42 6,92 2,285 2,78 3,18 1,01 Mesonori 25,90 48,11 3,01 15,47 7,35 0,00 0,00 0,00 0,29 0,00 0,00 0,29 0,00 0,00	b Td 70,34 0,27 16,56 1,89 0,02 0,71 3,01 5,74 1,40 0,05 100 0,43 7,14 0,24 2,66 2,90 1,01 ma de Ba 25,33 48,69 4,28 14,62 6,74 0,00 0,00 0,00 0,26 0,00 0,12 -0,26 100 92,92 7,12	a To 70,37 0,27 15,47 3,18 0,16 0,71 2,60 5,59 1,60 0,05 100 0,31 7,19 0,29 3,89 4,49 4,32 0,99 arth apud 26,25 47,50 4,03 12,19 0,00 9,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	1862 a Td 70,37 0,23 15,95 2,45 0,03 0,80 2,93 5,45 1,72 0,06 100 0,39 7,17 0,31 3,25 3,08 3,51 0,99 Mielke 8 25,90 6,65 13,77 0,65 0,00 7,77 0,65 0,00 0,02 0,00 0,14 -0,31 100 91,52 8,78	1884 b Td 70,38 0,32 16,42 2,04 0,02 3,00 5,69 1,39 nd 100 0,42 7,08 0,24 2,78 3,12 1,01 \$\text{Winklet}\$ 25,59 48,29 3,93 14,91 0,08 7,18 0,00 0,00 0,30 0,00 0,30 0,00 0,00 0,27 100 92,72 7,48	1875 b To 70,51 0,36 14,93 3,94 0,07 1,08 3,30 4,53 1,18 0,09 100 0,35 5,71 0,26 5,02 3,66 5,45 1,01 -1979) 32,76 38,54 0,00 15,28 0,50 12,23 0,59 0,00 0,35 0,00 0,35 0,00 0,35 0,00 0,35 0,00 0,35 0,00 0,35 0,00 0,35 0,00 0,35 0,00 0,35 0,00 0,22 -0,24 100 86,58 13,39	1831 a Td 70,57 0,23 16,19 2,24 0,02 2,61 5,83 1,51 0,06 100,00 0,39 7,34 0,26 2,98 3,06 3,23 1,01 25,50 4,47 12,59 4,47 12,59 0,00 0,00 0,00 0,14 -0,29 100 92,06 7,89	1916 b Td 70,65 0,35 15,58 3,12 0,04 0,78 3,32 4,85 1,29 0,01 100,00 0,33 6,15 0,27 3,91 1,01 30,48 41,23 1,97 16,45 0,16 9,72 0,00 0,00 0,33 0,00 0,03 0,00 0,33 0,00 0,03 -0,36 100 90,13 10,08	1876 b Td 70,75 0,20 16,27 2,01 0,02 0,77 2,78 6,03 1,13 0,04 100,00 0,43 7,16 0,19 2,78 2,62 3,00 1,00 255,54 51,19 2,42 13,58 2,62 1,00 0,00 0,19 0,00 0,19 0,00 0,19 0,00 0,09 -0,27 100 92,73 7,41	1903 b Gd 70,78 0,31 16,05 2,31 0,04 0,78 2,71 4,84 2,17 nd 100,00 0,40 7,01 0,45 3,10 2,95 3,44 1,05 28,54 41,12 8,13 13,49 0,78 7,94 0,00 0,00 0,30 0,00 0,30 0,00 0,30 0,00 0,30 100 91,28 8,24	1835 b Td 70,95 0,26 16,40 1,95 0,02 2,98 5,46 1,35 nd 100,00 0,39 6,81 0,25 2,57 3,13 2,85 1,03 27,68 46,31 4,13 14,82 0,51 6,53 0,00 0,00 0,25 0,00 0,00 0,25 100 92,94 6,78	1858 b Td 70,95 0,28 16,24 1,93 0,02 0,71 2,96 5,59 1,23 0,09 100,00 0,42 6,83 0,22 2,64 2,71 2,94 1,02 27,64 47,46 3,24 14,15 0,50 6,81 0,00 0,00 0,27 0,00 0,27 0,00 0,22 0,26 1,00 0,00 0,27 0,00 0,20 0,20 0,20 0,20 0	1408 a To 71,02 0.31 15,21 3,12 0.09 0,82 2,72 5,04 1,61 0,06 100,00 0,34 6,65 0,32 3,93 3,82 4,34 1,01 29,98 42,80 3,75 13,14 0,36 9,91 0,00 0,00 0,30 0,00 0,30 0,00 0,30 0,00 0,31 10,00 89,67 10,35	1869 a Gd 71,06 0,21 15,54 2,68 0,02 2,51 5,31 2,00 0,07 100,00 0,31 7,32 0,38 3,28 4,46 3,51 1,00 27,37 45,11 7,22 12,02 12,02 18,01 0,00 0,00 0,00 0,20 0,00 0,16 -0,30 100 91,72 8,37	1887 b Td 71,08 0,30 16,07 2,03 0,02 0,72 2,98 5,54 1,26 nd 100,00 0,41 6,80 0,23 2,75 2,84 3,07 1,01 27,68 47,02 3,25 14,82 0,14 7,08 0,00 0,00 0,00 0,28 0,00 0,00 0,27 100 92,77 7,36	1838 b Td 71,09 0,29 16,12 1,98 0,02 0,69 3,13 5,50 1,17 0,01 100,00 0,41 6,67 0,21 2,66 2,88 2,97 1,01 27,96 46,69 2,88 15,48 0,11 6,84 0,00 0,00 0,03 -0,26 100 0,03 -0,0

Tabela 10. Continuação

No. amostra	1335	1891	1888	1333	1890	1893	1895	1847	1407	1840	1870	1825	1908	1904
Dados	а	b	b	а	b	b	b	b	а	b	b	b	b	b
Nomenclatura	Td	Td	Td	Td	Td	Td	Gd	Td	Td	Td	Td	Gd	Gd	Td
SiO ₂	71,17	71,22	71,23	71,31	71,43	71,51	71,53	71,73	71,99	72,15	72,28	72,55	73,63	72,79
TiO ₂	0,24	0,28	0,23	0,23	0,30	0,43	0,30	0,27	0,23	0,32	0,27	0,20	0,20	0,21
Al_2O_3	15,84	16,20	16,25	15,71	15,82	15,23	15,41	16,03	15,08	14,90	15,65	15,47	14,71	15,51
Fe ₂ O ₃ *	2,38	1,98	1,75	2,54	2,15	2,63	2,30	2,01	2,76	2,98	1,77	1,72	1,67	1,95
MnO	0,07	0,02	0,03	0,10	0,02	0,03	0,03	0,03	0,11	0,06	0,01	0,02	0,01	0,03
MgO	0,63	0,66	0,57	0,49	0,70	0,80	0,79	0,69	0,72	0,69	0,64	0,44	0,33	0,52
CaO	2,71	2,92	2,82	2,62	2,96	2,36	2,62	2,69	2,51	3,03	2,64	2,11	1,95	3,44
Na ₂ O	5,51	5,57	5,69	5,74	5,59	5,55	4,91	4,95	5,13	4,57	5,44	5,15	4,63	4,34
K ₂ O	1,40	1,15	1,44	1,21	1,04	1,45	2,11	1,61	1,41	1,25	1,30	2,34	2,87	1,22
P_2O_5	0,05	nd	nd	0,05	nd	nd	nd	nd	0,06	0,05	nd	nd	nd	nd
Soma	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
mg#	0,34	0,40	0,39	0,28	0,39	0,38	0,40	0,40	0,34	0,31	0,42	0,33	0,28	0,35
K ₂ O+Na ₂ O	6,92	6,73	7,13	6,95	6,63	7,00	7,02	6,56	6,54	5,82	6,74	7,49	7,50	5,56
K ₂ O/Na ₂ O	0,25	0,21	0,25	0,21	0,19	0,26	0,43	0,33	0,27	0,27	0,24	0,45	0,62	0,28
Fe ₂ O ₃ *+MgO	3,01	2,64	2,32	3,03	2,85	3,43	3,09	2,70	3,48	3,67	2,41	2,16	2,00	2,46
Fe ₂ O ₃ */MgO	3,77	3,01	3,05	5,14	3,08	3,26	2,93	2,92	3,81	4,34	2,77	3,94	5,09	3,75
FMMT	3,32	2,94	2,58	3,36	3,17	3,90	3,42	2,99	3,82	4,05	2,69	2,38	2,21	2,70
A/CNK	1,02	1,03	1,01	1,01	1,01	1,01	1,02	1,08	1,04	1,04	1,03	1,04	1,03	1,05
Composição m	ineral nor	mativa (I	Mesonorr	na de Ba	irth anud	Mielke	R. Winkle	r 1070)						
Q	28,13	28,17	26,61	27,87	28,64	28.02	29,32	31,08	31,63	34,52	30.07	29,15	31,57	35,59
Ab	46.81	47,30	48,28	48,75	47,44	47,58	41.71	41,99	43,55	38,84	46,12	43.71	39,27	36,81
Or	3,86	2.83	5,01	2,81	1.86	3,40	7.78	5,42	3,19	2.07	4,01	10.67	14,19	3,61
An	13,13	14,51	13,99	12,69	14,70	11,86	13,03	13,35	12,11	14,74	13,11	10,49	9,67	17,09
C	0,42	0,44	0,18	0,29	0,09	0,20	0,26	1,24	0,67	0,62	0,47	0,60	0,42	0,78
Bi	7,59	6,74	5,93	7,53	7,25	8,84	7,92	6,92	8,81	9,11	6,20	5,38	4,87	6,16
Hb	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mt	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Hm	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
 II	0,23	0,27	0,22	0,22	0,28	0,42	0,28	0,25	0,22	0,31	0,25	0,19	0,19	0,20
 Cc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ap	0,12	0,00	0,00	0,12	0,00	0,00	0,00	0,01	0,14	0,12	0,00	0,00	0,00	0,00
H ₂ O	-0,28	-0,25	-0,22	-0,28	-0,27	-0,33	-0,30	-0,26	-0,33	-0,34	-0,24	-0,20	-0,18	-0,23
Soma	100	100	100	100	100	100	100	100	100	100	100	100	100	100
SMF	91,93	92,81	93,89	92,12	92,64	90,86	91,84	91,84	90,48	90,17	93,31	94,02	94,70	93,10
Índ. cor	7,94	7,01	6,15	7,87	7,53	9,26	8,20	7,18	9,17	9,54	6,45	5,57	5,06	6,36
Plag(An)	21.905	23,475	22,467	20,654	23,656	19,953	23,803	24,124		27,51	22,134	19,354	19.759	31,707

 $Fe_2O_3^* = Fe_2O_3 + 1.11 FeO; \text{ nd} = \text{não detectado; mg\#} = \text{MgO}/(\text{MgO} + \text{FeO}^*) \text{ em moles;} \text{FMMT} = \text{Fe}_2O_3 + \text{MgO}/\text{MnO} + \text{TiO}_2; \text{A/CNK} = \text{Ai}_2O_3/(\text{CaO} + \text{Na}_2O + \text{I}_2O) \text{ em moles.}$

Tabela 11. Análises químicas dos elementos maiores e de alguns traços (em % peso) e composição mineral normativa para as rochas da Fácies Porfirítica do Batólito Nordestina. A legenda é a mesma da tabela 10.

No. amostra	1860	1845	1844	1849	1827	1883	1855	1822	1851	1336	1846	1852	1856	1861	1848	1850	1854	1882
Dados	b	а	b	b	b	b	а	b	а	а	b	b	а	b	b	b	b	b
Nomenclatura	Td	Td	Gd	Td	Td	Gd	Gd	Td	Gd	Gd	Gd	Gd	Gd	Gd	Gd	Gd	Gd	Gd
SiO ₂	69,12	69,40	69,63	70,48	70,60	70,79	70,91	70,96	71,26	71,78	71,86	71,86	71,86	71,98	72,03	72,36	72,37	72,68
TiO ₂	0,27	0,24	0,25	0,29	0,26	0,25	0,22	0,26	0,20	0,19	0,21	0,21	0,16	0,23	0,23	0,22	0,18	0,17
Al_2O_3	17,63	17,00	17,15	16,47	16,57	16,48	15,96	16,22	16,02	15,34	15,98	15,95	15,52	15,61	15,88	15,60	15,74	15,48
Fe ₂ O ₃ *	1,73	2,16	1,74	1,96	1,88	1,59	2,01	1,85	1,93	2,05	1,41	1,52	1,80	1,65	1,50	1,52	1,38	1,20
MnO	0,02	0,03	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,08	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,01
MgO	0,70	0,70	0,57	0,76	0,61	0,58	0,62	0,70	0,57	0,48	0,51	0,57	0,52	0,67	0,56	0,56	0,50	0,43
CaO	2,77	2,83	2,41	2,89	2,76	2,69	2,53	2,77	2,33	2,21	2,46	2,26	2,32	2,60	2,46	2,36	2,26	2,14
Na ₂ O	6,10	6,07	5,46	5,51	5,61	5,62	5,76	5,44	5,37	5,61	5,30	5,36	5,44	5,34	5,22	5,09	5,26	5,02
K₂Ō	1,66	1,52	2,76	1,62	1,68	1,99	1,92	1,76	2,23	2,21	2,25	2,23	2,32	1,88	2,09	2,27	2,29	2,88
P ₂ O ₅	nd	0,06	nd	nd	nd	nd	0,06	nd	0,06	0,05	nd	nd	0,03	0,01	0,01	nd	nd	nd
Soma	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
mg#	0,45	0,39	0,39	0,43	0,39	0,42	0,38	0,43	0,37	0,32	0,42	0,43	0,37	0,45	0,43	0,42	0,42	0,41
K₂O+Na₂O	7,76	7,59	8,22	7,12	7,30	7,61	7,68	7,20	7,60	7,82	7,55	7,59	7,76	7,23	7,31	7,36	7,55	7,89
K₂O/Na₂O	0,27	0,25	0,51	0,29	0,30	0,35	0,33	0,32	0,42	0,39	0,42	0,42	0,43	0,35	0,40	0,45	0,44	0,57
Fe ₂ O ₃ *+MqO	2,43	2,85	2,31	2,72	2,49	2,17	2,62	2,56	2,50	2,54	1,92	2,09	2,33	2,33	2,07	2,08	1,88	1,63
Fe ₂ O ₃ */MgO	2,46	3,09	3,05	2,58	3,08	2,75	3,26	2,64	3,41	4,27	2,77	2,66	3,44	2,46	2,67	2,72	2,79	2,80
FMMT	2,72	3,13	2,58	3,03	2,77	2,44	2,87	2,84	2,73	2,81	2,15	2,33	2,51	2,58	2,31	2,33	2,09	1,81
A/CNK	1,04	1,01	1,05	1,02	1,03	1,01	0,99	1,02	1,03	0,98	1,02	1,04	0,99	1,00	1,04	1,03	1,03	1,01
	,-	,-	,	, -	,	,-	.,	,-	,	.,	,-	,-	.,	,	,-	,	,	,-
Composição mi	neral noi	mativa (Mesonor	ma de B	arth anu	d Mielke	& Winkl	er 1979)										
Q	21.37	22.41	21.74	26,09	25,62	24,74	24.74	26,66	26,68	25,77	27,18	27,32	26,29	28,16	28,46	29,03	28,18	27,92
Ab	51.77	51.52	46,59	46.74	47,63	47,68	48.87	46.16	45,60	47.65	44.94	45,45	46.18	45,35	44,26	43.18	44.61	42,54
Or	5,99	4,69	12,90	5,34	6,20	8,44	7,68	6,48	9,50	10,07	10,36	9,98	10.67	7,51	9,19	10,21	10,70	14,53
An	13,77	13,69	12,04	14,38	13,74	13,36	11,83	13,78	11,20	9,56	12,22	11,25	10,77	12,88	12,11	11,73	11,21	10,62
С	0.73	0,33	0,77	0,37	0,46	0,16	0.00	0,30	0,64	0.00	0,33	0,58	0.00	0.04	0,57	0.45	0.47	0,21
Bi	6,36	7,25	5,93	7,07	6,35	5,59	6,23	6,62	6,28	5,10	4,96	5,43	5,17	6,07	5,35	5,39	4,84	4,18
Hb	0,00	0,00	0,00	0,00	0,00	0,00	0,55	0,00	0,00	1,77	0,00	0,00	0,91	0,00	0,00	0,00	0,00	0,00
Mt	0,00	0,00	0,00	0.00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0,00	0,00	0.00	0,00
Hm	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0,00
1	0,26	0,23	0,24	0,28	0,25	0,24	0,21	0,25	0,19	0,18	0,20	0,20	0,15	0,22	0,22	0,21	0,18	0,16
 Cc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ap	0.00	0.14	0,01	0.00	0,00	0,00	0.14	0,00	0,14	0,12	0.00	0,00	0.07	0.01	0,04	0.00	0.00	0,00
H₂O	-0,24	-0,27	-0,22	-0,27	-0,24	-0,21	-0,25	-0,25	-0,24	-0,22	-0,19	-0,21	-0,21	-0,23	-0,20	-0,20	-0,18	-0,16
Soma	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
SMF	92.90	92.31	93.27	92.55	93.19	94.22	93.12	93.08	92.98	93.05	94.70	94.00	93.91	93.90	94.02	94.15	94.70	95.61
Ind. cor	6,62	7,62	6,18	7,35	6,60	5,83	7,13	6,87	6,61	7,17	5,16	5,63	6,30	6,30	5,61	5,60	5,02	4,34
Plag(An)	21.01	20.994		23,527		21,887	19,489	22,99	19,718	16,71		19,841	18,911		21,483			19,977
$Fe_2O_3^* = Fe_2O_3$, -	.,	.,			_								, .	_			
1 62O3 - F62O3	· 1.11F	eo, na=	nao uele	cuauu, II	ng# – M	JOI (IVIGC	, reu)	CIII IIIOIE	a,⊏iviivi i	-ı-e ₂ O ₃	· wgO+i	VII I TOT I I	D ₂ ; A/CIN	N- AI2O3	/(CaO+N	ia ₂ ∪+N ₂	o) em m	IUICS.

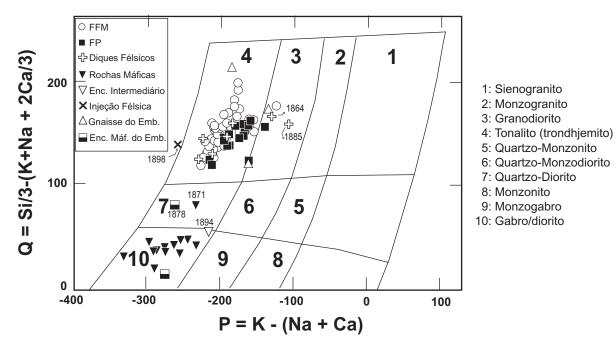


Figura 21. Diagrama de classificação de rochas plutônicas baseado em elementos maiores de Debon & Le Fort (1982), aplicado às rochas do BN.

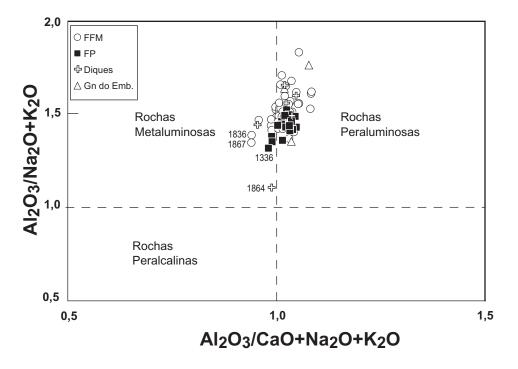


Figura 22. Diagrama $Al_2O_3/(Na_2O+K_2O)$ versus $Al_2O_3/(CaO+Na_2O+K_2O)$, em moles, segundo Maniar & Piccoli (1989), aplicado as rochas do BN.

Tabela 12. Composições médias dos elementos maiores (% em peso) e traços (ppm) das rochas do CLP e dos diques trondhjemíticos do BN comparadas com as médias de TTG arqueanos e com o padrão trondhejemítico de Barker (1979).

Fonte	Fácies Fane	erítica Média	Fácies P	orfirítica	Diques Tron	ndhjemíticos	TTG (Mai	tin 1994)	TTG2	Barker (1979)
No. de dados	n=50	σ	n=18	σ	n=4	σ	n=355	σ	Condie (1981)	
SiO2	70,65	0,78	71,22	0,83	69,87	0,77	69,79	4,90	69,66	68-75%
TiO2	0,28	0,04	0,23	0,03	0,28	0,05	0,34	0,16	0,35	
Al2O3	16,10	0,49	16,14	0,48	16,61	0,37	15,56	1,20	15,86	> 15% em 70% SiO2
Fe2O3*	2,34	0,38	1,72	0,20	2,30	0,42	3,12	1,50	3,16	
MnO	0,04	0,02	0,02	0,01	0,03	0,01	0,05	0,03	0,04	
MgO	0,74	0,10	0,59	0,07	0,82	0,13	1,18	0,70	1,14	
CaO	2,89	0,23	2,50	0,19	3,11	0,19	3,19	1,00	3,38	1,5-4,4
Na2O	5,46	0,32	5,48	0,20	5,60	0,19	4,88	0,75	4,70	4,0-5,5
K2O	1,49	0,25	2,09	0,28	1,39	0,20	1,76	0,70	1,59	<2,5
P2O5	0,05	0,02	0,04	0,02	0,04	0,02	0,13	0,10	0,11	_,0
1 200	0,00	0,02	0,04	0,02	0,04	0,02	0,10	0,10	0,11	
mg#	0,39	0,04	0,41	0.02	0,41	0,02	0,43		0,42	
K2O+Na2O	6,94	0,44	7,56	0,27	6,99	0,24	6,64		6,29	
K2O/Na2O	0,28	0,05	0,38	0,06	0,25	0,04	0,36		0,34	<0,5
Fe2O3*+MgO	3,08	0,44	2,31	0,24	3,11	0,55	4,30		4,30	<3,65
Fe2O3*/MgO	3,24	0,55	2,94	0,32	2,81	0,19	2,64		2,77	2,2-3,3
FMMT	3,39	0,46	2,56	0,26	3,41	0,60	4,69		4,69	_,,-
A/CNK	1,02	0,02	1,02	0,01	1,02	0,02	0,99		1,02	
,,,,,,,,	.,02	0,02	1,02	0,01	1,02	0,02	0,00		.,02	Į.
No. de dados	n=14	σ	n=5	σ	n=1		n=355	σ	Condie (1993)	Ī
Rb	48	8	64	10	55		55	30	65	
Ва	445	40	669	237	430		690	300	660	
Th	<5		<5		<5		7	6	8	
U	<10		<10		<10		2	1	2	
Та	<5		<5		<5		1	1	1	
Nb	<5		<5		<5		6	4	8	
Sr	539	53	699	105	424		454	200	435	
Hf	<8	00	<8	.00	<8		5	2	4	
Zr	162	17	154	16	139		152	110	160	
Cr	28	7	25	7	39		29	30	22	
Y	<3	•	5	2	3		8	4	13	
Sc	<10		<10	-	Ů		5	2	5	
Ni	19	6	19	7	35		14	10	13	
V	22	7	14	5	11		35	23	37	
·		•		ŭ			00		· ·	
La	9,06	3,39	6,50	3,22	5,25		32,00		30,00	
Ce	16,57	5,60	12,61	5,40	10,78		56,00		56,00	
Nd	6,15	2,18	4,56	2,12	4,11		21,40		22,00	
Sm	1,15	0,30	0,99	0,34	0,89		3,30		3,40	
Eu	0,43	0,12	0,35	0,12	0,27		0,92		1,00	
Gd	0,82	0,21	0,77	0,24	0,71		2,20		2,98	
Dy	0,52	0,18	0,48	0,20	0,50		1,16		2,00	
Er	0,25	0,08	0,23	0,09	0,23		0,59			
Yb	0,23	0,07	0,23	0,03	0,23		0,55		1,00	
Lu	0,04	0,07	0,05	0,07	0,05		0,33		0,17	

No diagrama AFM (Fig. 24) as rochas do CLP posicionam-se no domínio cálcio-alcalino definido por Irvine & Baragar (1971). Neste mesmo diagrama, foi colocada a curva clássica da Suíte Trondhjemítica paleoproterozóica do sudoeste da Finlândia (Arth *et al.* 1978). Observa-se que as rochas do BN posicionam-se na extremidade mais fracionada desta curva, próximo ao eixo A, e não possuem os membros menos diferenciados presentes na Suíte Trondhjemítica finlandesa citada acima. As rochas da FP estão mais próximos do pólo A, mostrando serem as rochas mais diferenciadas do CLP do Batólito Nordestina.

A linhagem trondhjemítica das rochas estudadas é igualmente confirmada através de outros dois diagramas ternários [quartzo-albita-ortoclásio (normativos) e Na-K-Ca (catiônico)] propostos por Barker & Arth (1976), que diferenciam as curvas evolucionais de rochas da Série Trondhjemítica e da Série Cálcio-Alcalina. A primeira curva mostra um enriquecimento em Na no curso da diferenciação, enquanto a última evolui através do enriquecimento em K. No diagrama normativo Q-Ab-Or (Fig. 25), as rochas do CLP ocorrem espalhadas na extremidade do *trend* trondhjemítico na posição de seus termos mais evoluídos próximo ao lado AQ, sem mostrar nenhuma afinidade com o *trend* cálcio-alcalino clássico. No diagrama K-Na-Ca (Fig. 26), as amostras do CLP do BN espalham-se

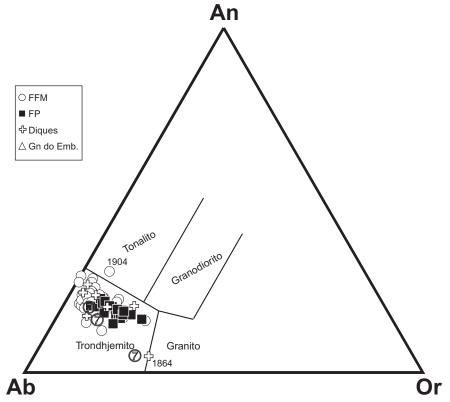


Figura 23. Triângulo normativo An-Ab-Or (O'Connor 1965), com campos de Barker (1979), aplicado às rochas do Batólito Nordestina.

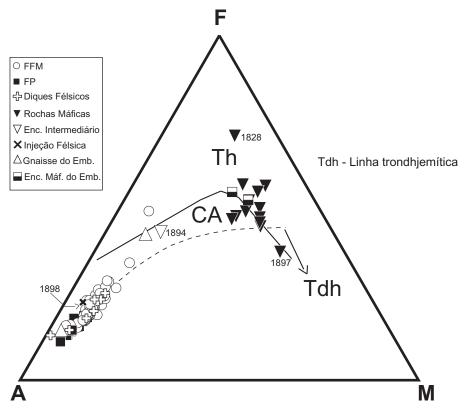


Figura 24. Diagrama A-F-M ($A = Na_2O + K_2O$; $F = FeO + 0.9Fe_2O_3$; Mg = MgO) aplicado às rochas do Batólito Nordestina. Os campos são de Irvine & Baragar (1971). Th, toleiítico; CA, Cálcio-alcalino. A linha Tdh corresponde à tendência de diferenciação da Suíte Trondhjemítica clássica do sudoeste da Finlândia ($Arth\ et\ al.\ 1978$).

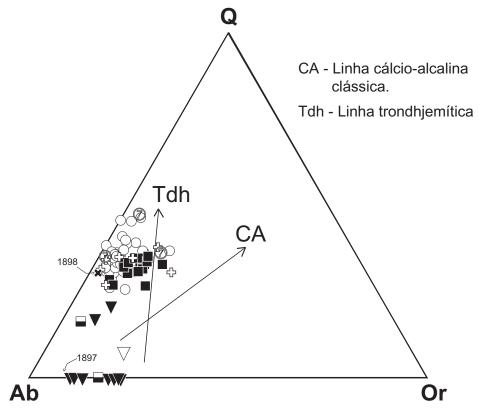


Figura 25. Diagrama normativo Q-Ab-Or segundo Barker & Arth (1976) aplicado às rochas do Batólito Nordestina. Os símbolos são os mesmos da figura 21.

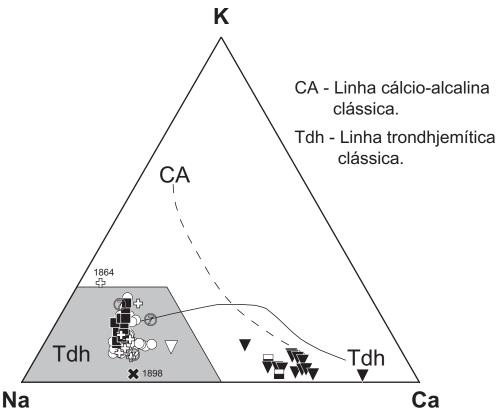


Figura 26. Triângulo catiônico K-Na-Ca segundo Barker & Arth (1976). A área em cinza representa o campo dos TTGs arqueanos (Tdh; Martin 1994). Os símbolos são os mesmos da figura 21.

em torno da linha trondhjemítica e não definem nenhum *trend* específico, superpondo-se ao campo delimitado pelas rochas TTGs arqueanas de Martin (1994).

Em diagramas relacionando SiO₂ *versus* alguns dos óxidos dosados (Fig. 27), constata-se a presença de correlações negativas exceto para o K₂O, que é positiva. Evidencia-se ainda que as rochas da FP, quando comparadas às da FFM, apresentam menores conteúdos de Fe₂O₃ total e maiores de K₂O. Este fato, aliado às informações geológicas e petrográficas obtidas, corroboram para que as rochas da FP sejam mais diferenciadas do que as rochas da FFM. Por outro lado, as evoluções negativas para os óxidos de Na, Ca e Al indicam que o fracionamento de plagioclásio teve um papel importante na diferenciação das rochas do BN.

Elementos terras raras

As rochas das FFM e FP são caracterizadas por padrões de ETR altamente fracionados [enriquecido em ETR leves e depletados em ETR pesadas, $(La/Yb)_N = 15-73$; Tab. 13; Fig. 28] com a maior parte deles exibindo fracas a moderadas anomalias positivas em Eu (Eu/Eu*= 1,06-1,51), com exceção dos espectros de duas amostras da FFM que apresentam fracas anomalias negativas em Eu (Eu/Eu* = 0,95 na amostra 1336 e 0,81 na amostra 1869). De forma geral o fracionamento dos ETRL e ETRP são os mesmos. Os padrões de ETR mostram uma inclinação negativa reta ou uma inflexão no declive em Tb (Fig. 28). Os espectros de ETR apresentam geometrias muito próximas, sendo que os padrões das rochas da FP posicionam-se dentro do envelope das rochas da FFM (Fig. 28).

Os baixos valores de Yb, associados ao fracionamento (La/Yb)_N dos espectros ETR, faz com que as rochas do BN posicionem-se no campo dos trondhjemitos arqueanos (Fig. 29), podendo indicar que durante a formação do TTG em estudo as condições foram próximas daguelas dos TTGs arqueanos.

Os valores médios dos ETR das rochas trondhjemíticas do BN são 2 a 3 vezes menores que aqueles dos TTGs arqueanos, embora, quando lançados no diagrama de ETR mostrem espectros paralelos (Tab. 12).

Elementos traços

Os conteúdos de elementos traços do CLP estão de acordo com aqueles encontrados nos TTGs arquenos (Tab. 12). As rochas trondhjemíticas e tonalíticas do CLP do BN apresentam alto Sr (368-820 ppm) e Ba (350-1043 ppm) e baixa razão Rb/Sr (<0,15). São também caracterizados pelos baixos conteúdos dos elementos de transição (Cr < 41 ppm, V < 34 ppm, Ni < 33 ppm, Co < 10 ppm) e dos HFSE [Zr =124-199 ppm, Y < 8 ppm, Nb e Ta (abaixo do limite de detecção)] (Tab. 14).

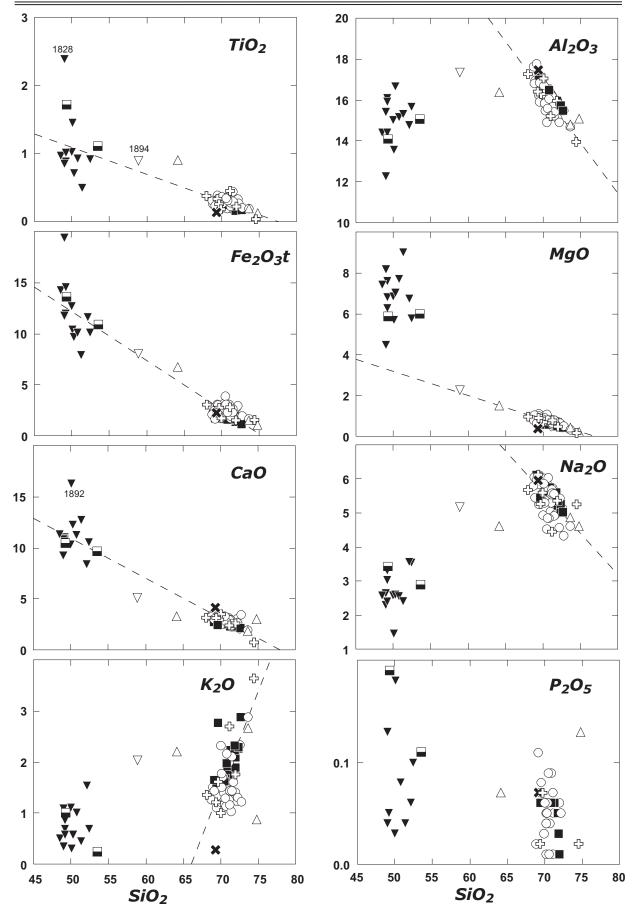


Figura 27. Diagramas do tipo Harker (1909) mostrando a evolução química dos elementos maiores versus sílica, aplicados aos litotipos do Batólito Nordestina. Os símbolos são os mesmos da figura 21.

Tabela 13. Análises químicas dos elementos terras raras (em ppm) de rochas da FFM, FP e dos diques (DT= dique trondhjemítico e DG= dique granodiorito) do Batólito Nordestina. A legenda é a mesma da tabela 10.

-	Fácies	Faneríti	ca Médi	a									Fácies	Porfirítio	ca			DT	DG
No. amostra	1406	1836	1868	1830	1867	1833	1862	1831	1408	1869	1335	1333	1845	1855	1851	1336	1856	1863	1864
Dados	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
Nomenclatura	То	To	Td	Td	Gd	Td	Td	Td	To	Gd	Td	Td	Td	Gd	Gd	Gd	Gd	Td	Gd
La	8,26	10,68	6,12	11,24	7,95	4,12	7,12	5,27	10,54	9,30	10,55	17,61	6,28	6,74	7,70	7,76	4,03	5,25	7,10
Ce	14,36	19,56	10,95	21,30	15,36	8,07	13,22	11,40	17,31	18,11	18,89	30,28	12,01	13,50	15,76	12,67	9,10	10,78	13,59
Nd	6,74	6,57	4,35	6,66	5,18	2,70	5,02	3,92	6,91	6,40	7,58	11,73	4,32	4,25	4,66	6,60	2,95	4,11	4,74
Sm	1,40	1,18	0,85	1,23	1,04	0,55	1,08	0,91	1,23	1,19	1,39	1,79	0,98	0,87	0,96	1,48	0,67	0,89	1,05
Eu	0,58	0,49	0,39	0,41	0,33	0,24	0,33	0,38	0,56	0,28	0,55	0,63	0,33	0,36	0,33	0,43	0,28	0,27	0,13
Gd	1,17	0,75	0,62	0,79	0,70	0,39	0,76	0,77	0,98	0,82	1,03	1,08	0,74	0,65	0,70	1,21	0,52	0,71	0,86
Dy	0,93	0,50	0,37	0,39	0,40	0,27	0,48	0,50	0,69	0,40	0,73	0,64	0,43	0,39	0,40	0,90	0,30	0,50	0,55
Но	0,15	0,10	0,08	0,08	0,08	0,05	0,09	0,10	0,12	0,08	0,14	0,10	0,09	0,08	0,08	0,15	0,07	0,09	0,12
Er	0,42	0,25	0,23	0,16	0,22	0,12	0,21	0,23	0,34	0,23	0,36	0,27	0,21	0,19	0,18	0,40	0,18	0,23	0,31
Yb	0,33	0,19	0,19	0,10	0,18	0,11	0,19	0,19	0,30	0,20	0,31	0,19	0,14	0,17	0,23	0,32	0,18	0,21	0,31
Lu	0,05	0,04	0,03	0,03	0,04	0,03	0,04	0,06	0,04	0,05	0,04	0,03	0,04	0,05	0,05	0,05	0,05	0,05	0,07
Soma: ETR	34,39	40,30	24,17	42,40	31,48	16,64	28,54	23,73	39,02	37,06	41,57	64,35	25,57	27,26	31,04	31,97	18,32	23,09	28,82
Elementos Ter	 ras Rara 	as norn	nalizado	os com	valores	do Co	ndrito C	1 de E	vensen	et al . (1	978)								
La	33,77	43,66	25,01	45,95	32,51	16,86	29,11	21,56	43,09	38,03	43,13	72,00	25,67	27,55	31,46	31,73	16,49	21,47	29,04
Ce	22,51	30,66	17,17	33,39	24,08	12,65	20,72	17,87	27,14	28,39	29,61	47,47	18,83	21,16	24,71	19,86	14,26	16,90	21,30
Nd	14,23	13,86	9,18	14,06	10,93	5,69	10,59	8,27	14,58	13,51	16,00	24,76	9,12	8,98	9,83	13,93	6,23	8,68	10,01
Sm	9,09	7,67	5,53	7,99	6,77	3,55	6,99	5,94	7,99	7,70	9,03	11,62	6,36	5,67	6,21	9,61	4,32	5,80	6,82
Eu	10,00	8,45	6,77	7,03	5,74	4,10	5,69	6,50	9,65	4,76	9,48	10,86	5,74	6,27	5,72	7,41	4,89	4,72	2,15
Gd	5,73	3,66	3,02	3,88	3,42	1,91	3,71	3,75	4,80	4,01	5,04	5,29	3,64	3,19	3,41	5,92	2,56	3,48	4,22
Dy	3,66	1,96	1,45	1,54	1,58	1,07	1,90	1,95	2,72	1,57	2,87	2,52	1,67	1,52	1,58	3,54	1,19	1,95	2,18
Но	2,65	1,78	1,43	1,34	1,36	0,88	1,60	1,78	2,12	1,48	2,47	1,76	1,57	1,32	1,41	2,65	1,15	1,62	2,03
Er	2,53	1,50	1,36	0,97	1,33	0,70	1,27	1,40	2,05	1,36	2,17	1,63	1,25	1,13	1,09	2,41	1,09	1,36	1,84
Yb	2,00	1,17	1,14	0,62	1,09	0,66	1,16	1,18	1,82	1,21	1,88	1,15	0,86	1,05	1,37	1,94	1,06	1,24	1,86
Lu	1,97	1,42	1,18	1,34	1,58	0,98	1,46	2,36	1,58	1,93	1,58	1,18	1,42	2,09	2,01	1,97	1,77	2,13	2,68
(La/Sm)N	3,71	5,69	4,52	5,75	4,81	4,76	4,16	3,63	5,40	4,94	4,78	6,19	4,03	4,86	5,07	3,30	3,82	3,70	4,26
(La/Yb)N	16,89	37,35	21,85	73,66	29,82	25,54	25,03	18,35	23,71	31,39	22,97	62,56	29,85	26,14	22,99	16,37	15,56	17,29	15,62
(Ce/Yb)N	11,26	26,23	15,00	53,52	22,09	19,15	17,82	15,21	14,93	23,44	15,77	41,25	21,89	20,08	18,05	10,25	13,46	13,61	11,46
(Gd/Yb)N	2,87	3,13	2,64	6,22	3,13	2,90	3,19	3,19	2,64	3,31	2,69	4,59	4,23	3,02	2,49	3,06	2,42	2,80	2,27
(Eu/Eu*)N	1,35	1,49	1,58	1,18	1,13	1,50	1,06	1,34	1,51	0,81	1,35	1,28	1,15	1,42	1,19	0,95	1,42	1,02	0,39

Tabela 14. Análises químicas dos elementos traços (em ppm) de rochas da FFM, FP e dos diques do Batólito Nordestina. O sinal de menor seguido de um número indica o limite de detecção do método utilizado. A legenda é a mesma da tabela 10.

,	Fácies	Faner	ítica M	édia											Fácies	Porfir	ítica			DT	DG
No. amostra	1406	1836	1868	1830	1867	1833	1334	1862	1831	1408	1869	1335	1333	1407	1845	1855	1851	1336	1856	1863	1864
Dados	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
Nomenclatura	To	To	Td	Td	Gd	Td	To	Td	Td	To	Gd	Td	Td	Td	Td	Gd	Gd	Gd	Gd	Td	Gd
Ва	350	376	419	459	437	458	531	408	469	444	557	451	487	385	351	693	764	496	1043	430	689
Rb	42	45	37	33	39	40	65	57	50	61	57	50	43	53	52	64	78	71	54	55	161
Sr	489	540	542	648	578	595	536	491	618	411	583	585	562	368	739	821	754	513	666	424	143
Υ	<3	< 3	< 3	< 3	3	3	6	3	4	<3	5	<3	<3	<3	4	< 3	4	<3	8	3	8
Zr	199	151	140	155	139	158	185	142	144	184	137	181	187	168	153	164	159	171	124	139	81
Nb	7	< 5	< 5	5	< 5	< 5	19	< 5	< 5	7	< 5	<5	<5	17	< 5	< 5	< 5	6	< 5	< 5	< 5
Th	<5	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	7	< 5	11	12	<5	< 5	< 5	< 5	<5	< 5	< 5	< 5
Pb	8						7			10		9	8	7				12			
Ga	23	26	26	24	25	27	27	23	27	23	24	25	25	25	27	24	25	23	22	26	24
Cu	16	15	19	21	25	11	166	18	48	18	12	13	12	20	22	13	12	6	8	17	16
Ni	12	22	24	19	33	19	15	28	21	8	31	6	8	22	20	21	22	6	28	35	25
V	30	13	14	10	< 8	< 8	31	< 8	14	34	14	28	25	26	16	< 8	9	20	9	11	< 8
Cr	17	32	29	25	38	26	35	29	34	22	35	12	17	41	37	23	27	16	21	39	25
Hf	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8	< 8
Cs	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Sc	<10						<10			<10		<10	<10	13				<10			
Та	< 5	< 5	< 5	< 5	< 5	< 5	6	< 5	< 5	< 5	< 5	< 5	< 5	7	< 5	< 5	< 5	5	< 5	< 5	< 5
Co	10	11	15	10	13	11	8	13	11	10	12	8	8	8	12	12	11	8	10	15	9
U	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
W	<10	11	< 10	25	< 10	< 10	< 10	< 10	25	< 10	24	< 10	< 10	< 10	< 10	< 10	11	< 10	11	16	25
Sn	<5	< 5	7	7	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<5	< 5	<5	< 5	< 5	< 5	<5	< 5	< 5	< 5
Rb/Sr	0,09	0,08	0,07	0,05	0,07	0,07	0,12	0,12	0,08	0,15	0,10	0,09	0,08	0,14	0,07	0,08	0,10	0,14	0,08	0,13	1,13
Ba/Sr	0,72	0,70	0,77	0,71	0,76	0,77	0,99	0,83	0,76	1,08	0,96	0,77	0,87	1,05	0,47	0,84	1,01	0,97	1,57	1,01	4,82

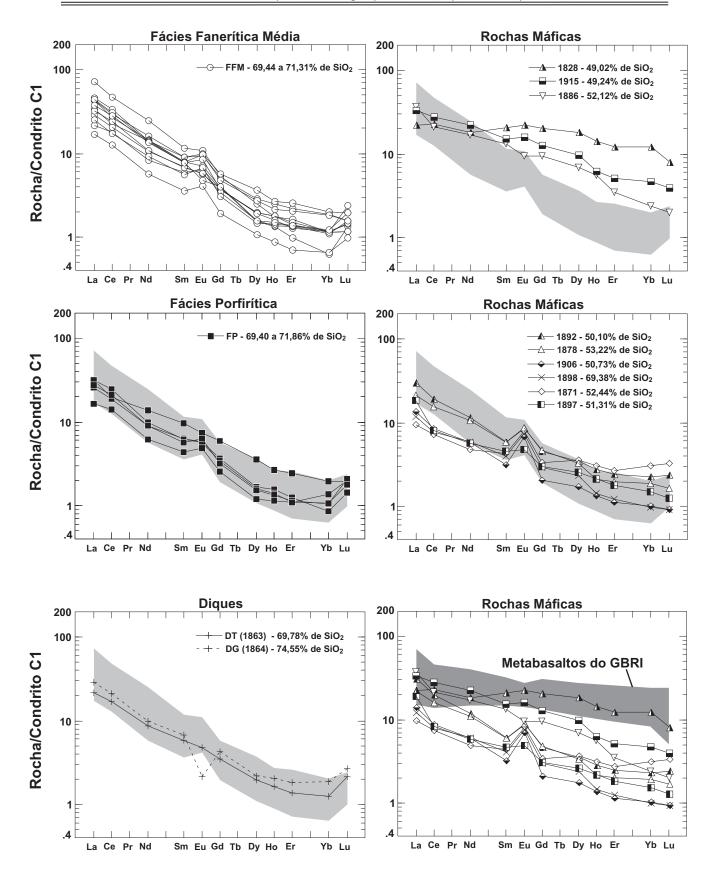


Figura 28. Espectros para os elementos terras raras das rochas do Batólito Nordestina, normalizados pelos valores de Evensen *et al.* (1978). Os campos em cinza claro e cinza escuro representam respectivamente as regiões dos ETR para as rochas da Fácies Fanerítica Média do BN e do GBRI.

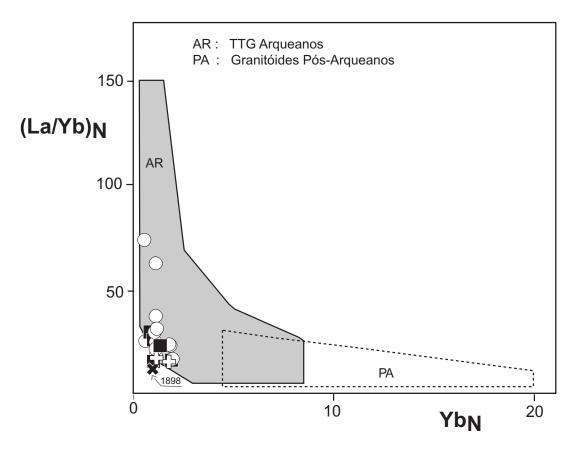


Figura 29. Diagrama $(La/Yb)_N$ *versus* $(Yb)_N$ de Martin (1985), aplicado às rochas do Batólito Nordestina. Os símbolos são os mesmos da figura 21.

Em diagrama multielementar, normalizado pelo manto primitivo (Sun & McDonough 1989), as rochas da FFM e da FP mostram um padrão bastante regular, destacando-se as fortes anomalias positivas de Sr e Zr e negativas de P e Ti (Fig. 30). As rochas da FP (exceto para o Ba) são envelopadas pela FFM, o que aponta para a cogeneticidade entre estes dois conjuntos de rochas.

Apenas poucos elementos-traço mostram boas correlações lineares com SiO₂ em diagramas Tipo Harker (Fig. 31), apesar de exibirem um leve espalhamento de pontos em torno da linha de regressão. O Ba e o Rb e as razões Rb/Sr e Ba/Sr mostram tendências de correlações positivas. Este mesmo comportamento é verificado para o Ni apesar do espalhamento em torno da linha de regressão. O Ga, Cr o Co são negativamente correlacionados com SiO₂. No presente estudo a relação do Sr com SiO₂ não é muito clara. Nota-se ainda, neste mesmo diagrama, que os conteúdos de LILE (Rb, Ba, Sr) da FP são ligeiramente mais altos do que aqueles da FFM. As amostras da FP exibem enriquecimento mais pronunciado em Ba com o aumento do SiO₂ que as rochas da FFM, refletindo o maior conteúdo modal de microclina, que varia de 5 a 6% na FP, contra < 3% nas rochas da FFM.

VII.2.2 - DIQUES FÉLSICOS

Os diques trondhjemíticos exibem composições químicas (Tab. 15) similares às das amostras do CLP (Tabs. 10-14; Figs. 21-31), o que aponta para a cogeneticidade destes diques com as rochas do CLP.

Todavia, o dique granodiorítico (Am. 1864) apresenta-se como a rocha mais evoluída (74,5 % SiO₂, mg# = 0,18, TiO₂ = 0,05 %, K_2O/Na_2O = 0,69) dentre as estudadas no BN, não sendo evidente alguma relação genética deste com as rochas descritas anteriormente e no diagrama K_2O *versus* Na_2O (não mostrado), segundo os critérios estabelecidos por Le Maître *et al.* (1989), exibe um caráter potássico, sendo este caráter também presente na amostra 1885.

O dique granodiorítico (Am. 1864) exibe nos diagrama multielementar e de ETR geometria diferente das rochas trondhjemíticas estudadas por apresentar forte anomalia negativas em Eu (0,39), P e Ti, valores mais altos de Rb, Ba e K, e ausência de anomalia de Sr. Esta é uma assinatura geoquímica distinta do BN, mas compatível com a exibida pelo plutonismo cálcio-alcalino normal paleoproterozóico presente no NSer e descrito por Rios (2002).

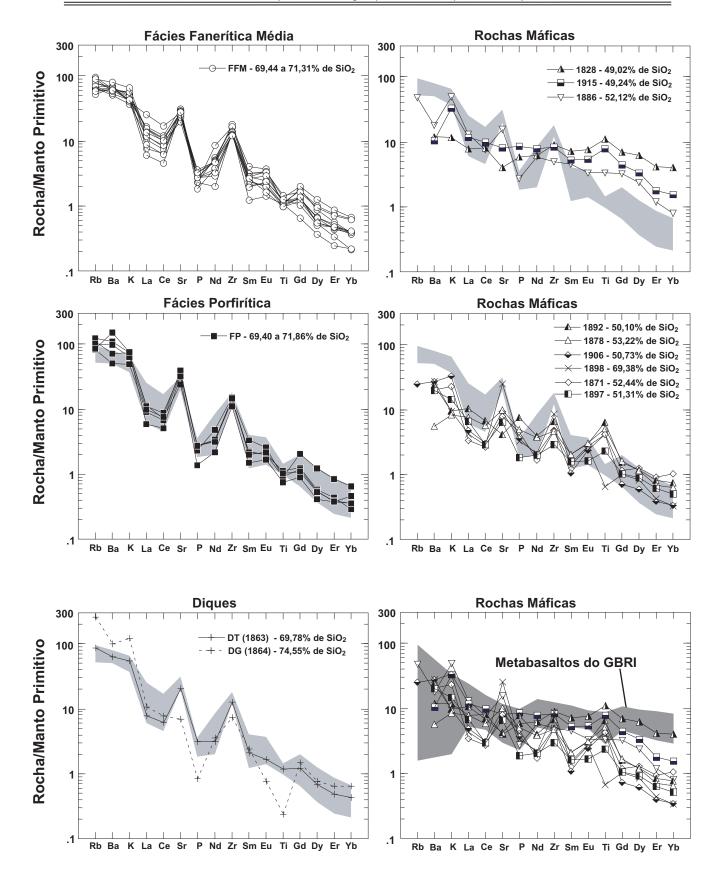


Figura 30. Espectro dos elementos-traço aplicado às rochas do Batólito Nordestina, normalizadas pelo manto primitivo (Sun & McDonough 1989). Os campos em cinza claro e cinza escuro representam respectivamente as regiões dos espectros de elementos traços para as rochas da Fácies Fanerítica Média do BN e do GBRI.

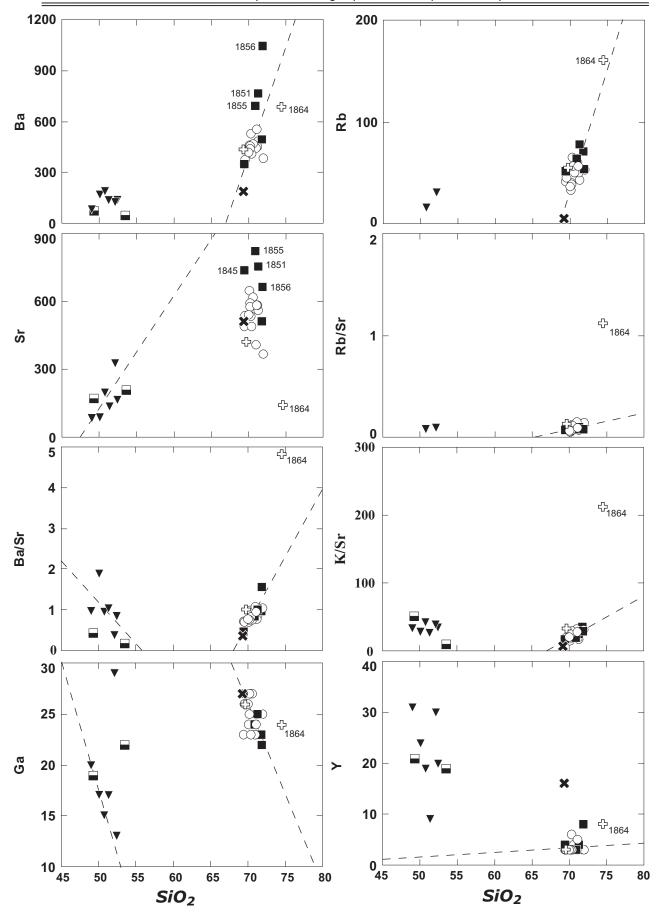


Figura 31. Diagramas do tipo Harker (1909) mostrando a evolução química dos elementos-traço *versus* sílica, aplicados aos litotipos do Batólito Nordestina. Os símbolos são os mesmos da figura 21.

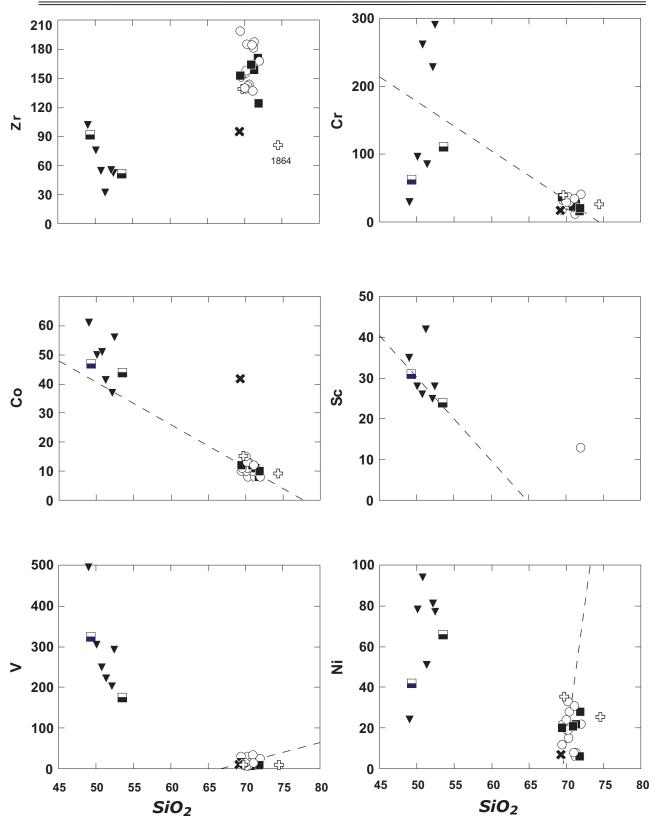


Figura 31 (Continuação). Diagramas do tipo Harker (1909) mostrando a evolução química dos elementostraço *versus* sílica, aplicados aos litotipos do Batólito Nordestina. Os símbolos são os mesmos da figura 21.

Tabela 15. Análises químicas dos elementos maiores e de alguns traços (em % peso), e composição mineral normativa para os diques do Batólito de Nordestina e gnaisses do embasamento. A legenda é a mesma da figura 10.

	Diques I	élsicos						Gn do E	mbasam	ento
No. amostra	1826	1866	1863	1829	1885	1834	1864	1912	1913	1914
Dados	b	b	а	b	b	b	а	b	b	b
Nomenclatura	To	To	Td	Td	Gd	Gd	Gd	Td	To	Gd
SiO ₂	68,09	69,43	69,78	70,00	71,17	72,03	74,55	74,85	64,11	73,62
TiO ₂	0,38	0,33	0,25	0,18	0,45	0,23	0,05	0,13	0,90	0,20
Al_2O_3	17,26	16,41	16,30	17,07	15,23	16,01	13,94	15,08	16,37	14,80
Fe ₂ O ₃ *	3,08	2,35	2,73	1,84	2,75	1,49	1,58	1,10	6,81	1,54
MnO	0,04	0,02	0,03	0,02	0,03	0,02	0,02	0,01	0,06	0,01
MgO	0,99	0,92	0,91	0,74	0,78	0,51	0,17	0,21	1,51	0,42
CaO	3,15	3,20	3,04	3,54	2,43	2,60	0,78	3,00	3,34	1,86
Na ₂ O	5,66	6,10	5,27	5,60	4,44	5,35	5,25	4,61	4,61	4,87
K ₂ O	1,35	1,22	1,62	1,00	2,71	1,76	3,64	0,88	2,21	2,67
P_2O_5	nd	0,02	0,07	nd	nd	nd	0,02	0,13	0,07	nd
Soma	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
mg#	0,39	0,44	0,40	0,44	0,36	0,41	0,18	0,26	0,31	0,26
mg# K₂O+Na₂O	7,01	7,33	6,89	6,60	7,14	7,11	8,89	5,49	6,82	7,54
K ₂ O/Na ₂ O	0,24	0,20	0,31	0,00	0,61	0,33	0,69	0,19	0,62	0,55
Fe ₂ O ₃ *+MgO	4,07	3,27	3,64	2,58	3,53	2,00	1,75	1,31	8,31	1,96
Fe ₂ O ₃ */MgO	3,10	2,56	3,00	2,48	3,53	2,90	9,21	5,11	4,52	3,63
FMMT	4,49	3,62	3,93	2,78	4,02	2,25	1,82	1,46	9,28	2,18
A/CNK	1,05	0,95	1,02	1,02	1,04	1,04	1,00	1,08	1,02	1,03
			,-	,-	,-	,-	,		,-	,
Composição m	inoral nor	motivo (Maganar	no do Do	rth aniid	Miolko	Minklo	r 1070\		
Q	23,29	21,16	26,69	26,05	29,86	28,62	28,43	38,64	22,00	31,10
Ab	48,13	51,81	44,73	47,50	37,68	45,41	44,56	39,12	39,32	41,35
Or	1,86	4,90	4,13	1,96	10,72	7,34	19,32	3,33	1,11	12,89
An	15,66	11,68	14,66	17,61	12,11	12,92	3,61	14,01	16,23	9,24
С	0,73	0,00	0,50	0,31	0,56	0,54	0,00	1,38	0.47	0,49
Bi	10,36	3,81	9,24	6,65	8,97	5,15	3,90	3,20	20,60	4,92
Hb	0,00	6,57	0,00	0,00	0,00	0,00	0,23	0,00	0,00	0,00
Mt	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Hm	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
II	0,36	0,31	0,24	0,17	0,43	0,22	0,05	0,13	0,86	0,19
Cc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ap	0,00	0,05	0,16	0,00	0,00	0,00	0,04	0,31	0,17	0,00
H ₂ O	-0,39	-0,28	-0,35	-0,25	-0,34	-0,19	-0,14	-0,12	-0,76	-0,18

VII.2.3 - ROCHAS MÁFICAS

100 88,94 10,72

10,74

Elementos Maiores

As rochas máficas do BN têm composição básica ($SiO_2 = 48,5 - 52,44\%$) exceto para a amostra 1894 que apresenta uma composição intermediária (58,9% de SiO_2), valores médios a altos mg# (0,31-0,69), e baixo a alto Na₂O+K₂O (1,75 a 7,20%) (Tab. 16). Os parâmetros normativos CIPW revelam que estas rochas podem ou não apresentar quartzo (< 4,50%) ou olivina (1,85-15,52%) normativos, mas todas têm hiperstênio (1,28-11,96%), indicando respectivamente, tipos fracamente saturados e sub-saturados com relação à sílica. Em particular, as amostras 1828 e 1892 mostram abundâncias relativamente altas de piroxênio e olivina normativos sugerindo características de acumulação. A amostra 1896 tem conteúdo de nefelina normativa de 1,49%. Contudo, especial cuidado deve ser tomado, uma vez que estas rochas foram afetadas por metamorfismo em Fácies Anfibolito, podendo ter existido mobilidade dos álcalis.

No diagrama de classificação de rochas plutônicas de Debon & Le Fort (1982), figura 21, a maior parte das rochas máficas foram classificadas como gabros/dioritos, com apenas uma amostra (1871) posicionando-se no campo dos quartzo-dioritos.

No triângulo AFM (Fig. 24) as amostras máficas alocam-se nos campos toleiítico e cálcio-alcalino, enquanto que a injeção félsica tardia cai no campo cálcio-alcalino. Contudo, a afinidade geoquímica delas deve ser considerada com atenção devido a provável mobilidade dos álcalis. Uma melhor caracterização da filiação magmática pode ser obtida através de elementos menos móveis. Assim sendo, quando estas rochas são lançadas no diagrama SiO₂ *versus* FeOt/MgO (Miyashiro 1974) elas caem apenas no campo dos toleiítos, exceto para a amostra 1897 que apresenta afinidade cálcio-alcalina (Fig. 32).

Nos diagramas AFM (Fig. 24) e K-Na-Ca (Fig. 26) as rochas máficas do BN situamse fora do *trend* linear das suítes trondhjemíticas, implicando que estas rochas não correspondem aos membros menos diferenciados (mela-gabros, mela-dioritos, e melatonalitos) encontrados em algumas suítes TTGs, como por exemplo, a do sudoeste da Finlândia (Arth *et al.* 1978). Isto sugere que eles podem ter sido gerados por mecanismos petrogenéticos distintos.

Nos diagramas de Harker (Figs. 27 e 31), se as rochas máficas forem geneticamente correlacionadas, para a maioria dos elementos não existe uma clara variação com SiO_2 . Exceto para TiO_2 , Fe_2O_3t , CaO e Co todos os demais elementos caem fora da projeção do *trend* das rochas do CLP do BN. As amostras 1828 e 1892 são mais ricas em TiO_2 e MnO e mais pobres em MgO e Al_2O_3 em relação às demais. A amostra 1894 é muito diferente em comparação com as outras rochas máficas: ela é mais rica em SiO_2 , Na_2O , K_2O e Al_2O_3 , e mais pobre em CaO e MgO. A injeção félsica tardia (1898) superpõe-se em geral às amostras menos diferenciadas do CLP do BN. As rochas máficas têm em geral mais alto número de Mg (Mg# = 0,69-0,31) quando comparadas com as rochas do corpo hospedeiro e conteúdos mais baixos de K_2O + Na_2O (em geral < 5,10 %).

Elementos Terra-Raras

Sete amostras do conjunto máfico do BN foram analisadas para ETR, sendo cinco para os enclaves máficos e duas para as intrusões tardias (Ams. 1897 e 1898) (Tab. 16). Os enclaves máficos de composição mela-diorítica [correspondendo às amostras 1871, 1892, 1906] mostram padrões de ETR ligeiramente paralelos, relativamente enriquecidos em ETRL [(La/Yb)_N = 3,12-13,44], baixas concentrações de ETR [somatório de 11 elementos (Σ 11ETR) = 13,09-28,80], e uma distinta anomalia positiva de Eu (Eu/Eu* = 1,65-2,64) (Tab. 16; Fig. 28). São claramente distintos destes padrões aqueles apresentados pelas amostras 1886 e 1828, que correspondem aos enclaves leuco-diorítico e mela-quartzo-diorito, respectivamente. O enclave leuco-diorítico mostra uma inclinação [(La/Yb)_N = 15,36] semelhante à apresentada pelos enclaves mela-dioríticos, entretanto difere por ser mais rico em ETR (Σ 11ETR= 38,02) e por não apresentar anomalia significante em Eu (Fig. 28). Já a

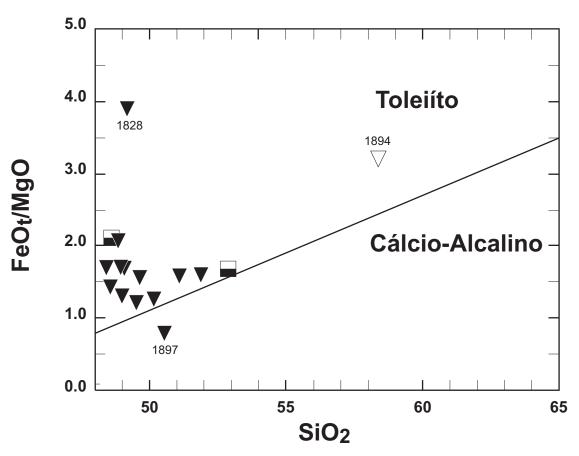


Figura 32. Diagrama SiO_2 versus FeO_t/MgO de Miyashiro (1974), aplicado às rochas máficas do Batólito Nordestina e do seu embasamento. Os símbolos são os mesmos da figura 21.

Tabela 16. Análises químicas dos elementos maiores (em % peso) e de alguns traços (em ppm), e composição mineral normativa das rochas máficas do Batólito Nordestina e de seu embasamento. Abreviatura da nomenclatura das rochas: Mela-Diorito (MI-Dio), Leuco-Diorito (Lc-Dio), Leuco-Quartzo-Diorito (Lc-Qdio), Mela-Quartzo-Diorito (MI-Qdio), Meso-Diorito (Ms-Ddio) e Trondhjemito (Tdh). Índice de Cor Normativo (Ind. cor) = Di + Hy + Mt + Hm + II, Índice de Diferenciação (Ind. Dif.) = Q + Or + Ab + Ne + Lc + Kp e Plagioclásio Normativo (% An) = [An/ (An + Ab)*100].

	Faal	da -	Time I	Faals	7	las II	Faa I		Caslavia	a Haak	D:-	146		laissassas	Taudiaa	Coo M	44 Fash
No. amostra	1907	1909	1871	1905	1902	1906	Enc. L 1886	1894	Enclave 1828	1892	1896	ues Máfi 1900	1901	Injeções 1897	1898	Enc. Ma 1878	1915
Dados	b	b	а	b	b	а	а	b	а	а	b	b	b	а	а	а	а
Nomenclatura	MI-Dio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	Lc-Dio	Lc-Qdio	MI-Qdio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	Tdh	MI-Dio	Ms-Dio
SiO ₂ TiO ₂	48,48 0,98	49,21 1,01	52,44 0,91	49,01 0,85	50,27 0,71	50,73 0,93	52,10 0,74	58,87 0,88	49,02 2,39	50,10 1,45	49,17 0,88	49,17 0,88	49,98 1,02	51,31 0,50	69,38 0,14	53,52 1,11	49,24 1,72
Al ₂ O ₃	14,40	14,41	15,66	15,42	16,67	15,17	14,78	17,36	12,26	13,56	16,09	15,93	15,02	15,34	17,42	15,07	14,08
Fe ₂ O ₃ *	14,12	14,67	10,21	11,80	9,74	10,35	11,83	8,15	19,53	10,77	11,77	12,10	12,91	8,03	2,23	11,13	13,78
MnO	0,20	0,21	0,19	0,18	0,15	0,19	0,31	0,14	0,28	0,25	0,18	0,18	0,19	0,16	0,04	0,18	0,22
MgO	7,42	6,28	5,76	8,16	7,02	7,69	6,73	2,28	4,48	5,69	6,80	7,60	6,83	9,04	0,41	5,97	5,88
CaO Na₂O	11,36 2,56	10,60 3,03	10,51 3,54	10,82 2,63	12,26 2,60	11,27 2,56	8,36 3,57	5,11 5,17	9,27 2,29	16,25 1,45	11,05 3,31	10,88 2,40	10,34 2,58	12,70 2,44	4,05 5,98	9,71 2,93	10,44 3,44
K₂O	0,49	0,57	0,69	1,09	0,58	1,01	1,53	2,03	0,35	0,30	0,70	0,86	1,11	0,44	0,28	0,25	1,00
P ₂ O ₅	nd	nd	0,10	0,04	nd	0,08	0,06	nd	0,13	0,18	0,05	nd	0,03	0,04	0,07	0,11	0,19
Soma	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
mg#	0,51	0,46	0,53	0,58	0,59	0,60	0,53	0,36	0,31	0,51	0,53	0,55	0,51	0,69	0,26	0,52	0,46
K₂O+Na₂O	3,05	3,60	4,22	3,73	3,18	3,58	5,10	7,20	2,64	1,75	4,01	3,27	3,69	2,88	6,26	3,19	4,45
K ₂ O/Na ₂ O	0,19	0,19	0,19	0,42	0,22	0,40	0,43	0,39	0,15	0,21	0,21	0,36	0,43	0,18	0,05	0,09	0,29
Fe ₂ O ₃ *+MgO	21,54	20,95	15,96	19,95	16,76	18,04	18,55	10,43	24,01	16,46	18,57	19,70	19,74	17,07	2,63	17,10	19,66
Fe ₂ O ₃ */MgO FMMT	1,90	2,34 22,17	1,77 17,07	1,45 20,99	1,39	1,35 19,17	1,76 19,60	3,57	4,36	1,89	1,73 19,63	1,59 20,76	1,89 20,94	0,89	5,50	1,86 18,39	2,34
A/CNK	22,71 0,57	0,58	0,61	0,61	17,62 0,61	0,59	0,65	11,46 0,87	26,68 0,58	18,16 0,42	0,61	0,64	0,62	17,73 0,56	2,82 0,99	0,66	21,60 0,55
<u> </u>	_			_	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	
Composição mi																	
Q Or	0,00 2,94	0,00	0,00	0,00	0,00	0,00	0,00	4,51	4,50	3,72	0,00	0,00	0,00	0,00	23,40	5,34	0,00
Or Ab	21,94	3,42 25,93	4,09 30,17	6,53 22,48	3,48 22,17	6,05 21,86	9,13 30,48	12,06 44,07	2,10 19,70	1,79 12,37	4,15 25,56	5,16 20,53	6,66 22,04	2,60 20,77	1,68 50,65	1,51 25,05	5,99 28,12
An	26,64	24,33	25,05	27,29	32,34	27,13	20,00	18,28	22,48	29,87	27,24	30,43	26,39	29,83	19,65	27,47	20,24
Ne	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,49	0,00	0,00	0,00	0,00	0,00	0,73
С	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,10	0,00	0,00
Ac Di	0,00 24,94	0,00 23,92	0,00 22,02	0,00 21,73	0,00 23,56	0,00 23,36	0,00 17,62	0,00 6,07	0,00 19,69	0,00 41,22	0,00 22,76	0,00 19,67	0,00 20,72	0,00 26,82	0,00	0,00 16,75	0,00 25,46
Wo	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ну	6,18	5,83	11,87	1,28	7,93	10,72	7,77	10,95	20,86	4,69	0,00	9,54	11,96	11,49	3,43	18,24	0,00
OI	11,36	10,33	1,85	15,52	6,30	5,89	9,97	0,00	0,00	0,00	13,57	9,45	6,41	5,11	0,00	0,00	11,66
Mt	4,14	4,30	2,98	3,45	2,84	3,02	3,46	2,38	5,75	3,15	3,44	3,54	3,78	2,34	0,65	3,25	4,04
Hm II	0,00 1,87	0,00 1,94	0,00 1,74	0,00 1,64	0,00 1,36	0,00 1,79	0,00 1,43	0,00 1,69	0,00 4,62	0,00 2,78	0,00 1,68	0,00 1,69	0,00 1,96	0,00 0,95	0,00 0,27	0,00 2,13	0,00 3,31
Ap	0,00	0,00	0,24	0,09	0,00	0,19	0,14	0,00	0,31	0,42	0,11	0,00	0,08	0,09	0,18	0,27	0,46
Ind. Dif.	24,88	29,35	34,26	29,01	25,65	27,91	39,61	60,64	26,30	17,88	31,20	25,69	28,70	23,37	75,73	31,90	34,84
Ind. cor	48,49	46,32	40,70	43,71	44 00	44,97	40,39	21,09	51,23	52,26	41,56	43,89	44,91	46,80	4,53	40,64	44,93
					41,99												44.05
Plag(An)	54,84	48,41	45,36	54,83	59,33	55,38	39,62	29,32	53,30	70,71	51,59	59,71	54,49	58,95	27,95	52,30	41,85 noles
	54,84	48,41	45,36	54,83	59,33	55,38	39,62	29,32	53,30	70,71	51,59	59,71	54,49	58,95	27,95	52,30	
Plag(An) e2O3* = Fe2O3 + 1 Ba	54,84	48,41	45,36 detecta 140	54,83	59,33	55,38 MgO+Fe 189	39,62 O*) em n 126	29,32	53,30 MT=Fe20 84	70,71 03*+ MgC 167	51,59	59,71	54,49	58,95 :O3/(CaO+	27,95 +Na2O+K 190	52,30 2O) em n 39	noles. 73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb	54,84	48,41	45,36 detecta 140 <5	54,83	59,33	55,38 MgO+Fe 189 16	39,62 O*) em n 126 31	29,32	53,30 MT=Fe20 84 <5	70,71 03*+ MgC 167 <5	51,59	59,71	54,49	58,95 2O3/(CaO+ 139 <5	27,95 +Na2O+K 190 <5	52,30 2O) em n 39 <5	73 <5
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr	54,84	48,41	45,36 detecta 140 <5 166	54,83	59,33	55,38 MgO+Fe 189 16 198	39,62 O*) em n 126 31 325	29,32	53,30 MT=Fe20 84 <5 86	70,71 03*+ MgC 167 <5 89	51,59	59,71	54,49	58,95 2O3/(CaO+ 139 <5 135	27,95 Na2O+K 190 <5 514	52,30 2O) em n 39 <5 211	73 <5 171
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb	54,84	48,41	45,36 detecta 140 <5	54,83	59,33	55,38 MgO+Fe 189 16	39,62 O*) em n 126 31	29,32	53,30 MT=Fe20 84 <5	70,71 03*+ MgC 167 <5	51,59	59,71	54,49	58,95 2O3/(CaO+ 139 <5	27,95 -Na2O+K 190 <5	52,30 2O) em n 39 <5	73 <5
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5	39,62 O*) em n 126 31 325 30 55 8	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5	70,71 03*+ MgC 167 <5 89 24 75 <5	51,59	59,71	54,49	58,95 CO3/(CaO+ 139 <5 135 9 32 <5	27,95 Na2O+K 190 <5 514 16 95 <5	52,30 2O) em n 39 <5 211 19 52 <5	73 <5 171 21 92 10
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13	39,62 O*) em n 126 31 325 30 55 8 11	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17	70,71 03*+ MgC 167 <5 89 24 75 <5 8	51,59	59,71	54,49	58,95 CO3/(CaO+ 139 <5 135 9 32 <5 <5	27,95 Na2O+K 190 <5 514 16 95 <5	52,30 2O) em n 39 <5 211 19 52 <5 11	73 <5 171 21 92 10
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5	39,62 O*) em n 126 31 325 30 55 8 11 7	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5	70,71 03*+ MgC 167 <5 89 24 75 <5 8	51,59	59,71	54,49	58,95 CO3/(CaO+ 139 <5 135 9 32 <5 <5 <5	27,95 Na2O+K 190 <5 514 16 95 <5 <5	52,30 2O) em n 39 <5 211 19 52 <5 11 16	73 <5 171 21 92 10 13 6
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13	39,62 O*) em n 126 31 325 30 55 8 11	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17	70,71 03*+ MgC 167 <5 89 24 75 <5 8	51,59	59,71	54,49	58,95 CO3/(CaO+ 139 <5 135 9 32 <5 <5	27,95 Na2O+K 190 <5 514 16 95 <5	52,30 2O) em n 39 <5 211 19 52 <5 11	73 <5 171 21 92 10
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94	39,62 O*) em n 126 31 325 30 55 8 11 7	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24	70,71)3*+ MgC 167 <5 89 24 75 <5 8 8 <5 17 92 78	51,59	59,71	54,49	58,95 CO3/(CaO+ 139 <5 135 9 32 <5 <5 <5 17 85 51	27,95 +Na2O+K 190 <5 514 16 95 <5 <5 10 27	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22	73 <5 171 21 92 10 13 6 19 63 42
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 8 <5 17 92 78 305	51,59	59,71	54,49	58,95 139 <5 135 9 32 <5 <5 <7 17 85 51 222	27,95 +Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175	73 <5 171 21 92 10 13 6 19 63 42 324
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 17 <5 20 32 24 495 29	70,71)3*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96	51,59	59,71	54,49	58,95 CO3/(CaO+ 139 <5 135 9 32 <5 <5 <5 17 85 51 222 85	27,95 +Na2O+K 190 <5 514 16 95 <5 <5 10 27 5 7 8 19	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110	73 <5 171 21 92 10 13 6 19 63 42 324 62
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 8 <5 17 92 78 305	51,59	59,71	54,49	58,95 139 <5 135 9 32 <5 <5 <7 17 85 51 222	27,95 +Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175	73 <5 171 21 92 10 13 6 19 63 42 324
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5	29,32	53,30 MT=Fe2C 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12	70,71)3*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 56 <86	27,95 -Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 <5	73 <5 171 21 92 10 13 6 19 63 42 324 62 114
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 25	29,32	53,30 MT=Fe2C 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35	70,71 167 <5 89 24 75 5 8 <5 17 92 78 305 96 106 <8 24 28	51,59	59,71	54,49	58,95 CO3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 56 <8 6 42	27,95 Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <5 <10	52,30 2O) em n 39 <5 2111 19 52 <5 11 16 22 41 66 1775 110 102 <8 <5 24	73 <55 171 21 92 10 13 6 19 63 42 324 62 114 <8 10 31
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5	39,62 O*) em n 126 31 325 30 555 8 11 7 29 38 81 202 228 232 <8 <5 55 55	29,32	53,30 MT=Fe2C 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8	70,71 73*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 <8 <5 5	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 139 9 32 <5 <5 <5 17 85 51 222 85 56 <8 6 42 <5	27,95 •Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <510 <5 <10 <5	52,30 2O) em n 39 <5 211 19 52 <5 11 166 22 41 666 175 1100 102 <8 <5 24 <5	73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6 56	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 28 25 55 87	29,32	53,30 MT=Fe2C 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8 61	70,71 73*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 28 55	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 6 42 <5 42	27,95 Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <5 <10 <5 42	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 166 175 110 102 <8 <5 24 <5 44	73 <5 171 21 92 10 13 6 19 63 42 324 62 114 <8 10 31 5 47
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5	39,62 O*) em n 126 31 325 30 555 8 11 7 29 38 81 202 228 232 <8 <5 55 55	29,32	53,30 MT=Fe2C 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8	70,71 73*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 <8 <5 5	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 139 9 32 <5 <5 <5 17 85 51 222 85 56 <8 6 42 <5	27,95 •Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <510 <5 <10 <5	52,30 2O) em n 39 <5 211 19 52 <5 11 166 22 41 666 175 1100 102 <8 <5 24 <5	73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6 56 <10 334 <5	54,83	59,33	55,38 MgO+Fe 189 16 198 54 <5 13 <5 15 44 250 261 76 <8 11 26 <5 51 51 <10 187 <5	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 28 25 25 37 <10 217 <5	29,32	53,30 MT=Fe2C 84 <55 86 31 102 <5 17 <55 20 32 24 495 29 133 <8 12 35 8 61 <10 356 <5	70,71 03*+ MgC 167 <5 89 24 75 <5 17 92 78 305 96 106 <8 24 28 24 28 305 96 106 <8 24 305 96 106 <8 24 305 96 305 96 305 96 305 96 305 96 305 305 305 305 305 305 305 305	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 6 42 <10 219 <5	27,95 Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <5 <10 <5 42 <10 1402 <5	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 175 110 102 <8 <5 24 <10 22 41 <10 102 102 103 104 105 105 105 106 107 107 108 108 109 109 109 109 109 109 109 109 109 109	73 <5 171 21 92 10 13 6 19 63 19 63 42 324 62 114 <8 10 31 5 47 <10 181 <5
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W	54,84	48,41	45,36 oldetecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6 56 <10 334	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 5 11 26 <5	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 5 5 30 11 7 29 38 51 202 228 53 53 6 7 6 7 7 8 8 1 202 218 218 218 218 218 218 218 21	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8 61 <10 356	70,71 03*+ MgC 167 <5 89 24 75 <5 17 92 78 305 96 106 <8 24 75 5 17 92 78 305 96 <106 <8 24 305 305 405 406 406 407 407 407 407 407 407 407 407	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 139 9 32 <5 <5 17 85 51 222 85 6 <8 6 42 <5 42 <10 219	27,95 Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <5 10 <5 42 <10 1402	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 175 1102 <8 <5 24 <10 221	73 <5 171 21 92 10 13 6 19 63 42 324 62 324 62 114 <8 10 31 5 47 <10 181
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6 56 <10 334 <5 428	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 250 261 76 <8 11 26 <5 51 <10 187 <5 336	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 5 37 <10 217 <5 258	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8 61 <10 356 <5 581	70,71 03*+ MgC 167 <5 89 24 75 <5 17 92 78 305 96 106 <8 24 75 92 78 305 96 106 <8 24 75 77 90 70 70 70 70 70 70 70 70 70 7	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 6 <8 6 42 <5 42 <10 219 <5 166	27,95 Na2O+K 190 <5 514 16 95 <7 8 19 21 <8 <5 10 <5 42 <10 1402 <5 319	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 <5 44 <10 221 18 485	73 <5 171 21 92 10 13 6 19 63 42 324 62 324 62 114 <8 10 31 5 47 <10 181 <5 808
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6 56 <10 334 <5	54,83	59,33	55,38 MgO+Fe 189 16 198 54 <5 13 <5 15 44 250 261 76 <8 11 26 <5 51 51 <10 187 <5	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 28 25 25 37 <10 217 <5	29,32	53,30 MT=Fe2C 84 <55 86 31 102 <5 17 <55 20 32 24 495 29 133 <8 12 35 8 61 <10 356 <5	70,71 03*+ MgC 167 <5 89 24 75 <5 17 92 78 305 96 106 <8 24 28 24 28 305 96 106 <8 24 305 96 106 <8 24 305 96 305 96 305 96 305 96 305 96 305 305 305 305 305 305 305 305	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 6 42 <10 219 <5	27,95 Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <5 <10 <5 42 <10 1402 <5	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 175 110 102 <8 <5 24 <10 22 41 <10 102 102 103 104 105 105 105 106 107 107 108 108 109 109 109 109 109 109 109 109 109 109	73 <5 171 21 92 10 13 6 19 63 19 63 42 324 62 114 <8 10 31 5 47 <10 181 <5
Plag(An) e203* = Fe203 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 6 56 428 6 51 4,63 2,25	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51 <10 187 <5 336 3,29 5,41 2,75	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 37 <10 217 <5 258 8,95 13,39 8,09	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8 61 <10 356 <5 581 5,36	70,71 03*+ MgC 167 <5 89 24 75 <8 <5 17 92 78 305 96 106 <8 24 75 5 305 96 106 <8 24 77 78 305 97 78 305 97 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 <7 300 300 300 300 300 300 300 30	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 139 <5 9 32 <5 <5 17 85 51 222 85 6 42 <10 219 <5 166 4,53	27,95 Na2O+K 190 <5 514 16 95 7 8 19 27 5 7 8 19 21 <8 <5 <10 <5 42 <10 1402 <5 319 2,89 4,96 2,82	52,30 2O) em n 39 <5 2111 19 52 <5 11 16 22 41 66 175 110 102 <8 <5 24 <5 44 <10 221 18 485 5,27 10,07 5,10	73 <5 171 21 92 10 13 6 19 63 42 324 62 114 <8 10 31 5 47 <10 181 <5 808 8,07 17,47 10,48
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6 56 <10 334 <5 428 2,31 4,63 2,25 0,66	54,83	59,33	55,38 MgO+Fe 189 16 198 54 <5 15 44 250 261 76 <8 11 26 <5 51 <10 187 <5 336 3,29 5,41 2,75 0,48	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 48 <5 25 <5 37 <10 217 <5 258 8,95 13,39 8,09 2,02	29,32	53,30 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8 61 <10 356 <5 581 5,36 14,52 8,47 3,21	70,71 03*+ MgC 167 <5 89 24 75 <5 17 92 78 305 96 <8 24 28 <5 50 <10 300 <5 730 7,23 12,09 5,33 0,89	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 139 <5 9 32 <5 51 7 85 51 222 85 64 42 <10 219 <5 166 4,53 6,15 2,70 0,70	27,95 Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <5 <10 <5 42 <10 1402 <5 319 2,89 4,96 2,82 0,61	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 175 1100 <88 <5 24 <5 44 <10 221 18 485 5,27 10,07 5,10 0,91	73 <5 171 21 92 10 13 6 19 63 19 63 42 324 62 114 <8 10 31 5 47 <10 181 <5 808 8,07 17,47 10,48 2,31
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 6 56 <10 334 <5 428 2,31 4,63 2,25 0,66 0,46 0,46	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51 <10 187 53 336 3,29 5,41 2,75 0,48 0,39	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 25 <5 <7 <10 217 <5 258 8,95 13,39 8,09 2,02 2,02 2,02 2,03	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 20 32 24 495 35 8 12 35 8 61 <10 356 <5 581 5,36 14,52 8,47 3,21 1,28	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 28 <5 50 <10 300 <5 730 7,23 12,09 5,33 0,89 0,49	51,59	59,71	54,49	58,95 O3/(CaO-1) 139 <5 135 9 32 <5 <5 17 85 51 222 85 56 <42 <10 219 <5 166 4,53 6,15 2,70 0,78	27,95 Na2O+K 190 <55 514 16 95 <55 10 27 5 7 8 19 21 <8 5 <10 <5 42 <10 1402 <5 319 2,82 4,96 2,82 0,61 0,43	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 44 <10 221 18 485 5,27 10,07 5,10 0,91 0,52	73 -55 171 21 92 10 13 6 19 63 42 324 62 114 -48 10 31 -5 808 8,07 17,47 10,48 2,31 0,91
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 6 56 428 6 56 40 334 <5 428 2,31 4,63 2,25 0,66 0,46 0,68	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51 <10 187 <5 336 3,29 5,41 2,75 0,48 0,39 0,42	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 37 <10 217 <5 258 8,95 13,39 8,09 2,02 0,555 1,94	29,32	53,30 MT=Fe20 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8 61 <10 356 <5 581 5,36 14,52 8,47 3,21 1,28 4,16	70,71 03*+ MgC 167 <5 89 24 75 <5 17 92 78 305 50 <106 <8 24 75 96 106 <8 24 75 97 78 305 78 300 <5 5 5 730 72 730 730 74 75 76 77 78 78 78 78 78 78 78 78 78	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 6 42 <5 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,28 0,61	27,95 Na2O+K 190 <5 514 16 95 <5 10 27 5 7 8 19 21 <8 <5 <10 <5 42 <10 1402 <5 319 2,89 4,96 2,82 0,61 0,43 0,59	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 <5 24 <10 221 18 485 5,27 10,07 5,10 0,91 0,52 0,97	73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 6 56 <10 334 <5 428 2,31 4,63 2,25 0,66 0,46 0,46	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51 <10 187 53 336 3,29 5,41 2,75 0,48 0,39	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 25 <5 <7 <10 217 <5 258 8,95 13,39 8,09 2,02 2,02 2,02 2,03	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 20 32 24 495 35 8 12 35 8 61 <10 356 <5 581 5,36 14,52 8,47 3,21 1,28	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 28 <5 50 <10 300 <5 730 7,23 12,09 5,33 0,89 0,49	51,59	59,71	54,49	58,95 O3/(CaO-1) 139 <5 135 9 32 <5 <5 17 85 51 222 85 56 <42 <10 219 <5 166 4,53 6,15 2,70 0,78	27,95 Na2O+K 190 <55 514 16 95 <55 10 27 5 7 8 19 21 <8 5 <10 <5 42 <10 1402 <5 319 2,82 4,96 2,82 0,61 0,43	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 44 <10 221 18 485 5,27 10,07 5,10 0,91 0,52	73 -55 171 21 92 10 13 6 19 63 42 324 62 114 -48 10 31 -5 808 8,07 17,47 10,48 2,31 0,91
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd Dy Ho Er	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 6 56 428 2,31 4,63 2,25 0,66 0,46 0,68 0,91 0,17 0,44	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51 <10 187 <5 336 3,29 5,41 2,75 0,48 0,39 0,42 0,43 0,043 0,08	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 37 <10 217 <5 258 8,95 13,39 8,09 2,02 0,555 1,94 1,76 0,32 0,57	29,32	53,30 MT=Fe20 MT=Fe20 84 <55 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 61 <10 356 <5 581 5,36 14,52 8,47 3,21 1,28 4,16 4,63 0,81 2,01	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 50 <10 300 <5 50 <10 300 <7,23 12,09 5,33 0,89 0,91 0,87 0,40 0,	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 55 17 85 51 222 85 6 42 <5 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,28 0,61 0,65 0,12 0,30	27,95 Na2O+K 190 <55 514 16 95 <55 10 27 5 7 8 19 21 <8 <55 <10 <55 42 <10 1402 <5 319 2,89 4,96 2,82 0,61 0,43 0,59 0,60 0,08 0,20	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 <5 24 <5 44 <10 221 18 485 5,27 10,07 5,10 0,91 0,52 0,97 0,85 0,12 0,33	73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd Dy Ho Er Yb	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 28 6 56 <10 334 <5 428 2,31 4,63 2,25 0,66 0,46 0,68 0,91 0,17 0,44 0,50	54,83	59,33	55,38 MgO+Fe 189 16 198 54 <5 15 44 250 261 76 <8 11 26 <5 51 <187 <5 336 3,29 5,41 2,75 0,48 0,39 0,43 0,08 0,19 0,17	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 <5 25 <5 37 <10 217 <5 258 8,95 13,39 8,09 2,02 0,55 1,76 0,32 0,57 0,39	29,32	53,30 MT=Fe20 MT=Fe20 84 <5 86 31 102 <5 17 <5 20 32 24 495 29 133 <8 12 35 8 61 <10 356 <5 581 5,36 4,16 4,63 0,81 2,01 1,77	70,71 03*+ MgC 167 <5 89 24 75 8 <5 17 92 78 305 106 <8 24 75 96 106 <8 24 75 97 78 305 106 <8 24 75 96 106 <8 24 75 96 106 <8 24 75 96 106 <8 27 78 78 78 78 78 78 78 78 78 7	51,59	59,71	54,49	58,95 O3/(CaO+ 139 <5 135 9 32 <5 <5 17 85 51 222 85 56 <8 6 42 <5 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,28 0,61 0,65 0,12 0,30 0,25	27,95 Na2O+K 190 <5 514 16 95 <7 8 19 21 <8 <5 10 <5 42 <10 1402 <5 319 2,89 4,96 2,82 0,61 0,43 0,59 0,60 0,08 0,20 0,16	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 <5 44 <10 221 18 485 5,27 10,07 5,10 0,91 0,52 0,97 0,85 0,12 0,33 0,31	73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd Dy Ho Er Yb Lu	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 6 <10 334 <5 428 2,31 4,63 2,26 0,46 0,68 0,91 0,17 0,44 0,50 0,08	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <51 13 <5 15 44 94 250 261 76 <8 11 26 51 <10 187 <5 336 3,29 5,41 2,75 0,48 0,39 0,42 0,43 0,19 0,17 0,02	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 5 55 37 <10 217 <5 258 8,95 13,39 8,09 2,055 1,94 1,76 0,32 0,57 0,39 0,05	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 20 17 <5 20 24 495 12 35 8 12 35 8 61 <10 356 <581 5,36 14,52 8,47 3,21 1,28 4,16 4,63 0,81 2,01 1,77 0,20	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 28 <5 50 <10 300 <5 730 7,23 12,09 5,33 0,89 0,91 0,91 0,40	51,59	59,71	54,49	58,95 O3/(CaO-1) 139 <5 135 9 32 <5 <5 17 85 51 222 85 6 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,28 0,61 0,65 0,12 0,30 0,25 0,03	27,95 Na2O+K 190 <55 514 16 95 <55 10 27 5 7 8 19 21 <8 5 <10 <5 42 <10 1402 <5 319 2,89 4,96 2,82 0,61 0,43 0,59 0,60 0,08 0,20 0,16 0,02	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 <5 24 <10 221 18 485 5,27 10,07 5,10 0,97 0,85 0,12 0,33 0,31 0,04	73 -5 171 21 92 10 13 6 19 63 42 324 62 324 62 114 -8 10 31 5 47 -10 181 -5 808 8,07 17,47 10,48 10,91 2,61 0,91 2,647 0,35 0,85 0,76 0,10
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd Dy Ho Er Yb Lu Soma: ETR	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 <5 6 56 428 6 50 6 0,46 0,68 0,91 0,17 0,44 0,50 0,08 13,09	54,83	59,33	55,38 MgO+Fe 189 16 198 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51 <10 187 <5 336 3,29 5,41 2,75 0,48 0,39 0,42 0,43 0,08 0,19 0,17 0,02 13,61	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 <5 5 37 <10 217 <5 258 8,95 13,39 8,09 2,02 0,55 1,94 1,76 0,32 0,57 0,39 0,05 38,02	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 17 <5 20 495 29 133 <8 61 <10 356 <5 581 5,36 14,52 8,47 3,21 1,28 4,16 4,63 0,81 1,77 0,20 46,42	70,71 33*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 75 96 106 <8 24 75 96 106 <8 24 75 96 106 <8 24 75 96 106 <8 24 75 96 106 <8 27 28 28 29 20 20 20 20 20 20 20 20 20 20	51,59	59,71	54,49	58,95 O3/(CaO-1) 139 <5 135 9 32 <5 <5 17 85 51 222 85 6 42 <5 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,61 0,65 0,12 0,28 0,01 0,25 0,12 0,30 0,25 0,131 16,31	27,95 Na2O+K 190 <55 514 16 95 <55 10 27 5 7 8 19 21 <8 5 <10 <55 <10 42 <10 1402 <5 319 2,89 4,96 2,82 0,61 0,43 0,59 0,60 0,08 0,20 0,01 0,02 13,36	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 <5 44 <10 221 18 485 5,27 10,07 5,10 0,91 0,52 0,97 0,85 0,12 0,33 0,31 0,31 0,31 0,31 24,49	73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd Dy Ho Er Yb Lu Soma: ETR (La/Sm)N (La/Yb)N	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 6 <10 334 <5 428 2,31 4,63 2,25 0,66 0,46 0,68 0,91 0,17 0,44 0,50 0,08 13,09 2,21 3,12	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <55 13 <55 15 44 94 250 261 76 <8 11 26 551 <10 187 <5 336 3,29 5,41 2,75 0,48 0,39 0,42 0,43 0,08 0,19 0,17 0,02 13,61 4,35 13,44	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 5 25 <10 217 <5 258 8,95 13,39 8,09 20,55 1,94 1,76 0,32 0,57 0,39 0,05 38,02 2,79 15,36	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 20 17 <5 20 24 495 29 133 <8 61 <10 356 61 <10 356 61 4,162 8,47 3,21 1,28 4,163 0,81 2,01 1,77 0,20 46,42 1,05 2,04	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 <24 28 <5 50 <10 300 <5 730 7,23 12,09 5,33 0,49 0,91 0,40 0,37 0,40 0,37 0,06 28,80 5,09 5,09 6,09 13,18	51,59	59,71	54,49	58,95 O3/(CaO-1 139 <5 135 9 32 <5 <5 17 85 51 222 85 56 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,28 0,61 0,65 0,12 0,30 0,25 0,03 16,31 4,06 12,42	27,95 Na2O+K 190 <55 514 16 95 5514 16 95 57 8 19 21 <8 55 <10 <55 <42 <10 1402 <53 319 2,89 4,96 2,82 0,61 0,43 0,59 0,60 0,08 0,20 0,16 0,02 13,36 2,99 12,12	52,30 2O) em n 39 <5 211 19 52 <11 16 22 41 66 175 110 102 <8 <5 24 <10 221 18 485 5,27 10,07 5,10 0,91 0,52 0,97 0,85 0,12 0,33 0,31 0,04 24,49 3,65 11,40	73 75 171 21 92 10 13 6 19 63 19 63 42 324 62 114 48 10 31 5 47 <10 181 <5 808 8,07 17,47 10,48 10,91 2,61 2,47 0,35 0,85 0,76 0,10 46,38 2,20 7,14
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd Dy Ho Er Yb Lu Soma: ETR (La/Sm)N (La/Yb)N (Ce/Yb)N	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 5 28 6 56 <10 334 <5 428 2,31 4,63 2,25 0,66 0,46 0,68 0,91 0,17 0,44 0,50 0,08 13,09 2,21 3,12 2,39	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <5 13 <5 15 44 94 250 261 76 <8 11 26 <5 51 <10 187 <5 336 3,29 5,41 2,75 0,48 0,39 0,42 0,43 0,08 0,19 0,07 13,61 4,35 13,44 4,48	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 55 57 <10 217 <55 258 8,95 13,39 8,09 2,02 0,55 1,94 1,76 0,32 0,55 1,94 1,76 0,32 0,57 0,39 0,55 1,94 1,76 8,82 2,79 15,36 8,82	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 20 17 <5 20 495 29 133 <8 61 <10 356 <5 581 5,36 14,52 8,47 3,21 1,28 4,16 4,63 0,81 2,01 1,77 0,20 46,42 1,05 2,04 2,12	70,71 33*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 24 28 <5 50 <10 300 <5 7,23 12,09 5,33 0,89 0,91 0,91 0,06 0,07	51,59	59,71	54,49	58,95 O3/(CaO-1) 139 <5 135 9 32 <5 <5 17 85 51 222 85 66 42 <5 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,61 0,65 0,12 0,30 0,25 0,03 16,31 4,06 12,42 6,47	27,95 Na2O+K 190 <55 514 16 95 <55 10 27 5 7 8 19 21 <88 49 496 2,82 0,61 0,43 0,59 0,60 0,08 0,20 0,16 0,02 13,36 2,99 12,12 7,98	52,30 2O) em n 39 <5 211 19 52 <5 11 16 22 41 66 175 110 102 <8 5 24 <10 221 18 485 5,27 10,07 5,10 0,91 0,52 0,97 0,85 0,12 0,33 0,31 0,31 0,31 0,34 24,49 3,65 11,40 8,35	73
Plag(An) e2O3* = Fe2O3 + 1 Ba Rb Sr Y Zr Nb Th Pb Ga Cu Ni V Cr Zn Hf Cs Sc Ta Co U W Sn P La Ce Nd Sm Eu Gd Dy Ho Er Yb Lu Soma: ETR (La/Sm)N (La/Yb)N	54,84	48,41	45,36 o detecta 140 <5 166 20 52 <5 15 6 13 39 77 293 290 86 <8 6 <10 334 <5 428 2,31 4,63 2,25 0,66 0,46 0,68 0,91 0,17 0,44 0,50 0,08 13,09 2,21 3,12	54,83	59,33	55,38 MgO+Fe 189 16 198 19 54 <55 13 <55 15 44 94 250 261 76 <8 11 26 551 <10 187 <5 336 3,29 5,41 2,75 0,48 0,39 0,42 0,43 0,08 0,19 0,17 0,02 13,61 4,35 13,44	39,62 O*) em n 126 31 325 30 55 8 11 7 29 38 81 202 228 232 <8 5 25 <10 217 <5 258 8,95 13,39 8,09 20,55 1,94 1,76 0,32 0,57 0,39 0,05 38,02 2,79 15,36	29,32	53,30 MT=Fe20 84 <55 86 31 102 <5 20 17 <5 20 24 495 29 133 <8 61 <10 356 61 <10 356 61 4,162 8,47 3,21 1,28 4,163 0,81 2,01 1,77 0,20 46,42 1,05 2,04	70,71 03*+ MgC 167 <5 89 24 75 <5 8 <5 17 92 78 305 96 106 <8 <24 28 <5 50 <10 300 <5 730 7,23 12,09 5,33 0,49 0,91 0,40 0,37 0,40 0,37 0,06 28,80 5,09 5,09 6,09 13,18	51,59	59,71	54,49	58,95 O3/(CaO-1 139 <5 135 9 32 <5 <5 17 85 51 222 85 56 42 <10 219 <5 166 4,53 6,15 2,70 0,70 0,28 0,61 0,65 0,12 0,30 0,25 0,03 16,31 4,06 12,42	27,95 Na2O+K 190 <55 514 16 95 5514 16 95 57 8 19 21 <8 55 <10 <55 <42 <10 1402 <53 319 2,89 4,96 2,82 0,61 0,43 0,59 0,60 0,08 0,20 0,16 0,02 13,36 2,99 12,12	52,30 2O) em n 39 <5 211 19 52 <11 16 22 41 66 175 110 102 <8 <5 24 <10 221 18 485 5,27 10,07 5,10 0,91 0,52 0,97 0,85 0,12 0,33 0,31 0,04 24,49 3,65 11,40	73 75 171 21 92 10 13 6 19 63 19 63 42 324 62 114 48 10 31 5 47 <10 181 <5 808 8,07 17,47 10,48 10,91 2,61 2,47 0,35 0,85 0,76 0,10 46,38 2,20 7,14

amostra 1828 possui o mais alto conteúdo de ETR (Σ 11ETR = 46,38) dentre as rochas máficas do BN e apresenta um padrão de ETR relativamente plano ETRL [(La/Yb)_N = 2,04].

As injeções tardias - máfica (Am. 1897) e félsica (Am.1898) - mostram assinaturas geoquímicas similares à dos enclaves mela-dioríticos, apesar da intrusão máfica exibir uma anomalia positiva de Eu relativamente menor (Eu/Eu* = 1,25) (Fig. 28).

No geral as geometrias dos ETR das rochas máficas $[3,12 < (La/Yb)_N < 15,36]$ são menos íngremes do que aquelas do CLP do BN $[15 < (La/Yb)_N < 73]$. Ao se comparar os espectros dos ETR das rochas máficas do BN com a dos basaltos do GBRI (Silva 1987), observa-se que eles diferem dos padrões deste último, que são relativamente planos, por serem depletados em ETRL e mais empobrecidas em somatório total de ETR, com exceção da amostra 1828, que é incorporada pelo pacote de ETR dos basaltos do GBRI (Fig. 28).

Elementos Traços

Nos diagramas normalizados pelo manto primordial (Fig. 30), os enclaves meladioríticos analisados (Ams.1871, 1892, 1906) e as intrusões tardias (Ams. 1897 e 1898) exibem padrões similares com presença de picos em Sr (exceto na amostra 1892), Zr e Ti [menos na intrusão félsica (Am. 1898), que é negativa] com diferentes magnitudes. Todas as rochas máficas mostram valores de Ti maiores do que os encontrados nas rochas trondhjemíticas hospedeiras, o que reflete a presença expressiva de ilmenita nas primeiras e a ausência desta no CLP do BN.

Os padrões de distribuição dos elementos-traço são distintos daqueles dos metabasaltos do GBRI para as diversas amostras, exceto para as amostras 1828.

Em relação às rochas hospedeiras as rochas máficas são mais ricas em Ni, Cr, V e Y (24-94, 29-290, 202-495 e 9-31 ppm, respectivamente), mas empobrecidas em Rb (< 5, exceto para amostra 1886 que é 31 ppm), Sr (86-325 ppm) e Ba (84-189 ppm) e Zr (32-102 ppm) (Tab. 18).

VII. 3 - LITOGEOQUÍMICA DAS ENCAIXANTES

Os gnaisses (Ams. 1912 e 1914) do embasamento mostram composições tonalíticas (trondhjemíticas) (Fig. 21) e valores de elementos maiores semelhantes aos das rochas do CLP do BN. Já o paleossoma (Am.1913) apresenta composição granodiorítica (Fig. 21) e é caracterizado por apresentar conteúdo mais baixo de SiO_2 (64,11%) e mais alto de Al_2O_3 , $Fe_2O_3^*$ e MgO em relação aos gnaisses. Estas características do paleossoma refletem a abundância de biotita (20% vol.).

Os enclaves máficos do embasamento (Ams. 1878 e 1915) apresentam conteúdos de elementos maiores semelhantes aos do conjunto máfico do BN e correspondem

quimicamente a quartzo-diorito (Am. 1871) e a gabro/diorito (Am. 1915). Nos diagramas AFM (Fig. 24) e FeOt/MgO *versus* SiO₂ (Fig. 32) posicionam-se no campo das suítes toleiíticas.

A amostra 1878 (enclave mela-dioritítico) do embasamento exibe um espectro de ETR indistinguível daquele da amostra 1892 (enclave mela-dioritítico do BN). Já o enclave meso-diorítico (Am. 1915) do embasamento mostra padrão de ETR grosseiramente paralelo ao enclave leuco-diorítico (Am. 1886) do BN.

VII.4 - GEOQUÍMICA ISOTÓPICA

Seis amostras representativas do BN (FFM: 1836 e 1867; FP: 1845 e 1856; rochas máficas: 1886, 1892) foram selecionadas para estudo isotópico pelos sistemas Rb-Sr e Sm-Nd.

As razões iniciais de 87 Sr/ 86 Sr (I_{Sr}) e 143 Nd/ 144 Nd (I_{Nd}), e os valores de épsilons estrôncio ($\varepsilon_{Sr(t)}$) e neodímio ($\varepsilon_{Nd(t)}$) foram calculados para um tempo de 2155 Ma, idade mínima de cristalização do Batólito Nordestina. Para o cálculo dos valores de $\varepsilon_{Sr(t)}$ e $\varepsilon_{Nd(t)}$ foram usados os seguintes parâmetros para o *Bulk Earth*: UR [87 Rb/ 86 Sr = 0,0827; 87 Sr/ 86 Sr = 0,7045] e CHUR = [147 Sm/ 144 Nd = 0,1967; 143 Nd/ 144 Nd=0,512638; DePaolo 1988].

VII.4.1 - RESULTADOS Rb-Sr

As razões iniciais ⁸⁷Sr/⁸⁶Sr (I_{Sr}) dos trondhjemitos situam-se entre 0,7012 a 0,7016 (Tab. 17). Elas são interpretadas como valores primários, uma vez que estas amostras não mostram evidências de transformação tardia ou posterior às suas cristalizações. O mesmo raciocínio não se aplica para a amostra 1856, que apresenta microfraturas preenchidas por carbonatos e I_{Sr} de 0,7023. Os valores de I_{Sr} das rochas máficas são variáveis, sendo de 0,7011 para a amostra 1886 e de 0,7018 para a 1892.

Os valores $\varepsilon_{Sr(t)}$ são negativos, exceto para a amostra 1856, indicando que as I_{Sr} do BN são mais baixas do que aquelas obtidas pelo modelo do *Bulk Earth* (Tab. 17). Estes resultados podem ser considerados como uma evidência de derivação do magma Nordestina a partir de fontes pobres em Rb, como a crosta inferior ou o manto.

Para determinar se o manto é uma fonte potencial para o magma Nordestina, o diagrama de evolução do Sr foi construído (Fig. 33). Nele a maioria das amostras estudadas fornecem resultados compatíveis com a evolução do manto e, apenas a

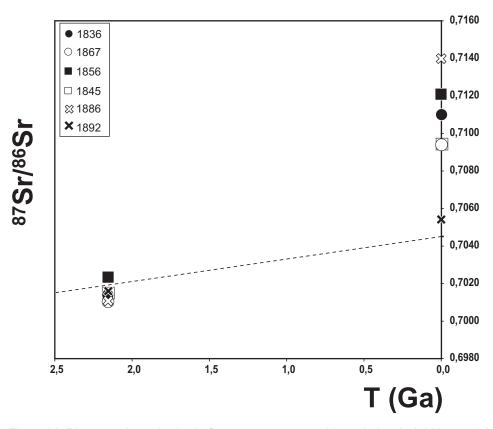


Figura 33. Diagrama de evolução do Sr para o manto, considerando I_{Sr} de 0,699 para 4,6 Ga e de I_{Sr} = 0,7045 atualmente, com as amostras do Batólito Nordestina admitindo-se cristalização a 2155 Ma.

amostra 1856 está levemente acima do valor esperado para o manto, quando do tempo de colocação do BN.

N° Amostra	Rb (ppm)	Sr (ppm)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	(⁸⁷ Sr/ ⁸⁶ Sr) _{Inicial}	E _{Sr (2.155Ga)}	f _(Rb/Sr)
1836	48,91	458	0,3092	0,7110	0,7014	-7,68	-7,06
1845	47,81	547	0,253	0,70943	0,7016	-5,18	-6,34
1856	53,67	495	0,3138	0,71208	0,7023	5,74	-6,53
1867	36,66	404	0,2623	0,70937	0,7012	-10,11	-6,09
1886	46,61	325	0,4157	0,71405	0,7011	-11,43	0,05
1892	4,32	105	0,1189	0,70545	0,7018	-2,45	-2,60

Tabela 17. Dados de Rb-Sr em rocha total de algumas amostras do Batólito Nordestina.

Dados isotópicos Rb-Sr obtidos por Barrueto (2000) para uma amostra do embasamento gnáissico-migmatítico e basaltos e anfibolitos do GBRI, na parte sul do NSer, quando calculados para a idade de 2.155 Ma indicam respectivamente valores de I_{Sr} de 0,7010 e entre 0,7009 a 0,7018. A superposição destes valores com aqueles encontrados para as rochas do BN dificulta a identificação de um possível processo de contaminação crustal.

Os valores de I_{Sr} para os trondhjemitos (exceto para a amostra 1856) diminuem com o aumento de SiO_2 (Fig. 34) e alinham-se ao longo de uma curva no diagrama I_{Sr} versus 1/Sr, descartando-se desta forma algum processo de mistura simples (Fig. 35).

VII.4.2 - RESULTADOS Sm-Nd

Os dados isotópicos Sm-Nd para as amostras estudadas encontram-se na tabela 18. As idades modelo de manto depletado (TDM) são consideradas como representantes do tempo a partir do qual os materiais do manto superior empobrecido foram segregados para a crosta. Existem duas formas de cálculo para elas: (i) em estágio único (T_{DM1}) ou (ii) em estágio duplo (T_{DM2}) em função do fator $f_{Sm/Nd}$ [onde $f_{Sm/Nd}$ = ($^{147}Sm/^{144}Nd_{amostra}$ - $^{147}Sm/^{144}Nd_{CHUR}$) / $^{147}Sm/^{144}Nd_{CHUR}$]. Nas rochas granitóides quando este fator ocorre no intervalo de -0,45±0,10, significa que pequeno ou nenhum fracionamento Sm-Nd ocorreu durante a gênese dos magmas destas rochas. Quando $f_{Sm/Nd}$ escapa deste intervalo é indicativo que um outro evento de fracionamento químico de Sm-Nd teria acontecido, possivelmente durante fusão parcial de um protólito crustal previamente reciclado e enriquecido (Sato & Siga Junior 2000). Neste caso, faz-se necessário usar o modelo de manto depletado em estágio duplo (T_{DM2}).

As amostras trondhjemíticas do BN mostram valores de ¹⁴⁷Sm/¹⁴⁴Nd (Tab. 18) característicos de rochas crustais, entre 0,098 a 0,1139 (f_{Sm/Nd} entre -0,42 a -0,50; Tab. 18), indicando que pouco ou nenhum fracionamento Sm/Nd ocorreu durante a gênese desse magma. Assim sendo, idades modelos em estágio único foram calculadas

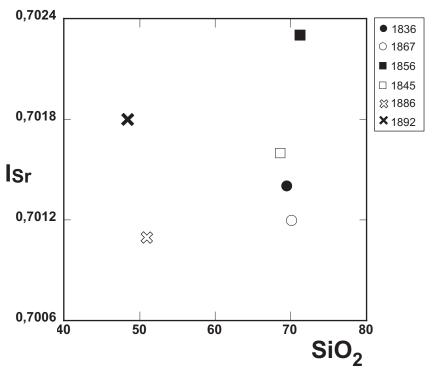


Figura 34. Diagrama de I_{Sr} versus SiO₂ aplicado às rochas do Batólito Nordestina.

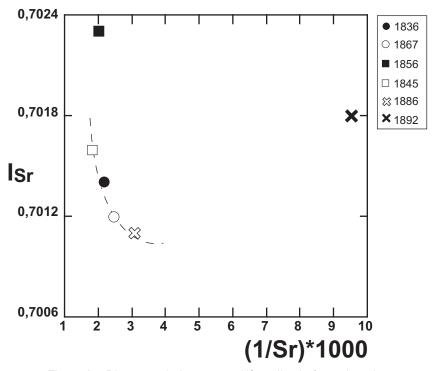


Figura 35. Diagrama de I_{Sr} versus 1/Sr aplicado às rochas do Batólito Nordestina.

assumindo como reservatório um manto empobrecido (T_{DMI}) com crescimento linear radiogênico para o manto de ε_{Nd} = 0 em 4,56 Ga a ε_{Nd} = +10 no presente tempo (Goldstein *et al.* 1984). A equação usada foi:

$$T_{DM1} = \frac{1}{\lambda} \ln \left[\frac{(^{143} \text{Nd}/^{144} \text{Nd})_{am} - (^{143} \text{Nd}/^{144} \text{Nd})_{DM, \text{hoje}}}{(^{147} \text{Sm}/^{144} \text{Nd})_{am} - (^{147} \text{Sm}/^{144} \text{Nd})_{DM, \text{hoje}}} + 1 \right]$$

onde am= amostra, λ = constante de decaimento de 147 Sm (0.00654 Ga⁻¹); (143 Nd/ 144 Nd) $_{DM,hoje}$ = 0,51315 e (147 Sm/ 144 Nd) $_{DM,hoje}$ = 0,2137 são os valores de manto depletados do tempo presente .

A notação de ϵ_{Nd} (DePaolo & Wasserburg 1976) foi definida como:

$$\varepsilon_{Nd(t)} = [(^{143}Nd/^{144}Nd)amostra / (^{143}Nd/^{144}Nd)_{CHUR}-1)] \times 10000$$

As rochas trondhjemíticas do BN apresentam idades T_{DM} paleoproterozóicas (2,18 a 2,29 Ga) e valores de $\varepsilon_{Nd(t)}$ positivos (+ 0,39 a +1,99).

Segundo (Sato & Siga Junior 2000) entre outros autores (p.ex. Küster & Liégeois 2001) as rochas máficas e ultramáficas não são favoráveis ao cálculo de idades modelo, visto que elas têm razões 147 Sm/ 144 Nd muito próximas do manto. Desta forma, à linha de evolução delas serão paralelas aquelas do manto e não podem determinar interseções significantes. As rochas máficas do BN apresentaram valores $\varepsilon_{Nd(t)}$ positivos de +0,92 (amostra 1886) e +3,11 (amostra 1892). Os valores $\varepsilon_{Nd(t)}$ positivos para as rochas félsicas e máficas do BN apontam para material fonte oriundo do manto superior empobrecido.

¹⁴⁷Sm/¹⁴⁴Nd ¹⁴³Nd/¹⁴⁴Nd (143Nd/144Nd) Inici Amostra Sm (ppm) Nd (ppm) f (Sm/Nd) $\epsilon_{\text{Nd}(0)}$ $\epsilon_{Nd(t)}$ 1836 1,43 8,83 0,098180 0,511296 0,5099 -0,50 2,23 -26,18 1,11 1,25 6,86 0,109890 0,511426 0.5099 -0,44 -23,64 1845 2,29 0,39 0,106780 0,511463 0,5099 1856 1,22 6,88 -0,46 2,18 -22,92 1,99 1867 1,19 6,34 0,113910 0,511520 0,5099 2,24 -21,18 1,12 -0,42 0,213820 0,5099 1886 5,68 0,512928 5,66 0,92 16,06 0,09 1892 4,04 14,32 0,170610 0,512426 0,5100 -0,13 -4,14 3,11

Tabela 18. Dados de Sm-Nd em rocha total de amostras do Batólito Nordestina.

A evolução isotópica de Nd nas rochas do BN é mostrada na figura 36. A evolução dos trondhjemitos *versus* o tempo é evidenciada pelas linhas contínuas em negrito. A evolução isotópica das rochas máficas na figura 36 é distinguida daquelas dos trondhjemíticos por linhas tracejadas e tem caracteristicamente valores de $\varepsilon_{Nd(t)}$ alto + 5,66 (1886) e mais baixo - 4,14 (1892).

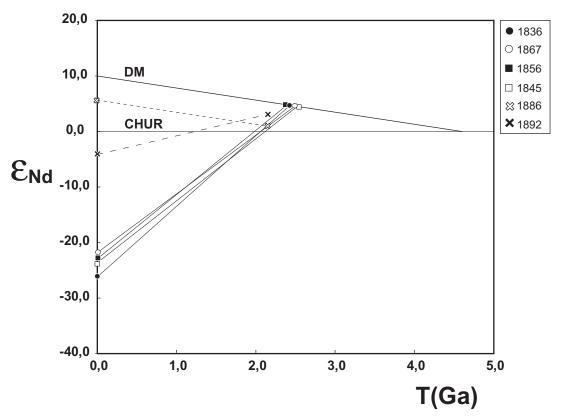


Figura 36. Diagrama de evolução do Nd *versus* idade para as rochas do Batólito Nordestina no tempo de sua colocação. DM= *Depleted Mantle*; CHUR= *CHondritic Uniform Reservoir*.

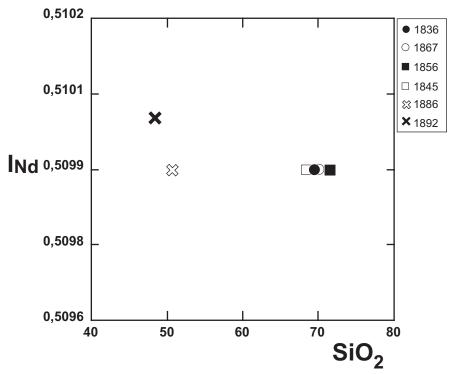


Figura 37. Diagrama de I_{Nd} versus SiO_2 para as rochas do BN.

Os valores de I_{Nd} não são correlacionávies com os conteúdos de SiO_2 (Fig. 37). Diante disso, os variáveis valores de $\varepsilon_{Nd(t)}$ não podem ser relacionados a processos de contaminação crustal simples.

VII.4.3 - RELAÇÕES Rb-Sr E Sm-Nd

Os valores de $\varepsilon_{Sr(t)}$ e $\varepsilon_{Nd(t)}$ relativos ao modelo *Bulk Earth* (Faure 1986) foram comparados a época de formação do Batólito Nordestina. No diagrama $\varepsilon_{Sr(t)}$ x $\varepsilon_{Nd(t)}$ (Fig. 38) estes valores situam-se no segundo quadrante e dentro do *trend* do *Mantle Array* (isto é campo dos MORBs), e próximos da origem sugerindo uma maior afinidade dos protólitos com o manto e um tempo de residência crustal relativamente curto.

VII.5 - SUMÁRIO DA LITOGEOQUÍMICA E GEOQUÍMICA ISOTÓPICA

As análises químicas de amostras félsicas do Batólito Nordestina revelaram que elas correspondem essencialmente a trondhjemitos e que, de um modo geral, têm composições muito semelhantes. Quando se leva em consideração as dimensões deste corpo ígneo, de aproximadamente 700 km², constata-se que elas constituem um conjunto surpreendentemente homogêneo.

Enclaves e diques máficos e félsicos foram igualmente analisados quimicamente e revelaram afinidades geoguímicas com as séries Toleiítica, Cálcio-Alcalina e Trondhjemítica.

Os trondhjemitos do Batólito Nordestina são de alto-Al₂O₃, metaluminosos a peraluminosos, e posicionam-se em diversos diagramas como rochas evoluídas e nos campos estabelecidos para suítes TTGs semelhantes em diversas regiões.

Em diagramas binários constata-se que as rochas do centro do batólito tendem a ser mais enriquecidas em K_2O , Rb, Sr e Ba, e mais pobres no somatório $MgO+MnO+TiO_2+Fe_2O_3$. Esta disposição é interpretada como resultado da diferenciação magmática.

Os espectros dos ETR das rochas trondhjemíticas estudadas são caracterizados pelo fracionamento variável dos ETR Leves e pela presença sistemática de anomalias positivas em Eu. A semelhança entre as curvas encontradas para as diferentes amostras é interpretada como indicativo de cogeneticidade. Em diagrama (La/Yb)_N versus Yb_N as rochas trondhjemíticas do Batólito Nordestina alocam-se no campo definido para os trondhjemitos arqueanos, podendo refletir semelhanças nos processos de geração destes magmas.

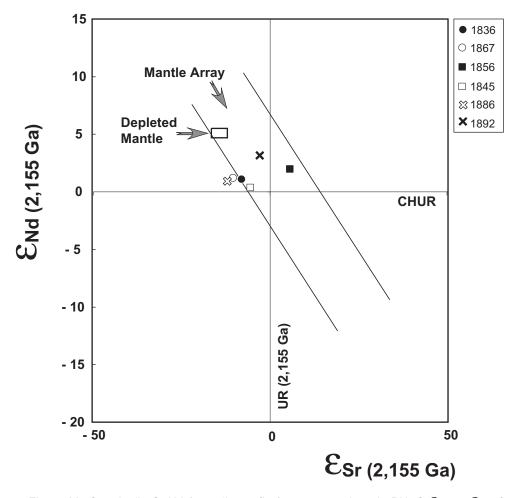


Figura 38. Correlação Sr-Nd (notação epsílon) para as rochas do BN. O ϵ_{Sr} e ϵ_{Nd} foram calculados usando os seguintes valores para o *Bulk Earth:* 87 Sr/ 86 Sr = 0,7045; 87 Rb/ 86 Sr = 0,0827; 143 Nd/ 144 Nd=0,5122638; 147 Sm/ 144 Nd=0,1967. *DM*= *Depleted Mantle*; *CHUR*= *CHondritic Uniform Reservoir.*

Os dados das razões isotópicas obtidas para o Sr e Nd, calculados para a idade de 2155 Ma, forneceram valores indicativos de fonte pobre em Rb, compatível com o manto superior de mesma idade. A obtenção de $\varepsilon_{\text{Nd(t)}}$ positivos reforçam esta hipótese. Estes mesmos dados isotópicos não evidenciaram a presença de mistura simples envolvendo assimilação de crosta continental no processo de formação do Magma Nordestina. Por outro lado, as idades T_{DM} forneceram valores variando de 2,29 Ga até 2,18 revelando-se serem próximas daquelas obtidas para a cristalização deste corpo.

VIII.1 - INTRODUÇÃO

No estudo do magmatismo do BN ficou demonstrada a presença de dois grupos distintos de rochas. O primeiro grupo consiste de rochas máficas representadas por enclaves microgranulares e diques intrusivos; com conteúdos de sílica entre 48,5 a 52,44% e de filiação toleiítica. O segundo grupo corresponde a rochas félsicas [tonalitos, trondhjemitos e granodioritos (TTG)], que hospedam as rochas máficas. Estas rochas possuem conteúdos de sílica entre 68,8 a 73,6% e pertencem à Série Trondhjemítica.

Ao longo desta tese foram feitas considerações a respeito das rochas máficas. Todavia a sua petrogênese não será abordada já que elas são relacionadas a magmatismo distinto do trondhjemítico.

O modelamento geoquímico, apresentado a seguir, foi utilizado objetivando definir e quantificar os mecanismos petrogenéticos responsáveis pela formação das rochas félsicas do BN.

VIII.2 - MODELAMENTO GEOQUÍMICO

As rochas tonalito-trondhjemíticas do BN são constituídas por plagioclásio, quartzo e biotita, com quantidades subordinadas de feldspato alcalino e hornblenda, caracterizando-se sistematicamente pela ausência de minerais opacos. Elas têm afinidades trondhjemíticas (conteúdos de Na₂O altos e baixas razões K_2O / Na₂O \leq 0,5). De acordo com o conteúdo de Al₂O₃ elas pertencem ao grupo dos TTGs de alto-Al₂O₃ (Al₂O₃ >15% a SiO₂ \cong 70%). E, quando colocadas em diagrama multi-elementar, normalizado pelo manto primitivo, estas rochas exibem anomalias positivas de Sr e de Zr e negativas de P e Ti. As anomalias positivas em Sr podem refletir a ausência de fracionamento de plagioclásio ou, ainda, que o plagioclásio não fez parte da paragênese do resíduo na fonte.

Os padrões de ETR mostram-se fracionados (15 < La_N/Yb_N < 73), tendo baixos conteúdos de ETRP (0,66 < Yb_N < 2,0) e, em geral, apresentam anomalia positiva de Eu [1,15< (Eu/Eu*)_N < 1,50].

O ponto de partida para a interpretação petrogenética do BN, dado à sua área aflorante de cerca de 700 km², depara-se com a questão: o batólito congrega vários pulsos ou um único pulso magmático. Com o mapeamento geológico realizado no BN não foi possível estabelecer a existência, ou não, de vários pulsos de magmas. Por outro lado, a presença de estrutura zonada sob o ponto de vista estrutural e petrográfico, sugere que a segunda hipótese, um único pulso, seja a mais plausível.

Os aspectos texturais macroscópicos identificados nas rochas do BN indicam que a evolução da Fácies Fanerítica Média (borda) para a Fácies Porfirítica (centro) se dá de forma gradual, e está marcada pelo aumento no tamanho e na abundância dos fenocristais

de plagioclásio em direção ao centro do batólito. O estudo petrográfico mostrou, por sua vez, que o feldspato e o quartzo tornam-se mais abundantes nas zonas mais internas, sem, entretanto, haver mudança significativa da assembléia mineral presente nas rochas. Isto se reflete por uma mudança sutil da composição química de rocha total das margens para o interior do batólito. Em diagramas binários (óxido ou elemento-traço contra SiO₂), constatase que a tendência de aumento do SiO₂ é seguida pelo aumento de K₂O, Rb e Ba, enquanto existe o decréscimo do CaO, Fe₂O₃t, MgO e Al₂O₃. Esta evolução é interpretada como índice de fracionamento, que tende ser mais baixo ao longo das margens e mais elevado na região central do batólito, e sugere que a diferenciação magmática se processou de suas margens para o interior. Todos estes elementos mostram uma tendência de evolução linear e diversos autores têm apontado a cristalização fracionada como o mecanismo responsável por este comportamento (p.ex. Nishimura & Yanagi 2000).

VIII.2.1 - O MODELO DE CRISTALIZAÇÃO FRACIONADA

As informações petrográficas (p.ex. presença de cristais de zircão e plagioclásio zonados) e químicas (as rochas se tornam progressivamente mais félsicas em direção ao centro do batólito) obtidas neste estudo sugerem que o processo de cristalização fracionada seja o responsável pela diferenciação das rochas deste batólito. A presença de correlação linear entre o SiO₂ e os outros elementos maiores (Fig. 27) reforça a hipótese que o processo de cristalização fracionada foi atuante no BN. Por outro lado, a existência de tendência de correlação negativa entre o SiO₂ e os demais óxidos de elementos maiores (Fig. 27), com exceção do K₂O, aponta para que o cumulato extraído durante a evolução do magma Nordestina deve ter sido relativamente enriquecido em Al₂O₃, Fe₂O₃, MgO, TiO₂, CaO e Na₂O, e pobre em K₂O. Esta assembléia pode reunir diversos minerais estáveis em magmas desta natureza (p.ex. Martin 1985), como por exemplo: plagioclásio, hornblenda, clinopiroxênio, biotita e minerais opacos. Todavia, Arth et al. (1978) e Barker (1979) argumentam que dificilmente cristaliza-se clinopiroxênio em magmas com SiO₂ superior a 68%. O aumento de K2O com de SiO2, como ocorre nas rochas do BN, indica que a paragênese fracionada é pobre em K₂O, descartando-se assim a cristalização precoce de feldspato alcalino e de biotita. Ante estas considerações, a assembléia mineral mais provável a controlar a evolução deste magma representa uma mistura de hornblenda, plagioclásio, minerais opacos e acessórios.

Com o objetivo de testar e quantificar a hipótese do processo de cristalização fracionada na formação das rochas do batólito em estudo selecionou-se duas amostras menos diferenciadas das bordas norte (1836) e sul (1867), posicionadas sobre a reta de regressão (Fig. 26), visando obter a composição de uma amostra evoluída (1856), localizada na região central do batólito. Utilizou-se para isto o algoritmo de Störmer & Nicholls (1978)

com o auxílio do *software* GÊNESIS (Teixeira 1997). Para ajuste de elementos-traço e TR utilizaram-se a equação de cristalização fracionada de Rayleigh e os coeficientes de partição compilados por Teixeira (1997). As simulações efetuadas para os elementos maiores apresentam resíduos baixos (0,28 e 0,70), taxas de fracionamento realísticas e de no máximo 17%, e o cumulato fabricado no processo tem composição diorítica (Tab. 19).

Os cumulatos calculados apresentam composições químicas intermediárias (em torno de 58% de SiO₂), enquanto que os enclaves dioríticos encontradas no BN apresentam composições mais básicas (SiO₂ entre 48 e 51%).

Os cálculos efetuados confirmaram a importância subordinada da biotita. Este fato concorda com as considerações de Abbot (1981), que evidenciou que a cristalização magmática de hornblenda enriquece o magma em Al₂O₃, tornando-o peraluminoso, o que favorece a desestabilização da hornblenda em favor da cristalização da biotita.

Os conteúdos obtidos, em ppm, para os elementos-traço dos magmas produzidos pela simulação, não levando em conta os minerais acessórios, forneceram resultados irreais (Fig. 39). Ajustando-se estes resultados, com adição de minerais acessórios identificados nestas rochas, obtiveram-se resultados mais coerentes (Fig. 39). Todavia, estes mesmos cálculos revelam que os valores encontrados para o Ba representam aproximadamente a metade do valor presente na rocha mais evoluída (Am. 1856). Estes resultados podem indicar que o valor do Kd do Ba para o plagioclásio é elevado ou, ainda, refletir interações com líquidos residuais enriquecidos em feldspato alcalino (Kd^{Feldspato Alcalino}_{Ba} = 11, Rollinson 1993). Por outro lado, seria esperado que magmas formados pela extração de cumulatos ricos em plagioclásio (Tab. 19) apresentassem forte anomalia negativa em Eu, o que não ocorre no BN. Segundo Martin *et al.* (1997) magmas trondhjemíticos que apresentam espectros de ETR similares traduzem o fato que, hornblenda, allanita e apatita têm baixo Kd para o Eu, quando comparados com os de Kd_{Sm} e Kd_{Gd}, minimizando ou mesmo cancelando o efeito do fracionamento do Eu pelo plagioclásio.

Os espectros de ETR obtidos para os cumulatos calculados (Tab. 19; Fig. 39) diferem dos encontrados nas rochas dioríticas no BN (Tab. 16; Fig. 28) por não apresentarem as fortes anomalias positiva em Eu, exibirem forte fracionamento de ETR ($La_N/Yb_N = 50,93-53$), e elevados conteúdos em Sr (até 1426 ppm) e Zr (até 250 ppm).

VIII.2.2 - O MODELO DE GÊNESE DO MAGMA PARENTAL

Muitas hipóteses são levantadas para explicar a gênese dos magmas tonalitotrondhjemíticos (ver Martin 1994). Entretanto, recentes avanços na compreensão da gênese destes líquidos, através dos dados experimentais (p.ex. Rapp *et al.* 1991 e Rapp & Watson 1995) e modelamentos geoquímicos (p.ex. Martin 1994), têm mostrado que os modelos

Tabela 19. Modelamento dos elementos maiores e traços da cristalização fracionada das rochas trondhjemíticas do BN.

		Č	Composições das Eases Minerais	Jac Faces N	dinerais			Cristalizacă	o Fracionad	a (CE) da hor	Cristalizacão Eracionada (CE) da borda sul para o centro	entro	Cristalizacă	o Fracionad	a (CE) da ho	Cristalizacão Eracionada (CE) da horda norte nara o centro	Centro
	Plag. An. 21	Hornblend	Magnetita	Ilmenita	Apatita	Zircão	Allanita	Co =1867	Cf =1856	13% de CF	Residuos =r	Cs(1)	Co =1836	Cf =1856	17% de CF	Resíduos =r	Cs(2)
	Este	12		4	Martin 1985 e Teixiera 1997	ra 1997			(A)	(B)	(A-B)			(A)	(B)	(A-B)	
(% em beso)																	
SiO2	63,47	46,65		0,50		32,51	30,82	70,18	71,86	71,92	90'0-	58,57	69,57	71,86	72,03	-0,17	57,51
Ti02		0,46		48,74			0,71	0,21	0,16	0,19	-0,03	0,30	0,26	0,16	0,25	60'0-	0,22
AI203	22,95	7,57				0,21	14,83	15,86	15,52	15,34	0,18	19,55	15,92	15,52	15,32	0,20	19,06
Fe2O3*		22,30	100,00	49,62		0,08	7,71	2,46	1,80	1,83	-0,03	6,58	3,01	1,80	1,89	60'0-	8,38
MnO		0,81						0,03	0,02	0,01	0,01	0,14	0,03	0,02	0,01	0,01	0,15
MgO		8,80		0,45		0,01	0,45	0,67	0,52	0,54	-0,02	1,54	0,72	0,52	0,53	-0,01	1,64
CaO	4,52	11,64		69'0	29'99	0,22	8,83	2,81	2,32	2,36	-0,04	5,75	3,00	2,32	2,42	-0,10	5,70
Na2O	8,90	1,04						6,02	5,44	5,79	-0,34	7,25	6,11	5,44	5,84	-0,40	7,04
K20	0,16	0,73						1,71	2,32	1,98	0,34	0,25	1,30	2,32	1,65	0,67	0,26
P205					33,33			0,04	0,03	0,04	-0,01	90'0	0,80	0,03	0,00	0,03	0,03
										Soma r²=	0,28				Soma r²=	0,70	
		Coeficientes	Coeficientes de Partição (Martin 1985, Teixeira 1997)	(Martin 198	35, Teixeira	1997)		(mdd)									
Rb	0,04	0,014	0,0001	0,00001	0,00001	0,00001	0,00001	39	54	44,62		1,52	45	25	53,88		1,79
Ba	0,31	0,044	0,00001	0,00001	0,01	0,00001	0,00001	437	1043	484,91		122,69	376	1043	432,68		106,61
Sr	4,4	0,022	0,00001	0,00001	7	0,00001	0,00001	578	999	408,58		1426,3	540	999	345,77		1173,02
Zr	0,01	0,45	0,00001	0,00001	0,00001	3800	_	139	124	124,34		223,85	151	124	125,49		250,13
								(Normalizad	tos pelo con	os pelo condrito de Even	ısen et al. 1978)						
La	0,4	0,74	0,12	0,005	25	7	096	32,51	16,49	17,88		94,65	43,66	16,49	21,06		103,47
Ce	0,27	1,52	0,15	900'0	34,7	2,64	940	24,08	14,26	13,34		69,92	30,66	14,26	14,88		72,62
Nd	0,21	4,26	0,22	0,0075	57,1	2,2	750	10,93	6,23	6,48		30,82	13,86	6,23	7,22		32,49
Sm	0,13	7,77	0,27	0,01	62,8	3,14	620	6,77	4,32	4,06		18,94	7,67	4,32	4,00		17,97
Eu	2,15	5,14	0,17	0,007	30,4	3,14	26	5,74	4,89	4,39		12,84	8,45	4,89	5,92		17,21
PS	0,097	10	0,34	0,017	56,3	12	440	3,42	2,56	2,22		9,11	3,66	2,56	2,08		8,39
Dy	0,064	13	0,46	0,028	20,7	22	200	1,58	1,19	1,13		3,85	1,96	1,19	1,24		4,29
ш	0,055	12	0,65	0,035	37,2	140	100	1,33	1,09	1,04		2,86	1,50	1,09	1,07		3,02
Q,	0,049	4,8	98'0	0,075	23,9	280	54	1,09	1,06	96'0		1,86	1,17	1,06	0,97		1,95
	0,046	9	0,95	0,1	70	345	4	1,58	1,77	1,47	_	2,19	1,42	1,77	1,28		1,99
Cs (modal)																	
										200					0		
Plag. An. ₂₁ Hornblenda Magnetita										79,42% 17,49% 2,46%					76,95% 18,59% 4,09%		
Ilmenita Apatita										0,45%					0,28%		
															2.000		

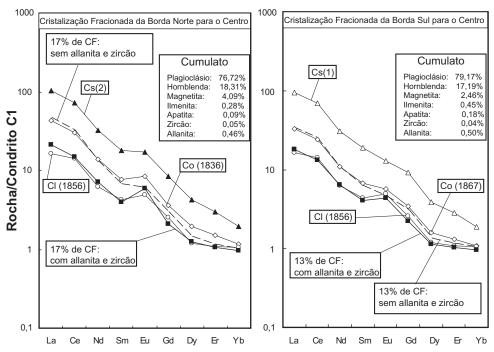


Figura 39. Padrões de elementos terras raras das rochas do Batólito Nordestina comparados com os resultados do modelo de cristalização fracionada. A composição do cumulato e o grau de cristalização fracionada (17-13%) foram determinados usando os cálculos dos elementos maiores (Tab. 19). As amostras 1836 e 1867 foram consideradas como correspondentes de magmas menos diferenciados, enquanto a amostra 1856 é considerada como representante do magma mais diferenciado. Os quadrados preenchidos são os padrões de terras raras calculados para o magma diferenciado. A linha tracejada representa os cálculos sem allanita e zircão.

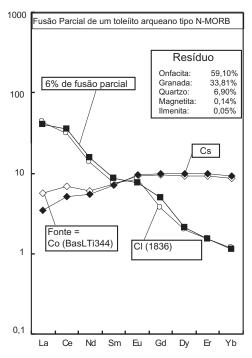


Figura 40. Padrão de elementos terras raras do magma parental (Am. 1836) do Batólito Nordestina comparado com os cálculos teóricos da fusão parcial de um basalto toleíito arqueano tipo N-MORB. A composição do resíduo e o grau de fusão parcial (6%) foram determinados usando os cálculos dos elementos maiores (Tab. 20).

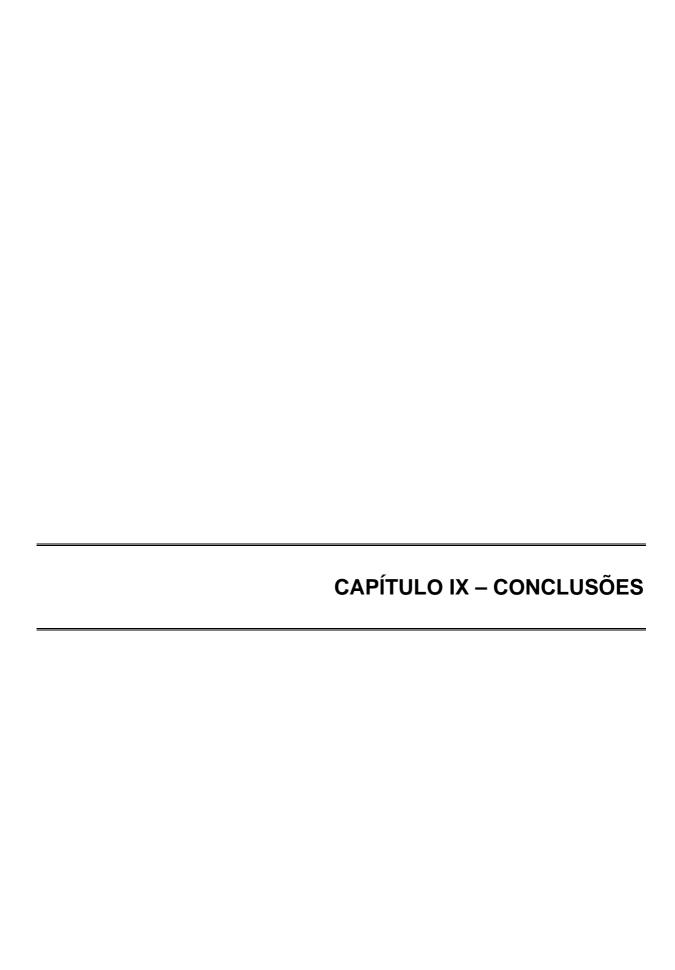
mais viáveis envolvem a fusão parcial de basaltos toleiíticos hidratados com padrões de ETR variando de plano a tipos empobrecidos em ETRL. Os volumes de fusões parciais necessários para a fabricação de magmas trondhjemíticos variam de 5 a 40%, dependendo da temperatura (900-1150°C) e da pressão (8-32 Kbar; Rapp *et al.* 1991 e Rapp & Watson 1995). Todavia, os TTGs típicos são apenas obtidos quando a granada é uma fase residual (pressões ≥ 1,6 GPa, Drummond & Defant 1990 e Martin 1994, 1999).

Assumiu-se para o modelamento do magma parental do Batólito de Nordestina um protólito basáltico toleiítico arqueano do *Greenstone Belt* de *Sula Mountains*, localizado em Serra Leoa (Rollinson 1999). Ele tem um padrão de ETR levemente empobrecido em ETRL, similar aos encontrados nos N-MORBs. Os cálculos da fusão parcial deste basalto, sob condições eclogíticas, produziu líquido semelhante a amostra menos diferenciada do BN (Am. 1836; Fig. 40), a baixa taxa de fusão (6%) com resíduo aceitável (0,04, Tab. 20). A mineralogia residual obtida (Tab. 20) em equilíbrio com o magma parental do BN a altas temperaturas (850-900 °C) é consistente com os estudos experimentais obtidos por Rapp et al. (1991) e Rapp & Watson (1995).

Tabela 20. Modelamento de elementos maiores e vários traços de fusão parcial de uma fonte toleiítica arqueana tipo N-MORB comparada com a composição do magma parental do BN. Para o ajuste dos elementos-traço e TR, aplicou-se a equação de fusão parcial em equilíbrio.

	C	omposições de	fases miner	ais		Mode	elo de Fusão	Parcial do P	rotólito Máfico	
	Onfacita	Granada	Magnetita	Ilmenita	Quartzo	Co =basLTi344	Cf =1836	6% de FP	Resíduos =r	Cs
	Winter (1	996)	Te	eixiera 1997	7		(A)	(B)	(A-B)	
(% em peso)										
SiO2	53,75	40,01	0,10	0,07	100,00	53,26	69,86	69,88	-0,02	52,20
TiO2	0,34	0,75	0,81	53,15		0,48	0,26	0,28	-0,02	0,48
Al2O3	8,95	22,39	0,81	0,24		13,10	15,98	16,03	-0,05	12,86
FeO*	5,67	19,39	98,02	44,63		9,72	2,72	2,73	-0,01	10,15
MgO	11,25	11,66	0,02	1,84		9,91	0,72	0,62	0,10	10,59
CaO	15,65	5,48	0,05	0,06		10,73	3,01	3,12	-0,11	11,10
Na2O	4,35	0,07	0,01			2,70	6,13	6,02	0,11	2,59
K20	0,05					0,11	1,31	1,31	0,00	0,03
	-	-						Soma r ² =	0,04	
		Coeficientes			-					
	Barth et al. 2001		1artin 1995		_	(ppm)				
Cr	34	22	8	0,00001	_	628	32	24,20		666,54
Ni	14	1,2	8,6	4,5		208	22	25,27		219,66
Co	2,2	3	9,5	5,9		46	11	20,44		47,63
Ва	0,0096	0,0004	0,00001	0,00001		25	376	381,91		2,22
Sr	0,111	0,011	0,00001	0,00001		68	540	543,30		37,66
Zr	0,14	0,3	0,00001	0,00001		28	151	120,11		22,12
Υ	1,83	16	0,00001	0,00001		16	< 3	2,60		16,86
						(Normalizados pe			t al. 1978)	
La	0,12	0,04	0,22	0,005		5,64	43,66	40,39		3,42
Ce	0,2	0,08	0,26	0,006		6,90	30,66	35,04		5,10
Nd	0,48	0,2	0,3	0,008		6,02	13,86	15,40		5,42
Sm	0,86	1	0,35	0,01		7,27	7,67	8,50		7,19
Eu	1,04	1,8	0,26	0,007		9,31	8,45	7,69		9,41
Gd	1,23	3,8	0,32	0,017		9,59	3,66	4,92		9,89
Dy	1,56	11	0,28	0,028		9,29	1,96	2,10		9,75
Er	1,74	16	0,22	0,046		9,28	1,50	1,52		9,77
Yb	1,77	21	0,18	0,077		8,60	1,17	1,11		9,08
Lu	1,76	21	0,18	0,1		11,03	1,42	1,43		11,64
Cs (modal)										
Onfacita								59,10%		
Granada								33,81%		
Quartzo								6,90%		
Magnetita								0,14%		
Ilmenita								0,05%		

O pico em Sr, em diagramas multielementares, e a anomalia positiva em Eu são consistentes com ausência de plagioclásio residual na fonte. Os baixos conteúdos de Nb e Ta nas rochas estudadas são igualmente concordantes com os magmas gerados neste processo, devido à presença de resíduo ferro-titanado na fonte, como demonstrado por Foley & Wheller (1990).


VIII.3 - CONSIDERAÇÕES FINAIS

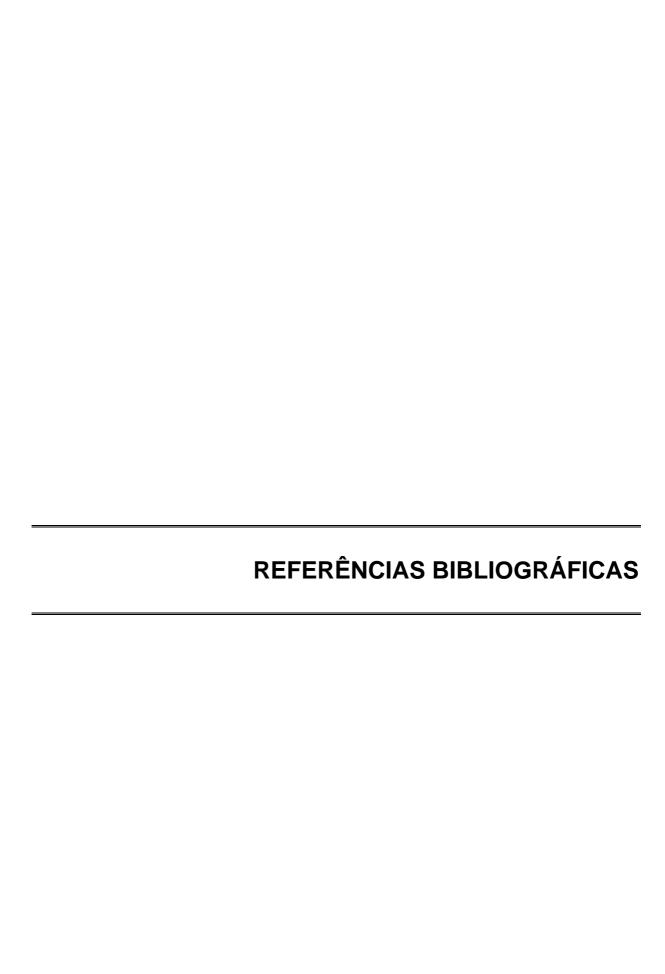
Diversos aspectos presentes no Batólito Nordestina conduziram à hipótese que suas rochas evoluíram pelo processo de cristalização fracionada. Neste caso, admitiu-se que as amostras da borda do BN seriam aquelas com composição mais próxima do magma que ocupou a câmera magmática Nordestina. Assim sendo, utilizaram-se como magmas iniciais amostras de suas bordas. Os resultados obtidos com este modelamento, utilizando-se os elementos maiores, são consistentes por apresentarem taxas de cristalização fracionada inferiores a 17% e valores de resíduos entre 0,28 e 0,70. Neste processo fabricou-se cumulatos com composições dioríticas e eles são mais félsicos que os enclaves dioríticos encontrados no interior do BN.

A quantificação do processo de cristalização fracionada efetuada com os ETR mostrou-se realístico, sendo, entretanto, necessário considerar nos cálculos, além dos minerais principais, alguns acessórios como apatita, allanita e zircão. Constatou-se que os resultados em ppm para vários elementos-traço são semelhantes aos encontrados em rochas da região central do batólito.

A formação de magmas trondhjemíticos é explicada por diversos processos. Entretanto, levando-se em consideração os espectros de ETR das rochas do BN, marcados por fracionamento dos ETR leves e anomalia positiva em Eu, a pobreza em Nb e Ta, o pico em Sr em diagrama multielementar, assim como o consenso sobre a existência de processo de subducção na região no período Paleoproterozóico, admitiu-se a hipótese que o magma parental Nordestina foi gerado por fusão parcial de crosta oceânica.

Objetivando simular este processo utilizou-se um MORB arqueano e obteve-se um magma com composição similar ao trondhjemitos estudados, admitindo-se uma taxa de fusão parcial de 6%. O resíduo desta fusão é eclogítico o que explica convenientemente a composição das rochas estudadas.

IX - CONCLUSÕES GERAIS


O desenvolvimento desta pesquisa permitiu chegar às seguintes conclusões sobre o Batólito Nordestina:

- 1 É um corpo de forma ovalar, orientado N-S e com dimensões de ≈ 720 km². Ele é constituído por uma associação de rochas predominantemente com hololeucocráticas, composições tonalíticas, trondhjemíticas granodioríticas, que se encontra individualizado em duas fácies petrográficas distintas: Fanerítica Média e Porfirítica, as quais apresentam contatos gradacionais entre si. Estas unidades de rochas são cortadas por diques trondhjemíticos e granodioríticos, e hospedam rochas máficas que ocorrem sob a forma de enclaves microgranulares e diques sinplutônicos, sendo que nos últimos estão presentes discretas injeções máficas e félsicas. Petrograficamente os enclaves e diques correspondem a mela-dioritos, com termos leuco-dioríticos subordinados, enquanto que os diques félsicos tardios têm composição trondhjemítica.
- 2 O Batólito Nordestina, de acordo com os dados geocronológicos, Pb-Pb em monozircão, obtidos nesta pesquisa, é paleoproterozóico, e tem idade mínima de cristalização de 2155 ± 9 Ma. Os dados de idades absolutas disponíveis para outros corpos de mesma natureza no Núcleo Serrinha permitem inferir que o magmatismo trondhjemítico ocorreu durante aproximadamente 28 Ma, de 2155 Ma até 2127 Ma.
- 3 As rochas do batólito em estudo apresentam-se isotrópicas em sua região central e evoluem para rochas com estrutura gnássica em suas bordas. Esta estruturação foi interpretada como devido à perda de calor para as encaixantes, materializada por desenvolvimento de hornfels, provocando mudança de viscosidade no magma. Estas rochas apresentam mineralogia e histórias de cristalização semelhantes. As relações texturais identificadas evidenciaram a seguinte ordem de cristalização: (zircão, apatita) plagioclásio ⇒ anfibólio, mica ⇒ quartzo ⇒ feldspato alcalino. Posteriormente, em estágio pós-magmático ocorreram processos de substituição da mineralogia precoce, com a formação de titanita, mica branca, epídoto e clorita.

- 4 Os dados de química mineral revelaram a presença de plagioclásios, de natureza essencialmente oligoclásica, com zoneamentos do tipo normal e oscilatório. O quimismo dos cristais de biotita e anfibólio das diferentes fácies são muito similares. Por outro lado, estes mesmos dados permitiram calcular que as condições de pressão reinantes durante a cristalização do magma Nordestina foram compreendidas entre 4 kbar e 5 kbar.
- 5 Os dados químicos de rochas do batólito em estudo revelaram que elas são muito semelhantes e caracterizam-se por serem meteluminosas a fracamente peraluminosas. Quando colocados em diversos diagramas classificatórios, tais dados químicos alocam as amostras do BN em campos definidos para suítes trondhjemíticas e, os seus conteúdos de Al₂O₃, permitem nomeá-los como trondhjemitos de alto alumínio.
- 6 Constatou-se a tendência das rochas das bordas do batólito serem menos diferenciadas que as do centro, contendo maiores conteúdos de K₂O, Ba e Rb.
- 7 Os padrões dos ETR das rochas estudadas mostram uma mesma geometria, marcada por enriquecimento moderado em ETRL e anomalias positivas de európio. Similar comportamento é observado em diagramas multielementares, sendo marcados pela presença característica de picos em Sr e Zr. O paralelismo observado entre os espectros das rochas nestes diagramas é interpretado como expressão da cogeneticidade. Por outro lado, o pico em Sr, associado à anomalia positiva em Eu, é interpretado como resultado da fusão de uma fonte sem plagioclásio no resíduo.
- 8 Considerando-se um modelo simples de resfriamento de corpos magmáticos, as amostras das bordas deveriam ter composições mais próximas do magma que ocupou a câmera magmática e as amostras do centro seriam as mais evoluídas. Testou-se essa hipótese de cristalização fracionada, com amostras da borda e do centro do BN, através de modelamento geoquímico (elementos maiores e traços) e os resultados foram realísticos, com taxa de cristalização de 17% e resíduos dos cálculos inferiores a 0,70. Nesta evolução gera-se um resíduo diorítico mais evoluído que os dioritos encontrados como enclaves no batólito.

9 – As razões isotópicas para o Sr e o Nd de rochas do BN e seus valores positivos para o $\epsilon_{\text{Nd(t)}}$ sugerem que o magma Nordestina tenha origem mantélica.

10 - A simulação de fusão parcial de crosta oceânica arqueana para explicar a geração do magma Nordestina forneceu bons resultados (Soma $r^2 = 0.04$).

- Abbot R. N. Jr. 1981. AFM liquidus projections for granitic magmas, with special reference to hornblende, biotite and garnet. *Can. Mineral.*, **19**:103-110.
- Abdel-Rahman A.M. 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. *J. Petrol.*, **35** (2):525–541.
- Alkmim F.F., Brito Neves B.B., Alves J.A.C. 1993. Arcabouço Tectônico do Cráton do São Francisco uma revisão. *In:* J.M.L. Dominguez & A. Misi (eds.) *O Cráton do São Francisco*. Salvador, SBG, pp.:45-62
- Almeida F.F.M. 1977. O Cráton do São Francisco. Rev. Bras. Geoc., 7:349-364.
- Almeida F.F.M., Brito Neves B.B., Carneiro C.D.R. 2000. The origin and evolution of the South American Platform. *Earth-Sci. Rev.*, **50**:77-111.
- Alves da Silva F.C. 1994. Étude structural du "Greenstone Belt" Paleoproterozoïque du Rio Itapicuru (Bahia, Brésil). Thése Doc., Université d'Orleans, França, 307 p.
- Ansdell K.M. & Kyser T.K. 1991. Plutonism, deformation, and metamorphism in the Proterozoic Flin Flon greenstone belt, Canada: Limits on timing provided by the single-zircon Pb-evaporation technique. *Geology*, **19**: 518-521.
- Arcanjo J.B.A. & Dalton de Souza J. 1985. *Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais. Folha Senhor do Bonfim (SC.24-Y-B). Escala 1:250.000. Região Nordeste.* Brasília-DF, DNPM/CPRM, Textos e Mapas,17 p.
- Arth J.G., Barker F., Peterman Z.E., Frideman I. 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of South-West Finland and its implications for the origin of tonalitic and trondhjemitic magmas. *Journ. of Petrol.*, **19**:289-316.
- Barbosa J.S.F. 1986. Constituition lithologique et métamorphique de lá région granulitique du sud de Bahia Brésil. Thése Doc., Université de Paris VI, 401 p.
- Barbosa J.S.F. & Sabaté P. 2002. Geological features and the Paleoproterozoic collision of the four Archean crustal segments of the São Francisco craton, Bahia, Brazil. A synthesis. *Anais da Acad. Bras. Cienc.*, **74**(2):343-359.
- Barker F. 1979. Trondhjemite: definition, environment and hypotheses of origin. In: F. Barker (ed.) *Trondhjemites, dacites, and related rocks*. Amsterdan, Elsevier, pp.:1-12.
- Barker F. & Arth J.G. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trodhjemite-basalt suites. *Geology*, **4**:596-600.
- Barth T.F.W. 1962. A final proposal for calculating the mesonorm of metamorphic rocks. *Jour. Geol.*, **70** (4):497-498.
- Barth M.G., Foley S.F., Horn I. 2002. Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. *Precam. Res.,* **113**: 323–340.
- Barrueto H.R., Oliveira E.P., Xavier R.P. 1996. Rochas subvulcânicas ultrassódicas e lamprófiros no GBRI, Bahia: implicações na metalogênese do ouro. In: SBG, Cong. Bras. Geol., Salvador-BA, 38, *Anais*. 3:253-256.

- Barrueto H. R. 2002. Petrogênese das intrusões graníticas compostas de Teofilândia e Barrocas, Greenstone Belt do Rio Itapicuru, Bahia, Brasil. Tese de Doutoramento, Universidade Estadual de Campinas, 188 p.
- Bastos Leal L.R. 1992. Geocronologia Rb/Sr e K/Ar, evolução isotópica e implicações tectônicas dos enxames de diques máficos de Uauá e Vale do Rio Curaçá, Bahia. Dissertação de Mestrado, Instituto de Geociências, Universidade de São Paulo, 120 p.
- Bastos Leal L.R., Teixeira W., Piccirillo E.M., Menezes Leal A.B., Girardi V.A.V. 1994. Geocronologia Rb/Sr e K/Ar do enxame de diques máficos de Uauá, Bahia (Brasil). *Geoch. Brasil.*, **8**:99-114.
- Bastos Leal L.R., Teixeira W., Cunha J.C., Macambira M.J.B. 1998. Archaean tonalitic-trondhjemitic and granitic plutonism in the Gavião Block, São Francisco Craton, Bahia, Brazil: geochemical and geochronological characteristics. *Rev. Bras. Geoc.*, **28**:209-220.
- Batista J.J., Nesbitt R.W., Pires P.F.R. 1998. Presença do embasamento Arqueano no greenstone belt do rio Itapicuru (Bahia) Resultados geocronológicos por ICP-MS/LA. *In:* SBG, Cong. Bras. Geol., Belo Horizonte-MG, 40, *Anais*, p. 67.
- Brito Neves B.B. 1969. Mapa Hidrogeológico do Nordeste. Folha SC-24-50. Escala 1:500.000. SUDENE, Dep. Rec. Nat., Div. Hidrogeologia, Recife, S. ident./inédito.
- Brito Neves B.B., Cordani U.G., Torquato J.R.F. 1980. Evolução geocronológica do Pré-Cambriano do Estado da Bahia. In: H.A.V. Inda & F.B. Duarte (eds.) *Geologia e Recursos Minerais do Estado da Bahia.* Textos Básicos 3, Salvador-BA, SME/COM, pp.:1-101.
- Burgos C.M.G. 1999. Sienitos da Parte Sudoeste do Núcleo Serrinha: Maciços do Morro das Agulhas e das Bananas e da Serra do Pintado. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, 170 p.
- Carvalho Filho A.F., Queiroz E.T., Leahy G.A.S. 1986. Jazida de Cromita de Pedras Pretas, Município de Santa Luz, Bahia. *In:* C. Schobbenhaus & C.E.S. Coelho (eds.) *Principais Depósitos Minerais do Brasil: ferro e metais do grupo do aço.* Brasília-DF, DNPM/CVRD:235-248.
- Carvalho M.J. 2001. Geologia e Geoquímica do Tonalito-Diorito Itareru, borda ocidental do Greenstone Belt do Rio Itapicuru, Bahia-Brasil. Dissertação de Mestrado, Instituto de Geociências, Universidade de Estadual de Campinas (Unicamp), 71 p.
- CEI. 1994. Centro de Estatística e Informações (BA). Informações básicas dos municípios baianos: Região Nordeste. Salvador-BA. vol. II. 495 pp.
- Chauvet A., Alves da Silva F.C., Faure M., Guerrot C. 1997. Structural evolution of the Paleoproterozoic Rio Itapicuru granite-greenstone belt (Bahia-Brazil): the role of synkinematic plutons in the regional tectonics. *Prec. Res.*, **84**:139-162.
- Clarke D., Mengel F., Coish R.A., Kosinowski M.H.F. 1994. *Program Newpet v. 94.01.07*, anonymous ftp site: sparky2.esd.mun.ca, email: daryl@esd.mun.ca or daryl@garfield.cs.mun.ca.
- Conceição H. 1990. Pétrologie du massif syénitique d'Itiúba: contribution à l'étude minéralogique des roches alcalines dans l'État de Bahia (Brésil). Thése Doct, Université Paris-Sud, Centre d'Orsay-France. 395p.

- Conceição H., Burgos C.M.G., Rios D.C., Rosa M.L.S., Cruz Filho B.E., Peixoto A.A., Oliveira L.L., Marinho M.M., Macambira M.J.B, Scheller T. 2000. Stocks de K-sienitos pós-orogênicos com assinatura de subducção e afinidade com minettes na parte sudoeste do Núcleo Serrinha (Estado da Bahia): Petrologia, Idade e Litogeoquímica. *Geoch. Bras.*, **14**:115-134.
- Conceição H. & Otero O.M.F. 1996. *Magmatismo granítico e alcalino no Estado da Bahia: uma epítome ao tema*. Salvador–BA, SGM, 133 pp.
- Conceição H., Rios D.C., Rosa M.L.S. 1995. Petrologia da associação sienito-lamprófiro: caso da intrusão de Morro do Afonso (Greenstone Belt do Rio Itapicuru, Bahia). *Geoch. Brasil.*, **9**(1):91-109.
- Condie K.C. 1981. Archaean Greenstone Belts. Amsterdam, Elsevier, 434 pp.
- Condie K.C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. *Chem. Geol.* **104**:1-37.
- Cordani U.G., Isotta C.A.L., Teixeira W. 1969. Reconhecimento geocronológico do embasamento da região oriental do estado da Bahia. *In:* SBG, Cong. Bras. Geol., Salvador, 23, *Anais*, pp.:159-165.
- Cordani U.G., Sato K., Nutman A. 1999. Single zircon SHRIMP determinations from Archean tonalitic rocks near Uauá, Bahia, Brasil. *In*: South American Symposium on Isotope Geology, Córdoba-Argentina, 2, *Actas*, *pp*.:27-30.
- Cordani U.G., Sato K., Teixeira W., Tassinari C.C.G., Basei M.A.S. 2000. Crustal Evolution of the South American Platform. *In*: U.G Cordani, E.J Milani, A. Thomaz Filho, D.A. Campos (eds.) *Tectonic Evolution of South América*. 31st International Geological Congress, Rio de Janeiro, Brazil, pp.:19-40.
- Correia D.R. & Conceição H. 1994. Geologia e petrografia da intrusão sienítica de Morro do Afonso (Núcleo Serrinha Bahia). *In*: SBG, Cong. Bras. Geol., Camboriú-SC., 38, *Bol. Res. Exp.*, pp.:147-148.
- Cruz Filho B.E. 2000. *Batólito Trondhjemítico de Nordestina: Geologia, Petrologia e Litogeoquímica de uma Intrusão Paleoproterozóica*. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, 171 p.
- Dall'Agnol R., Costi H.T., Leite A.A.S., Magalhães M.S., Teixeira N.P. 1999. Rapakivi granites from Brazil and adjacent areas. *Prec. Res.*, **95**: 9–39
- Davison I., Teixeira J.B.G., Silva M.G. 1988. The Itapicuru Greenstone Belt, Bahia, Brazil: Structure, and Stratigraphical Outline. *Prec. Res.*, **42**:1-17.
- De Albuquerque C.A.R. 1973. Geochemistry of biotites from granitic rocks, northern Portugal. *Geoch. et Cosmoch. Acta*, **37**:1779–1802.
- Debon F. & Le Fort P. 1982. A chemical–mineralogical classification of common plutonic rocks and associations. *Trans. R. Soc. Edinburgh: Earth Sci.*, **73**:135–149.
- DePaolo D.J. 1988. *Neodymium isotope geochemistry: An introduction*. Springer Verlag, New York.

- DePaolo D.J. & Wasserburg G.J. 1976. Nd Isotopic Variations and Petrogenetic Models. *Geophys. Res. Lett.*, **3**: 249-252.
- Didier J. 1987. Contribution of enclaves studies to the understanding of origin and evolution of granitic magmas. *Geol. Rundsch.*, **76**:41-50.
- Droop G.T.R. 1987. A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. *Mineral. Magaz.*, **51** (361):431-435.
- Drummond M.S. & Defant M.J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. *Journ. of Geoph. Res.*, **95**:21503-21521.
- Dymek R.F. 1983. Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. *Am. Mineral.*, **68** (9–10):880–899.
- Evensen N.M., Hamilton P.J., O'nions R.K. 1978. Rare earth abundances in chondrite meteorites. *Geoch. Cosmoch. Acta*, **42**:1199-1212.
- Faure G. 1986. Principles of isotope geology. John Wiley & Sons, New York, 589 pp.
- Ferry M. & Spear F.S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. *Contrib. Mineral. Petrol.*, **66**:113–117.
- Figueiredo M.C.H. & Barbosa J.S.F. 1993. Terrenos metamórficos de alto grau do Cráton do São Francisco. In.: J.M.L. Dominguez & A. Misi (eds.) *O Cráton do São Francisco*. Salvador-BA, SBG, pp.:63-84.
- Foley S.F. & Wheller G.E. 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: The role of residual titanates. *Chem. Geol.*, **85**:1-18.
- Gaál G., Teixeira J.B.G., Silva M.G., Del Rey J.M.H. 1987. New U-Pb data from granitoids, reflecting Early-Proterozoic crustal evolution in northeast Bahia-Brazil. *In*: International Symposium on Granites and Associated Mineralizations. Salvador, Bahia, Brazil, 2p.
- Gaudette H.E., Lafon J.M., Macambira M.J.B., Moura C.A.V., Scheller T. 1998. Comparison of single filament Pb evaporation/ionization zircon ages with conventional U-Pb results: Examples from the Precambrian of Brazil. *J. South. Amer. Earth. Sc.*, **11** (4): 351-363.
- Goldstein S.L., O'Nions R.K., Hamilton P.J. 1984. A Sm-Nd study of atmospheric dusts and particulates from major river systems. *Earth Planet. Sci. Lett.*, **70**:221-236.
- Gomes R.A.A.D. & Mota A.C. 1978. *Projeto Levantamento Gravimétrico do Estado da Bahia.* Relatório Final. Salvador, Conv. CPRM/DNPM, 5v.
- Hallberg J.A., Carter D.N., West K.N.1976. Archean volcanism and sedimentation near Meekathama, Western Australia. *Precamb. Res.*, **3**:577-595.
- Hammarstron J.M. & Zen E.A. 1986. Aluminium in hornblende: an empirical igneous geobarometer. *Am. Mineral.*, **71**:1297-1313.
- Harrison T.M. & Watson E.B. 1984. The behavior of apatite during crystal anatexis: equilibrium and kinetic considerations. *Geoch. et Cosm. Acta*, **48**:1467-1477.

- Holland T. & Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. *Contrib. Mineral. Petrol.*, **116**:433-447.
- Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. *Am. Mineral.*, **72**:231-239.
- IBGE .1968a. Carta topográfica de Euclides da Cunha, Bahia. Folha SC.24-Y-B-VI. Escala 1:100.000.
- IBGE .1968b. Carta topográfica de Itiúba, Bahia. Folha SC.24-Y-B-V. Escala 1:100.000.
- Inda H.A.V., Souza A.G., Silva Filho A.A., Pires A.B., Portela A.C.P., Cavedon A.D., Sanchez B.A., Santos E.Z., Pereira F.S., Gonçalves J.C., Braga Neto L.F., Costa M.R.A., Damião R.N., Mossmann R., Oliveira V. 1976. *Projeto rochas básicas e ultrabásicas de Euclides da Cunha.* Relatório final. Rio de Janeiro, PROSPEC, SME/BA. 12 volumes.
- Irvine T. N. & Baragar W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. *Can. J. Earth. Sci.*, **8**:523-548.
- Jardim de Sá E.F.1982. Nota sobre o estilo estrutural e relações gnaisses vs. supracrustais no Greenstone Belt de Serrinha, BA. *Ciências da Terra*, **2**:8-13.
- Jardim de Sá E.F, Souza Z.S., Fonseca V.P., Legrand J.M. 1984. Relações entre "Greenstone Belts" e terrenos de alto grau: o caso da Faixa Rio Capim, NE da Bahia. *In*: Cong. Bras. de Geol., Rio de Janeiro, 33, *Boletim*: 2615-2629.
- Jordan H. 1972. Die Minas Gruppe in Nordest Bahia, Brasilien. *Geol. Rundschau, Stuttgart*, 61 (2):441-469.
- Kishida A. 1979. Caracterização Geológica e Geoquímica das Seqüências Vulcanosedimentares do Médio Rio Itapicuru (Bahia). Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, 152 p.
- Kishida A. & Riccio L. 1981. *Greenstone belt* do Rio Itapicuru (BA): estratigrafia química e algumas idéias sobre sua evolução geotectônica. *In:* SBG-BA/SME/CBPM, Simp. Cráton São Francisco e suas Faixas Marginais. Salvador, *Anais*, pp.:63-72.
- Köber B. 1986. Whole-grain evaporation for ²⁰⁷Pb/²⁰⁶Pb age investigations on single zircons using a double filament thermal ion source. *Contrib. Mineral. Petrol.*, **93**:482-490.
- Kosinowski M. H. F. 1982. MSONRM, a Fortran program for the improved version of mesonorm calculation. *Comp. & Geosc.*, **8** (1):11-20.
- Küster D. & Liegeois J.P. 2001. Isotopic and geochemical study of high-grade metamorphic lithologies from Bayuda Desert, Sudan: new insights into the Neoproterozoic evolution of the East Sahara Craton. *Prec. Res.* **109**:1-23.
- Lacerda C.M.M. 2000. Evolução estrutural e petrogenética do Domo Granodiorítico de Ambrósio, Bahia: Implicações para o mecanismo de colocação. Tese de Doutoramento, Instituto de Geociências, Universidade de Estadual de Campinas, 185 p.
- Lameyre J.G. & Bowden P. 1982. Plutonic rock type series: discrimination of various granitoid series and related rocks. *Journ. Volc. and Geoth. Res.*, **14**:515-526.

- Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W. & Youzhi G. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. *Am. Mineral.*, **82**:1019-1037.
- Ledru P., Cocherie A., Barbosa J., Johan V., Onstott T. 1994. Ages du métamorphisme granulitique dans le craton du São Francisco (Brésil), Implications sur la nature de l'orogène transamazonien. *C.R. Acad. Sci., Paris*, **318**:251-257.
- Le Maitre R.W., Streckeisen A., Zanettin B., Le Bas M.J., Bonin B., Bateman P., Bellieni G., Dudek A., Efremova J., Keller J., Lameyre J., Sabine P.A., Schmidt R., Sørensen H., Woolley A.R. 2002. *Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks.* Cambridge University Press, Cambridge, 252 pp.
- Lima R.F.F., Silva R.W.S., Oliveira N.S. 1982. *Projeto Integração Metalogenética de Euclides da Cunha*. Relatório Final. Salvador-BA, CBPM/CPRM, 58 p.
- Lindsley D.H. 1983. Pyroxene thermometry. Am. Mineral., 56: 507–531.
- Lugmair G.W. & Marti K. 1978. Lunar initial ¹⁴³Nd/¹⁴⁴Nd: differential evolution of the lunar crust and mantle. *Earth Planet. Sci. Lett.*, **39**:349-357.
- Maniar P.D. & Piccoli P.M. 1989. Tectonic discrimination on granitoids. Geological Society of *Am. Bull.*, **101**:636-646.
- Marinho M.M. 1991. La séquence volcano-sédimentaire de Contendas-Mirante et la bordure occidentale du bloc Jequié (Craton du São Francisco, Brésil): Un exemple de transition Archéen-Proterozoïque. Thése Doc., Université Blaise Pascal, Clermont Ferrand II, França, 388 p.
- Martin H. 1985. Nature, origine et évolution d'un segment de croûte continentale archéenne: contraintes chimiques et isotopiques. Exemple de la Finlande orientale. Mém. Centre Arm. Et. Struct. Socles, 1, 392p.
- Martin H. 1994. The Archean grey gneisses and the genesis of the continental crust. In: K.C. Condie (ed.) *The Archean Crustal Evolution*. Amsterdam, Elsevier, pp. 205-259.
- Martin H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. *Lithos*, **46**: 411-429.
- Martin H., Peucat J.J., Sabaté P., Cunha J.C. 1997. Crustal evolution in the Archean of South America: example of the Sete Voltas Massif, Bahia State, Brazil. *Prec. Res.*, **82**: 35-62.
- Mascarenhas J. F. 1973. A Geologia do Centro-leste do Estado da Bahia. *In*: SBG, Congr. Bras. Geol., Aracaju, 27, *Anais*, pp.:35-66.
- Mascarenhas J.F. 1976. Estruturas do tipo Greenstone Belt no leste da Bahia. *In*: SBG, Congr. Bras. Geol., Belo Horizonte, 29, Ouro Preto, *Anais* 4:25-50.
- Mascarenhas J.F. 1979. Evolução geotectônica do Pré-Cambriano do Estado da Bahia. In: H.A.V. Inda (ed.) *Geologia e Recursos Minerais do Estado da Bahia*. Textos Básicos 2. Salvador-BA, SME/com, pp.:57-165.

- Mascarenhas J.F. 1981. O embasamento precambriano no Estado da Bahia e sua gênese. In: SME/CPM, Simp. Cráton São Francisco e suas Faixas Marginais. Salvador-BA, Anais, pp.:34-38
- Mascarenhas J.F. & Garcia T.W. 1989. *Mapa geocronológico do Estado da Bahia: texto explicativo*. Salvador-BA, SGM/SME, 189 pp.
- Mascarenhas J.F., Pedreira A. J., Queiros C.J.A., Moraes L.C., Guimarães J.T., Marinho M.M., Neves J.P., Fernandes J. 1975. *Projeto Bahia: Geologia da Folha Senhor do Bonfim 2ª Fase*. Relatório Final. Escala 1:250.000. DNPM/CPRM. 2 vols.
- Mascarenhas J.F. & Sá J.H.S. 1982. Geological and metallogenic patterns in the Archaean and Early Proterozoic of Bahia State, Eastern Brazil. *Rev. Bras. Geoc.*, **12** (1-3):193-214.
- Mascarenhas J. F., Pedreira A.J., Misi A., Motta A.C., Sá J.H.S. 1984. Província do São Francisco. In: F.F.M. Almeida & Y. Hasui (eds.) *O Pré-Cambriano do Brasil*. São Paulo, Edgard Blucher, pp.:46-122.
- Matos F.M.V. 1988. Um estudo estrutural e petrográfico do domo granito-gnaisse de Ambrósio no Greenstone Belt do Rio Itapicuru, Bahia, Brasil. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, 109 p.
- Matos F.M.V. & Conceição H. 1993a. Granitogênese associada à parte oeste do Cráton Serrinha e o "Greenstone Belt" do Rio Itapicuru: geologia e tipologia. *In*: SBG/SGM/CNPq, Núcleo Bahia-Sergipe, Simp. Cráton do São Francisco. Salvador-BA, 2, *Anais*, pp. 60-62.
- Matos F.M.V. & Conceição H. 1993b. Granitogênese do Núcleo Serrinha. *In*: SBG, Simp. Geol. Nordeste, Natal-RN,15, *Bol.* 13, pp.:107-109.
- Matos F.M.V. & Davison I. 1987. Basement or intrusion? The Ambrosio Dome, Rio Itapicuru greenstone belt, Bahia, Brazil. *Rev.Bras. Geoc.*, **17** (4):442-449.
- Melo R.C. 1991. Geologia Regional. In: L.H.M. Pereira (ed) Programa de Levantamentos Geológicos Básicos do Brasil (PLGBB). Folha Serrinha (SC.24-Y-D-VI). Escala 1/100.000. Estado da Bahia. Brasília-DF, DNPM/CPRM, pp.:18-21.
- Melo R.C., Loureiro H.S.C., Pereira L.H.M. 1995. *Programa Levantamentos Geológicos Básicos do Brasil (PLGBB). Folha Serrinha (SC.24-Y-D). Escala 1:250.000. Estado da Bahia.* Brasília-DF, CPRM/MME, 80 p.
- Mello E.F. 2000. Estudos isotópicos do greenstone belt do Rio Itapicuru, Ba: evolução crustal e metalogenia do ouro. Tese de Doutoramento, Instituto de Geociências, Universidade de Estadual de Campinas, 162 p.
- Mello E.F., Oliveira E.P., McNaughton N.J. 1999a. SHRIMP U-Pb Geochronology of Early Precambrian Quartzite and its basement (Caldeirão Belt), NE São Francisco Craton, Bahia-Brazil. *In*: South American Symposium on Isotope Geology, Córdoba, Argentina, 2, *Actas*, pp.:78-81.
- Mello E.F., Lacerda C.M.M., Oliveira E.P., Mcnaughton N.J. 1999b. SHRIMP U-Pb Geochronology on xenotime and zircon from the Ambrósio Dome, Rio Itapicuru Greenstone Belt, Brazil: A major syntectonic granodiorite intrusion. *In*: South American Symposium on Isotope Geology, Córdoba, Argentina, 2, *Actas*, pp.:331-334.

- Middlemost E.A. K. 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. *Chem. Geol.*, **77**:19-26.
- Mielke P & Winkler H.G.F. 1979. Eine bessere Berechnung der Mesonorm fuer granitische Gesteine: Neues Jahrb. *Miner. Monatsh*, **10**:417-480.
- Morimoto N., Fabrie J., Ferguson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J. 1988. Nomenclature of pyroxenes. *Min. Magaz.*, **52** (4):535-550.
- Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. *Am. J. Sci.*, **274**:321-355.
- Nascimento H.S. 1996. Evolução petrogenética da intrusão ácido-básica de Cansanção. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, 205 p.
- Nishimura K. & Yanagi T. 2000. In situ crystallization observed in the Osumi granodiorite batholith. *Eart. and Plan. Sc. Let.*, **180** (1-2):185-199.
- O'Connor J.I. 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. U.S. Geological Survey Professional Paper, **525**-B:79-84.
- Oliveira E.P., Lima M.I.C., Carmo U.F., Wernick E. 1982. The Archean granulite terrain from east Bahia, Brazil. *Rev. Bras. Geoc.*, **12**:353-368.
- Oliveira E.P., Lafon J.M., Souza Z.S. 1998. A Paleoproterozoic age for the Rio Capim Vulcano-Plutonic Sequence, Bahia, Brazil: Whole-Rock Pb-Pb, Pb-Evaporation, U-Pb, and Nd Isotope Constraints. *In*: SBG, Cong. Bras. Geol. Belo Horizonte-MG, 31, *Anais*, p. 14.
- Oliveira E.P., Lafon J.M., Souza Z.S. 1999a. Archaean-Proterozoic transition in the Uauá Block, NE São Francisco Craton, Brazil: U-Pb, Pb-Pb and Nd isotope constraints. *In*: SBG, International Symposium on Tectonics, Lençóis-BA, 1, *Proceedings, pp.*:38-40.
- Oliveira E.P., Souza Z.S., Correia Gomes L.C. 1999b. U-Pb dating of deformed mafic dyke and host gneiss (Uaua Block, NE São Francisco Craton, Brazil): Implications for understanding reworking processes in Archaean terranes. In: SBG, International Symposium on Tectonics, Lençóis, 1, *Proceedings*, pp.:41-43.
- Oliveira E.P., Souza Z.S., Côrrea Gomes L.C. 2000. U-Pb dating of deformed mafic dyke and host gneiss: implications for understanding reworking processes on the western margin of the Archaean Uauá Block, NE São Francisco Craton, Brazil. *Rev. Bras. Geoc.*, **30** (1): 149-152.
- Oliveira E.P., Carvalho, M.J., Duarte M.I.M. 2001. Extrusion of the Uauá Block in the Northern segment of the Itabuna-Salvador-Curaçá Orogen, Bahia, and implications for diamond prospecting. *Rev. Bras. de Geoc.*, **31**(4):643-644.
- Oliveira E.P., Carvalho M.J., Duarte M.I.M. 2002. Extrusion of the Uauá Block during Palaeoproterozoic continent-continent Northern segment of the Itabuna-Salvador-Curaçá Orogen, Bahia. *In*: SBG, Congr. Bras. Geol., João Pessoa, 41, *Anais*, p. 324.
- Oliveira L.L. 2001. Geologia e litogeoquímica do magmatismo shoshonítico no nordeste do Núcleo Serrinha, Bahia: Maciço de Araras. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, 193 p.

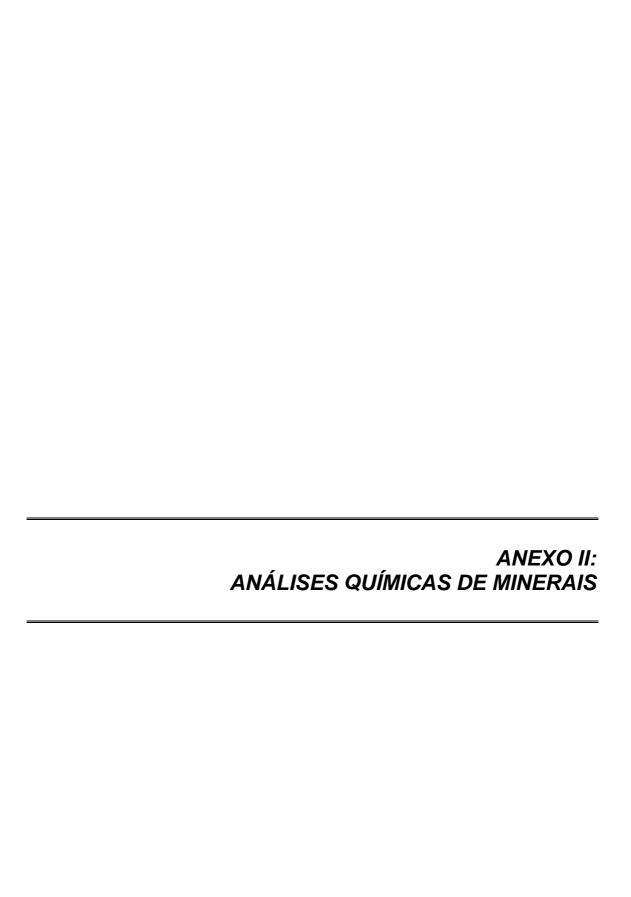
- Paixão M.A.P., Lafon J.M., Oliveira E.P. 1995. Geocronologia Pb-Pb do Complexo Anortosítico-Leucogabróico de Lagoa da Vaca e rochas associadas, Complexo Uauá, Bahia. *In*: Congresso Brasileiro de Geoquímica, 5, Congresso de Geoquímica dos Países de Língua Portuguesa, 3, Niterói, *Anais em CD*.
- Paixão M.A. & Oliveira E.P. 1998. The Lagoa da Vaca Complex: an Archaean layered anorthosite body on the western edge of the Uauá block, Bahia, Brazil. *Rev. Bras. Geoc.*, **28**(2):201-208.
- Pedreira A.J. et al. 1976. *Carta Geol. Brasil. Folha Salvador- SD- 24. Escala 1:1.000.000.* Texto Explicativo. Brasília, DNPM.
- Peixoto A. A. 2000. Petrografia, litogeoquímica e idade do magmatismo alcalino metaluminoso a peraluminoso tardio da parte sudoeste do Núcleo Serrinha (Bahia): Granitos tipo Morro do Lopes. Dissertação de Mestrado. Instituto de Geociências, Universidade Federal da Bahia, 135 p.
- Pereira L.H.M. 1992. (Ed.) Programa de Levantamentos Geológicos Básicos do Brasil (PLGBB). Folha Serrinha (SC.24-Y-D-VI). Escala 1:100.000. Estado da Bahia. Brasília-DF, DNPM/CPRM, 180p.
- Pinho I.C.A. 2000. Os Tonalitos/Trondhjemitos das Regiões de Ipiaú-Ubaitaba-Ibicaraí-Itabuna. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, 193 p.
- Pisani J.R.T., Tainton K.M., Allan A. F., Silva S.B., Miranda J.V. 2001. Geology and exploration of the Braúna Diamondiferous Kimberlites, Serrinha Block, Bahia, Brazil. *Rev. Bras. Geoc.*, **31**(4):663-664.
- Rapp R.P., Watson E.B., Miller C.F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. *Prec. Res.*, **51**:1-25.
- Rapp R.P. & Watson E.B. 1995. Dehydration melting of metabasalts at 8–32 kbars: Implications for continental growth and crust-mantle recycling. *J. Petrol.*, **36**:891–931.
- Richard L. 1994. *Programa MinPet v. 2.02*. MinPet Geological Software, 146 du Chateau, Masson-Angers, PQ, Canada, J8M 1J3.
- Rieder M., Cavazzini G., D'Yakonov Y. S., Frank-Kamenetskii V. A., Gottardi G., Guggenheim S., Koval P. V., Muller G., Neiva A.M.R., Radoslovich E. W., Robert J-L, Sassi F. P., Takeda H., Weiss Z., Wones D. R. 1998. Nomenclature of the Micas. *Can. Mineral.*, **36**:905-912.
- Rios D.C. 1997. Petrologia do magmatismo potássico-ultrapotássico e lamprofírico de Morro do Afonso-Bahia. Dissertação de Mestrado. Instituto de Geociências, Universidade Federal da Bahia, 237 p.
- Rios D.C. 1998. Petrologia do magmatismo potássico-ultrapotássico e lamprofírico de Morro do Afonso Bahia. In: H. Conceição & M.J.M. Cruz (eds.) Sienitos alcalino-potássicos e ultrapotássicos Paleoproterozóicos do Estado da Bahia. Publicação especial da Sociedade Brasileira de Geologia, Núcleo Bahia-Sergipe, Salvador-BA, 4, pp.:167-204.
- Rios D.C. 2002. *Granitogênese no Núcleo Serrinha, Bahia, Brasil: Geocronologia e Litogeoquímica*. Tese de Doutoramento, Instituto de Geociências, Universidade Federal da Bahia, 238 p.

- Rios D.C. & Conceição H. 1996. Os lamprófiros ultrapotássicos no Núcleo Serrinha Greenstone Belt do Rio Itapicuru (Bahia): geologia, petrografia e geoquímica. In: Simpósio de magmatismo granítico e mineralizações associadas. *In*: SBG, Cong. Bras. Geol. Salvador-BA, 34, *Anais* 6:353-355.
- Rios D.C., Conceição H., Macambira M.J.B, Burgos C.M.G., Peixoto A.A., Cruz Filho B.E., Oliveira L.L., Lisboa M.P. 1998. Granitogênese da Parte Meridional-Oriental do Núcleo Serrinha: Idade, Petrografia e Geoquímica. In: H. Conceição, M.J.M. Cruz, H.J.S. Sá, P. Sabaté (eds.) *Contribuição ao Estudo dos Granitos e Rochas Correlatas*. Publicação Especial da Sociedade Brasileira de Geologia. Salvador-BA, Núcleo Bahia-Sergipe, 5:91-113.
- Rios D.C., Davis D.W., Conceição H., Macambira M.J.B., Peixoto A.A., Cruz Filho B.E., Oliveira L.L. 2000. Granite Ages of Serrinha Nucleus, Bahia (Brazil): An Overview. *Rev. Bras. Geoc.*, **30**:74-77.
- Rollison H. 1993. Using Geochemical Data. Longman, Harlow, 352 pp.
- Rollinson H. 1999. Petrology and geochemistry of metamorphosed komatiites and basalts from the Sula Mountains greenstone belt, Sierra Leone. *Contr. Min. Petr.*, **134**:86–101.
- Rosa M.L.S., Conceição H., Paim M.M., Santos E.B., Alves da Silva F.C., Leahy G.A.S., Bastos Leal L.R. 1996. Magmatismo potássico-ultrapotássico pós a tardi-orogênico (associado a subducção) no oeste da Bahia: Batólito Monzo-Sienítico de Guanambi-Urandi e os sienitos de Correntina. *Geoch. Bras.*, **101**(1):27-42.
- Sabaté P., Cuney M., Vidal P. 1990. Expressão estrutural e plutônica de uma colisão Transamazônica N-S no Cráton do São Francisco (Bahia-Brasil). *In*: SBG, Congr. Bras. Geol., Natal -RN, 36, *Boletim de Resumos*, p. 323.
- Sabaté P., Peucat J.J., De Melo R.C., Pereira L.H.M. 1994. Datação por Pb-evaporação de monozircão em ortognaisses do complexo Caraíba: expressão do acrescimento crustal transamazônico do cinturão Salvador-Curaça (Cráton do São Francisco, Bahia, Brasil). *In*: SBG, Cong. Bras. Geol., 38, *Anais* 1: 219-220.
- Sampaio A.R. (Ed.) 1992. Programa de Levantamentos Geológicos do Brasil (PLGBB). Folha Gavião (SC.24-Y-D-II). Escala 1:100.000. Estado da Bahia. Brasília-DF, Conv. DNPM/CPRM,168 p.
- Sampaio A. R. (Ed.). 2001. Programa de Levantamentos Geológicos Básicos do Brasil (PLGBB). Folha Jacobina (SC.24-Y-C). Estado da Bahia. Escala 1:250.000. Brasília-DF, CPRM/DIEDIG/DEPAT.
- Santos-Pinto M. 1996. Le Recyclage de la Croúte Continentale Archéenne: Exemple du Bloc du Gavião-Bahia, Brésil. Thése Doc., Universidade de Rennes, França, 193 p.
- Santos R.A. & Dalton de Souza J. 1983. Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais. Folha Serrinha (SC.24-Y-D). Escala 1:250.000. Salvador, DNPM/CPRM, 2v.
- Sato K. & Siga Junior O. 2000. Evidence of the superproduction of the continental crust during paleoproterozoic in South American plataform. Implications regarding the interpretative value of the Sm-Nd model ages. *Rev. Bras. Geoc.*, **30**(1):126-129.

- Schmidt M.W. 1992. Amphibole composition in tonalite as function of pressure: an experimental calibration of the Al-in-hornblende barometer. *Contrib. Mineral. Petrol.*, **110**:304-310.
- Seixas S.R.M., Marinho M.M., Moraes Filho O., Awoziej J. 1975. *Projeto Bahia II Geologia das Folhas Itaberaba e Serrinha. Escala: 1:250.000.* Relatório final. Convênio DNPM/CPRM. Salvador-BA. 1:248p.
- Sibley D.F., Vogel T.A., Walker B.M. & Byerly G. 1976. The origin of oscillatory zoning in plagioclase: A diffusion and growth controlled model. *Amer. J. Sci.*, **276**: 275–284.
- Silva Filho M.A. & Leal R.A. 1978. O Cráton do São Francisco no extremo nordeste da Bahia. *In*: SBG, Cong. Bras. Geol. Recife-PE, 39, *Anais* 1: 444-449.
- Silva M.G. 1983. A seqüência vulcanossedimentar do médio Itapicuru, Bahia: caracterização petrográfica, considerações petrogenéticas preliminares e zoneografia metamórfica. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal da Bahia, Salvador, 88 p.
- Silva M.G. 1987. Geochimie, Petrologie und Geotektonische Entwickulung eines proterozoischen Gruensteinguertels: Rio Itapicuru, Bahia Brasilien. Tese de Doutoramento, Universidade de Freiburg, Alemanha, 161 p.
- Silva M.G. 1991. Evidências de uma Tectônica de Colisão-Subducção no Proterozóico Inferior do Estado da Bahia. *In*: SBG, Simp. Geol. Nordeste, Recife-PE, 14, *Anais*: 216-219.
- Silva M.G. 1992a. O Greenstone Belt do Rio Itapicuru: uma bacia do tipo back-arc fóssil. *Rev. Bras. Geoc.*, **22**:157-166.
- Silva M.G. 1992b. Evidências isotópicas e geocronológicas de um fenômeno de acrescimento crustal transamazônico no Cráton do São Francisco, Estado da Bahia. *In*: SBG, Congr. Bras. Geol., São Paulo-SP, 37, *Bol. Res. Exp.* 2, pp.:181-182.
- Silva M.G. 1996. Síntese e interpretação dos dados geocronológicos do terreno granitogreenstone do rio Itapicuru (BA). *In:* SBG, Congr. Bras. Geol., Salvador-BA, 39, *Anais 6*: 544-547.
- Spear F.S. 1993. *Metamorphic phase equilibria and pressure-temperature-time paths*. 1ed. Whashington, BoockCrafters, 799 p.
- Speer J.A., Becker S.W. & Farrar S.S. 1980. Field relationships and petrology of the post-metamorphic, coarse-grained granitoids and associated rocks of the Southern Appalachian Piedmont. In: D.R. Wones (ed.) *The Caledonides in the USA*. Virginia Polytechnic Inst. State Univ. Mem. 2: 137-148.
- Spry A. 1969. *Metamorphic Textures*, Pergamon Press, Oxford.
- Steiger R.H. & Jager E. 1977. Subcommission on geochronology: convention of the use of decay constants in geo- and comoschronology. *Earth Planet. Sci. Lett.*, **36**: 359-362.
- Störmer J.R. & Nicholls J. 1978. XLFRAC: A program for the interative testing of magmatic differentiation models. *Comp. & Geosc.*, **4**: 143-159.
- Streckeisen A. L. 1976. To each plutonick its proper name. *Earth-Sci. Rev.*, **12**:1-33.

- Sun S.S. & McDonough W.F.1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *In*: A.D. Saunders & M.J. Norry (eds.) *Magmatism in the Ocean Basins*. Geological Society Special Publication, 42,: 313-345.
- Teixeira L.R. 1997. O Complexo Caraíba e a Suíte São José do Jacuípe no Cinturão Salvador-Curaçá (Bahia, Brasil): petrologia, geoquímica e potencial metalogenético. Tese de Doutoramento, Instituto de Geociências, Universidade Federal da Bahia, 243 p.
- Teixeira W. 1993. Avaliação do acervo de dados geocronológicos e isotópicos do Cráton do São Francisco Implicações tectônicas. In: J.M.L. Dominguez & A. Misi (eds.) *O Cráton do São Francisco*. Salvador, SBG, SGM, CNPq, pp.: 11-13.
- Teixeira W., Sabaté P., Barbosa J., Noce C.M., Carneiro M.A. 2000. Archean and Paleoproterozoic Tectonic Evolution of the São Francisco Cráton, Brazil. *In*: U.G. Cordani, E.J. Milani, A. Thomaz Filho, D.A. Campos (eds.) *Tectonic Evolution of South America*. 31st International Geological Congress, Rio de Janeiro, Brazil, pp.: 101-137.
- Tezini F.C. & Oliveira E.P. 2002. Granito elíptico do Riacho do Traga: marcador de retrabalhamento do bloco arqueano de Uauá (Bahia) durante colisão continental paleoproterozóica. In: SBG, Congr. Bras. Geol., João Pessoa, 41, Anais, p. 344.
- Vasconcelos P. & Becker T. 1992. A idade da mineralização aurífera no depósito de Fazenda Brasileiro, Bahia. *In*: Proceedings workshop on metalogeneses: Pesquisas atuais e novas tendências. Univ. Campinas, São Paulo, Brasil, *Bol. Resumos*, p. 29.
- Watson E.B. 1979a. Apatite saturation in basic and intermediate magmas. *Geophys. Res. Lett.*, **6**:937-940.
- Watson E.B. 1979b. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. *Contrib. Mineral. Petrol.*, **70**:407-419.
- Watson E.B. & Harrison T.M. 1983. Zircon saturation revised: temperature and composition effectes in variety of crustal magma types. *Earth Planet. Sci. Letters*, **64**: 295-304.
- Winge M. 1981. A seqüência vulcanossedimentar do Grupo Capim-Bahia. Caracterização geológica e modelo metalogenético. Dissertação de Mestrado, Instituto de Geociências, Universidade de Brasília, 120 p.
- Winge M. 1984. A seqüência vulcanossedimentar do Grupo Capim Bahia. In: P.V.S. V. Sá & F.B. Duarte (eds.) *Geologia e Recursos Minerais da Bahia*. Textos Básicos 5. Salvador-BA, SME/COM, pp.: 43-93.
- Winge M. & Danni J.C.M. 1980. Compartimentos geotectônicos pré-brasilianos entre Caratacá e Bendengó, Mun. Uauá BA. *In*: SBG, Congr. Bras. Geol., Camboriú-SC, 31, *Anais*, 5, pp.: 2785-2795.
- Wones D.R. & Eugster H.P. 1965. Stability of biotite: experiment, theory, and application. *Am. Mineral.*, **50**: 1228–1272.
- Yavuz F. 1999. A revised program for microprobe-derived amphibole analyses using the IMA rules. *Comp. Geosc.*, **25** (8): 909-927.

- Yavuz F. 2001. PYROX: A computer program for the IMA pyroxene classification and calculation scheme. *Comp. Geosc.*, **27**(1): 97-107.
- Yavuz F. & Özta T. 1997. BIOTERM A program for evaluating and plotting microprobe analyses of biotite from barren and mineralized magmatic suites. *Comp. Geosc.*, **23** (8): 897-907.



Número	Número	Número	Local da	Coord	lenadas		Lâm.	Analis	es Qu	ímicas		Micros.	Evaporação	Isótopos	Isótopos
Ponto	Campo	Escrit.	Amostra	Longitude	Latitude	Litologia	Delg.	EM	TR	ETR	ICP	Eletrôn.	Pb-Pb	Rb-Sr	Sm-Nd
12	NS 1-11	1333	BN (FFM)	445.022	8.812.659	Biotita-Trondhjemito	Х	Χ	Х	Х		Χ			
15	NS 1-12	1334	BN (FFM)	445.365	8.806.715	Biotita-Tonalito	Χ	Χ	Х						
16	NS 1-13	1335	BN (FFM)	447.171	8.806.074	Biotita-Trondhjemito	X	Χ	Х	Χ					
18	NS 1-14	1336	BN (FP)	452.571	8.803.247	Biotita-Granodiorito	X	Χ	Х	Х		X			
105	NS 2-61	1406	BN (FFM)	458.024	8.792.920	Biotita-Tonalito	X	Χ	Х	Χ		X			
106	NS 2-62	1407	BN (FFM)	457.304	8.795.152	Biotita-Trondhjemito	X	Χ	Х						
107	NS 2-63	1408	BN (FFM)	456.073	8.799.824	Biotita-Tonalito	Χ	Χ	Х	Х					
573	NS 7-02	1821	BN (FFM)	457.754	8.803.398	Biotita-Trondhjemito	Χ				Х				
574	NS 7-03	1822	BN (FP)	453.649	8.804.209	Biotita-Trondhjemito	X				Х				
575	NS 7-04	1823	BN (FFM)	454.580	8.790.631	Biotita-Tonalito	Х				Х				
576	NS 7-05	1824	BN (FFM)	458.173	8.803.039	Biotita-Trondhjemito	Х				Х				
578	NS 7-06	1825	BN (FFM)	456.558	8.803.324	Biotita-Granodiorito	Х				Х				
578	NS 7-07	1826	BN (Dique)	456.558	8.803.324	Biotita-Tonalito	Χ				Х				
579	NS 7-08	1827	BN (FP)	453.759	8.803.613	Biotita-Trondhjemito	Χ				Х				
580	NS 7-09	1828	BN (FFM)	455.306	8.797.828	Mela-diorito	Χ			Х	Х				
582	NS 7-10	1829	BN (Dique)	454.394	8.797.210	Biotita-Trondhjemito	X				Х				
583	NS 7-11	1830	BN (FFM)	449.423	8.826.087	Biotita-Trondhjemito	Χ	Χ	Х	Х					
584	NS 7-12	1831	BN (FFM)	451.389	8.829.104	Biotita-Trondhjemito	X	Χ	Х	Χ		X			
585	NS 7-13	1832	BN (FFM)	453.481	8.831.825	· · · · · · · · · · · · · · · · · · ·					Х				
587	NS 7-14	1833	BN (FFM)	453.493	8.834.442	Biotita-Trondhjemito	X	Χ	Х	Χ		X			
587	NS 7-15	1834	BN (Dique)	453.493	8.834.442	Biotita-Granodiorito	X				Х				
590	NS 7-16	1835	BN (FFM)	447.317	8.830.749	Biotita-Trondhjemito	Χ				Х				
591	NS 7-17	1836	BN (FFM)	445.465	8.829.481	Tonalito com hornblenda	Χ	Χ	Х	Х		Χ		Х	Х
592	NS 7-18	1837	BN (FFM)	445.806	8.824.796	Trondhjemito	Χ								
593	NS 7-19	1838	BN (FFM)	448.693	8.824.578	Biotita-Trondhjemito	Х				Х				
594	NS 7-20	1839	BN (FFM)	454.064	8.830.034	Biotita-Trondhjemito	Χ				Х				
595	NS 7-21	1840	BN (FFM)	457.550	8.828.793	Biotita-Trondhjemito	Χ				Х				
597	NS 7-22	1841	GBRI (SVS)	463.336	8.828.571	qzo-biotita-xisto c/ granada	Χ			Х		Х			
598	NS 7-23	1842	BN (FFM)	456.996	8.825.732	Biotita-Trondhjemito	Х				Х				•

Número	Número	Número	Local da	Coord	lenadas		Lâm.	Analis	es Qu	ímicas	;	Micros.	Evaporação	Isótopos	Isótopos
Ponto	Campo	Escrit.	Amostra	Longitude	Latitude	Litologia	Delg.	EM	TR	ETR	ICP	Eletrôn.	Pb-Pb	Rb-Sr	Sm-Nd
599	NS 7-24	1843	BN (FFM)	455.480	8.826.236	Biotita-Trondhjemito	Х				Х				
600	NS 7-25	1844	BN (FP)	448.580	8.820.293	Biotita-Granodiorito	Х				Х				
601	NS 7-26	1845	BN (FP)	453.853	8.820.639	Biotita-Trondhjemito	Х	Х	Х	Х				Х	Х
602	NS 7-27	1846	BN (FP)	457.758	8.819.303	Granodiorito	Χ				Х				
603	NS 7-28	1847	BN (FFM)	460.975	8.821.818	Biotita-Trondhjemito	Χ				Х				
604	NS 7-29	1848	BN (FP)	459.539	8.819.815	Biotita-Granodiorito	Χ				Х				
605	NS 7-30	1849	BN (FP)	450.293	8.818.977	Biotita-Trondhjemito	Χ				Х				
606	NS 7-31	1850	BN (FP)	452.454	8.818.504	Biotita-Granodiorito	Χ				Х				
607	NS 7-32	1851	BN (FP)	455.893	8.816.834	Biotita-Granodiorito	Х	Χ	Χ	Χ		Х	Х		
608	NS 7-33	1852	BN (FP)	459.711	8.815.720	Biotita-Granodiorito	Χ				Х				
610	NS 7-35	1854	BN (FP)	459.206	8.810.900	Granodiorito	Χ				Х				
611	NS 7-36	1855	BN (FP)	454.906	8.813.502	Biotita-Granodiorito	Χ	Х	Χ	Х					
612	NS 7-37	1856	BN (FP)	450.677	8.815.021	Biotita-Granodiorito	Χ	Х	Χ	Χ		Х		Х	Χ
614	NS 7-39	1858	BN (FFM)	445.743	8.812.576	Biotita-Trondhjemito	Χ				Х				
617	NS 7-41	1860	BN (FP)	453.872	8.810.935	Biotita-Trondhjemito	Х				Χ				
618	NS 7-42	1861	BN (FP)	454.398	8.806.183	Biotita-Granodiorito	Х				Х				
620	NS 7-43	1862	BN (FFM)	460.730	8.793.335	Biotita-Trondhjemito	Х	Х	Χ	Χ					
620	NS 7-44	1863	BN (Dique)	460.730	8.793.335	Biotita-Trondhjemito	Х	Х	Х	Χ					
620	NS 7-45	1864	BN (Dique)	460.730	8.793.335	Granodiorito	Х	Χ	Χ	Х					
621	NS 7-46	1865	BN (FFM)	453.408	8.791.527	Tonalito	Х				Χ				
621	NS 7-47	1866	BN (Dique)	453.408	8.791.527	Tonalito	Χ				Х				
622	NS 7-48	1867	BN (FFM)	451.169	8.793.077	Granodiorito com hornblenda	Х	Х	Χ	Χ		Х		Х	Х
624	NS 7-49	1868	BN (FFM)	447.418	8.797.918	Biotita-Trondhjemito	Х	Х	Χ	Χ					
625	NS 7-50	1869	BN (FFM)	448.428	8.802.740	Biotita-Granodiorito	Х	Х	Х	Х					
626	NS 7-51	1870	BN (FFM)	446.858	8.801.170	Biotita-Trondhjemito	Х				Х				
626	NS 7-52	1871	Enclave	446.858	8.801.170	Meso-diorito	Х			Χ	Х	Х			
641	NS 7-56	1875	Interface Emb/BN	445.943	8.794.208	Biotita-Tonlaito	Х				Х				

Número	Número	Número	Local da	Coord	lenadas		Lâm.	Analis	ses Qu	ímicas		Micros.	Evaporação	Isótopos	Isótopos
Ponto	Campo	Escrit.	Amostra	Longitude	Latitude	Litologia	Delg.	EM	TR	ETR	ICP	Eletrôn.	Pb-Pb	Rb-Sr	Sm-Nd
645	NS 7-57	1876	Interface Emb/BN	443.183	8.808.230	Biotita-Trondhjemito	Х				Χ	Х			
646	NS 7-58	1877	Interface Emb/BN	442.189	8.808.626	Biotita-Trondhjemito	Х				Х				
647	NS 8-01	1878	Enclave	441.447	8.808.428	Enclave Máfico	Х			Х	Х				
648	NS 8-02	1879	BN (FFM)	445.337	8.806.806	Biotita-Trondhjemito	Х				Х				
649	NS 8-03	1880	BN (FFM)	447.201	8.806.106	Biotita-Trondhjemito	Х				Х				
650	NS 8-04	1881	BN (FFM)	450.900	8.803.248	Biotita-Trondhjemito	Х				Х				
654	NS 8-05	1882	BN (FP)	454.283	8.805.321	Granodiorito	Х				Х				
662	NS 8-06	1883	BN (FP)	454.717	8.811.402	Biotita-Granodiorito	Х				Х				
668-A	NS 8-07	1884	BN (FFM)	448.729	8.814.484	Biotita-Trondhjemito	Х				Χ				
668-B	NS 8-08	1885	BN (Dique)	448.729	8.814.484	Biotita-Granodiorito	Χ				Х				
668-C	NS 8-09	1886	Enclave	448.729	8.814.484	Meso-diorito	Х			Х	Х			Х	Х
669	NS 8-10	1887	BN (FFM)	445.731	8.812.582	Biotita-Trondhjemito	Χ				Х				
671	NS 8-11	1888	BN (FFM)	447.786	8.809.886	Biotita-Trondhjemito	Χ				Х				
674	NS 8-12	1889	BN (FFM)			Biotita-Trondhjemito	Х				Χ				
677	NS 8-13	1890	BN (FFM)	451.756	8.798.988	Biotita-Trondhjemito	Х				Х				
678	NS 8-14	1891	BN (FFM)	451.487	8.798.413	Biotita-Trondhjemito	Х				Χ				
684	NS 8-15	1892	Mega-Enclave	451.379	8.791.610	Mela-diorito	Х			Х	Х			Х	Х
685-A	NS 8-16	1893	BN (FFM)	451.695	8.791.286	Biotita-Trondhjemito	Х				Χ				
685-B	NS 8-17	1894	Enclave	451.695	8.791.286	Leuco-diorito	Χ				Χ				
686	NS 8-18	1895	BN (FFM)	452.236	8.791.202	Biotita-Granodiorito	Х				Х				
687-A	NS 8-19	1896	Dique Máfico	450.118	8.790.884	Dique Máfico	Χ				Χ				
687-B	NS 8-20	1897	Injeção Félsica	450.118	8.790.884	· ·				Х	Χ				
687-C	NS 8-21	1898	Injeção Máfica	450.118	8.790.884	Trondhjemito	Χ			Х	Χ		Х		
688	NS 8-22	1899	BN (FFM)	449.166	8.790.417	Biotita-Granodiorito	Χ				Χ				
691-A	NS 8-23	1900	Dique Máfico	447.496	8.790.082	Mela-diorito	Х				Х	Х			
691-B	NS 8-24	1901	Dique Máfico	447.496	8.790.082	Mela-diorito	Χ				Χ				
692	NS 8-25	1902	Enclave Máfico	446.386	8.790.780	Mela-diorito	Х				Х				
693	NS 8-26	1903	BN (FFM)	446.341	8.791.092	Biotita-Granodiorito	Х				Х				
694	NS 8-27	1904	BN (FFM)	445.912	8.794.110	Biotita-Trondhjemito	Χ				Х				
695	NS 8-28	1905	Enclave Máfico	445.846	8.795.850	Mela-diorito	Х				Х				
696	NS 8-29	1906	Enclave Máfico	446.206	8.796.699	Mela-diorito	Х			Х	Х				
699	NS 8-30	1907	Enclave Máfico	447.183	8.798.104	Mela-diorito	Х				Х				
703-A	NS 8-31	1908	BN (FFM)	443.141	8.805.951	Granodiorito	Χ				Х				

Número	Número	Número	Local da	Coord	lenadas		Lâm.	Analis	ses Qu	ímicas	;	Micros.	Evaporação	Isótopos	Isótopos
Ponto	Campo	Escrit.	Amostra	Longitude	Latitude	Litologia	Delg.	EM	TR	ETR	ICP	Eletrôn.	Pb-Pb	Rb-Sr	Sm-Nd
703-B	NS 8-32	1909	Enclave Máfico	443.141	8.805.951	Mela-diorito	Х				Х				
707	NS 8-33	1910	BN (FFM)	455.280	8.830.543	Biotita-Trondhjemito	Х				Х				
708	NS 8-34	1911	BN (FFM)	454.351	8.828.496	Biotita-Trondhjemito	Х				Х				
713-A	NS 8-35	1912	Embasamento	459.424	8.832.174	Trondhjemito	Х				Χ				
713-B	NS 8-36	1913	Embasamento	459.424	8.832.174	Biotita-Tonalito	Х				Х				
714-A	NS 8-37	1914	Embasamento	459.647	8.834.937	Gramodiorito	Х				Х	Х			
714-B	NS 8-38	1915	Encl. do emb.	459.647	8.834.937	Meso-diorito	Х			Х	Χ	Х			
717	NS 8-39	1916	BN (FFM)	458.086	8.828.660	Biotita-Trondhjemito	Х				Х				

Análises Químicas de Feldspatos Alcalinos - Rochas do Batólito Nordestina e do seu embasamento -

	Microcli	na															
Amostra	1333	1333	1336	1336	1836	1836	1856	1856	1876	1876	1914	1914	1914	1851	1851	1851	1851
N° de Campo																	607
Análise	50	51	44	45	118	119	28	29	108	109	101	102	103	63	64	80	76
Campo	5	5	3	3	1	1	2	2	4	4	2	2	2				
Localização	C	В	C	В	В	C	В	C	C	В	В	C	C	Centro	Borda	Centro	В
SiO ₂	62,63	63,33	64,01	64,86	63,01	62,63	63,52	63,40	62,83	63,16	63,12	63,11	63,18	64,42	65,64	62,40	62,26
TiO ₂	0,01	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,01	0,05	0,02	0,00	0,00
Al ₂ O ₃	18,30	18,12	18,20	18,51	18,06	18,29	18,38	18,19	18,35	18,18	18,04	18,13	18,05	18,50	18,25	18,79	23,12
Fe ₂ O ₃	0,02	0,03	0,00	0,10	0,06	0,02	0,02	0,00	0,04	0,00	0,16	0,07	0,08	0,05	0,08	0,10	0,23
MnO	0,00	0,01	0,00	0,00	0,03	0,00	0,03	0,01	0,02	0,00	0,00	0,03	0,02	0,00	0,00	0,06	0,10
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,01	0,00	0,00
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,64
Na₂O	0,54	0,39	0,58	0,44	0,48	0,43	0,40	0,41	0,87	0,35	0,36	0,48	0,54	0,34	0,39	0,49	6,03
K ₂ O	15,86	16,26	16,18	16,50	15,95	15,91	16,39	16,42	15,71	16,33	16,57	16,20	16,23	16,02	16,24	15,85	6,18
SrO							0,03	0,00									
BaO	1,28	0,91	0,46	0,66	1,09	0,97	0,85	0,81	1,19	0,86	0,78	0,65	0,52	0,41	0,85	0,44	0,17
Total	98,65	99,07	99,41	101,06	98,67	98,25	99,64	99,25	99,02	98,88	99,05	98,71	98,62	99,79	101,47	98,13	99,73
Número de íons co	m base em	32 O															
Si	11,874	11,929	11,962	11,945	11,924	11,890	11,902	11,923	11,862	11,920	11,912	11,915	11,931	11,958	12,020	11,820	11,234
Ti	0,001	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,003	0,003	0,001	0,006	0,003	0,000	0,000
Al	4,089	4,023	4,008	4,016	4,027	4,092	4,058	4,032	4,083	4,044	4,012	4,035	4,017	4,047	3,939	4,195	4,917
Fe ³⁺	0,003	0,005	0,000	0,014	0,008	0,003	0,002	0,000	0,005	0,000	0,022	0,011	0,011	0,007	0,011	0,015	0,031
Mn	0,000	0,001	0,000	0,000	0,004	0,000	0,005	0,001	0,004	0,000	0,000	0,004	0,003	0,000	0,000	0,009	0,015
Mg	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,001	0,001	0,000	0,003	0,000	0,002	0,002	0,000	0,000
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,318
Na	0,200	0,141	0,208	0,157	0,178	0,157	0,146	0,151	0,319	0,126	0,130	0,176	0,196	0,122	0,137	0,179	2,109
K	3,836	3,907	3,856	3,876	3,850	3,854	3,917	3,940	3,782	3,931	3,989	3,901	3,908	3,793	3,793	3,829	1,423
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,095	0,067	0,033	0,047	0,081	0,072	0,063	0,060	0,088	0,064	0,058	0,048	0,039	0,030	0,061	0,033	0,012
Total de Cátions	20,097	20,077	20,067	20,056	20,072	20,068	20,099	20,106	20,145	20,086	20,127	20,097	20,106	19,966	19,967	20,079	20,058
х	15,97	15,96	15,97	15,98	15,96	15,98	15,96	15,95	15,95	15,96	15,95	15,96	15,96	16,02	15,97	16,03	16,18
z	4,13	4,12	4,10	4,08	4,11	4,08	4,14	4,15	4,20	4,12	4,18	4,13	4,15	3,95	3,99	4,05	3,88
Ab	4,83	3,43	5,08	3,84	4,32	3,85	3,53	3,64	7,61	3,06	3,12	4,27	4,72	3,10	3,43	4,42	54,39
An	0,01	0,02	0,00	0,01	0,11	0,00	0,25	0,03	0,13	0,02	0,00	0,18	0,07	0,05	0,05	0,23	8,59
Or	95,16	96,55	94,92	96,15	95,58	96,15	96,22	96,34	92,26	96,92	96,88	95,55	95,20	96,85	96,52	95,36	37,02

Análises Químicas de Feldspatos Alcalinos - Rochas do Batólito Nordestina e do seu embasamento -

	Feldspa	to potás	sico				
Amostra	1336	1336	1914	1914	1914	1914	1914
N° de Campo							
Análise	46	47	99	100	96	97	98
Campo	3	3	3	3	4	4	4
Localização	С	В	С	C	C	В	В
SiO ₂	64,08	64,27	63,35	63,43	63,45	62,37	63,35
TiO ₂	0,00	0,00	0,02	0,00	0,02	0,00	0,03
Al ₂ O ₃	18,24	18,37	18,04	18,14	18,07	18,12	18,19
Fe ₂ O ₃	0,00	0,05	0,04	0,03	0,09	0,04	0,13
MnO	0,00	0,02	0,00	0,00	0,00	0,00	0,00
MgO	0,00	0,00	0,01	0,00	0,00	0,01	0,00
CaO	0,00	0,00	0,01	0,00	0,02	0,00	0,00
Na₂O	0,97	0,91	0,48	0,53	0,40	0,36	0,39
K ₂ O	15,57	15,67	16,10	16,24	16,25	16,65	16,41
SrO							
BaO	0,41	0,49	0,72	0,49	0,70	1,05	0,71
Total	99,26	99,78	98,77	98,85	99,00	98,59	99,20
Número de íons co	m base em	32 O					
Si	11,961	11,947	11,946	11,938	11,942	11,865	11,913
Ti	0,000	0,000	0,002	0,000	0,003	0,000	0,004
Al	4,012	4,024	4,010	4,023	4,009	4,062	4,031
Fe ³⁺	0,000	0,007	0,006	0,004	0,012	0,006	0,018
Mn	0,000	0,003	0,000	0,000	0,000	0,000	0,000
Mg	0,000	0,000	0,002	0,001	0,000	0,003	0,000
Ca	0,000	0,000	0,002	0,000	0,003	0,000	0,000
Na	0,351	0,328	0,176	0,192	0,147	0,131	0,142
K	3,706	3,714	3,871	3,899	3,902	4,040	3,936
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,030	0,036	0,053	0,036	0,052	0,078	0,053
Total de Cátions	20,061	20,059	20,068	20,094	20,070	20,186	20,098
x	15,97	15,98	15,96	15,97	15,97	15,93	15,97
Z	4,09	4,08	4,10	4,13	4,10	4,25	4,13
Ab	8,59	8,03	4,29	4,66	3,59	3,09	3,44
An	0,00	0,07	0,08	0,03	0,08	0,07	0,00
Or	91,41	91,89	95,63	95,31	96,32	96,85	96,56

Análises Químicas de Plagioclásios - Batólito Nordestina: Fácies Fanerítica Média -

Amostra	1333	1333	1333	1333	1333	1333	1406	1406	1406	1406	1406	1406	1831	1831	1831	1831	1831	1831
N° de Campo	12	12	12	12	12	12	105	105	105	105	105	105	584	584	584	584	584	584
Análise	48	49	36	37	53	52	30	31	34	35	32	33	124	125	126	127	128	129
Campo	2	2	3	3	5	5	2	2	3	3	4	4	1	1	2	2	3	3
Localização	C	В	С	В	С	В	В	С	В	С	В	С	В	С	В	С	В	С
SiO ₂	62,52	62,70	62,30	62,53	62,67	62,78	62,14	60,30	61,46	60,25	61,85	62,28	63,79	63,40	63,34	62,54	63,01	62,85
TiO ₂	0,05	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,02	0,00	0,03	0,00	0,00	0,02	0,00	0,01	0,01	0,00
Al ₂ O ₃	22,59	22,67	22,96	22,85	22,44	22,49	23,12	24,36	24,02	24,57	23,35	23,19	22,74	22,55	22,51	22,59	22,60	22,61
Fe ₂ O ₃	0,00	0,05	0,03	0,04	0,07	0,08	0,05	0,00	0,15	0,01	0,13	0,04	0,09	0,04	0,05	0,06	0,07	0,04
MnO	0,00	0,00	0,00	0,01	0,03	0,03	0,01	0,00	0,00	0,02	0,01	0,00	0,00	0,01	0,00	0,00	0,01	0,03
MgO	0,00	0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00
CaO	4,17	4,21	4,56	4,23	4,20	4,20	4,72	6,15	5,24	6,15	4,83	4,52	4,21	4,07	4,10	4,22	4,26	4,21
Na₂O	9,31	9,40	9,08	9,12	9,16	9,15	8,86	8,14	8,53	8,13	8,85	9,16	9,10	8,89	9,30	9,07	9,20	9,25
K₂O	0,19	0,24	0,24	0,27	0,39	0,19	0,13	0,07	0,12	0,08	0,09	0,11	0,31	0,40	0,05	0,35	0,26	0,32
SrO							0,00	0,01										
BaO	0,10	0,00	0,05	0,03	0,13	0,02	0,10	0,18	0,01	0,00	0,00	0,04	0,00	0,01	0,00	0,05	0,10	0,00
Total	98,93	99,29	99,22	99,09	99,07	99,00	99,12	99,22	99,54	99,21	99,14	99,33	100,24	99,40	99,36	98,89	99,52	99,32
Número de íons co	m base em	32 O																
Si	11,196	11,188	11,132	11,174	11,217	11,222	11,110	10,824	10,955	10,801	11,057	11,109	11,251	11,271	11,262	11,201	11,217	11,209
Ti	0,006	0,000	0,000	0,000	0,000	0,008	0,000	0,000	0,002	0,000	0,004	0,000	0,000	0,002	0,000	0,001	0,001	0,000
AI .	4,767	4,767	4,835	4,812	4,734	4,738	4,872	5,154	5,045	5,192	4,921	4,875	4,727	4,724	4,716	4,769	4,741	4,752
Fe ³⁺	0,001	0,007	0,003	0,005	0,009	0,011	0,006	0,000	0,020	0,001	0,017	0,005	0,012	0,006	0,006	0,009	0,010	0,006
Mn	0,000	0,000	0,000	0,002	0,005	0,004	0,002	0,000	0,000	0,003	0,002	0,000	0,000	0,002	0,000	0,000	0,002	0,005
Mg	0,000	0,004	0,002	0,000	0,000	0,000	0,000	0,001	0,000	0,002	0,003	0,000	0,004	0,003	0,002	0,002	0,002	0,000
Ca	0,800	0,806	0,873	0,810	0,804	0,805	0,904	1,182	1,001	1,182	0,925	0,863	0,795	0,775	0,780	0,811	0,812	0,805
Na	3,232	3,251	3,146	3,161	3,177	3,171	3,069	2,833	2,948	2,824	3,067	3,166	3,110	3,065	3,206	3,148	3,174	3,199
K	0,042	0,054	0,055	0,062	0,089	0,042	0,029	0,016	0,026	0,017	0,020	0,025	0,070	0,091	0,012	0,079	0,058	0,072
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,007	0,000	0,003	0,002	0,009	0,002	0,007	0,013	0,000	0,000	0,000	0,003	0,000	0,000	0,000	0,003	0,007	0,000
Total de Cátions	20,051	20,077	20,049	20,028	20,044	20,002	20,000	20,023	19,998	20,023	20,014	20,046	19,969	19,940	19,986	20,022	20,023	20,048
Х	15,97	15,96	15,97	15,99	15,96	15,98	15,99	15,98	16,02	15,99	16,00	15,99	15,99	16,00	15,98	15,98	15,97	15,97
Z	4,08	4,11	4,08	4,04	4,08	4,02	4,01	4,05	3,98	4,03	4,02	4,06	3,98	3,94	4,00	4,04	4,05	4,08
Ab	79,19	79,00	77,14	78,30	77,80	78,81	76,52	70,02	74,15	70,12	76,37	78,04	78,16	77,86	80,15	77,86	78,28	78,39
An	19,60	19,69	21,44	20,09	19,81	20,10	22,60	29,27	25,18	29,45	23,14	21,28	20,08	19,82	19,56	20,11	20,12	19,84
Or	1,20	1,31	1,43	1,60	2,39	1,09	0,88	0,70	0,67	0,43	0,49	0,68	1,76	2,32	0,29	2,03	1,60	1,77

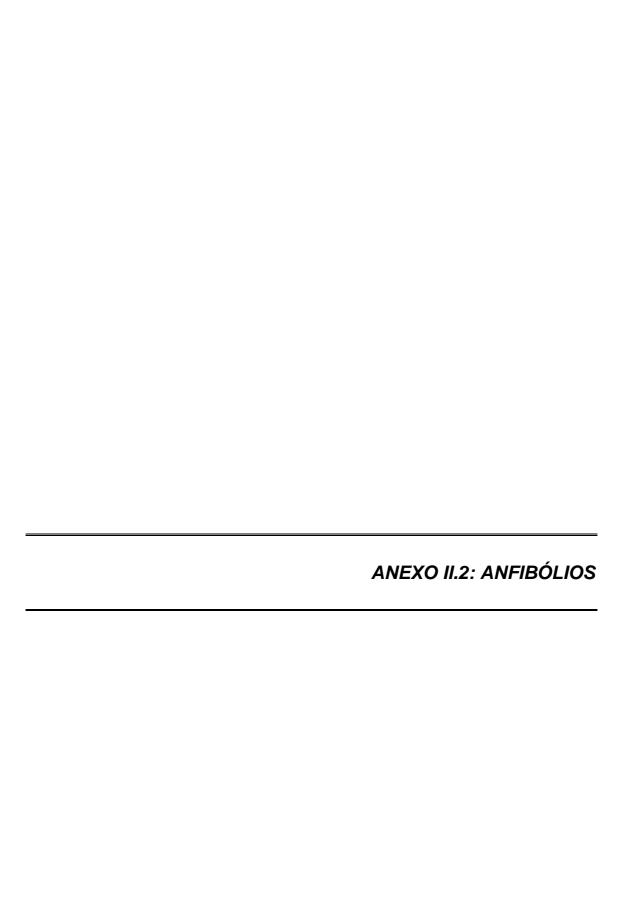
Análises Químicas de Plagioclásios - Batólito Nordestina: Fácies Fanerítica Média -

Amostra	1867	1867	1867	1867	1876	1876	1876	1876	1876	1876	1876	1876
N° de Campo	622	622	622	622	645	645	645	645	645	645	645	645
Análise	71	72	83	84	113	114	115	110	111	112	106	107
Campo					2	2	2	3	3	3	4	4
Localização	C	В	С	В	В	С	В	В	В	С	В	C
SiO ₂	63,66	62,23	63,62	64,31	61,74	61,75	61,73	61,94	62,40	62,15	61,90	62,19
TiO ₂	0,00	0,00	0,00	0,06	0,00	0,00	0,04	0,00	0,04	0,02	0,00	0,00
Al ₂ O ₃	23,59	23,78	23,00	22,25	23,47	23,31	23,22	22,98	23,02	23,10	23,37	23,09
Fe ₂ O ₃	0,18	0,07	0,00	0,20	0,03	0,08	0,00	0,01	0,04	0,03	0,06	0,02
MnO	0,00	0,03	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,01	0,01
MgO	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,00	0,00
CaO	4,12	4,63	4,53	4,28	4,80	4,65	4,80	4,66	4,63	4,63	4,91	4,66
Na ₂ O	9,29	9,10	8,92	8,94	8,89	9,04	8,92	8,78	8,86	8,94	8,82	8,85
K₂O	0,16	0,14	0,16	0,19	0,15	0,29	0,10	0,24	0,31	0,27	0,17	0,31
SrO												
BaO	0,24	0,00	0,20	0,24	0,01	0,00	0,00	0,00	0,07	0,00	0,12	0,05
Total	101,23	99,98	100,41	100,46	99,09	99,13	98,82	98,60	99,38	99,15	99,35	99,17
Número de íons co	m base em	32 O										
Si	11,143	11,035	11,213	11,325	11,046	11,055	11,070	11,125	11,131	11,111	11,057	11,117
Ti	0,000	0,000	0,000	0,007	0,000	0,000	0,005	0,000	0,006	0,003	0,000	0,000
Al	4,865	4,968	4,777	4,617	4,948	4,917	4,907	4,864	4,840	4,866	4,920	4,864
Fe ³⁺	0,024	0,009	0,000	0,027	0,004	0,011	0,000	0,001	0,006	0,004	0,008	0,003
Mn	0,000	0,005	0,000	0,000	0,000	0,000	0,002	0,000	0,000	0,001	0,002	0,002
Mg	0,000	0,000	0,000	0,000	0,000	0,002	0,004	0,000	0,000	0,000	0,000	0,000
Ca	0,772	0,879	0,854	0,807	0,920	0,893	0,922	0,897	0,885	0,887	0,939	0,893
Na	3,151	3,129	3,046	3,052	3,083	3,139	3,100	3,056	3,063	3,100	3,054	3,065
K	0,036	0,031	0,036	0,043	0,034	0,066	0,022	0,054	0,071	0,062	0,038	0,070
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,016	0,000	0,014	0,016	0,000	0,000	0,000	0,000	0,005	0,000	0,009	0,004
Total de Cátions	20,007	20,057	19,940	19,894	20,036	20,083	20,033	19,997	20,007	20,033	20,025	20,017
X	16,03	16,01	15,99	15,98	16,00	15,98	15,98	15,99	15,98	15,98	15,98	15,98
Z	3,98	4,04	3,95	3,92	4,04	4,10	4,05	4,01	4,02	4,05	4,04	4,03
Ab	79,26	77,37	77,11	77,90	76,36	76,57	76,54	76,27	76,12	76,55	75,58	76,00
An	19,42	21,86	21,63	20,59	22,79	21,82	22,91	22,39	22,00	21,92	23,28	22,18
Or	1,31	0,77	1,26	1,51	0,85	1,61	0,55	1,34	1,88	1,53	1,14	1,82

Análises Químicas de Plagioclásios - Batólito Nordestina: Fácies Fanerítica Média -

Amostra	1831	1831	1833	1833	1833	1833	1833	1833	1836	1836	1836	1836	1836	1836
N° de Campo	584	584	587	587	587	587	587	587	591	591	591	591	591	591
Análise	130	131	19	20	17	18	15	16	116	117	120	121	122	123
Campo	4	4	1	1	3	3	4	4	1	1	3	3	4	4
Localização	С	В	В	С	С	В	С	В	В	С	В	С	В	С
SiO ₂	62,91	62,77	62,14	62,48	63,23	62,61	62,83	63,21	61,94	61,97	61,90	62,79	62,73	63,12
TiO ₂	0,01	0,02	0,04	0,04	0,00	0,02	0,02	0,02	0,00	0,02	0,00	0,03	0,00	0,05
Al_2O_3	22,80	22,48	22,46	22,86	22,78	22,99	22,88	22,90	23,29	23,12	22,77	22,51	22,51	22,62
Fe ₂ O ₃	0,06	0,14	0,17	0,05	0,00	0,17	0,02	0,00	0,16	0,12	0,17	0,04	0,01	0,06
MnO	0,00	0,00	0,01	0,02	0,00	0,02	0,01	0,01	0,00	0,00	0,04	0,00	0,01	0,01
MgO	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00
CaO	4,30	4,24	4,33	4,20	4,10	4,64	4,28	4,19	4,61	4,64	4,40	4,20	4,18	4,11
Na₂O	8,90	8,99	9,15	9,08	9,17	9,10	9,06	9,19	8,73	8,73	9,07	9,18	9,03	9,20
K ₂ O	0,34	0,23	0,21	0,36	0,28	0,16	0,36	0,21	0,14	0,19	0,20	0,16	0,31	0,35
SrO			0,06	0,03	0,11	0,08	0,09	0,04						
BaO	0,00	0,00	0,08	0,07	0,14	0,10	0,05	0,00	0,05	0,03	0,10	0,00	0,12	0,00
Total	99,32	98,89	98,65	99,20	99,80	99,88	99,59	99,78	98,93	98,82	98,64	98,91	98,90	99,52
Número de íons com b														
Si	11,205	11,228	11,175	11,165	11,223	11,126	11,180	11,206	11,089	11,107	11,132	11,228	11,230	11,226
Ti	0,002	0,003	0,006	0,005	0,000	0,003	0,002	0,003	0,000	0,002	0,000	0,004	0,000	0,007
AI - 3+	4,785	4,739	4,759	4,814	4,764	4,814	4,798	4,785	4,914	4,883	4,825	4,743	4,748	4,741
Fe ³⁺	0,008	0,019	0,023	0,007	0,000	0,023	0,003	0,000	0,022	0,016	0,022	0,005	0,001	0,008
Mn	0,000	0,000	0,002	0,003	0,000	0,002	0,001	0,002	0,000	0,000	0,006	0,000	0,001	0,001
Mg	0,003	0,002	0,000	0,001	0,000	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,003	0,001
Ca	0,820	0,813	0,834	0,805	0,779	0,883	0,815	0,797	0,884	0,892	0,848	0,804	0,801	0,784
Na	3,072	3,118	3,190	3,144	3,155	3,135	3,125	3,160	3,030	3,034	3,163	3,183	3,134	3,171
K	0,077	0,052	0,048	0,082	0,063	0,037	0,082	0,047	0,032	0,044	0,045	0,036	0,072	0,078
Sr	0,000	0,000	0,007	0,004	0,011	0,008	0,009	0,004	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,000	0,000	0,006	0,005	0,010	0,007	0,004	0,000	0,003	0,002	0,007	0,000	0,008	0,000
Total de Cátions	19,971	19,975	20,048	20,033	20,005	20,038	20,022	20,003	19,974	19,980	20,049	20,004	19,999	20,017
X	16,00	15,99	15,96	15,99	15,99	15,97	15,98	15,99	16,02	16,01	15,98	15,98	15,98	15,98
Z	3,97	3,99	4,09	4,04	4,02	4,07	4,04	4,01	3,95	3,97	4,07	4,02	4,02	4,03
Ab	77,34	78,23	78,08	77,76	78,52	76,99	77,38	78,82	76,72	76,38	77,74	79,10	77,96	78,58
An	20,72	20,45	20,61	20,09	19,66	21,94	20,50	20,00	22,38	22,45	20,98	19,99	20,04	19,48
Or	1,93	1,32	1,32	2,16	1,82	1,07	2,13	1,18	0,90	1,16	1,27	0,91	1,99	1,94

Análises Químicas de Plagioclásios - Batólito Nordestina: Fácies Porfirítica -


Amostra	1336	1336	1336	1336	1336	1336	1851	1851	1851	1856	1856	1856	1856	1856	1856
N° de Campo	18	18	18	18	18	18	607	607	607	612	612	612	612	612	612
Análise	38	39	40	41	42	43	61	62	75	24	25	21	22	26	27
Campo	1	1	2	2	3	3				1	1	2	2	3	3
Localização	В	C	C	В	В	С	C	В	C	В	C	C	В	В	С
SiO ₂	63,68	63,21	63,45	63,45	63,87	63,47	65,36	64,28	64,40	63,11	62,26	63,27	63,37	63,08	63,10
TiO ₂	0,00	0,02	0,00	0,00	0,04	0,00	0,00	0,04	0,00	0,00	0,00	0,01	0,05	0,00	0,02
Al_2O_3	22,51	22,73	22,36	22,36	22,60	22,31	22,79	23,19	22,86	22,69	22,75	22,69	22,98	23,07	22,67
Fe ₂ O ₃	0,06	0,04	0,05	0,07	0,12	0,09	0,07	0,22	0,00	0,17	0,08	0,05	0,03	0,17	0,06
MnO	0,00	0,00	0,01	0,03	0,01	0,00	0,00	0,03	0,06	0,02	0,00	0,01	0,00	0,00	0,02
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	3,61	4,08	3,57	3,58	3,69	3,58	3,96	4,13	4,07	4,02	4,46	3,91	4,00	4,24	4,07
Na ₂ O	9,48	9,17	9,73	9,52	9,45	9,65	9,19	9,19	9,35	9,26	9,00	9,47	9,51	9,28	9,35
K₂O	0,12	0,21	0,08	0,17	0,13	0,17	0,35	0,23	0,28	0,17	0,21	0,28	0,18	0,15	0,20
SrO										0,10	0,11	0,03	0,07	0,12	0,01
BaO	0,00	0,00	0,04	0,00	0,06	0,03	0,34	0,10	0,00	0,00	0,14	0,01	0,00	0,00	0,07
Total	99,45	99,47	99,28	99,17	99,96	99,31	102,06	101,41	101,01	99,54	99,01	99,72	100,17	100,10	99,55
Número de íons co	m base em	32 O													
Si	11,299	11,233	11,292	11,299	11,285	11,296	11,330	11,216	11,270	11,221	11,156	11,230	11,196	11,163	11,220
Ti	0,000	0,003	0,000	0,000	0,005	0,000	0,000	0,005	0,000	0,000	0,000	0,001	0,006	0,000	0,002
Al	4,706	4,760	4,689	4,692	4,705	4,680	4,656	4,768	4,714	4,754	4,805	4,746	4,785	4,812	4,751
Fe ³⁺	0,007	0,006	0,007	0,010	0,016	0,012	0,009	0,028	0,000	0,023	0,011	0,007	0,003	0,022	0,009
Mn	0,000	0,000	0,001	0,004	0,001	0,001	0,000	0,005	0,009	0,003	0,000	0,001	0,000	0,000	0,002
Mg	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,687	0,777	0,681	0,682	0,699	0,682	0,736	0,771	0,763	0,765	0,857	0,743	0,758	0,803	0,776
Na	3,261	3,161	3,357	3,288	3,236	3,331	3,088	3,110	3,171	3,190	3,127	3,258	3,257	3,183	3,222
K	0,028	0,047	0,018	0,039	0,030	0,038	0,077	0,050	0,061	0,038	0,048	0,064	0,039	0,033	0,045
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,011	0,011	0,003	0,007	0,012	0,001
Ва	0,000	0,000	0,002	0,000	0,004	0,002	0,023	0,007	0,000	0,000	0,009	0,001	0,000	0,000	0,005
Total de Cátions	19,989	19,985	20,047	20,014	19,981	20,042	19,920	19,961	19,989	20,005	20,023	20,054	20,052	20,028	20,031
X	16,01	16,00	15,99	16,00	16,01	15,99	16,00	16,02	15,98	16,00	15,97	15,98	15,99	16,00	15,98
Z	3,98	3,98	4,06	4,01	3,97	4,05	3,92	3,94	4,00	4,01	4,05	4,07	4,06	4,03	4,05
Ab	82,02	79,32	82,69	81,93	81,51	82,16	78,68	78,86	79,18	79,60	77,18	80,05	80,20	78,95	79,56
An	17,28	19,50	16,80	17,10	17,64	16,84	18,77	19,69	19,29	19,45	21,41	18,35	18,83	20,23	19,22
Or	0,70	1,18	0,51	0,97	0,84	1,00	2,55	1,45	1,53	0,96	1,41	1,60	0,97	0,82	1,22

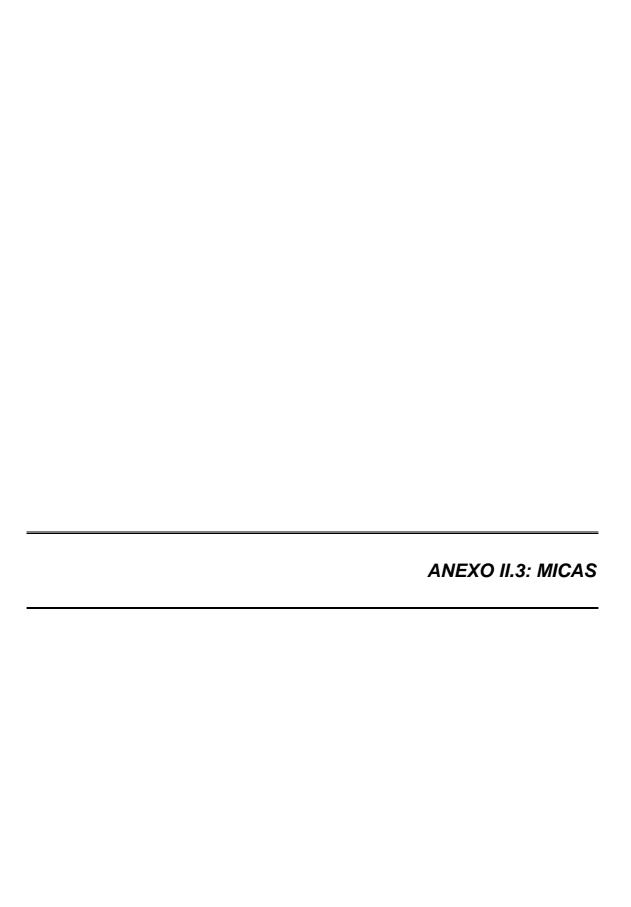
Análises Químicas de Plagioclásios - Batólito Nordestina: Rochas Máficas -

Amostra	1871	1871	1871	1871	1871	1871	1871	1871	1871	1900	1900	1900	1900	1900	1900
N° de Campo	626	626	626	626	626	626	626	626	626	691-A	691-A	691-A	691-A	691-A	691-A
Análise	132	133	134	135	136	137	138	139	140	198	199	200	201	202	203
Campo	1	1	1	1	2	2	PROX. 3	PROX. 3	3	1	1	2	2	3	3
Localização	В	С	В	С	С	В	С	В	С	С	В	С	В	В	C
SiO ₂	55,50	56,44	56,53	56,00	57,77	57,38	57,79	58,07	58,23	62,53	60,27	57,56	58,04	57,31	56,68
TiO ₂	0,01	0,00	0,00	0,03	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,03	0,00
Al_2O_3	27,13	26,77	26,49	26,89	25,94	26,25	25,92	25,88	25,44	23,17	24,55	26,20	25,89	26,59	26,64
Fe ₂ O ₃	0,10	0,11	0,04	0,04	0,19	0,24	0,08	0,06	0,07	0,05	0,01	0,12	0,20	0,08	0,04
MnO	0,02	0,02	0,00	0,01	0,01	0,01	0,00	0,01	0,00	0,02	0,00	0,00	0,00	0,00	0,02
MgO	0,00	0,01	0,00	0,00	0,02	0,00	0,01	0,00	0,01	0,01	0,00	0,02	0,00	0,00	0,00
CaO	9,79	9,20	9,07	9,63	8,13	8,50	8,10	8,03	7,72	4,81	6,48	7,61	8,16	8,84	8,89
Na ₂ O	5,84	6,22	6,36	5,97	6,71	6,65	7,03	6,94	7,23	9,03	8,28	6,87	7,05	6,69	6,72
K₂O	0,14	0,12	0,13	0,13	0,11	0,11	0,17	0,19	0,10	0,10	0,09	0,62	0,13	0,09	0,06
SrO															
BaO	0,00	0,03	0,00	0,00	0,02	0,00	0,06	0,00	0,00	0,10	0,00	0,02	0,03	0,08	0,01
Total	98,54	98,93	98,60	98,70	98,91	99,14	99,14	99,18	98,80	99,83	99,69	99,04	99,51	99,71	99,06
Número de íons co	m base em	32 O													
Si	10,129	10,242	10,285	10,192	10,448	10,370	10,441	10,474	10,536	11,109	10,776	10,416	10,449	10,314	10,270
Ti	0,001	0,000	0,000	0,004	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,003	0,000	0,004	0,000
AI .	5,835	5,724	5,680	5,767	5,528	5,590	5,520	5,501	5,424	4,850	5,172	5,586	5,492	5,640	5,690
Fe ³⁺	0,014	0,015	0,005	0,005	0,026	0,032	0,010	0,008	0,010	0,007	0,002	0,016	0,028	0,011	0,006
Mn	0,003	0,003	0,000	0,001	0,002	0,001	0,000	0,001	0,000	0,003	0,000	0,000	0,000	0,000	0,003
Mg	0,000	0,004	0,000	0,000	0,006	0,000	0,002	0,000	0,002	0,003	0,000	0,006	0,000	0,000	0,001
Ca	1,914	1,789	1,767	1,878	1,576	1,645	1,567	1,551	1,496	0,916	1,241	1,476	1,574	1,705	1,726
Na	2,068	2,189	2,243	2,108	2,351	2,331	2,462	2,428	2,538	3,111	2,871	2,408	2,461	2,335	2,360
K	0,032	0,029	0,029	0,030	0,024	0,026	0,038	0,044	0,024	0,023	0,021	0,144	0,029	0,020	0,013
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,000	0,002	0,000	0,000	0,002	0,000	0,004	0,000	0,000	0,007	0,000	0,001	0,002	0,006	0,000
Total de Cátions	19,995	19,997	20,009	19,986	19,962	19,996	20,044	20,007	20,028	20,030	20,083	20,056	20,036	20,035	20,069
X	15,98	15,98	15,97	15,97	16,00	15,99	15,97	15,98	15,97	15,97	15,95	16,02	15,97	15,97	15,97
Z	4,02	4,02	4,04	4,02	3,96	4,00	4,07	4,02	4,06	4,06	4,13	4,04	4,07	4,07	4,10
Ab	51,47	54,50	55,52	52,47	59,36	58,24	60,44	60,33	62,51	76,57	69,46	59,68	60,51	57,43	57,52
An	47,74	44,72	43,75	46,78	39,99	41,13	38,52	38,58	36,90	22,68	30,03	36,73	38,72	41,93	42,14
Or	0,79	0,77	0,73	0,75	0,65	0,64	1,04	1,09	0,59	0,75	0,51	3,59	0,77	0,64	0,34

Análises Químicas de Plagioclásios - Embasamento -

Amostra	1841	1841	1841	1841	1841	1841	1841	1914	1914	1914	1914	1915	1915	1915	1915	1915	1915
N° de Campo	597	597	597	597	597	597	597	714-A	714-A	714-A	714-A	714-В	714-B	714-B	714-B	714-B	714-B
Análise	191	192	193	194	195	196	197	104	105	94	95	141	142	143	144	145	146
Campo	1	1	1	2	2	3	3	1	1	3	3	1	1	2	2	3	3
Localização	В	C	C	C	В	С	В	В	C	В	C	C	В	C	В	В	C
SiO ₂	60,29	60,14	60,54	60,81	61,14	60,30	60,71	63,29	63,28	63,64	63,14	62,41	62,97	61,98	62,52	62,85	62,72
TiO ₂	0,00	0,00	0,03	0,00	0,01	0,01	0,03	0,03	0,00	0,01	0,01	0,04	0,01	0,00	0,01	0,01	0,00
Al_2O_3	24,85	24,96	24,17	24,68	24,62	24,66	24,43	22,30	22,13	22,07	22,32	22,84	22,75	23,13	22,97	22,71	22,77
Fe ₂ O ₃	0,06	0,06	0,08	0,00	0,14	0,04	0,05	0,12	0,13	0,18	0,18	0,07	0,11	0,05	0,11	0,12	0,12
MnO	0,00	0,00	0,03	0,00	0,01	0,02	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,06
MgO	0,01	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
CaO	6,33	6,76	5,96	6,32	6,08	6,53	6,14	3,58	3,74	3,58	3,83	4,60	4,53	4,96	4,52	4,47	4,55
Na ₂ O	8,37	7,93	8,45	8,38	8,34	8,22	8,32	9,56	9,36	9,54	9,07	8,92	8,99	8,76	8,92	9,16	8,92
K ₂ O	0,06	0,07	0,05	0,08	0,06	0,06	0,05	0,20	0,38	0,21	0,45	0,31	0,26	0,23	0,17	0,19	0,27
SrO																	
ВаО	0,02	0,06	0,00	0,00	0,09	0,04	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,03	0,03	0,00	0,00
Total	99,98	99,98	99,32	100,28	100,50	99,87	99,74	99,10	99,01	99,23	99,00	99,20	99,62	99,14	99,25	99,53	99,40
Número de íons com																	
	10,747	10,724	10,847	10,799	10,829	10,762	10,830	11,287	11,304	11,331	11,279	11,150	11,193	11,089	11,152	11,186	11,177
Ti	0,000	0,000	0,005	0,001	0,001	0,001	0,004	0,004	0,000	0,002	0,001	0,006	0,001	0,000	0,002	0,001	0,000
AI - 34	5,220	5,244	5,104	5,164	5,139	5,188	5,135	4,687	4,658	4,632	4,698	4,809	4,765	4,877	4,829	4,763	4,782
Fe ³⁺	0,008	0,008	0,010	0,000	0,018	0,005	0,007	0,016	0,017	0,024	0,024	0,009	0,015	0,006	0,015	0,016	0,015
Mn	0,000	0,000	0,005	0,000	0,002	0,002	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,009
Mg	0,002	0,000	0,002	0,000	0,002	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,002	0,000
Ca	1,208	1,291	1,144	1,203	1,154	1,249	1,173	0,684	0,716	0,683	0,734	0,880	0,863	0,951	0,863	0,852	0,869
Na	2,892	2,743	2,936	2,886	2,864	2,845	2,878	3,306	3,242	3,291	3,140	3,089	3,098	3,037	3,084	3,160	3,082
K	0,013	0,017	0,011	0,017	0,013	0,014	0,010	0,044	0,086	0,047	0,102	0,070	0,058	0,052	0,039	0,044	0,062
Sr Ba	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba Total de Cátions	0,002	0,004	0,000	0,000	0,006	0,002	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,002	0,002	0,000	0,000
	20,092	20,030	20,065	20,070	20,029	20,069	20,040	20,032	20,023	20,009	19,979	20,015	19,993	20,014	19,986	20,025	19,996
X	15,98	15,98	15,97	15,96	15,99	15,96	15,97	15,99	15,98	15,99	16,00	15,97	15,97	15,97	16,00	15,97	15,97
Z	4,12	4,05	4,10	4,11	4,04	4,11	4,07	4,04	4,04	4,02	3,98	4,04	4,02	4,04	3,99	4,06	4,02
Ab	70,25	67,64	71,63	70,28	70,88	69,17	70,80	81,89	80,17	81,84	78,98	76,47	77,07	75,12	77,33	77,86	76,63
An	29,39	31,84	28,09	29,29	28,65	30,42	28,94	16,98	17,71	16,98	18,46	21,81	21,48	23,52	21,64	21,06	21,82
Or	0,36	0,51	0,28	0,42	0,48	0,40	0,25	1,12	2,12	1,18	2,56	1,73	1,44	1,35	1,04	1,08	1,55

Análises Químicas de Anfibólios - Batólito Nordestina: Fácies Fanerítica Média -


Amostra	1831	1831	1831	1831	1831	1831	1831	1831	1831	1831	1867	1867	1867
N° de Campo	584	584	584	584	584	584	584	584	584	584	622	622	622
Análise .	151	152	153	154	155	156	157	158	159	160	73	74	85
Campo	2	2	2	2	2	2	3	3	3	3			
Localização	С	В	С	В	В	С	С	В	В	С	С	ВР	Cristal
SiO ₂	43,93	44,01	42,94	42,53	44,02	43,42	43,64	43,84	43,80	43,12	46,69	45,40	44,21
TiO ₂	0,94	1,00	0,99	0,51	1,11	1,06	1,02	1,12	1,11	0,99	0,46	0,38	0,34
Al ₂ O ₃	8,73	8,95	9,33	10,84	9,30	9,48	9,30	9,01	9,01	9,30	7,58	8,91	9,31
FeO	19,79	19,89	20,05	21,15	19,73	19,92	20,22	19,79	19,82	19,77	20,11	20,91	20,83
MnO	0,53	0,41	0,50	0,47	0,42	0,50	0,55	0,46	0,50	0,44	0,81	0,68	0,74
MgO	9,03	8,88	8,55	7,95	8,77	8,62	8,71	9,02	8,82	8,70	8,81	8,05	7,91
CaO	11,34	11,43	11,54	11,58	11,29	11,28	11,32	11,41	11,23	11,34	11,65	11,64	11,75
Na₂O	0,90	0,90	0,86	0,88	0,95	0,89	0,92	0,90	0,98	0,94	1,04	1,07	1,17
K ₂ O	0,92	0,96	1,01	1,09	1,06	1,02	1,06	0,98	0,95	1,04	0,73	0,89	0,95
F	0,23	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,23			
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Total	96,32	96,44	95,77	97,00	96,65	96,19	96,74	96,53	96,22	95,87	97,87	97,94	97,20
O=F,C	0,10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,00
Total	96,22	96,44	95,77	97,00	96,65	96,19	96,74	96,53	96,22	95,77	97,87	97,94	97,20
						ida em 23 O	•						
Si	6,76	6,75	6,64	6,51	6,75	6,69	6,69	6,72	6,74	6,68	7,06	6,90	6,78
Al''	1,24	1,25	1,36	1,49	1,25	1,31	1,31	1,28	1,26	1,32	0,94	1,10	1,22
ΣT	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00
AI"	0,34	0,37	0,34	0,46	0,43	0,41	0,37	0,34	0,38	0,38	0,41	0,49	0,46
Ti	0,11	0,12	0,12	0,06	0,13	0,12	0,12	0,13	0,13	0,12	0,05	0,04	0,04
Fe	0,24	0,19	0,33	0,44	0,08	0,19	0,22	0,22	0,14	0,23	0,00	0,03	0,15
Mg	2,07	2,03	1,97	1,81	2,00	1,98	1,99	2,06	2,02	2,01	1,99	1,82	1,81
Fe	2,24	2,29	2,24	2,23	2,36	2,30	2,30	2,25	2,33	2,26	2,54	2,62	2,52
Mn**	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,02
ΣC	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
Fe	0,07	0,07	0,02	0,04	0,09	0,07	0,07	0,06	0,08	0,07	0,00	0,00	0,00
Mn**	0,07	0,05	0,07	0,06	0,05	0,07	0,07	0,06	0,07	0,06	0,09	0,09	0,08
Ca	1,86	1,88	1,91	1,90	1,85	1,86	1,86	1,87	1,85	1,87	1,89	1,89	1,92
Na	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,02	0,02	0,00
ΣB	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Ca	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01
Na	0,27	0,27	0,26	0,26	0,27	0,27	0,27	0,26	0,29	0,28	0,28	0,30	0,35
K	0,18	0,19	0,20	0,21	0,21	0,20	0,21	0,19	0,19	0,21	0,14	0,17	0,19
ΣA	0,46	0,46	0,46	0,47	0,48	0,47	0,48	0,45	0,48	0,50	0,42	0,47	0,55
∑ Total	15,46	15,46	15,46	15,47	15,48	15,47	15,48	15,45	15,48	15,50	15,42	15,47	15,55
F	0,11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,11			
CI													

Análises Químicas de Anfibólios - Batólito Nordestina: Rochas Máficas -

Amostra	1871	1871	1871	1871	1871	1871	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
N° de Campo	626	626	626	626	626	626	691-A	691-A	691-A	691-A	691-A	691-A	691-A	691-A	691-A	691-A	691-A	691-A
Análise	161	162	163	164	165	166	210	211	212	213	214	215	204	205	206	207	208	209
Campo	1	1	2	2	3	3	1	1	1	1	2	2	3	3	3	3	4	4
Localização	C	В	С	В	C	В	C	C?	С	В	В	С	В	С	С	В	В	С
SiO ₂	39,87	40,75	40,45	40,61	41,69	39,76	45,88	46,83	46,19	45,79	45,71	46,27	45,41	45,83	45,78	44,15	44,62	45,69
TiO ₂	0,71	0,68	0,66	0,62	0,58	0,76	0,47	0,33	0,89	0,32	1,04	1,09	0,82	0,86	1,12	0,78	1,01	1,22
Al_2O_3	14,77	13,68	13,96	13,67	13,09	14,79	10,26	9,10	9,79	10,76	9,89	9,48	11,12	10,41	9,94	12,28	11,20	10,25
FeO	19,88	19,23	19,09	18,86	18,50	19,64	15,43	15,19	15,22	15,65	15,40	15,28	15,84	15,12	15,38	15,66	15,61	15,48
MnO	0,26	0,31	0,29	0,32	0,34	0,31	0,22	0,25	0,26	0,27	0,27	0,26	0,30	0,27	0,36	0,22	0,27	0,23
MgO	6,97	7,45	7,46	7,51	8,09	7,00	11,27	12,07	11,67	11,33	11,39	11,52	10,92	11,19	11,30	10,44	10,86	11,23
CaO	11,65	11,89	11,85	11,80	11,92	11,71	12,06	12,25	12,24	12,17	11,82	11,99	11,89	12,07	11,55	12,00	11,88	12,09
Na₂O	1,03	0,84	0,82	0,83	0,80	0,95	0,64	0,58	0,70	0,73	0,85	0,77	0,87	0,77	0,88	0,87	0,86	0,74
K₂O	1,68	1,43	1,47	1,44	1,31	1,67	0,69	0,48	0,49	0,68	0,40	0,39	0,53	0,48	0,40	0,71	0,62	0,47
F	0,24	0,22	0,13	0,05	0,02	0,16	0,00	0,22	0,00	0,18	0,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI	0,02	0,00	0,03	0,00	0,00	0,02	0,00	0,00	0,03	0,00	0,00	0,03	0,00	0,02	0,00	0,02	0,00	0,00
Total	97,08	96,47	96,20	95,73	96,33	96,75	96,92	97,29	97,47	97,89	96,90	97,07	97,70	97,02	96,71	97,13	96,92	97,39
O=F,C	0,11	0,09	0,01	0,00	0,00	0,00	0,00	0,09	0,01	0,08	0,05	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Total	96,97	96,38	96,19	95,73	96,33	96,75	96,92	97,20	97,46	97,81	96,85	97,06	97,70	97,02	96,71	97,13	96,92	97,39
					Fórmula	Estrutur	al Basea	ida em 2	3 Oxigên	ios								
Si	6,13	6,26	6,23	6,28	6,37	6,12	6,81	6,90	6,80	6,74	6,80	6,85	6,70	6,79	6,82	6,56	6,64	6,75
Αl ^{ιν}	1,87	1,74	1,77	1,72	1,63	1,88	1,19	1,10	1,20	1,26	1,20	1,15	1,30	1,21	1,18	1,44	1,36	1,25
ΣT	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00
Al ^{vi}	0,81	0,74	0,76	0,77	0,73	0,81	0,60	0,48	0,50	0,60	0,53	0,51	0,64	0,61	0,56	0,71	0,61	0,54
Ti	0,08	0,08	0,08	0,07	0,07	0,09	0,05	0,04	0,10	0,04	0,12	0,12	0,09	0,10	0,13	0,09	0,11	0,14
Fe³⁺	0,26	0,30	0,32	0,28	0,27	0,29	0,18	0,29	0,21	0,25	0,12	0,10	0,13	0,10	0,04	0,16	0,16	0,14
Mg	1,60	1,71	1,71	1,73	1,84	1,61	2,49	2,65	2,56	2,48	2,52	2,54	2,40	2,47	2,51	2,31	2,41	2,47
Fe ^{z+}	2,25	2,17	2,13	2,15	2,09	2,20	1,68	1,54	1,63	1,62	1,71	1,73	1,74	1,72	1,76	1,73	1,71	1,71
Mn ^{z+}	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ΣC	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	4,99	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
Fe ^{z+}	0,05	0,00	0,00	0,01	0,00	0,04	0,06	0,04	0,04	0,05	0,08	0,06	0,08	0,06	0,12	0,05	0,07	0,06
Mn ^{z+}	0,03	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,04	0,03	0,05	0,03	0,03	0,03
Ca	1,92	1,96	1,95	1,95	1,95	1,92	1,91	1,93	1,93	1,92	1,88	1,90	1,88	1,91	1,83	1,91	1,89	1,91
Na	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,01	0,01	0,00
ΣB	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Ca	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00
Na	0,31	0,25	0,23	0,25	0,23	0,28	0,18	0,17	0,20	0,21	0,23	0,21	0,25	0,22	0,25	0,24	0,24	0,21
Κ	0,33	0,28	0,29	0,28	0,26	0,33	0,13	0,09	0,09	0,13	0,08	0,07	0,10	0,09	0,08	0,13	0,12	0,09
$\sum A$	0,64	0,53	0,52	0,53	0,49	0,62	0,32	0,26	0,29	0,34	0,31	0,28	0,35	0,32	0,34	0,37	0,36	0,30
∑ Total	15,64	15,53	15,52	15,53	15,49	15,62	15,32	15,26	15,29	15,33	15,31	15,28	15,35	15,32	15,34	15,37	15,36	15,30
F	0,12	0,11	0,00	0,00	0,00	0,00	0,00	0,10	0,00	0,08	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,00

Análises Químicas de Anfibólios - Embasamento: Enclave Máfico -

Amostra	1915	1915	1915	1915	1915	1915
N° de Campo	714-B	714-B	714-B	714-B	714-B	714-B
Análise	167	168	149	150	147	148
Campo	1	1	2	2	3	3
Localização	C	В	С	В	В	С
SiO ₂	41,47	41,80	41,61	41,88	41,87	41,71
TiO ₂	1,77	1,53	1,44	1,53	1,58	1,45
Al_2O_3	10,60	10,57	10,60	10,58	10,54	10,68
FeO	20,23	20,50	20,05	19,79	20,11	20,18
MnO	0,27	0,32	0,29	0,33	0,33	0,30
MgO	8,18	8,38	8,41	8,47	8,26	8,28
CaO	11,36	11,33	11,53	11,42	11,47	11,43
Na₂O	1,27	1,07	1,11	1,09	1,05	1,10
K ₂ O	1,37	1,33	1,37	1,32	1,38	1,31
F	0,00	0,26	0,21	0,34	0,34	0,20
CI	0,05	0,05	0,05	0,05	0,05	0,04
Total	96,56	97,15	96,67	96,79	96,96	96,67
O=F,C	0,01	0,12	0,10	0,15	0,15	0,09
Total	96,55	97,03	96,57	96,64	96,81	96,58
	I	Fórmula Estru	utural Basead	a em 23 Oxig	ênios	
Si	6,43	6,43	6,43	6,46	6,46	6,44
ΑΙ ^{ΙV}	1,57	1,57	1,57	1,54	1,54	1,56
ΣT	8,00	8,00	8,00	8,00	8,00	8,00
ΑΙ ^{VI}	0,36	0,35	0,36	0,39	0,38	0,39
Ti	0,21	0,18	0,17	0,18	0,18	0,17
Fe ³⁺	0,15	0,28	0,27	0,21	0,20	0,24
Mg	1,89	1,92	1,94	1,95	1,90	1,91
Fe ²⁺	2,39	2,27	2,26	2,27	2,34	2,29
Mn ²⁺	0,00	0,00	0,00	0,00	0,00	0,00
ΣC	5,00	5,00	5,00	5,00	5,00	5,00
Fe ²⁺	0,08	0,09	0,06	0,08	0,05	0,07
Mn ²⁺	0,04	0,04	0,04	0,04	0,04	0,04
Ca	1,88	1,87	1,90	1,88	1,90	1,89
Na	0,00	0,00	0,00	0,00	0,01	0,00
ΣB	2,00	2,00	2,00	2,00	2,00	2,00
Са	0,01	0,00	0,01	0,01	0,00	0,00
Na	0,38	0,32	0,33	0,33	0,30	0,33
K	0,27	0,26	0,27	0,26	0,27	0,26
ΣΑ	0,66	0,58	0,61	0,60	0,57	0,59
∑ Total	15,66	15,58	15,61	15,60	15,57	15,59
F	0,00	0,13	0,10	0,17	0,17	0,10
CI	0,01	0,01	0,01	0,01	0,01	0,01

Análises Químicas de Micas
- Batólito Nordestina: Fácies Fanerítica Média -

Amostra	1333	1333	1333	1333	1333	1333	1406	1406	1406	1406	1406	1406	1831	1831	1831	1831	1831
N° de Campo	12	12	12	12	12	12	105	105	105	105	105	105	584	584	584	584	584
Análise	54	55	56	57	58	59	66	67	68	69	70	72	176	177	178	179	182
Campo	1	1	2	2	4	4	1	1	3	3	4	4	2	2	4	4	4
Localização	Borda	Centro	Borda	Centro	Centro	Borda	Borda	Centro	Borda	Centro	Centro	Borda	Borda	Centro	Centro	Borda	Borda
SiO ₂	35,73	36,06	35,59	35,63	36,23	35,80	36,41	36,06	36,35	36,07	35,99	35,07	35,95	36,06	36,27	34,91	36,17
Al ₂ O ₃	15,28	15,44	15,49	14,97	15,47	15,11	16,49	16,40	17,05	17,18	16,75	16,25	14,57	14,37	14,92	14,90	15,31
TiO ₂	2,35	2,50	2,70	3,03	2,38	2,96	2,14	2,10	1,91	2,24	1,90	1,81	2,44	2,79	3,01	2,78	2,69
FeO	22,94	22,73	22,00	22,21	22,35	23,12	20,94	20,99	20,63	20,36	20,59	20,81	21,53	21,36	21,73	22,84	21,18
MnO	0,26	0,32	0,27	0,31	0,35	0,28	0,24	0,24	0,22	0,22	0,26	0,22	0,31	0,24	0,30	0,31	0,28
MgO	8,49	8,40	8,04	8,23	8,58	8,25	9,33	9,49	9,23	9,31	9,59	9,55	9,42	9,27	8,85	9,37	9,14
CaO	0,03	0,00	0,00	0,00	0,03	0,00	0,06	0,05	0,06	0,04	0,00	0,03	0,00	0,00	0,05	0,10	0,03
Na2O	0,07	0,09	0,02	0,05	0,08	0,05	0,04	0,04	0,04	0,06	0,04	0,05	0,03	0,05	0,07	0,05	0,05
BaO	0,13	0,00	0,00	0,00	0,22	0,00	0,21	0,24	0,20	0,28	0,25	0,15	0,15	0,13	0,16	0,00	0,00
K20	9,50	9,62	9,66	9,44	9,46	9,25	9,64	9,69	9,88	9,84	9,69	9,14	9,66	9,70	9,57	8,55	9,80
F	0,28	0,36	0,30	0,34	0,28	0,28	0,14	0,20	0,00	0,00	0,00	0,00	0,45	0,21	0,29	0,21	0,59
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
O=F,CI	0,12	0,15	0,13	0,14	0,12	0,12	0,06	0,08	0,00	0,00	0,00	0,00	0,19	0,09	0,12	0,09	0,25
Total	94,94	95,37	93,94	94,07	95,31	95,00	95,58	95,42	95,59	95,60	95,06	93,10	94,34	94,09	95,10	93,93	95,01
					Fórmula												
Si	2,80	2,80	2,80	2,80	2,81	2,80	2,80	2,78	2,79	2,77	2,78	2,77	2,82	2,83	2,82	2,75	2,80
Al ^{iv}	1,20	1,20	1,20	1,20	1,19	1,20	1,20	1,22	1,21	1,23	1,22	1,23	1,18	1,17	1,18	1,25	1,20
Total Z	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Al ^{VI}	0,21	0,22	0,24	0,19	0,23	0,19	0,29	0,27	0,33	0,32	0,30	0,28	0,16	0,16	0,18	0,14	0,20
Fe ³⁺	0,02	0,06	0,09	0,00	0,07	0,07	0,11	0,09	0,17	0,12	0,08	0,01	0,04	0,02	0,03	0,29	0,11
Ti	0,14	0,15	0,16	0,18	0,14	0,17	0,12	0,12	0,11	0,13	0,11	0,11	0,14	0,16	0,18	0,16	0,16
Mg Fe ²⁺	0,99	0,97	0,94	0,97	0,99	0,96	1,07	1,09	1,06	1,06	1,10	1,12	1,10	1,08	1,02	1,10	1,06
. •	1,48	1,42	1,36	1,46	1,38	1,44	1,23	1,27	1,15	1,19	1,25	1,36	1,37	1,39	1,38	1,22	1,26
Mn	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,02	0,02	0,02	0,02	0,02
Total Y Ca	2,86	2,84	2,81	2,82	2,83	2,85	2,84	2,86	2,83	2,83	2,86	2,89	2,83	2,83	2,81	2,93	2,81
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
Na K	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01
n Ba	0,95	0,95	0,97	0,95	0,94	0,92	0,94	0,95	0,97	0,96	0,95	0,92	0,97	0,97	0,95	0,86	0,97 0,00
Total X	0,00	0,00	0,00	0,00	0,01 0,96	0,00	0,01	0,01 0,97	0,01	0,01	0,01	0,00	0,00	0,00	0,00 0,96	0,00	0,00
OH	1,98	0,96 1,91	0,97 1,92	0,96		0,93 1,93	0,96 1,96		0,99	0,98	0,97	0,93	0,97 1,88	0,98		0,88	1,85
F	0,07	0,09	0,08	1,91 0,09	1,93 0,07	0,07	0,03	1,95 0,05	0,00	2,00	2,00 0,00	2,00	0,11	1,95 0,05	1,93 0,07	1,95 0,05	0,15
г Cl	0,07	0,09	0,08	0,09	0,07	0,07	0,03	0,05	0,00	0,00	0,00	0,00	0,11	0,05	0,07	0,05	0,15
Total	2,00	2,00	2,00	2,00	2,00	2,00	1,99	2,00	2,00	2,00	2,00	2,00	1,99	2,00	2,00	2,00	2,00
iotai	۷,00	2,00	۷,00	۷,00	2,00	2,00	1,33	۷,00	۷,00	۷,00	۷,00	۷,00	1,33	2,00	2,00	2,00	4,00

Análises Químicas de Micas - Batólito Nordestina: Fácies Fanerítica Média -

Amostra	1831	1831	1833	1833	1833	1833	1833	1833	1833	1833	1836	1836	1836	1836	1836	1836	1836
N° de Campo	584	584	587	587	587	587	587	587	587	587	591	591	591	591	591	591	591
Análise .	180	181	7	8	1	2	3	4	5	6	73	72	74	75	76	77	78
Campo	5	5	1	1	2	2	3	3	4	4	1	1	2	3	3	4	4
Localização	Borda	Centro	Borda	Centro	Borda	Centro	Centro	Borda	Centro	Borda	Borda	Centro	Centro	Borda	Centro	Borda	Centro
SiO ₂	36,02	36,37	36,53	36,48	35,63	36,00	36,48	36,08	36,45	36,75	35,87	36,13	35,64	35,82	35,96	36,19	35,88
Al_2O_3	14,43	14,34	16,01	15,46	15,48	15,40	15,55	15,61	16,15	16,27	15,41	15,50	14,15	15,34	15,19	15,73	15,51
TiO ₂	3,29	3,26	3,38	3,12	2,71	3,17	3,01	3,27	2,87	2,82	3,22	3,00	2,77	3,47	3,51	3,11	3,13
FeO	22,28	21,91	20,92	22,16	22,95	22,97	22,06	21,84	21,55	21,36	22,55	22,54	22,54	22,65	22,43	22,10	22,31
MnO	0,32	0,26	0,28	0,28	0,30	0,25	0,26	0,24	0,29	0,31	0,26	0,28	0,28	0,31	0,30	0,25	0,32
MgO	9,03	8,83	8,48	8,60	8,45	8,24	8,53	8,26	7,78	7,59	8,09	8,24	7,68	8,30	8,09	8,05	8,05
CaO	0,00	0,00	0,03	0,04	0,00	0,02	0,00	0,02	0,00	0,03	0,02	0,00	0,34	0,02	0,00	0,04	0,03
Na2O	0,07	0,04	0,05	0,05	0,04	0,04	0,03	0,04	0,04	0,06	0,02	0,04	0,02	0,05	0,04	0,05	0,06
BaO	0,39	0,00	0,22	0,19	0,19	0,21	0,24	0,14	0,35	0,30	0,18	0,22	0,30	0,14	0,00	0,23	0,15
K2O	9,42	9,71	9,61	9,47	9,38	9,61	9,55	9,70	9,65	9,45	9,25	9,52	9,32	9,26	9,51	9,22	9,55
F	0,19	0,29	0,00	0,00	0,00	0,26	0,00	0,00	0,31	0,21	0,29	0,21	0,19	0,23	0,00	0,18	0,19
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
O=F,CI	0,08	0,12	0,00	0,00	0,00	0,11	0,00	0,00	0,13	0,09	0,12	0,09	0,08	0,10	0,00	0,08	0,08
Total	95,36	94,89	95,51	95,85	95,13	96,06	95,71	95,20	95,31	95,06	95,04	95,61	93,17	95,49	95,03	95,07	95,12
							ral Base										
Si	2,80	2,83	2,81	2,81	2,78	2,78	2,81	2,80	2,82	2,84	2,79	2,80	2,85	2,78		2,81	2,79
Al ^{iv}	1,20	1,17	1,19	1,19	1,22	1,22	1,19	1,20	1,18	1,16	1,21	1,20	1,15	1,22		1,19	1,21
Total Z	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
AI ^{VI}	0,13	0,15	0,26	0,21	0,21	0,19	0,23	0,23	0,29	0,32	0,21	0,22	0,18	0,18	0,20	0,25	0,22
Fe ³⁺	0,10	0,01	0,05	0,03	0,09	0,03	0,00	0,01	0,20	0,23	0,03	0,01	0,13	0,11	0,08	0,03	0,02
Ti	0,19	0,19	0,20	0,18	0,16	0,18	0,17	0,19	0,17	0,16	0,19	0,17	0,17	0,20	0,21	0,18	0,18
Mg Fe ²⁺	1,05	1,03	0,97	0,99	0,98	0,95	0,98	0,96	0,90	0,87	0,94	0,95	0,91	0,96	0,94	0,93	0,93
	1,35	1,42	1,29	1,40	1,41	1,46	1,42	1,41	1,20	1,15	1,44	1,45	1,37	1,36	1,38	1,40	1,43
Mn	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	•	0,02	0,02
Total Y	2,84	2,82	2,79	2,83	2,87	2,83	2,82	2,82	2,78	2,75	2,83	2,82	2,78	2,83		2,81	2,80
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00
Na	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,01	0,00	0,01	0,01	0,01	0,01
K	0,94	0,96	0,94	0,93	0,93	0,95	0,94	0,96	0,95	0,93	0,92	0,94	0,95	0,92	0,94	0,91	0,95
Ba Tatal V	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,01	0,00
Total X	0,96	0,97	0,96	0,95	0,95	0,97	0,95	0,97	0,97	0,95	0,93	0,96	0,99	0,93	0,95	0,93	0,96
OH F	1,95	1,93	2,00	2,00	2,00	1,94	2,00	2,00	1,92	1,95	1,93	1,95	1,95	1,94	2,00	1,95	1,95
r Cl	0,05	0,07	0,00	0,00	0,00	0,06	0,00	0,00	0,08	0,05	0,07	0,05	0,05	0,06	•	0,04	0,05 0,00
Ci Total		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
iotai	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	1,99	2,00

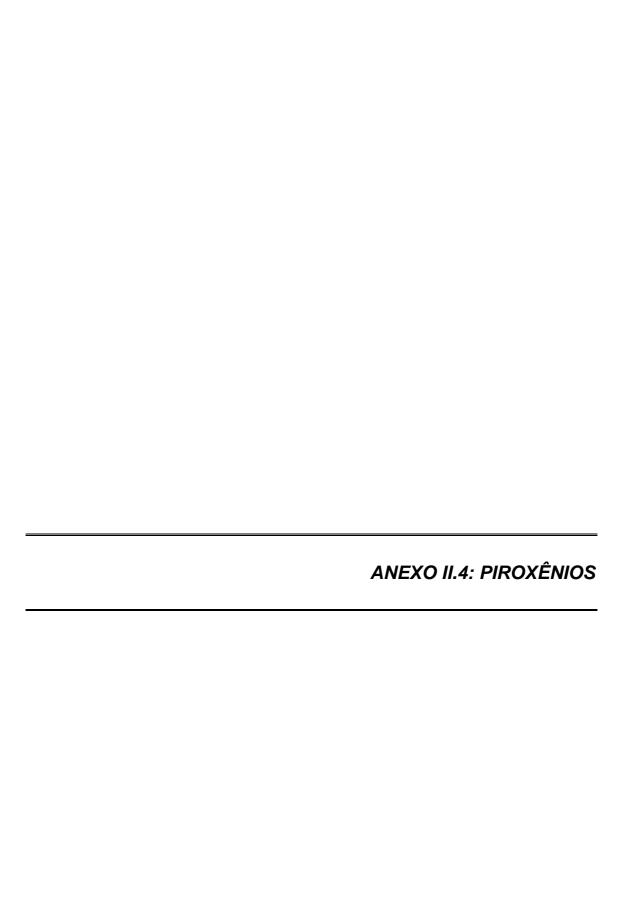
Análises Químicas de Micas - Batólito Nordestina: Fácies Fanerítica Média -

Amostra	1867	1867	1867	1867	1867	1867	1867	1867	1867	1867	1876	1876	1876	1876	1876	1876
N° de Campo	622	622	622	622	622	622	622	622	622	622	645	645	645	645	645	645
Análise	65	66	67	68	69	70	81	82	87	88	79	80	81	82	83	84
Campo		_ ,		_ ,		_ ,		_ ,		_ ,	1	1	3	3	4	4
Localização	Centro	Borda	Centro	Borda	Centro	Borda	Centro	Borda	Centro	Borda	Centro	Borda	Borda	Centro	Borda	Centro
SiO ₂	36,20	34,12	35,72	35,42	35,37	35,40	34,61	36,00	35,73	36,00	36,10	35,83	36,41	36,41	36,11	36,57
Al_2O_3	15,16	15,50	15,99	15,70	15,87	16,29	16,28	16,10	16,26	15,73	15,64	15,28	15,50	15,42	15,44	15,75
TiO ₂	2,14	1,76	2,12	1,88	1,73	1,57	1,41	1,33	1,55	1,36	2,74	2,56	3,02	2,98	2,93	3,10
FeO	22,09	23,29	22,57	23,21	23,03	22,33	22,26	23,62	23,41	22,32	20,95	21,33	22,09	21,93	21,55	21,29
MnO	0,42	0,46	0,40	0,46	0,21	0,18	0,31	0,35	0,42	0,44	0,27	0,27	0,22	0,30	0,24	0,19
MgO	8,13	8,32	8,37	8,50	8,60	8,72	9,03	8,70	8,57	8,89	8,64	9,11	8,92	9,05	8,98	8,89
CaO	0,00	0,07	0,02	0,08	0,12	0,17	0,09	0,04	0,13	0,08	0,00	0,02	0,07	0,04	0,02	0,00
Na2O	0,09	0,09	0,08	0,11	0,10	0,13	0,05	0,06	0,08	0,05	0,06	0,06	0,05	0,05	0,05	0,07
BaO	0,29	0,00	0,00	0,10	0,29	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,16
K2O	9,61	8,24	9,76	9,21	9,55	9,32	8,89	9,63	9,51	9,38	9,65	9,33	9,25	9,60	9,48	9,66
F	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,00	0,31	0,00	0,23	0,00
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
O=F,CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,13	0,00	0,14	0,00	0,10	0,00
Total	94,13	91,85	95,03	94,67	94,87	94,11	92,93	95,89	95,66	94,25	94,23	93,79	95,72	95,78	94,93	95,70
							ral Base									
Si Al ^{ıv}	2,85	2,76	2,79	2,78	2,78	2,78	2,75	2,79	2,78	2,82	2,81	2,81	2,80	2,80	2,80	2,81
	1,15	1,24	1,21	1,22	1,22	1,22	1,25	1,21	1,22	1,18	1,19	1,19	1,20	1,20	1,20	1,19
Total Z Al ^{vi}	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Fe ³⁺	0,26	0,24	0,26	0,24	0,25	0,29	0,28	0,27	0,27	0,28	0,25	0,22	0,21	0,20	0,21	0,24
	0,16	0,19	0,05	0,03	0,05	0,08	0,06	0,05	0,03	0,09	0,12	0,03	0,04	0,05	0,01	0,02
Ti	0,13	0,11	0,12	0,11	0,10	0,09	0,08	0,08	0,09	0,08	0,16	0,15	0,17	0,17	0,17	0,18
Mg Fe ²⁺	0,95	1,00	0,97	1,00	1,01	1,02	1,07	1,01	0,99	1,04	1,00	1,07	1,02	1,04	1,04	1,02
	1,30	1,39	1,42	1,49	1,46	1,39	1,42	1,48	1,49	1,37	1,25	1,37	1,39	1,36	1,39	1,35
Mn	0,03	0,03	0,03	0,03	0,01	0,01	0,02	0,02	0,03	0,03	0,02	0,02	0,01	0,02	0,02	0,01
Total Y Ca	2,83	2,96	2,85	2,90	2,88	2,88	2,93	2,91	2,90	2,89	2,80	2,86	2,84	2,84	2,84	2,82
	0,00	0,01	0,00	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,00
Na K	0,01	0,01	0,01	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
r. Ba	0,97	0,85	0,97	0,92	0,96	0,93	0,90	0,95	0,94	0,94	0,96	0,93	0,91	0,94	0,94	0,95 0,00
Total X	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
OH	0,99 2,00	0,87	0,98	0,95 2,00	1,00	0,96 2,00	0,92 2,00	0,96 2,00	0,96	0,96	0,97 1,92	0,94	0,93 1,92	0,95	0,95 1,94	0,96 2,00
F	0,00	2,00	2,00		0,00	0,00		0,00	2,00	2,00	0,07			2,00		0,00
r Cl	0,00	0,00	0,00	0,00		0,00	0,00		0,00	•	0,07	0,00	0,08	0,00	0,06	0,00
Total		0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	
iotai	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	1,99	2,00	2,00	2,00	2,00	2,00

Análises Químicas de Micas - Batólito Nordestina: Fácies Porfirítica -

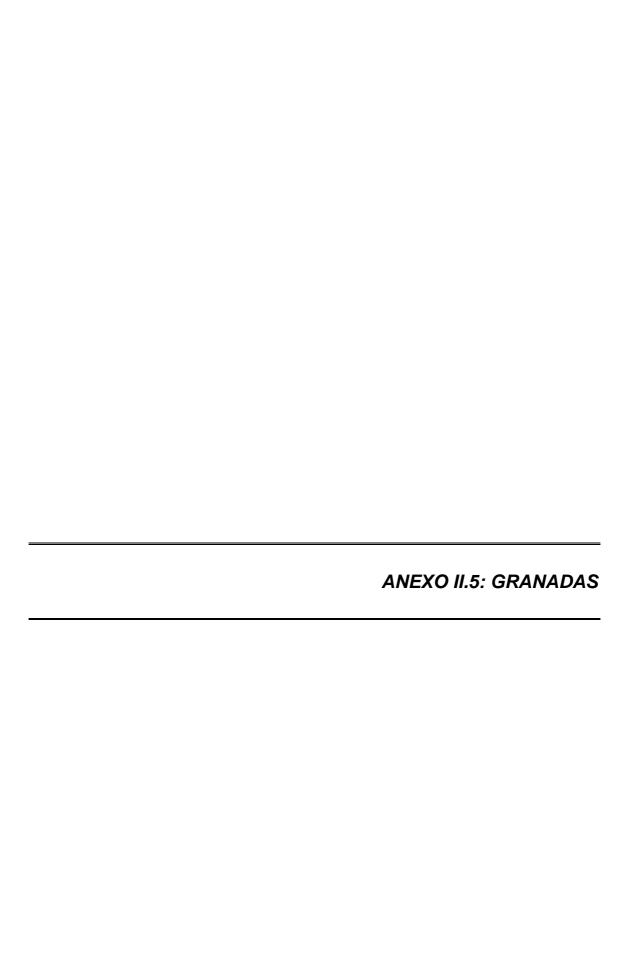
A	1226	1226	1226	1226	1226	1226	1051	1051	1051	1051	1051	1051	1051	1051	1051	1051
Amostra N° de Campo	1336 18	1336 18	1336 18	1336 18	1336 18	1336 18	1851 607	1851 607	1851 607	1851 607	1851 607	1851 607	1851 607	1851 607	1851 607	1851 607
Análise	60	61	62	63	16 64	65	55	56	57	58	59	60	77	78	90	91
Campo	1	1	2	2	3	3	55	50	5 /	56	59	60	/ /	76	90	91
Localização	Centro	Borda	Centro	2 Borda	Borda	Centro	Centro	Borda	Centro	Borda	Centro	Borda	Centro	Borda	Centro	Borda
,																
SiO ₂	36,34	36,71	36,78	36,17	36,57	36,90	37,40	36,09	37,24	37,00	35,75	36,54	36,57	35,84	36,33	35,55
Al_2O_3	15,50	15,87	15,36	15,51	15,71	15,61	15,87	16,09	15,41	15,48	15,57	15,62	15,75	15,73	14,69	14,84
TiO ₂	1,98	1,66	2,22	2,07	1,51	1,70	2,29	1,91	1,79	1,78	2,18	1,83	2,03	1,97	1,95	1,74
FeO	22,02	21,46	21,71	21,54	22,34	22,25	21,73	21,92	22,06	22,43	22,50	22,09	22,09	22,02	22,15	22,63
MnO	0,34	0,34	0,28	0,35	0,38	0,35	0,34	0,41	0,50	0,53	0,33	0,40	0,45	0,48	0,39	0,46
MgO	9,42	9,25	8,88	9,03	8,60	8,90	8,71	8,85	9,12	9,04	8,84	8,66	8,97	9,11	8,62	8,98
CaO	0,05	0,03	0,02	0,10	0,00	0,04	0,16	0,22	0,12	0,00	0,15	0,18	0,01	0,05	0,02	0,03
Na2O	0,04	0,06	0,07	0,09	0,06	0,05	0,05	0,04	0,09	0,08	0,07	0,06	0,06	0,06	0,02	0,02
BaO	0,15	0,00	0,00	0,00	0,18	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,19	0,06
K2O	9,36	10,02	9,70	9,33	9,73	9,65	9,58	9,19	9,58	9,77	9,36	9,36	9,77	9,21	9,75	8,65
F	0,53	0,38	0,35	0,39	0,26	0,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
O=F,CI	0,23	0,16	0,15	0,16	0,11	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	95,52	95,62	95,22	94,42	95,25	95,68	96,13	94,72	95,91	96,11	94,75	94,74	95,70	94,47	94,11	92,96
e:	2 01	2 02	2 04				ral Base				0.70	2 04	2 02	2 00	2.06	2.02
Si Al ^{iv}	2,81 1,19	2,83	2,84	2,82	2,84	2,84	2,86	2,81	2,86	2,85	2,79	2,84	2,82	2,80	2,86	2,83 1,17
Total Z	4,00	1,17 4,00	1,16 4,00	1,18	1,16 4,00	1,16 4,00	1,14	1,19 4,00	1,14	1,15 4,00	1,21	1,16 4,00	1,18 4,00	1,20	1,14	4,00
Al ^{vi}	0,22	0,27	0,24	0,24	0,28	0,26	0,28	0,28	0,26	0,25	0,23	0,28	0,25	0,25	0,23	0,22
Fe ³⁺	0,22	0,27	0,16	0,24	0,20	0,20	0,16	0,26	0,13	0,23	0,23	0,28	0,23	0,23	0,13	0,22
Ti	0,07	0,22	0,10	0,11	0,21	0,10	0,10	0,00	0,10	0,10	0,02	0,13	0,07	0,03	0,13	0,10
Mg	1,08	1,06	1,02	1,05	1,00	1,02	0,13	1,03	1,04	1,04	1,03	1,00	1,03	1,06	1,01	1,07
Fe ²⁺	1,35	1,16	1,24	1,29	1,24	1,25	1,23	1,37	1,28	1,35	1,45	1,31	1,35	1,41	1,33	1,41
Mn	0,02	0,02	0,02	0,02	0,03	0,02	0,02	0,03	0,03	0,03	0,02	0,03	0,03	0,03	0,03	0,03
Total Y	2,86	2,83	2,81	2,83	2,85	2,84	2,81	2,88	2,84	2,87	2,88	2,86	2,85	2,90	2,85	2,92
Ca	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,02	0,01	0,00	0,01	0,02	0,00	0,00	0,00	0,00
Na	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00
K	0,92	0,98	0,96	0,93	0,96	0,95	0,93	0,91	0,94	0,96	0,93	0,93	0,96	0,92	0,98	0,88
Ва	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
Total X	0,93	0,99	0,97	0,95	0,98	0,96	0,95	0,94	0,96	0,97	0,95	0,96	0,97	0,93	0,99	0,88
ОН	1,87	1,91	1,91	1,90	1,93	1,90	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
F	0,13	0,09	0,09	0,10	0,06	0,10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	2,00	2,00	2,00	2,00	1,99	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00

Análises Químicas de Micas - Batólito Nordestina: Fácies Porfirítica -


Amostra	1856	1856	1856	1856	1856	1856
N° de Campo	612	612	612	612	612	612
Análise	9	10	11	12	13	14
Campo	2	2	3	3	4	4
Localização	Borda	Centro	Borda	Centro	Centro	Borda
SiO ₂	36,53	36,53	36,75	36,39	36,56	35,97
Al ₂ O ₃	16,12	15,69	15,92	15,70	15,98	15,56
TiO ₂	1,97	2,41	2,68	2,54	2,43	2,01
FeO	21,32	21,17	21,28	22,02	20,95	20,99
MnO	0,27	0,20	0,27	0,34	0,22	0,25
MgO	9,11	9,49	8,64	9,01	8,82	9,04
CaO	0,03	0,04	0,02	0,00	0,00	0,02
Na2O	0,05	0,07	0,02	0,01	0,06	0,02
BaO	0,14	0,00	0,00	0,00	0,00	0,00
K20	9,72	9,62	9,77	9,71	9,62	9,87
F	0,47	0,35	0,53	0,55	0,41	0,28
CI	0,00	0,00	0,00	0,00	0,00	0,00
O=F,CI	0,20	0,15	0,22	0,23	0,17	0,12
Total	95,56	95,42	95,66	96,04	94,88	93,89
	Fórmula	Est. Bas	seada em	11 Oxig	rênios	
Si	Fórmula 2,81	Est. Bas 2,81	2,82	2,80	rênios 2,82	2,82
Αl ^{ιν}				_		2,82
Al ^{iv} Total Z	2,81	2,81	2,82	2,80	2,82	
Al ^{ıv} Total Z Al ^{vi}	2,81 1,19	2,81 1,19	2,82 1,18	2,80 1,20	2,82 1,18	1,18
Al ^{iv} Total Z	2,81 1,19 4,00	2,81 1,19 4,00	2,82 1,18 4,00	2,80 1,20 4,00	2,82 1,18 4,00	1,18 4,00
Al ^{ıv} Total Z Al ^{vi}	2,81 1,19 4,00 0,27 0,19 0,11	2,81 1,19 4,00 0,23	2,82 1,18 4,00 0,26	2,80 1,20 4,00 0,22	2,82 1,18 4,00 0,28	1,18 4,00 0,26
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg	2,81 1,19 4,00 0,27 0,19	2,81 1,19 4,00 0,23 0,08	2,82 1,18 4,00 0,26 0,18	2,80 1,20 4,00 0,22 0,06	2,82 1,18 4,00 0,28 0,17	1,18 4,00 0,26 0,17
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti	2,81 1,19 4,00 0,27 0,19 0,11	2,81 1,19 4,00 0,23 0,08 0,14	2,82 1,18 4,00 0,26 0,18 0,15	2,80 1,20 4,00 0,22 0,06 0,15	2,82 1,18 4,00 0,28 0,17 0,14	1,18 4,00 0,26 0,17 0,12
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg	2,81 1,19 4,00 0,27 0,19 0,11 1,04	2,81 1,19 4,00 0,23 0,08 0,14 1,09	2,82 1,18 4,00 0,26 0,18 0,15 0,99	2,80 1,20 4,00 0,22 0,06 0,15 1,03	2,82 1,18 4,00 0,28 0,17 0,14 1,02	1,18 4,00 0,26 0,17 0,12 1,06
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18	1,18 4,00 0,26 0,17 0,12 1,06
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18 0,02 2,81	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01 2,83	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02 2,79	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02 2,83	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01 2,80	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02 2,84
Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18 0,02 2,81 0,00	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01 2,83 0,00	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02 2,79 0,00	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02 2,83 0,00	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01 2,80 0,00	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02 2,84 0,00
Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18 0,02 2,81 0,00	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01 2,83 0,00 0,01	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02 2,79 0,00	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02 2,83 0,00 0,00	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01 2,80 0,00 0,01	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02 2,84 0,00 0,00
Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18 0,02 2,81 0,00 0,01	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01 2,83 0,00 0,01 0,94	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02 2,79 0,00 0,00	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02 2,83 0,00 0,00	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01 2,80 0,00 0,01 0,95	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02 2,84 0,00 0,00 0,99
Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K Ba	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18 0,02 2,81 0,00 0,01 0,95 0,00	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01 2,83 0,00 0,01 0,94 0,00	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02 2,79 0,00 0,00 0,96 0,00	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02 2,83 0,00 0,00 0,95 0,00	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01 2,80 0,00 0,01 0,95 0,00	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02 2,84 0,00 0,00 0,99 0,00
Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K Ba Total X	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18 0,02 2,81 0,00 0,01 0,95 0,00	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01 2,83 0,00 0,01 0,94 0,00 0,95	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02 2,79 0,00 0,00 0,96 0,00	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02 2,83 0,00 0,00 0,95	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01 2,80 0,00 0,01 0,95 0,00 0,96	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02 2,84 0,00 0,00 0,99 0,00 0,99
Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K Ba Total X OH	2,81 1,19 4,00 0,27 0,19 0,11 1,04 1,18 0,02 2,81 0,00 0,01 0,95 0,00 0,96 1,88	2,81 1,19 4,00 0,23 0,08 0,14 1,09 1,28 0,01 2,83 0,00 0,01 0,94 0,00 0,95 1,91	2,82 1,18 4,00 0,26 0,18 0,15 0,99 1,19 0,02 2,79 0,00 0,00 0,96 0,00 0,96 1,87	2,80 1,20 4,00 0,22 0,06 0,15 1,03 1,35 0,02 2,83 0,00 0,00 0,95 0,00 0,95 1,86	2,82 1,18 4,00 0,28 0,17 0,14 1,02 1,18 0,01 2,80 0,00 0,01 0,95 0,00 0,96 1,90	1,18 4,00 0,26 0,17 0,12 1,06 1,21 0,02 2,84 0,00 0,00 0,99 0,00 0,99 1,93

Análises Químicas de Micas -Litotipos do Embasamento-

Amostra	1841	1841	1841	1841	1841	1841	1841	1841
N° de Campo	597	597	597	597	597	597	597	597
Análise	183	184	185	186	189	190	187	188
Campo	1	1	2	2	2	2	3	3
Localização	Centro	Borda	Centro	Borda	Centro	Borda	Centro	Borda
SiO ₂	36,36	35,64	36,28	34,94	36,50	36,62	36,31	35,94
Al ₂ O ₃	18,88	18,98	18,55	18,91	18,50	18,62	18,35	18,74
TiO ₂	1,80	1,96	1,71	1,48	1,70	1,93	1,64	1,65
FeO	15,81	15,45	18,43	18,68	18,39	17,66	18,46	18,12
MnO	0,01	0,02	0,05	0,05	0,07	0,07	0,07	0,06
MgO	12,74	13,08	11,35	12,17	11,33	11,16	11,39	11,66
CaO	0,00	0,00	0,00	0,03	0,02	0,04	0,00	0,00
Na2O	0,25	0,29	0,15	0,10	0,20	0,18	0,15	0,14
BaO	0,28	0,27	0,00	0,15	0,17	0,22	0,25	0,25
K2O	8,56	8,52	8,89	7,82	8,83	9,05	8,68	8,68
F	0,17	0,00	0,00	0,00	0,00	0,16	0,00	0,00
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
O=F,CI	0,07	0,00	0,01	0,01	0,00	0,07	0,00	0,00
Total	94,79	94,21	95,43	94,35	95,71	95,73	95,24	95,24
	Fórmula E	strutural	Baseada en	ı 11 Oxigê	nios			
Si	Fórmula E	2,68	Baseada en	1 1 Oxig€ 2,66	2,74	2,73	2,71	2,71
Si Al ^{IV}						2,73	2,71 1,29	2,71 1,29
Al ^{IV} Total Z	2,72	2,68	2,73	2,66	2,74			
Al ^{IV} Total Z Al ^{VI}	2,72 1,28	2,68 1,32	2,73 1,27	2,66	2,74 1,26	1,27	1,29	1,29
Al ^{IV} Total Z	2,72 1,28 4,00	2,68 1,32 4,00	2,73 1,27 4,00	2,66 1,34 4,00	2,74 1,26 4,00	1,27 4,00	1,29 4,00	1,29 4,00
Al ^{IV} Total Z Al ^{VI}	2,72 1,28 4,00 0,39	2,68 1,32 4,00 0,37	2,73 1,27 4,00 0,38	2,66 1,34 4,00 0,36	2,74 1,26 4,00 0,38	1,27 4,00 0,36	1,29 4,00 0,38	1,29 4,00 0,38
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg	2,72 1,28 4,00 0,39 0,00	2,68 1,32 4,00 0,37 0,10	2,73 1,27 4,00 0,38 0,02	2,66 1,34 4,00 0,36 0,29	2,74 1,26 4,00 0,38 0,01	1,27 4,00 0,36 0,03	1,29 4,00 0,38 0,06	1,29 4,00 0,38 0,06
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti	2,72 1,28 4,00 0,39 0,00 0,10	2,68 1,32 4,00 0,37 0,10 0,11	2,73 1,27 4,00 0,38 0,02 0,10	2,66 1,34 4,00 0,36 0,29 0,08	2,74 1,26 4,00 0,38 0,01 0,10	1,27 4,00 0,36 0,03 0,09	1,29 4,00 0,38 0,06 0,09	1,29 4,00 0,38 0,06 0,09
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg	2,72 1,28 4,00 0,39 0,00 0,10 1,42	2,68 1,32 4,00 0,37 0,10 0,11 1,47	2,73 1,27 4,00 0,38 0,02 0,10 1,27	2,66 1,34 4,00 0,36 0,29 0,08 1,38	2,74 1,26 4,00 0,38 0,01 0,10 1,27	1,27 4,00 0,36 0,03 0,09 1,25	1,29 4,00 0,38 0,06 0,09 1,28	1,29 4,00 0,38 0,06 0,09 1,31
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14	1,27 4,00 0,36 0,03 0,09 1,25 1,02	1,29 4,00 0,38 0,06 0,09 1,28 1,13	1,29 4,00 0,38 0,06 0,09 1,31 1,08
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00 2,90	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00 2,92	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00 2,91	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00 3,01	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00 2,90	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00 2,75	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00 2,94	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00 2,92
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00 2,90 0,00	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00 2,92 0,00	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00 2,91 0,00	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00 3,01 0,00	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00 2,90 0,00	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00 2,75 0,00	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00 2,94 0,00	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00 2,92 0,00
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00 2,90 0,00	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00 2,92 0,00 0,04	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00 2,91 0,00 0,02	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00 3,01 0,00 0,01	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00 2,90 0,00	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00 2,75 0,00 0,03	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00 2,94 0,00 0,02	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00 2,92 0,00 0,02
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00 2,90 0,00 0,04 0,82	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00 2,92 0,00 0,04 0,82	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00 2,91 0,00 0,02 0,85	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00 3,01 0,00 0,01 0,76	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00 2,90 0,00 0,03 0,85	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00 2,75 0,00 0,03 0,84	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00 2,94 0,00 0,02 0,87	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00 2,92 0,00 0,02 0,84
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K Ba	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00 2,90 0,00 0,04 0,82 0,01	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00 2,92 0,00 0,04 0,82 0,01	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00 2,91 0,00 0,02 0,85 0,00	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00 3,01 0,00 0,01 0,76 0,00	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00 2,90 0,00 0,03 0,85 0,01	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00 2,75 0,00 0,03 0,84 0,01	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00 2,94 0,00 0,02 0,87 0,01	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00 2,92 0,00 0,02 0,84 0,01
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K Ba Total X	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00 2,90 0,00 0,04 0,82 0,01 0,87	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00 2,92 0,00 0,04 0,82 0,01 0,87	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00 2,91 0,00 0,02 0,85 0,00 0,87	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00 3,01 0,00 0,01 0,76 0,00 0,77	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00 2,90 0,00 0,03 0,85 0,01 0,89	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00 2,75 0,00 0,03 0,84 0,01 0,88	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00 2,94 0,00 0,02 0,87 0,01 0,90	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00 2,92 0,00 0,02 0,84 0,01 0,87
Al ^{IV} Total Z Al ^{VI} Fe ³⁺ Ti Mg Fe ²⁺ Mn Total Y Ca Na K Ba Total X OH	2,72 1,28 4,00 0,39 0,00 0,10 1,42 0,99 0,00 2,90 0,00 0,04 0,82 0,01 0,87 1,96	2,68 1,32 4,00 0,37 0,10 0,11 1,47 0,87 0,00 2,92 0,00 0,04 0,82 0,01 0,87 2,00	2,73 1,27 4,00 0,38 0,02 0,10 1,27 1,14 0,00 2,91 0,00 0,02 0,85 0,00 0,87 2,00	2,66 1,34 4,00 0,36 0,29 0,08 1,38 0,90 0,00 3,01 0,00 0,01 0,76 0,00 0,77 2,00	2,74 1,26 4,00 0,38 0,01 0,10 1,27 1,14 0,00 2,90 0,00 0,03 0,85 0,01 0,89 2,00	1,27 4,00 0,36 0,03 0,09 1,25 1,02 0,00 2,75 0,00 0,03 0,84 0,01 0,88 1,94	1,29 4,00 0,38 0,06 0,09 1,28 1,13 0,00 2,94 0,00 0,02 0,87 0,01 0,90 1,96	1,29 4,00 0,38 0,06 0,09 1,31 1,08 0,00 2,92 0,00 0,02 0,84 0,01 0,87 2,00


Análises Químicas de Micas -Litotipos do Embasamento-

Amostra	1914	1914	1914	1914	1914	1914	1914	1914	1914
N° de Campo									
Análise	85	86	87	88	89	90	91	92	93
Campo	1	1	1	1	2	2	3	3	3
Localização	Borda	Centro	Borda	Centro	Borda	Centro	Borda	Centro	Borda
SiO ₂	34,33	32,40	36,19	35,18	36,19	36,38	35,72	36,21	35,67
Al_2O_3	15,36	15,71	16,79	15,94	15,60	15,65	15,92	15,23	15,30
TiO ₂	3,08	1,86	2,90	2,92	3,22	3,18	2,98	3,55	3,58
FeO	24,18	26,26	22,38	23,46	22,00	22,31	22,19	22,09	21,29
MnO	0,42	0,44	0,37	0,40	0,37	0,32	0,31	0,30	0,24
MgO	8,57	9,44	7,23	7,76	8,13	7,99	8,35	8,28	8,05
CaO	0,05	0,06	0,06	0,06	0,03	0,00	0,05	0,03	0,30
Na2O	0,03	0,03	0,04	0,05	0,06	0,05	0,04	0,08	0,07
BaO	0,11	0,00	0,00	0,00	0,00	0,12	0,12	0,19	0,14
K2O	8,07	5,57	9,69	8,27	9,60	9,50	8,57	9,64	9,51
F	0,28	0,25	0,26	0,19	0,43	0,23	0,41	0,25	0,55
CI	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09
O=F,CI	0,14	0,11	0,13	0,10	0,20	0,12	0,19	0,12	0,25
Total	94,42	91,95	95,87	94,20	95,53	95,70	94,54	95,81	94,54
ıula Estrutur	al Basead	a em 11 Ox:	igênios						
Si	2,71	2,63	2,79	2,76	2,80	2,81	2,78	2,80	2,79
ΑΙ ^{ΙV}	1,29	1,37	1,21	1,24	1,20	1,19	1,22	1,20	1,21
Total Z	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Al ^{VI}	0,14	0,13	0,31	0,24	0,22	0,23	0,24	0,19	0,19
Fe ³⁺	0,41	0,92	0,17	0,18	0,07	0,05	0,07	0,00	0,12
Ti	0,18	0,11	0,17	0,17	0,19	0,18	0,17	0,21	0,21
Mg	1,01	1,14	0,83	0,91	0,94	0,92	0,97	0,95	0,94
Fe ²⁺	1,19	0,86	1,27	1,36	1,35	1,39	1,38	1,42	1,27
Mn	0,03	0,03	0,02	0,03	0,02	0,02	0,02	0,02	0,02
Total Y	2,96	3,19	2,77	2,89	2,79	2,79	2,85	2,79	2,75
Ca	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,03
Na	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01
K	0,81	0,58	0,95	0,83	0,95	0,94	0,85	0,95	0,95
Ва	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
Total X	0,81	0,59	0,96	0,85	0,96	0,95	0,86	0,97	0,99
ОН	1,92	1,93	1,92	1,94	1,88	1,93	1,89	1,93	1,85
F	0,07	0,06	0,06	0,05	0,11	0,06	0,10	0,06	0,14
CI	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Total	2,00	2,00	1,99	2,00	2,00	2,00	2,00	2,00	2,00

Análises Químicas de Piroxênios - Enclave Máfico do Embasamento (Am 1915) -

Amostra	1915	1915	1915	1915	1915	1915	1915
N° de Campo	1713	1713	1713	1713	1313	1713	1713
Análise	173	174	175	171	172	169	170
Campo	1	1	1	2	2	3	3
Localização	В	C	В	C	В	C	В
SiO ₂	51,76	51,83	51,77	51,80	51,69	51,92	52,15
TiO ₂	0,10	0,10	0,11	0,11	0,06	0,13	0,08
Al ₂ O ₃	1,03	1,10	1,09	1,15	1,10	1,10	1,07
Fe ₂ O ₃	10.00	12.01	10 55	12.00	10 70	12.02	10 50
FeO M=0	12,88	13,21	12,75	13,28	12,79	13,03	12,72
MnO	0,48	0,43	0,43	0,42	0,48	0,39	0,43
MgO	10,29	10,43	10,46	10,30	10,21	10,25	10,43
CaO	22,24	22,37	22,50	21,88	22,34	22,10	22,33
Na₂O	0,50	0,51	0,52	0,50	0,55	0,54	0,47
K₂O	0,00	0,00	0,00	0,01	0,02	0,00	0,00
Cr ₂ O ₃	0,00	0,01	0,00	0,02	0,00	0,03	0,06
Total	99,30	100,00	99,63	99,46	99,24	99,49	99,74
	Fórmula Estr	utural Basead	da em 6 Oxigê	nios			
TSi	1,984	1,972	1,975	1,984	1,981	1,986	1,989
TAI	0,016	0,028	0,025	0,016	0,019	0,014	0,011
TFe ³⁺	0,000	0,000	0,000	0,000	0,000	0,000	0,000
M1AI	0,030	0,021	0,024	0,035	0,031	0,036	0,037
M1Fe ³⁺	0,018	0,039	0,034	0,012	0,025	0,013	0,008
M1Ti	0,003	0,003	0,003	0,003	0,002	0,004	0,002
M1Cr	0,000	0,000	0,000	0,000	0,000	0,001	0,002
M1Mg	0,588	0,591	0,595	0,588	0,584	0,585	0,593
M1Fe ²⁺	0,361	0,345	0,345	0,362	0,358	0,362	0,358
M1Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000
M2Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000
M2Fe ²⁺	0,034	0,036	0,028	0,052	0,026	0,042	0,039
M2Mn	0,016	0,014	0,014	0,013	0,015	0,013	0,014
M2Ca	0,913	0,912	0,919	0,898	0,917	0,906	0,912
M2Na	0,037	0,038	0,038	0,037	0,041	0,040	0,035
Total de Cátions	4,000	4,000	4,000	4,000	4,000	4,000	4,000
tros e Membros Puro	s para Classit	icação (Morin	noto et al. 198	88)			
J	0,075	0,076	0,077	0,075	0,082	0,080	0,069
Q	1,896	1,885	1,887	1,899	1,886	1,894	1,903
Wo	47,325	47,063	47,517	46,647	47,623	47,164	47,400
En	30,470	30,524	30,736	30,557	30,293	30,458	30,807
Fs	22,205	22,413	21,746	22,796	22,084	22,378	21,793
# Mg	0,598	0,608	0,615	0,587	0,603	0,591	0,599
# Fe	0,402	0,392	0,385	0,413	0,397	0,409	0,401
os Puros de acordo d					.,	.,	7,
os Puros de acordo (com os Procei	umemos de L	illusiey (1903))			
Ae	1,761	3,874	3,369	1,180	2,527	1,279	0,818
Jd	1,984	0,000	0,476	2,546	1,574	2,696	2,634
CATS	1,581	2,710	2,462	1,578	1,818	1,340	1,081
MgTS	0,051	0,091	0,070	0,067	0,050	0,048	0,038
Di	53,654	53,787	54,977	51,774	54,190	52,759	53,972
Hd	36,071	34,700	34,488	36,400	35,726	36,458	36,177
En _	2,916	2,956	2,528	3,762	2,460	3,185	3,146
Fs	1,995	1,965	1,630	2,692	1,655	2,234	2,134
Jo	1,558	1,398	1,399	1,346	1,542	1,277	1,382

Análises Químicas de Granadas - biotita-Xisto (Am 1841)-

Amostr	·a	1841	1841	1841	1841
N° de C	ampo				
Análise)	216	217	220	221
Campo		1	1	3	3
Localiz	ação	C	В	В	С
SiO ₂		37,50	37,49	37,71	38,04
Al_2O_3		20,73	21,00	21,15	21,12
TiO ₂		0,05	0,00	0,00	
FeO		32,16	32,99	31,60	31,40
MnO		3,05	2,97	2,86	3,13
MgO		4,48	3,93	4,31	4,43
CaO		1,47	1,67	2,08	1,71
Na ₂ O					
Cr_2O_3		0,11	0,03	0,10	0,00
Y_2O_3					0,10
	Total	99,53	100,06	99,82	99,92
		Fórmula Estru	utural Basead	a em 24 Oxig	ênios
ZSi		6,013	5,998	6,017	6,053
ZAI		0,000	0,000	0,000	0,000
	ΣΖ	6,013	5,998	6,017	6,053
YAI		3,917	3,959	3,977	3,960
YCr		0,014	0,004	0,013	0,000
YFe3+		0,031	0,041	0,000	0,000
YTi		0,006	0,000	0,000	0,000
YY3+		0,000	0,000	0,000	0,008
	ΣΥ	3,968	4,005	3,989	3,969
XMg		1,071	0,937	1,025	1,051
XFe2+		4,281	4,372	4,216	4,178
XMn		0,414	0,402	0,386	0,422
XCa		0,253	0,286	0,356	0,291
	ΣΧ	6,019	5,998	5,983	5,942
Total de	e Cátions	16,000	16,000	15,989	15,963
		Percentagens	molares em	membros fina	is
Almand	dina	71,1	72,9	70,5	70,3
Andrati	ita	0,8	1,0	0,0	0,0
Grossu	ılária	3,1	3,6	5,6	4,9
Piropo		17,8	15,6	17,1	17,7
Espess	artita	6,9	6,7	6,5	7,1

0,4

100,0

0,1

100,0

0,3

100,0

0,0

100,0

Uvarovita

 $[\]begin{array}{ll} 216 & AI_{71,1}Pi_{17,8}Esp_{6,9}Gro_{3,1}And_{0,8}Uv_{0,4} \\ 217 & AI_{72,9}Pi_{15,6}Esp_{6,7}Gro_{3,6}And1_{,0}Uv_{0,1} \\ 220 & AI_{70,5}Pi_{17,1}Esp_{6,5}Gro_{5,6}Uv_{0,3} \\ 221 & AI_{70,3}Pi_{17,7}Esp_{7,1}Gro_{4,9} \end{array}$

ANEXO III: ANÁLISES QUÍMICAS DE ROCHA: Elementos Maiores

Tabelas de análises químicas dos elementos maiores de rochas da Fácies Fanerítica Média do Batólito Nordestina.

No. amostra	1824	1910	1865	1406	1879	1823	1843	1868	1911	1821	1830	1899	1889	1880	1877	1836	1839	1833	1842	1832	1862	1867	1884	1875	1916
Dados	b	b	b	а	b	b	b	а	b	b	а	b	b	b	b	а	b	а	b	b	а	а	b	b	b
Nomenclatura	Td	Td	То	То	Td	То	Td	Td	Td	Td	Td	Gd	Td	Td	Td	То	Td	Td	Td	Td	Td	Gd	Td	То	Td
SiO ₂	68.10	68,14	68,27	68.80	68,91	69.06	69,08	69,10	69.16	69,22	69,30	69,37	69,45	69.45	69,46	69,50	69,60	69.60	69,67	69.68	69.70	69,90	69,97	70.02	70,03
TiO ₂	0.31	0.31	0.26	0,29	0,31	0.39	0.28	0,27	0.24	0.31	0,26	0.37	0.27	0,34	0,31	0.26	0,27	0,23	0,28	0.30	0,23	0,21	0,31	0,36	0,35
Al ₂ O ₃	16,74	17,48	16,65	16,10	16,26	16,72	16,63	16,00	17,77	16,53	16,10	16,18	16,54	16,82	15,69	15,90	16,39	16,00	16,51	16,37	15,80	15,80	16,33	14,83	15,44
Fe ₂ O ₃	2,47	2,06	2,20	0,50	2,14	2,71	1,88	0,26	1,64	2,38	0,34	2,72	1,87	2,12	2,76	0,01	1,87	0,01	1,99	2,08	0,32	0,12	2,03	3,91	3,10
FeO	_,	2,00	_,_0	2,30	_,	_,	.,00	2,10	.,	2,00	1,90	_,	.,0.	_,	_,. 0	2,70	.,0.	2,30	.,00	2,00	1,90	2,10	2,00	0,0 .	0,.0
MnO	0.03	0.02	0.03	0,07	0,02	0.03	0.02	0,02	0.02	0.02	0,02	0.03	0.03	0.02	0,03	0,03	0,02	0,02	0.03	0,02	0,03	0,03	0.02	0.07	0,04
MgO	0.98	0,80	1,03	1,10	0,74	1,00	0.76	0.77	0.65	0.80	0.74	0.83	0.70	0,80	0,91	0,72	0,70	0.61	0,73	0.75	0.79	0,67	0.74	1,07	0,78
CaO	3,27	3,24	3,32	3,30	3,14	2,79	3,01	3,00	3,00	2,99	2,90	2,41	2,87	3,19	3,04	3,00	2,98	2,80	2,91	3,09	2,90	2,80	2,98	3,28	3,29
Na ₂ O	5,39	5,74	6,00	5,20	5,52	5,36	5,79	5,50	5,98	5,37	5,80	4,90	5,81	5,83	5,25	6,10	5,68	5,90	5,56	5,62	5,40	6,00	5,66	4,50	4,81
K₂Ō	1,48	1,25	1,35	1,10	1,30	1,44	1,35	1,30	1,43	1,60	1,20	2,31	1,49	1,33	1,43	1,30	1,39	1,30	1,55	1,24	1,70	1,70	1,38	1,17	1,28
P_2O_5	,	,	0.02	0,07	,	,	0,03	0,06	0,11		0,06	,	,		0,04	0,08	0,05	0.05	0,01	•	0.06	0,04	,	0,09	0,01
CO ₂				0,42																					
CI ⁻				0,00				0,00			0,00					0,00		0,00			0,00	0,00			
F ⁻				0,05				0,03			0,03					0,03		0,02			0,02	0,02			
S				0,01				< 0,005			< 0,005					< 0,005		< 0,005			0,01	0,01			
PF				0,75				0,63			0,40					0,40		0,34			0,46	0,26			
Soma	98,77	99,04	99,14	100,06	98,34	99,49	98,83	99,04	100,01	99,24	99,05	99,12	99,03	99,90	98,92	100,03	98,94	99,18	99,24	99,14	99,32	99,66	99,42	99,30	99,13
No																									
No. amostra	1831	1903	1847	1881	1858	1876	1890	1887	1334	1408	1838	1888	1840	1835	1333	1891	1869	1335	1895	1407	1893	1825	1870	1904	1908
No. amostra Dados	1831 a	1903 b	1847 b	1881 b	1858 b	1876 b	1890 b	1887 b	1334 a	1408 a	1838 b	1888 b	1840 b	1835 b	1333 a	1891 b	1869 a	1335 a	1895 b	1407 a	1893 b	1825 b	1870 b	1904 b	1908 b
Dados Nomenclatura	a Td	b Gd	b Td	b Td	b Td	b Td	b Td	b Td	a To	a To	b Td	b Td	b Td	b Td	a Td	b Td	a Gd	a Td	b Gd	a Td	b Td	b Gd	b Td	b Td	b Gd
Dados Nomenclatura SiO ₂	a Td 70,20	b Gd 70,25	b Td 70,32	b Td 70,35	b Td 70,35	b Td 70,382	b Td 70,45	b Td 70,47	a To 70,50	a To 70,50	b Td 70,67	b Td 70,70	b Td 70,78	b Td 70,79	a Td 70,80	b Td 70,88	a Gd 70,90	a Td 71,00	b Gd 71,35	a Td 71,60	b Td 71,77	b Gd 72,04	b Td 72,09	b Td 72,54	b Gd 73,41
Dados Nomenclatura SiO ₂ TiO ₂	a Td 70,20 0,23	b Gd 70,25 0,31	b Td 70,32 0,26	b Td 70,35 0,30	b Td 70,35 0,28	b Td 70,382 0,2	b Td 70,45 0,29	b Td 70,47 0,30	a To 70,50 0,27	a To 70,50 0,31	b Td 70,67 0,29	70,70 0,23	b Td 70,78 0,32	b Td 70,79 0,26	a Td 70,80 0,23	b Td 70,88 0,28	a Gd 70,90 0,21	a Td 71,00 0,24	6 Gd 71,35 0,30	71,60 0,23	b Td 71,77 0,44	b Gd 72,04 0,20	b Td 72,09 0,27	b Td 72,54 0,21	5 Gd 73,41 0,20
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃	70,20 0,23 16,10	b Gd 70,25 0,31 15,94	b Td 70,32 0,26 15,71	b Td 70,35 0,30 16,61	b Td 70,35 0,28 16,10	b Td 70,382 0,2 16,18	b Td 70,45 0,29 15,60	b Td 70,47 0,30 15,93	a To 70,50 0,27 15,50	a To 70,50 0,31 15,10	b Td 70,67 0,29 16,03	b Td 70,70 0,23 16,13	b Td 70,78 0,32 14,62	b Td 70,79 0,26 16,37	a Td 70,80 0,23 15,60	70,88 0,28 16,12	a Gd 70,90 0,21 15,50	a Td 71,00 0,24 15,80	b Gd 71,35 0,30 15,37	a Td 71,60 0,23 15,00	b Td 71,77 0,44 15,29	b Gd 72,04 0,20 15,36	b Td 72,09 0,27 15,61	b Td 72,54 0,21 15,45	b Gd 73,41 0,20 14,66
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃	a Td 70,20 0,23 16,10 0,01	b Gd 70,25 0,31	b Td 70,32 0,26	b Td 70,35 0,30	b Td 70,35 0,28	b Td 70,382 0,2	b Td 70,45 0,29	b Td 70,47 0,30	a To 70,50 0,27 15,50 1,30	a To 70,50 0,31 15,10 0,76	b Td 70,67 0,29	70,70 0,23	b Td 70,78 0,32	b Td 70,79 0,26	a Td 70,80 0,23 15,60 0,41	b Td 70,88 0,28	a Gd 70,90 0,21 15,50 0,01	a Td 71,00 0,24 15,80 0,15	6 Gd 71,35 0,30	a Td 71,60 0,23 15,00 0,63	b Td 71,77 0,44	b Gd 72,04 0,20	b Td 72,09 0,27	b Td 72,54 0,21	5 Gd 73,41 0,20
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO	70,20 0,23 16,10 0,01 2,00	b Gd 70,25 0,31 15,94 2,29	b Td 70,32 0,26 15,71 1,97	70,35 0,30 16,61 1,98	b Td 70,35 0,28 16,10 1,91	b Td 70,382 0,2 16,18 2,0008	b Td 70,45 0,29 15,60 2,12	b Td 70,47 0,30 15,93 2,02	70,50 0,27 15,50 1,30 1,70	70,50 0,31 15,10 0,76 2,10	b Td 70,67 0,29 16,03 1,96	b Td 70,70 0,23 16,13 1,73	b Td 70,78 0,32 14,62 2,92	b Td 70,79 0,26 16,37 1,94	a Td 70,80 0,23 15,60 0,41 1,90	70,88 0,28 16,12 1,97	a Gd 70,90 0,21 15,50 0,01 2,40	a Td 71,00 0,24 15,80 0,15 2,00	b Gd 71,35 0,30 15,37 2,30	a Td 71,60 0,23 15,00 0,63 1,90	71,77 0,44 15,29 2,64	b Gd 72,04 0,20 15,36 1,71	72,09 0,27 15,61 1,76	72,54 0,21 15,45 1,94	73,41 0,20 14,66 1,67
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO	70,20 0,23 16,10 0,01 2,00 0,02	b Gd 70,25 0,31 15,94 2,29 0,04	b Td 70,32 0,26 15,71 1,97 0,03	b Td 70,35 0,30 16,61 1,98	b Td 70,35 0,28 16,10 1,91 0,02	b Td 70,382 0,2 16,18 2,0008	b Td 70,45 0,29 15,60 2,12 0,02	b Td 70,47 0,30 15,93 2,02	70,50 0,27 15,50 1,30 1,70 0,16	a To 70,50 0,31 15,10 0,76 2,10 0,09	b Td 70,67 0,29 16,03 1,96	b Td 70,70 0,23 16,13 1,73 0,03	b Td 70,78 0,32 14,62 2,92 0,06	b Td 70,79 0,26 16,37 1,94 0,02	70,80 0,23 15,60 0,41 1,90 0,10	b Td 70,88 0,28 16,12 1,97 0,02	a Gd 70,90 0,21 15,50 0,01 2,40 0,02	a Td 71,00 0,24 15,80 0,15 2,00 0,07	b Gd 71,35 0,30 15,37 2,30 0,03	a Td 71,60 0,23 15,00 0,63 1,90 0,11	b Td 71,77 0,44 15,29 2,64 0,03	b Gd 72,04 0,20 15,36 1,71 0,02	b Td 72,09 0,27 15,61 1,76 0,01	b Td 72,54 0,21 15,45 1,94 0,03	73,41 0,20 14,66 1,67
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO	70,20 0,23 16,10 0,01 2,00 0,02 0,73	b Gd 70,25 0,31 15,94 2,29 0,04 0,78	b Td 70,32 0,26 15,71 1,97 0,03 0,68	b Td 70,35 0,30 16,61 1,98 0,02 0,76	b Td 70,35 0,28 16,10 1,91 0,02 0,70	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626	b Td 70,45 0,29 15,60 2,12 0,02 0,69	70,47 0,30 15,93 2,02 0,02 0,71	a To 70,50 0,27 15,50 1,30 1,70 0,16 0,71	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81	b Td 70,67 0,29 16,03 1,96 0,02 0,68	b Td 70,70 0,23 16,13 1,73 0,03 0,57	b Td 70,78 0,32 14,62 2,92 0,06 0,67	b Td 70,79 0,26 16,37 1,94 0,02 0,62	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49	b Td 70,88 0,28 16,12 1,97 0,02 0,65	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63	b Gd 71,35 0,30 15,37 2,30 0,03 0,78	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72	b Td 71,77 0,44 15,29 2,64 0,03 0,81	b Gd 72,04 0,20 15,36 1,71 0,02 0,43	b Td 72,09 0,27 15,61 1,76 0,01 0,64	b Td 72,54 0,21 15,45 1,94 0,03 0,52	b Gd 73,41 0,20 14,66 1,67 0,01 0,33
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO	a Td 70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92	b Td 70,47 0,30 15,93 2,02 0,02 0,71 2,96	a To 70,50 0,27 15,50 1,30 1,70 0,16 0,71 2,60	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₀ MnO MgO CaO Na ₂ O	a Td 70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69 4,81	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64 4,85	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96 5,59	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77 6,00	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92 5,51	70,47 0,30 15,93 2,02 0,02 0,71 2,96 5,49	a To 70,50 0,27 15,50 1,30 1,70 0,16 0,71 2,60 5,60	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79 5,65	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98 5,44	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91 5,55	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30	71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70 5,50	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61 4,90	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37 5,57	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10 5,12	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63 5,42	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43 4,32	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94 4,61
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80 1,50	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55 1,22	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77 6,00 1,12	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92	b Td 70,47 0,30 15,93 2,02 0,02 0,71 2,96	70,50 0,27 15,50 1,30 1,70 0,16 0,71 2,60 5,60 1,60	70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00 1,60	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47 1,17	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49 1,22	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98	70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70 1,20	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30 2,00	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70 5,50 1,40	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10 1,40	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	a Td 70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69 4,81	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64 4,85	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96 5,59	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77 6,00	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92 5,51	70,47 0,30 15,93 2,02 0,02 0,71 2,96 5,49	70,50 0,27 15,50 1,30 1,70 0,16 0,71 2,60 5,60 1,60 0,05	70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00 1,60 0,06	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79 5,65	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98 5,44	70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70 1,20 0,05	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91 5,55	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70 5,50 1,40 0,05	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61 4,90	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10 1,40 0,06	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37 5,57	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10 5,12	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63 5,42	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43 4,32	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94 4,61
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ CO ₂	70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80 1,50 0,06	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69 4,81	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64 4,85	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96 5,59	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55 1,22	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77 6,00 1,12	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92 5,51	70,47 0,30 15,93 2,02 0,02 0,71 2,96 5,49	a To 70,50 0,27 15,50 1,30 1,70 0,16 0,71 2,60 5,60 1,60 0,05 0,28	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00 1,60 0,06 0,31	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47 1,17	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79 5,65	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49 1,22	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98 5,44	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70 1,20 0,05 0,16	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91 5,55	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30 2,00 0,07	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70 5,50 1,40 0,05 0,19	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61 4,90	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10 1,40 0,06 0,14	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37 5,57	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10 5,12	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63 5,42	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43 4,32	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94 4,61
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ CO ₂ CI	a Td 70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80 1,50 0,06	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69 4,81	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64 4,85	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96 5,59	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55 1,22	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77 6,00 1,12	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92 5,51	70,47 0,30 15,93 2,02 0,02 0,71 2,96 5,49	a To 70,50 0,27 15,50 1,30 1,70 0,16 0,71 2,60 5,60 0,05 0,28 0,00	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00 1,60 0,06 0,31 0,00	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47 1,17	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79 5,65	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49 1,22	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98 5,44	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70 1,20 0,05 0,16 0,00	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91 5,55	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30 2,00 0,07	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70 5,50 1,40 0,05 0,19 0,00	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61 4,90	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10 1,40 0,06 0,14 0,00	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37 5,57	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10 5,12	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63 5,42	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43 4,32	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94 4,61
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ CO ₂ Cl' F	a Td 70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80 1,50 0,06	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69 4,81	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64 4,85	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96 5,59	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55 1,22	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77 6,00 1,12	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92 5,51	70,47 0,30 15,93 2,02 0,02 0,71 2,96 5,49	a To 70,50 0,27 15,50 1,30 0,16 0,71 2,60 5,60 1,60 0,05 0,28 0,00 0,03	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00 1,60 0,06 0,31 0,00 0,05	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47 1,17	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79 5,65	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49 1,22	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98 5,44	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70 1,20 0,05 0,16 0,00 0,04	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91 5,55	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30 2,00 0,07	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70 5,50 1,40 0,05 0,19 0,00 0,06	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61 4,90	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10 1,40 0,06 0,14 0,00 0,03	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37 5,57	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10 5,12	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63 5,42	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43 4,32	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94 4,61
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ CO ₂ Cl' F' S	a Td 70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80 1,50 0,06 0,01 0,03 < 0,005	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69 4,81	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64 4,85	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96 5,59	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55 1,22	b Td 70,382 0,2 16,18 2,0008 0,02 0,7626 2,77 6,00 1,12	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92 5,51	70,47 0,30 15,93 2,02 0,02 0,71 2,96 5,49	a To 70,50 0,27 15,50 1,30 0,16 0,71 2,60 5,60 1,60 0,05 0,28 0,00 0,03 0,01	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00 1,60 0,06 0,31 0,00 0,05 0,01	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47 1,17	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79 5,65	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49 1,22	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98 5,44	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70 1,20 0,05 0,16 0,00 0,04 0,01	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91 5,55	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30 2,00 0,07 0,00 0,03 < 0,005	a Td 71,00 0,24 15,85 2,00 0,07 0,63 2,70 5,50 1,40 0,05 0,19 0,00 0,06 0,01	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61 4,90	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10 1,40 0,06 0,14 0,00 0,03 0,01	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37 5,57	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10 5,12	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63 5,42	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43 4,32	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94 4,61
Dados Nomenclatura SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ CO ₂ Cl' F	a Td 70,20 0,23 16,10 0,01 2,00 0,02 0,73 2,60 5,80 1,50 0,06	b Gd 70,25 0,31 15,94 2,29 0,04 0,78 2,69 4,81	b Td 70,32 0,26 15,71 1,97 0,03 0,68 2,64 4,85 1,58	b Td 70,35 0,30 16,61 1,98 0,02 0,76 2,96 5,59	b Td 70,35 0,28 16,10 1,91 0,02 0,70 2,94 5,55 1,22 0,09	b Td 70,382 0,2 16,18 2,0008 0,7626 2,77 6,00 1,12 0,04	b Td 70,45 0,29 15,60 2,12 0,02 0,69 2,92 5,51	b Td 70,47 0,30 15,93 2,02 0,02 0,71 2,96 5,49 1,25	a To 70,50 0,27 15,50 1,30 0,16 0,71 2,60 5,60 1,60 0,05 0,28 0,00 0,03	a To 70,50 0,31 15,10 0,76 2,10 0,09 0,81 2,70 5,00 1,60 0,06 0,31 0,00 0,05 0,01 0,71	b Td 70,67 0,29 16,03 1,96 0,02 0,68 3,11 5,47 1,17 0,01	b Td 70,70 0,23 16,13 1,73 0,03 0,57 2,79 5,65	b Td 70,78 0,32 14,62 2,92 0,06 0,67 2,97 4,49 1,22	b Td 70,79 0,26 16,37 1,94 0,02 0,62 2,98 5,44	a Td 70,80 0,23 15,60 0,41 1,90 0,10 0,49 2,60 5,70 1,20 0,05 0,16 0,00 0,04	b Td 70,88 0,28 16,12 1,97 0,02 0,65 2,91 5,55	a Gd 70,90 0,21 15,50 0,01 2,40 0,02 0,60 2,50 5,30 2,00 0,07 0,00 0,03	a Td 71,00 0,24 15,80 0,15 2,00 0,07 0,63 2,70 5,50 1,40 0,05 0,19 0,00 0,06	b Gd 71,35 0,30 15,37 2,30 0,03 0,78 2,61 4,90	a Td 71,60 0,23 15,00 0,63 1,90 0,11 0,72 2,50 5,10 1,40 0,06 0,14 0,00 0,03	b Td 71,77 0,44 15,29 2,64 0,03 0,81 2,37 5,57	b Gd 72,04 0,20 15,36 1,71 0,02 0,43 2,10 5,12 2,32	b Td 72,09 0,27 15,61 1,76 0,01 0,64 2,63 5,42	b Td 72,54 0,21 15,45 1,94 0,03 0,52 3,43 4,32	b Gd 73,41 0,20 14,66 1,67 0,01 0,33 1,94 4,61

Tabela de análises químicas dos elementos maiores de rochas do Batólito Nordestina.

									Facies F	Porfirítica											Dic	ues Féls	sicos		
No. amostra	1844	1845	1860	1883	1849	1855	1827	1851	1822	1846	1852	1856	1861	1848	1336	1854	1882	1850	1826	1866	1863	1829	1885	1834	1864
Dados	b	а	b	b	b	а	b	а	b	b	b	а	b	b	а	b	b	b	b	b	а	b	b	b	а
Nomenclatura	Gd	Td	Td	Gd	Td	Gd	Td	Gd	Td	Gd	Gd	Gd	Gd	Gd	Gd	Gd	Gd	Gd	То	То	Td	Td	Gd	Gd	Gd
SiO ₂	68,59	68,60	69,06	69,95	70,04	70,20	70,28	70,30	70,56	70,64	71,16	71,30	71,37	71,58	71,60	71,87	71,95	72,01	67,41	68,24	68,90	69,74	70,03	71.88	73,80
TiO ₂	0,24	0,24	0,27	0.25	0,29	0,22	0,26	0,20	0,26	0,20	0,21	0.16	0,23	0,23	0,19	0,18	0,17	0,22	0,38	0,32	0,25	0,18	0.44	0,23	0,05
Al ₂ O ₃	16,89	16,80	17,61	16,29	16.37	15,80	16,49	15,80	16,13	15,71	15,80	15,40	15,48	15,78	15,30	15,63	15,33	15,52	17,09	16,12	16,10	17,01	14.99	15,97	13,80
Fe ₂ O ₃	1.71	0,02	1.73	1,58	1.95	0,21	1,87	0,02	1,84	1,39	1,50	0,01	1,64	1,49	0,16	1,37	1.19	1,52	3,05	2,31	0,03	1,83	2.71	1.49	0,01
FeO	,	1,90	, -	,	,	1,60	,-	1,70	,-	,	,	1,60	,-	, -	1,70	,-	, -	,-	-,	,-	2,40	,	,	, -	1,40
MnO	0,02	0,03	0,02	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,08	0,02	0,01	0,02	0,04	0,02	0,03	0,02	0,03	0,02	0,02
MgO	0,56	0,69	0,70	0,57	0,76	0,61	0,61	0,56	0,70	0,50	0,57	0,52	0,67	0,56	0,48	0,49	0,42	0,56	0,98	0,90	0,90	0,74	0,77	0,51	0,17
CaO	2,38	2,80	2,77	2,65	2,88	2,50	2,75	2,30	2,76	2,42	2,24	2,30	2,58	2,44	2,20	2,24	2,12	2,35	3,12	3,14	3,00	3,53	2,40	2,60	0,77
Na ₂ O	5,38	6,00	6,10	5,55	5,47	5,70	5,59	5,30	5,41	5,21	5,31	5,40	5,30	5,19	5,60	5,22	4,97	5,07	5,61	6,00	5,20	5,58	4,37	5,34	5,20
K ₂ O	2,72	1,50	1,65	1,96	1,61	1,90	1,67	2,20	1,75	2,21	2,21	2,30	1,87	2,08	2,20	2,28	2,85	2,26	1,34	1,20	1,60	1,00	2,66	1,75	3,60
P ₂ O ₅		0,06				0,06		0,06				0,03	0,01	0,01	0,05					0,02	0,07				0,02
CO ₂															0,14										
CI ⁻		0,00				0,00		0,00				0,00			0,00						0,00				0,00
F.		0,04				0,03		0,04				0,02			0,05						0,04				0,01
S		< 0,005				< 0,005		< 0,005				< 0,005			0,01						0,01				< 0,005
PF		0,45				0,36		0,39				0,53			0,15						0,37				0,26
Soma	98,50	99,13	99,91	98,82	99,38	99,21	99,55	98,89	99,45	98,30	99,03	99,59	99,16	99,38	99,91	99,31	98,99	99.52	99,00	98,29	98,90	99,62	98,39	99,79	99,11

							F	Rochas Ma	áficas								
	Encla	aves do	Tipo I	Encla	ives do 1	Гіро II	Enc. I	Leucoc.	Enclave	s Hect.	Diq	ues Máfi	cos	Injeções	s Tardias	Enc. Ma	áf. Emb.
No. amostra	1907	1909	1871	1905	1902	1906	1886	1894	1828	1892	1896	1900	1901	1897	1898	1878	1915
Dados	b	b	а	b	b	а	а	b	а	а	b	b	b	а	а	а	а
Nomenclatura	MI-Dio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	Lc-Dio	Lc-Qdio	Ml-Qdio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	MI-Dio	Tdh	MI-Dio	Ms-Dio
SiO ₂	48,93	48,8	51,90	48,97	50,12	49,50	51,10	58,35	49,20	48,40	49,61	48,50	49,04	50,50	68,50	52,90	48,60
TiO ₂	0,98	0,9993	0,90	0,85	0,71	0,91	0,73	0,88	2,40	1,40	0,89	0,87	1,00	0,49	0,14	1,10	1,70
Al_2O_3	14,53	14,289	15,50	15,41	16,62	14,80	14,50	17,20	12,30	13,10	16,23	15,71	14,73	15,10	17,20	14,90	13,90
Fe ₂ O ₃	14,25	14,55	10,10	11,79	9,71	10,10	11,60	8,07	19,60	10,40	11,88	11,94	12,67	7,90	2,20	11,00	13,60
FeO																	
MnO	0,20	0,21	0,19	0,18	0,15	0,19	0,30	0,14	0,28	0,24	0,18	0,17	0,18	0,16	0,04	0,18	0,22
MgO	7,49	6,23	5,70	8,15	7,00	7,50	6,60	2,26	4,50	5,50	6,86	7,49	6,70	8,90	0,40	5,90	5,80
CaO	11,46	10,51	10,40	10,81	12,22	11,00	8,20	5,07	9,30	15,70	11,15	10,73	10,14	12,50	4,00	9,60	10,30
Na ₂ O	2,59	3,00	3,50	2,63	2,59	2,50	3,50	5,13	2,30	1,40	3,34	2,37	2,53	2,40	5,90	2,90	3,40
K ₂ O	0,50	0,57	0,68	1,09	0,58	0,99	1,50	2,01	0,35	0,29	0,70	0,85	1,09	0,43	0,28	0,25	0,99
P_2O_5			0,10	0,04		0,08	0,06		0,13	0,17	0,05		0,03	0,04	0,07	0,11	0,19
CO ₂			0,22			0,15	0,49		0,13	0,15				0,20	0,10	0,45	0,55
Cl			0,00			0,00	0,00		0,00	0,00				0,00	0,00	0,00	0,02
F.			0,00			0,00	0,00		0,00	0,00				0,00	0,00	0,00	0,00
S			0,01			0,01	0,01		0,01	0,01				0,01	0,01	0,02	0,05
H ₂ O			1,24			1,92	1,39		1,68	1,10				1,60	0,58	1,28	1,08
Soma	100,93	99,16	100,44	99,92	99,70	99,64	99,98	99,10	102,18	97,86	100,89	98,64	98,13	100,23	99,42	100,59	100,40
PF			0,79			1,69	0,98		0,55	0,63				1,82	0,74	0,56	1,0

MODELO DE CRISTALIZAÇÃO (1)

Regressão de Co1836Nd (Co) para Cf1856Nd (Cf).

1 - Soma dos quadrados dos resíduos: 0,694

2 - Dados relativos às composições de Co, Cf, Cs e fases minerais utilizadas:

	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5
Co	69,57	,26	15,92	3,01	,	,03	,72	3,	6,11	1,3	,08
Cf	71,86	,16	15,52	1,8	,	,02	,52	2,32	5,44	2,32	,03
Cs	57,51	,22	19,06	8,38	,	,15	1,64	5,7	7,04	,26	,03
83Pla1867	63,47	,	22,95	,	,	,	,	4,52	8,9	,16	,
20Anf1867	46,65	,46	7,57	22,3	,	,81	8,8	11,64	1,04	,73	,
Magnetita	,	,	,	100,	,	,	,	,	,	,	,
Ilmenita	,5	48,74	,	49,62	,	,	,45	,69	,	,	,
Apatita	,	,	,	,	,	,	,	66,67	,	,	33,33

3 - Composição modal de Cs:

83Pla1867	76,95%
20Anf1867	18,59%
Magnetita	04,09%
Ilmenita	00,28%
Apatita	00,09%
(1-F) x 100 =	17,04%

4 - Composição dos líquidos (CI) em função de diferentes valores de F

F	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5
0,80	72,58	,27	15,13	1,67	,	,	,49	2,33	5,87	1,56	,09
0,70	74,74	,28	14,57	,71	,	-,02	,33	1,85	5,71	1,75	,1
0,60	77,61	,28	13,82	-,56	,	-,05	,11	1,2	5,48	2,	,11
0,50	81,62	,3	12,77	-2,35	,	-,09	-,2	,3	5,17	2,34	,13
0,40	87,65	,32	11,19	-5,03	,	-,15	-,65	-1,05	4,7	2,87	,16
0,30	97,7	,35	8,57	-9,5	,	-,25	-1,42	-3,3	3,92	3,73	,2
0,20	117,79	,41	3,32	-18,44	,	-,45	-2,95	-7,8	2,37	5,47	,28
0,10	178,07	,59	-12,42	-45,26	,	-1,05	-7,53	-21,3	-2,31	10,69	,53
0,05	298,62	,96	-43,91	-98,9	,	-2,26	-16,7	-48,3	-11,66	21,12	1,03

5 - Arquivo: E:\Programas de Geologia\Genesis\Ttg4.gen

Data: 05/03/04

MODELO DE CRISTALIZAÇÃO (2)

Regressão de Co1867Nd (Co) para Cf1856Nd (Cf).

1 - Soma dos quadrados dos resíduos: 0,274

2 - Dados relativos às composições de Co, Cf, Cs e fases minerais utilizadas:

	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K20	P2O5
Со	70.19	.21	15.86	2.46		.03	,67	2,81	6,02	1.71	.04
Cf	71,86	,16	15,52	1,8	,	,02	,52	2,32	5,44	2,32	,03
Cs	58,57	,3	19,55	6,58	,	,14	1,54	5,75	7,25	,25	,06
83Pla1867	63,47	,	22,95	,	,	,	,	4,52	8,9	,16	,
20Anf1867	46,65	,46	7,57	22,3	,	,81	8,8	11,64	1,04	,73	,
Magnetita	,	,	,	100,	,	,	,	,	,	,	,
Ilmenita	,5	48,74	,	49,62	,	,	,45	,69	,	,	,
Apatita	,	,	,	,	,	,	,	66,67	,	,	33,33

3 - Composição modal de Cs:

83Pla1867	79.42%
	-,
20Anf1867	17,49%
Magnetita	02,46%
Ilmenita	00,45%
Apatita	00,18%
(1 - F) x 100 =	13,09%

4 - Composição dos líquidos (CI) em função de diferentes valores de F

F	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5
0,80	73,09	,19	14,94	1,43	,		.45	2,08	5,71	2,07	,03
0,70	75,17	,17	14,28	,69	•	-,02	,3	1,55	5,49	2,33	,03
0,60	77,93	,15	13,4	-,29	•	-,04	,09	,85	5,2	2,68	,03
0,50	81,8	,12	12,17	-1,66	,	-,08	-,2	-,13	4,79	3,17	,02
0,40	87,61	,07	10,33	-3,72	,	-,14	-,64	-1,6	4,18	3,89	,01
0,30	97,29	,	7,26	-7,16	,	-,23	-1,36	-4,05	3,15	5,11	-,01
0,20	116,65	-,16	1,11	-14,03	,	-,42	-2,82	-8,94	1,1	7,53	-,04
0,10	174,73	-,61	-17,32	-34,64	,	-,97	-7,17	-23,63	-5,04	14,81	-,14
0,05	290,89	-1,53	-54,2	-75,86	,	-2,09	-15,89	-53,02	-17,33	29,37	-,34

5 - Arquivo: E:\Programas de Geologia\Genesis\Ttg4.gen

Data: 05/03/04

MODELO DE FUSÃO PARCIAL

Regressão de BasLTi344 (Co) para 1836 (Cf).

1 - Soma dos quadrados dos resíduos: 0,036

2 - Dados relativos às composições de Co, Cf, Cs e fases minerais utilizadas:

	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5
Со	53.26	,48	13.1		9.72		9,91	10,73	2.7	.11	
Cf	69,86	,26	15,98	,	2,72	,	,72	3,01	6,13	1,31	,
Cs	52,2	,48	12,86	,	10,15	,	10,59	11,1	2,59	,03	,
Onf522529	53,75	,34	8,95	,	5,67	,	11,25	15,65	4,35	,05	,
1Gd161100	40,01	,75	22,39	,	19,63	,	11,66	5,48	,07	,	,
Qzo	100,	,	,	,	,	,	,	,	,	,	,
Magnet/A5	,1	,81	,81	,	98,2	,	,02	,05	,01	,	,
Ilmenita	,07	53,15	,24	,	44,63	,	1,84	,06	,	,	,

3 - Composição modal de Cs:

Onf522529	59,10%
1Gd161100	33,81%
Qzo	06,90%
Magnet/A5	00,14%
Ilmenita	00,05%
$(1 - F) \times 100 =$	94,05%

4 - Composição dos líquidos (CI) em função de diferentes valores de F

:05

5 - Arquivo: E:\D Beto\Programas de Geologia\Modelamento Petrogenetico\Genesis-3\Basicas2004v13.gen **Data:** 05/03/04