

Rede Cooperativa de Pesquisa

COMPORTAMENTO DAS BACIAS SEDIMENTARES DA REGIÃO SEMI-ÁRIDA DO NORDESTE BRASILEIRO

"HIDROGEOLOGIA DA PORÇÃO ORIENTALDA BACIA SEDIMENTAR DO ARARIPE"

Meta C

Caracterização Hidrogeológica

Outubro / 2007

Ministério de Ministério da Minas e Energia Ciênica e Tecnologia

Rede Cooperativa de Pesquisa

COMPORTAMENTO DAS BACIAS SEDIMENTARES DA REGIÃO SEMI-ÁRIDA DO NORDESTE BRASILEIRO

"HIDROGEOLOGIA DA PORÇÃO ORIENTALDA BACIA SEDIMENTAR DO ARARIPE"

Meta C

Caracterização Hidrogeológica

Execução:

Serviço Geológico do Brasil - CPRM

Universidade Federal do Ceará - UFC

REDE COOPERATIVA DE PESQUISA

COMPORTAMENTO DAS BACIAS SEDIMENTARES DA REGIÃO SEMI-ÁRIDA DO NORDESTE BRASILEIRO

Coordenação:

Período 2004/2005 – Dr. Waldir Duarte Costa Período 2006/2007 – MSc. Fernando A. C. Feitosa

Instituições Participantes:

Serviço Geológico do Brasil – CPRM Coordenação: MSc. Fernando A. C. Feitosa MSc. Jaime Quintas dos Santos Colares

Universidade Federal da Bahia – UFBA Coordenadora: Dra. Joana Angélica Guimarães da Luz

Universidade Federal de Campina Grande – UFCG Coordenador: Dr. Vajapeyam Srirangachar Srinivasan

Universidade Federal do Ceará – UFC Coordenadora: Dra. Maria Marlúcia Freitas Santiago

Universidade Federal de Pernambuco – UFPE

Coordenador: Dr. José Geilson Alves Demetrio

Universidade Federal do Rio Grande do Norte – UFRN Coordenador: Dr. José Geraldo de Melo

Bacia Sedimentar do Araripe

Hidrogeologia da Porção Oriental da Bacia Sedimentar do Araripe

Meta A – Relatório Diagnóstico do Estado da Arte Autores: MSc. Liano Silva Veríssimo - CPRM MSc. Robério Boto de Aguiar - CPRM

Meta B - Caracterização Geológica e Geométrica dos Aqüíferos

Item 1 – Revisão Geológica

Autores: MSc. Jaime Quintas dos Santos Colares – CPRM MSc. Robério Boto de Aguiar – CPRM MSc. Liano Silva Veríssimo - CPRM Ricardo de Lima Brandão – CPRM

Item 1 - Levantamento Geofísico por Eletrorresistividade

Autores: Dr. Raimundo Mariano Gomes Castelo Branco – LGPSR - UFC
 Dr. David Lopes de Castro - LGPSR - UFC
 MSc Mauro Lisboa Souza - LGPSR - UFC
 MSc. Tércyo Rinaldo Gonçalves Pinéo – LGPSR - UFC

Meta C - Caracterização Hidrogeológica dos Aqüíferos

Item 1 - Seleção de pontos d água

Autores: MSc. Robério Boto de Aguiar - CPRM

Item 2 - Nivelamento dos pontos d água

Autores: MSc. Robério Boto de Aguiar - CPRM

Item 3 – Mapas potenciométricos

Autores: MSc. Robério Boto de Aguiar - CPRM

Item 4 – Balanço hídrico

Autores: Dra. Sônia Maria Silva Vasconcelos – Dept. de Geologia/UFC MSc. Robério Bôto de Aguiar – CPRM Dr. João Manoel Filho - Consultor

Item 5 – Construção de piezômetro

Autores: MSc. Robério Bôto de Aguiar – CPRM MSc. Liano Silva Veríssimo - CPRM

Item 6 – Teste de aqüífero

Autores: MSc. Walber Cordeiro – Geoplan Manuel Pereira da Costa - Geoplan MSc. Robério Bôto de Aguiar – CPRM

Item 7 – Modelos hidrogeológicos

Autores: Dr. Marco Aurélio Holanda de Castro – Dept. de Eng. Hidr. e Ambiental/UFC MSc. Carlos Roberto M. Leal Júnior – Dept. de Eng. Hidr. e Ambiental/UFC MSc. Cláudio Damasceno de Souza - Dept. de Eng. Hid. e Ambiental/UFC

Item 8 - Reservas, recursos, potencialidade e disponibilidade

Autores: Dr. Itabaraci Nazareno Cavalcante - Dept. de Geologia/UFC

Meta D - Caracterização Hidroquímica e de Vulnerabilidade

Item 1 – Estudos hidroquímicos e isotópicos

Autores: Dra. Maria Marlúcia Freitas Santiago – Dept. de Física/UFC.
 Dra. Carla Maria S. Vidal Silva - Dept. de Física/UFC
 Dr. Horst Frischkorn – Dept. de Engenharia Hidráulica e Ambiental/UFC
 Dr. Josué Mendes Filho - Dept. de Física/UFC

Item 2 – Estudos de Vulnerabilidade e Riscos de Contaminação

Autores: MSc. Liano Silva Veríssimo - CPRM

Meta E – Suporte ao Planejamento e a Gestão das Águas Subterrâneas Autores: Dr. Itabaraci Nazareno Cavalcante - Dept. de Geologia/UFC

Meta F – Estruturação e Alimentação da Base de Dados em SIG

Coordenação: Francisco Edson Mendonça Gomes – CPRM Equipe: Eriveldo da Silva Mendonça – CPRM Érika Gomes de Brito – CPRM Antônio Celso Rodrigues de Melo – CPRM Vicente Calixto Duarte Neto – CPRM

HIDROGEOLOGIA DA PORÇÃO ORIENTAL DA BACIA SEDIMENTAR DO ARARIPE

Relatório Integrado - Meta C Caracterização Hidrogeológica

SUMÁRIO

INTRODUÇÃO	1
 SELEÇÃO DOS PONTOS D'ÁGUA Revisão e atualização do inventário de pontos d'água Seleção dos Poços Representativos Monitoramento Potenciométrico e Qualitativo Implantação de Pluviógrafos e Infiltrômetros 	2 2 3 4 5
2. NIVELAMENTO DOS POÇOS SELECIONADOS	10
3. MAPAS POTENCIOMÉTRICOS	10
4. CONSTRUÇÃO DE POÇOS DE OBSERVAÇÃO	14
5. TESTE DE AQÜÍFERO	15
 6. BALANÇO HÍDRICO DA PORÇÃO ORIENTAL DA BACIA DO ARARIPE 6.1. Introdução 6.2. Embasamento Teórico 6.3. Procedimento Metodológico 6.4. Resultados 	20 20 20 22 24
 7. ELABORAÇÃO DE MODELOS HIDROGEOLÓGICOS 7.1. Modelos Conceituais e Domínios de Interesses 7.2. Modelo da área do Grabén Crato – Juazeiro do Norte (Modelo I) 7.2.1. Entrada de dados do Modelo I 7.2.2. Malha do Modelo I 7.2.3. Topografia e camadas do Modelo I 7.2.4. Poços 7.2.5. Rios 7.2.6. Recarga 7.3. Modelo da área de Barbalha – Missão Velha (Modelo II) 7.3.1. Entrada de dados do Modelo II 7.3.2. Malha do Modelo II 7.3.3. Topografia e camadas do Modelo II 7.3.4. Poços 7.3.5. Rios 7.3.6. Recarga 7.4. Calibração dos Modelos 	28 28 29 30 30 34 34 34 34 36 36 36 36 36 37 38 38 40 40
7.5. Resultados 7.5.1. Modelo I	41 41

7.5.1.1. Estado permanente para o período chuvoso	41
7.5.1.2. Estado transiente para o período chuvoso	45
7.5.1.3. Estado transiente para o período seco	50
7.5.2. Calibração (modelo I)	54
7.5.3. Modelo II	58
7.5.3.1. Estado permanente para o período chuvoso	59
7.5.3.2. Estado transiente para o período chuvoso	63
7.5.3.3. Estado transiente para o período seco	68
7.5.4. Calibração (modelo II)	73
7.5.5. Conclusões	82
7.5.6. Recomendações	84
8. RESERVAS E DISPONIBILIDADES	86
8.1. Reservas Renováveis (Rr)	86
8.1.1. Sistema Aquífero Médio	87
8.1.2. Sistema Aquífero Inferior	87
8.2. Reservas Permanentes (Rp)	88
8.2.1. Sistema Aquífero Médio	88
8.2.2. Sistema Aqüífero Inferior	89
8.3. Recursos explotáveis (Re) ou Potencialidade Aqüífera (P)	89
8.4. Disponibilidade	90
8.4.1. Disponibilidade Efetiva (Disponibilidade Instalada)	90
8.4.2. Disponibilidade Instalável	91
8.4.3. Disponibilidade Hídrica Total	91
9. REFERÊNCIAS BIBLIOGRÁFICAS	92

ANEXOS

LISTA DE FIGURAS

1. Localização da área e distribuição dos pontos d'água cadastrados no SIAGAS	2
na área de estudo.	
2. Distribuição dos 131 poços da Rede Representativa na Bacia do Araripe.	3
3. Variação temporal dos valores médios de nível estático dos poços monitorados	5
na porção oriental da Bacia Sedimentar do Araripe.	
4. Estações hidroclimatológicas instaladas na Bacia do Araripe.	9
5. Distribuição das precipitações nas estações de Jenipapeiro (Brejo Santo) e	9
Missão Nova (Missão Velha).	
6. Correlação entre os dados altimétricos medidos em campo e extraídos do	11
MDT/SRTM.	
7. Mapas potenciométricos referente as medidas efetuadas em outubro (a) e	12
dezembro (b) de 2005 e abril (c) de 2006.	
8. Mapa potenciométrico referente as medidas efetuadas em julho (a) e outubro (b)	13
de 2006.	
9. Localização dos poços de observação construídos nos municípios de Brejo	14
Santo (Jenipapeiro) e Barbalha (Santana 3).	
10. Localização dos poços selecionados para execução dos testes de aqüífero na	15
porção oriental da Bacia Sedimentar do Araripe.	

95

LISTA DE FIGURAS (cont.)

11. Esquema da metodologia utilizada para a coleta de dados nos testes de	16
aqüíferos.	
12. Equipamentos utilizados na execução dos testes de aqüíferos.	17
13. Mapa de isolinhas de infiltração efetiva em milímetro calculada através do	27
balanço hídrico.	
14. Area I de estudo delimitada pelos contornos utilizados no modelo conceitual.	29
15. Curvas de nível na área do Modelo I de 40 em 40 metros.	31
16. Área de estudo com posicionamento das seções geológicas e os pontos onde	32
foram retirados a altimetria das camadas para a elaboração das camadas do	
Modelo I.	
17. Seção geológica I com as formações que compõem a área de estudo.	32
Modificado de GOLDER/PIVOT (2005).	
18. Seção geológica II com as formações que compõem a área de estudo.	33
Modificado de GOLDER/PIVOT (2005).	
19. Secão geológica III com as formações que compõem a área de estudo.	33
Modificado de GOLDER/PIVOT (2005).	
20. Distribuição das formações no Modelo I gerada pelo PMWIN.	34
21. Localização da área II de estudo (contorno preto).	36
22. Distribuição das camadas geológicas no Modelo II	38
23. Visualização dos rios limitantes nas células do PMWIN	39
24. Vetores de fluxo e variação das linhas equipotenciais de 5.0 em 5.0 metros	42
nara a camada 1 no estado permanente chuvoso	72
25. Eluxo na camada 2 e curvas potenciométricas de 5.0 em 5.0 metros no estado	12
permanente chuvoso	+2
26. Eluxo no comodo 2 o curricos notanciomátricos do 5.0 cm 5.0 metros no estado	12
20. Fluxo na camada 5 e cuivas potenciometricas de 5,0 em 5,0 metros no estado	43
27. Eluva na como da 4 a cumuna natornaismátuicas da 5.0 cm 5.0 metros na estada	12
27. Fluxo na camada 4 e curvas potenciometricas de 5,0 em 5,0 metros no estado	43
permanente chuvoso.	4.4
28. Fluxo na camada 5 e curvas potenciometricas de 0,01 em 0,01 metros no	44
estado permanente chuvoso.	
29. Balanço hidrico do modelo no cenario de regime permanente chuvoso.	44
30. Vetores de fluxo Variação das linhas equipotenciais de 10 em 10 metros, para	46
a camada 1 no estado transiente chuvoso.	
31. Fluxo na camada 2, e curvas potenciométricas de 10,0 em 10,0 metros, no	47
estado transiente chuvoso.	
32. Fluxo na camada 3, e curvas potenciométricas de 10,0 em 10,0 metros, no	47
estado transiente chuvoso.	
33. Fluxo na camada 4, e curvas potenciométricas de 10,0 em 10,0 metros, no	48
estado transiente chuvoso.	
34. Fluxo na camada 5, e curvas potenciométricas de 10,0 em 10,0 metros, no	48
estado transiente chuvoso.	
35. Balanço hídrico do modelo no regime transiente para o período chuvoso.	49
36. Vetores de fluxo e variação das linhas equipotenciais, de 5 em 5 metros, para a	51
camada 1 no estado transiente seco.	
37. Fluxo na camada 2 e curvas potenciométricas de 10,0 em 10,0 metros, no	51
estado transiente seco.	
38. Fluxo na camada 3 e curvas potenciométricas de 10,0 em 10,0 metros, no	52
estado transiente seco.	

LISTA DE FIGURAS (cont.)

39. Fluxo na camada 4 e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente seco	52
40. Fluxo na camada 5 e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente seco.	53
41. Balanco hídrico do modelo no regime transiente para o período seco.	53
42. Linhas potenciométricas de 20 em 20 m. geradas a partir do nível estático de	54
76 pocos com dados fornecidos pela COGERH.	
43 Distribuição dos 76 pocos com nível estático medido fornecidos pela	55
COGERH	55
11 Linhas notenciométricas de 2 em 2 m geradas a partir do nível estático de 12	55
nocos com dados fornecidos pela CPRM	55
45 Distribuição dos 12 pocos com nível estático medido fornecidos pela	56
COCEPH	50
46 Currie de reiz de arre quedrático mádio (DMSEH) am releção às corress	57
40. Curva da faiz do erro quadranco medio (RIVISER) em relação as cargas	57
calculadas e observadas (todas as celulas ativas) versus as iterações (Dados	
COGERH).	
47. Curva da média dos ângulos φ entre os gradientes das cargas calculados e	57
observados (todas as células ativas) versus as iterações (Dados COGERH).	
48. Curva da raiz do erro quadrático médio (RMSEH) em relação às cargas	58
calculadas e observadas (todas as células ativas) versus as iterações (Dados	
CPRM).	
49. Curva da média dos ângulos φ entre os gradientes das cargas calculados e	58
observados (todas as células ativas) versus as iterações.	
50. Linhas equipotenciais na camada 1, de 10 em 10 metros para o estado	59
permanente chuvoso.	
51. Linhas de fluxo na camada 1 para o estado permanente chuvoso.	60
52. Fluxo na camada 2 e curvas potenciométricas de 10 em 10 metros, para o	61
período chuvoso e estado permanente	
53 Eluxo na camada 3 e curvas potenciométricas de 10 em 10 metros para o	61
período chuvoso e estado permanente	01
54 Fluxo na camada 4 e curvas potenciométricas de 1 em 1 metro, para o período	62
chuvoso e estado permanente	02
55. Eluxo na camada 5, a curvas potenciomátricas de 0.001 em 0.001 metro, para o	63
poríodo abuvoso o ostado pormanento	05
56 Linhas aquinotonoisis no comodo 1 do 10 cm 10 motros no 1ª comodo, noro o	65
30. Linnas equipolenciais na camada 1 de 10 em 10 metros na 1 camada, para o	03
57. L'altre Meterre de flerre ne conside 1 mere e nevée de altres e contrado	(5
57. Linnas vetores de fluxo na camada 1, para o periodo chuvoso e estado	65
transiente.	
58. Direção do Fluxo na camada 2, e curvas potenciometricas de 10 em 10 metros,	66
para o período chuvoso e estado transiente.	
59. Direção do Fluxo na camada 3, e curvas potenciométricas de 5,0 em 5,0	66
metros, para o período chuvoso e estado transiente.	
60. Direção do Fluxo na camada 4, e curvas potenciométricas de 0.0001 em 0.0001	67
metros, para o período chuvoso e estado transiente.	
61. Direção do Fluxo na camada 5, e curvas potenciométricas de 0.0001 em 0.0001	67
metros, para o período chuvoso e estado transiente.	
62. Fluxo na camada 1 de 10 em 10 metros para o período seco e estado transiente.	69
63. Vetores de fluxo na camada 1 para o período seco e estado transiente.	70

LISTA DE FIGURAS (cont.)

64. Direção do Fluxo na camada 2, e curvas potenciométricas de 10 em 10 metros,	71
para o período seco e estado transiente.	
65. Direção do Fluxo na camada 3, e curvas potenciométricas de 5,0 em 5,0	71
metros, para o período seco e estado transiente.	
66. Direção do Fluxo na camada 4, e curvas potenciométricas de 0.0001 em 0.0001	72
metros, para o período seco e estado transiente.	
67. Direção do Fluxo na camada 5, e curvas potenciométricas de 0.0001 em 0.0001	73
metros, para o período seco e estado transiente.	
68. Distribuição dos poços medidos pela CPRM.	74
69. Linha potenciométricas observadas de 3 em 3 metros para a região de estudo.	74
70. Linha potenciométricas observadas em azul (2 em 2 metros) e calculadas em	75
vermelho (4 em 4 metros).	
71. Curva da raiz do erro quadrático médio (RMSEH) em relação às cargas	76
calculadas e observadas versus o número de iterações com os poços da CPRM.	
72. Curva da soma dos ângulos φ entre os gradientes das cargas calculadas e	76
observadas versus o número de iterações com os poços da CPRM.	
73. Linha potenciométricas observadas em azul (2 em 2 metros) e calculadas em	77
vermelho (4 em 4 metros) na quarta iteração.	
74. Valores de condutividade hidráulica obtidos através do MIGHA, visualizado	78
no PMWIN.	
75. Distribuição dos poços da COGERH na área de estudo.	79
76. Linha potenciométricas observadas de 3 em 3 metros a partir dos dados da	79
COGERH para a região de estudo.	
77. Curva da raiz do erro quadrático médio (RMSEH) em relação às cargas	80
calculadas e observadas versus o número de iterações com os poços da COGERH.	
78. Curva da média dos ângulos φ entre os gradientes das cargas calculados e	80
observados versus o número de iterações com os poços da COGERH.	
79. Linha potenciométricas observadas de 3 em 3 metros e calculadas de 4 em 4	81
metros a partir dos dados da COGERH na 4ª iteração.	
80. Valores de condutividade hidráulica obtidos através do MIGHA, na 4ª iteração	82
para os poços da COGERH, visualizado no PMWIN.	
· · ·	

LISTA DE QUADROS

1. Distribuição dos poços por municípios e dados técnicos na porção oriental da				
Bacia Sedimentar do Araripe.				
2. Estatística descritiva dos dados técnicos dos poços da Rede de Poços	4			
Representativos.				
3. Características gerais dos poços da Rede de Poços Representativos 2.	6			
4. Resumo das informações sobre os testes de aquífero.	16			
5. Resultados da interpretação dos testes de aqüíferos utilizando a planilha <i>Excel</i> e				
o Aquifer Test.				
6. Postos pluviométricos levantados no Banco de Dados Hidroweb da ANA.	23			
7. Postos pluviométricos selecionados na porção oriental da Bacia Sedimentar do				
Araripe.				
8. Determinação da Infiltração efetiva (Ie) a partir de dados de precipitação no	24			

período de 1911 a 2006, com 33 anos de falhas, no Posto Barbalha.

LISTA DE QUADROS (cont.)

9. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 2 anos de falhas, no Posto Crato	24
10. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 48 anos de falhas, no Posto Juazeiro do Norte.	25
11. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 6 anos de falhas, no Posto Missão Velha.	25
12. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 12 anos de falhas, no Posto Milagres.	25
13. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1962 a 2005, com 3 anos de falhas, no Posto Mauriti.	26
14. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1911 a 2006, com 6 anos de falhas, no Posto Brejo Santo.	26
15. Resumo dos valores das médias de totais anuais precipitação e infiltração	27
efetiva calculada para cada um dos postos pluviométricos.	
16. Estimativa da recarga subterrânea para a Bacia do Araripe.	27
17. Características dos Sistemas Aqüíferos.	29
18. Parâmetros hidrogeológicos para as unidades hidroestratigráficas que	30
compõem os sistemas aqüíferos da área de trabalho.	
19. Balanço hídrico do Posto Crato em Crato, Latitude 07º 13' S, Longitude 39º 23'	35
W, altitude 421 m.	
20. Balanço hídrico do Posto Juazeiro do Norte em Juazeiro do Norte, Latitude 07° 23' S, Longitude 39° 23' W, altitude 650 m.	35
21. Valores médios das cotas da área adjacente à área de estudo e espessuras das camadas.	37
22. Balanço hídrico do Posto Missão Velha, com Latitude 07º 15' S, Longitude 39º 09' W, e altitude de 352 m.	40
23. Resumo do balanço hídrico do Posto Missão Velha.	40
24. Características da simulação do estado permanente chuvoso.	41
25. Balanço hídrico calculado pelo modelo, Simulação 1 em regime permanente.	45
26. Características da simulação do estado transiente chuvoso do modelo I.	45
27. Balanço hídrico calculado pelo modelo, Simulação 2 em regime transiente	49
período chuvoso.	
28. Características da simulação do estado transiente seco para o modelo I.	50
29. Balanço hídrico calculado pelo modelo em regime transiente período seco.	54
30. Características da simulação do estado permanente chuvoso.	59
31. Velocidades médias das camadas para estado estacionário chuvoso.	59
32. Balanço Hídrico feito pelo PMWIN para simulação no estado estacionário.	63
33. Características da simulação do estado transiente chuvoso.	64
34. Velocidades médias das camadas para estado transiente chuvoso.	64
35. Algumas características para a simulação no estado transiente seco.	68
36. Velocidades médias das camadas para estado transiente seco.	69

SIGLAS E ABREVEATURAS

CAGECE	Companhia de Água e Esgoto do Ceará
CE	Ceará
COGERH	Companhia de Gestão de Recursos Hídricos do Estado do Ceará,
CPRM	Serviço Geológico do Brasil
DNPM	Departamento Nacional da Produção Mineral
FINEP	Financiadora de Estudos e Projetos
FUNASA	Fundação Nacional de Saúde
FUNCEME.	Fundação Cearense de
IBGE	Instituto Brasileiro de Geografia e Estatística
LGPSR	Laboratório de Geofísica de Prospecção e Sensoriamento Remoto
MDT	Modelos Digitais de Terreno
MIGHA	Método Iterativo do Gradiente Hidráulico Alternativo
PE	Pernambuco
PI	Piauí
PROASNE	Programa de Água Subterrânea no Nordeste do Brasil
RMSEH	Root Mean Square Error of Head
SAAEC	Serviço Autônomo de Água e Esgoto do Crato
SIAGAS	Sistema de Informações de Água Subterrâneas
SRTM	Shuttle Radar Topographil Mission
UFBA	Universidade Federal da Bahia
UFC	Universidade Federal do Ceará
UFCG	Universidade Federal de Campina Grande
UFPE	Universidade Federal de Pernambuco
UFRN	Universidade Federal do Rio Grande do Norte

INTRODUÇÃO

A CPRM – Serviço Geológico do Brasil, firmou junto ao Ministério da Ciência e Tecnologia, por intermédio da Financiadora de Estudos e Projetos – FINEP, responsável pela implementação do Fundo Setorial de Recursos Hídricos, o convênio 01.04.0623.00 denominado Comportamento das Bacias Sedimentares da Região Semi-Árida do Nordeste Brasileiro.

Essa parceria tem como objetivo levantar, gerar e disponibilizar informações sobre a ocorrência, potencialidades, circulação e utilização das águas subterrâneas em bacias sedimentares da região semi-árida do Nordeste.

Participam também deste convênio, formando uma rede cooperativa de pesquisa, as seguintes instituições: Universidade Federal da Bahia (UFBA), Universidade Federal do Ceará (UFC), Universidade Federal de Campina Grande (UFCG), Universidade Federal de Pernambuco (UFPE) e Universidade Federal do Rio Grande do Norte (UFRN).

O presente documento corresponde a Meta C - Caracterização Hidrogeológica, que teve como objetivo a seleção de pontos d'água, o nivelamento dos poços selecionados, a construções de piezômetros, a confecção de mapas potenciométricos, execução de testes de aqüífero, o estudo do balanço hídrico, a elaboração de um modelo matemático e avaliação de Reserva e disponibilidade das águas subterrâneas na área.

A Bacia Sedimentar do Araripe localiza-se no alto sertão nordestino, tem uma área de aproximadamente 11.000 km^2 , sendo delimitada pelas coordenadas geográficas: $38^\circ 30$ ' a $41^\circ 00$ ' de longitude oeste de Greenwich e $7^\circ 10$ ' a $7^\circ 50$ ' de latitude sul, englobando parte dos estados de Pernambuco, Ceará e Piauí, constituindo-se no divisor de águas das bacias hidrográficas dos rios Jaguaribe (CE) ao norte, São Francisco (PE) ao sul e Parnaíba (PI) a oeste.

A Bacia Sedimentar do Araripe é constituída por um vasto planalto, a Chapada do Araripe, e por planícies que circundam a chapada com desníveis que chegam a 400m. Nesta região, o recurso hídrico subterrâneo é a mais importante fonte de água potável para abastecimento público e privado, bem como para diversas atividades, tais como práticas agrícolas, industriais e lazer.

A área de interesse do projeto corresponde a porção oriental (leste) da Bacia Sedimentar do Araripe, com cerca de 6.500 km² (Figura 1), sendo delimitada pelas coordenadas geográficas de 38°30' a 39° 28' de longitude oeste de Greenwich e de 7° 05' a 7°40' de latitude sul. Nela estão localizadas as três principais cidades da região do cariri cearense, que são Juazeiro do Norte, Crato e Barbalha, além de Missão Velha, Brejo Santo, Mauriti, Milagres, Porteiras, Penaforte, Jardim, Abaiara e Jati.

1. SELEÇÃO DOS PONTOS D'ÁGUA

Autor: MSc. Robério Boto de Aguiar - CPRM; Francisco Alves Pessoa - CPRM

1.1 Revisão e atualização do inventário de pontos d´água

De acordo com o Banco de Dados do Sistema de Informações de Águas Subterrâneas – SIAGAS, do Serviço Geológico do Brasil, estão cadastrados na área delimitada para o estudo 1599 pontos d'água, sendo, 1357 poços tubulares, 236 fontes e cinco poços amazonas, conforme mostra a figura 1.

Figura 1. Localização da área e distribuição dos pontos d´água cadastrados no SIAGAS na área de estudo.

Como o objetivo do projeto é estudar o comportamento das águas subterrâneas na Bacia Sedimentar do Araripe através do monitoramento quantitativo e qualitativo de uma Rede de Poços Representativos, então foram considerados apenas os poços tubulares construídos dentro dos limites da bacia, descartando-se os poços localizados em terreno de rochas cristalinas, assim como, as fontes naturais e os poços amazonas.

A partir desse inventário foi realizada uma etapa de campo visando localizar esses poços e identificar outros ainda não cadastrados. Todas as informações dos novos poços foram coletadas e armazenadas no Banco de Dados do SIAGAS, com exceção daqueles sem ficha técnica. Mesmo sem os dados litológicos, doze poços foram incorporados ao cadastro de poços do projeto, pois existia a possibilidade de localizar as fichas técnicas com os construtores e/ou contratantes.

Sendo assim, o inventário de poços do projeto ficou com 1.182 poços tubulares, distribuídos em oito municípios da bacia do Araripe. Analisando os dados desses poços, observa-se que 234 deles possuem perfil litológico, 551 têm dados de nível estático, 546 de nível dinâmico, 677 possuem valores de vazão e 514 valores de condutividade elétrica, conforme mostra o quadro 1.

Municípios	Total Poço	Com Perfil	Nível Estático (m)	Nível Dinâmico (m)	Vazão (m³/h)	Condutividade Elétrica (µS/cm)
Abaiara	36	4	4	4	5	21
Barbalha	144	46	109	109	113	67
Brejo Santo	180	68	65	65	83	74
Crato	110	15	72	72	71	18
Juazeiro	251	28	200	200	195	76
Mauriti	218	38	46	42	136	134
Milagres	118	10	7	7	10	69
Missão Velha	83	15	31	30	37	37
Porteiras	42	10	17	17	27	18
Total	1.182	234	551	546	677	514

Quadro 1. Distribuição dos poços por municípios e dados técnicos na porção oriental da Bacia Sedimentar do Araripe.

1.2 Seleção dos Poços Representativos

Baseados nas informações contidas no cadastro e na distribuição desses poços na área de estudo, foram escolhidos 94 deles para compor a primeira Rede de Poços Representativos (RPR1). Porém, com o desenvolvimento dos trabalhos, existiu a necessidade de se aumentar a quantidade de poços na rede, culminando assim, com a formação da segunda Rede de Poços Representativos (RPR2), composta por 131 poços. A figura 2 mostra a distribuição espacial desses poços da Rede Representativa na Bacia Sedimentar do Araripe.

Figura 2. Distribuição dos 131 poços da Rede Representativa na Bacia do Araripe.

O quadro 2 mostra a estatística descritiva dos 131 poços selecionados para compor a Rede de Poços Representativos da porção oriental da Bacia Sedimentar do Araripe.

Parâmetros	Prof. (m)	Nível Estático (m)	Nível Dinâmico (m)	Rebaixamento (m)	Vazão (m³/h)	Capacidade Específica (m ³ /h/m)
Média	101,3	23,3	47,6	23,9	21,1	1,55
Mediana	89,0	18,0	47,0	17,0	14,0	0,88
Desvio Padrão	43,2	22,1	26,6	18,5	20,6	2,06
Assimetria	1,5	2,2	1,0	1,0	1,6	2,64
Máximo	258,0	118,0	132,0	90,0	100,0	11,00
Mínimo	25,0	Jorrante	7,0	2,0	1,0	0,00

Quadro 2. Estatística descritiva dos dados técnicos dos poços da Rede de Poços Representativos.

1.3 Monitoramento Potenciométrico e Qualitativo

Após a revisão e atualização do inventário de pontos d'água e, consequentemente, da seleção de uma Rede de Poços Representativos dos sistemas aqüíferos da Bacia do Araripe, procedeuse a etapa de monitoramento dos níveis potenciométricos e da qualidade das águas. Nessa etapa foram medidos sistematicamente, e com periodicidade trimestral, os níveis estáticos dos poços e recolhidas amostras para a realização de análises físico-químicas e isotópicas.

Foram realizadas cinco campanhas de monitoramento potenciométrico, sendo que as três primeiras tinham como base os 94 poços da primeira rede representativa (RPR1). A partir da quarta etapa, foram utilizados os poços da segunda rede representativa (RPR2), cujas características são mostradas no quadro 3.

As três primeiras etapas de monitoramento ocorreram nos meses de outubro e dezembro de 2005 e abril de 2006, onde foram medidos em cada etapa os níveis de 66 poços e coletadas 45 amostras de água dos poços para análises físico-químicas. A quarta e quinta campanhas foram realizadas, respectivamente, em julho e outubro de 2006, onde foram medidos os níveis de 107 poços e coletadas 45 amostras de água.

Considerando que 56 poços tiveram seus níveis estáticos medidos em todas as campanhas de monitoramento e que os mesmos captam água do aqüífero livre, construiu-se um gráfico (Figura 3), com os valores médios dos níveis medidos para mostrar a evolução temporal do nível d'água na área de estudo. Observar-se a importância da infiltração das águas das chuvas, que ocorrem com mais intensidade e freqüência nos meses de janeiro a maio, na recarga desses aqüíferos.

As análises físico-químicas foram realizadas no Laboratório de Hidroquímica do Departamento de Física e no Laboratório de Geologia Marinha e Aplicada do Departamento de Geologia, ambos da Universidade Federal do Ceará. As análises isotópicas foram realizadas no Laboratório de Isótopos da Universidade Federal da Bahia.

Figura 3. Variação temporal dos valores médios de nível estático dos poços monitorados na porção oriental da Bacia Sedimentar do Araripe.

1.4 Implantação de Pluviógrafos e Infiltrômetros

Nos estudos de sistemas hidrológicos e hidrogeológicos de uma determinada área é fundamental o conhecimento do ciclo hidrológico e a elaboração do balanço hídrico da região.

A avaliação quantitativa do ciclo hidrológico é feita através da *Equação Geral do Balanço Hídrico*, que obedece ao princípio da conservação da massa ou da continuidade, segundo o qual, num sistema qualquer, a diferença entre as entradas e as saídas é igual a variação do armazenamento dentro do próprio sistema.

Portanto, para elaboração do balanço hídrico de uma área selecionada, que permitirá inferir os valores e, possivelmente, os mecanismos de recarga, deverão ser coletados, selecionados e analisados os dados climatológicos disponíveis, tais como, pluviométricos, fluviométricos, de evapotranspiração etc.

O pluviômetro e o pluviógrafo são aparelhos que permitem medir as precipitações. A diferença entre ambos é que o pluviógrafo registra automaticamente os dados, ao contrario do pluviômetro que precisa de leituras manuais a intervalos de tempo fixos.

Existem vários tipos de pluviógrafos, usando princípios diferentes para medir e gravar continuamente as precipitações. No projeto foi utilizado o pluviógrafo de báscula, que consiste em uma caçamba, dividida em dois compartimentos, arranjada de tal maneira que, quando um deles se enche, a caçamba bascula, esvazia-o e coloca o outro em posição. Quando este último é esvaziado, por sua vez, a caçamba bascula em sentido contrário, voltando à posição primitiva, e assim por diante. A caçamba é conectada eletricamente a um registrador (*datalog*), de modo que, quando caem 0.25 mm de chuva na boca do receptor, um dos compartimentos da caçamba se enche, e cada oscilação corresponde ao registro de 0.25 mm de chuva.

Nº. de	Nº. do	Município	UTM	UTM	Prof.	Cota	Litotipo
	SIAGAS		IN 0100000	E	(m)	266	Associado
AR0006	2300010228	Abaiara	9189080	501407	/0	300	Missao Velha
AR0010	2300010232	Abaiara	9190929	495910	80	360	Missao Velha
AR0012	2300010234	Abaiara	9193349	496176	8/	412	Missao Velha
AR0022	2300010322	Abaiara	9181661	497639	90	401	Missão Velha
AR0023	2300010323	Abaiara	9183069	495173	70	415	Missão Velha
AR0036	2300019952	Abaiara	9187259	495017	148	393	Missão Velha
AR0042	2300002088	Barbalha	9195443	467944	79	399	Rio Batateira
AR0075	2300014201	Barbalha	9194194	465194	80	428	Rio Batateira
AR0085	2300014211	Barbalha	9190720	461340	102	436	Rio Batateira
AR0095	2300014221	Barbalha	9194964	462579	248	440	Rio Batateira
AR0162	2300014289	Barbalha	9191430	474332	60	398	Rio Batateira
AR0177	2300018998	Barbalha	9188377	456916	80	589	Santana
AR0178	2300018999	Barbalha	9190931	471548	82	402	Rio Batateira
AR0180	2300019956	Barbalha	9191007	467320	230	412	Rio Batateira
AR0181	2300001236	Brejo santo	9172300	507450	62	390	Missão Velha
AR0196	2300002271	Brejo santo	9177991	500665	108	386	Missão Velha
AR0197	2300002272	Brejo santo	9163531	510188	108	394	Missão Velha
AR0219	2300002300	Brejo santo	9164863	505087	80	407	Brejo Santo
AR0220	2300002301	Brejo santo	9176502	504291	120	378	Missão Velha
AR0249	2300015800	Brejo santo	9168989	500920	251	384	Brejo Santo
AR0262	2300015813	Brejo santo	9161481	514396	80	381	Missão Velha
AR0296	2300015852	Brejo santo	9169172	517636	74	372	Missão Velha
AR0298	2300015854	Brejo santo	9168995	508401	100	447	Missão Velha
AR0300	2300015856	Brejo santo	9171286	510745	80	399	Missão Velha
AR0311	2300015867	Brejo santo	9165378	515268	73	380	Missão Velha
AR0312	2300015868	Breio santo	9164562	514360	0	377	Missão Velha
AR0336	2300019696	Breio santo	9178105	500900	25	396	Missão Velha
AR0337	2300019697	Breio santo	9178069	500798	30	398	Missão Velha
AR0338	2300019698	Breio santo	9178034	500702	36	395	Missão Velha
AR0339	2300019700	Breio santo	9175592	508108	72	392	Missão Velha
AR0340	2300019701	Breio santo	9164818	517135	59	370	Missão Velha
AR0342	2300019703	Breio santo	9160158	496533	72	466	Breio Santo
AR0343	2300019704	Brejo santo	9160216	496538	63	474	Brejo Santo
AR0347	2300019701	Brejo santo	9175073	501882	89	436	Missão Velha
AR0349	2300019710	Brejo santo	9171257	515343	57	401	Abajara
AR0350	2300019710	Brejo santo	9164579	/98505	80	401	Missão Velha
AR0350	2300019771	Brejo santo	9176/39	500153	136	403	Breio Santo
AR0334	2300019774	Breio santo	0170439	705031	108	403	Breio Santo
AR0333	2300019775	Brojo santo	0174104	495951	110	430	Brojo Santo
AR0550	2300019770	Brejo santo	9174104 0176506	490378	40	260	Missão Valha
AR0557	2300019777	Brejo santo	9170300	502011	122	309 410	Projo Sonto
AR0558	2300019778	Drejo santo	9103271	512162	155	410	Missão Valha
AR0339	2300019779	Brejo santo	9109/31	512162	88 02	390	Missao Velha
AKU30U	2300014280	Drejo santo	91/3183	JU944/	92	390	Missão Velha
AKU388	2300014380	Crato	9209352	453046	64	431	Nissao Velha
AK0389	2300014382	Crato	9196428	458042	82	469	KIO Batateira
AR0391	2300014822	Crato	919/519	461175	108	449	KIO Batateira
AR0467	2300019166	Crato	9208115	459760	72	407	Missao Velha
AR0504	2300014455	Juazeiro do Norte	9205847	4/0363	65	359	Brejo Santo
AR0718	2300020043	Juazeiro do Norte	9202762	461213	60	393	Mauriti

Quadro 3. Características gerais dos poços da Rede de Poços Representativos 2.

Continua...

N° de	Nº do	Município	UTM	UTM	Prof.	Cota	Litotipo
Ordem	SIAGAS		N	E	(m)	07.4	Associado
AR0/19	2300020044	Juazeiro do Norte	9206779	475069	96	374	Mauriti
AR0/20	2300020045	Juazeiro do Norte	9205172	475270	80	382	Mauriti
AR0721	2300020046	Juazeiro do Norte	9208519	474708	72	374	Mauriti
AR0722	2300020244	Mauriti	9192476	521268	123	378	Brejo Santo
AR0724	2300020239	Mauriti	9185344	531679	196	390	Brejo Santo
AR0726	2300020238	Mauriti	9180083	526498	80	380	Missão Velha
AR0727	2300015537	Mauriti	9192532	539541	93	409	Brejo Santo
AR0728	2300020237	Mauriti	9185521	517850	120	373	Missão Velha
AR0729	2300020245	Mauriti	9182675	527387	100	371	Brejo Santo
AR0730	2300020246	Mauriti	9189319	534624	170	401	Brejo Santo
AR0732		Mauriti	9189558	538558	100	414	Brejo Santo
AR0733	2300020227	Mauriti	9191256	526923	120	384	Brejo Santo
AR0734	2300020235	Mauriti	9190766	522818	130	377	Brejo Santo
AR0735		Mauriti	9180349	520952	178	359	Brejo Santo
AR0736	2300020243	Mauriti	9190174	521910	180	364	Brejo Santo
AR0737	2300020242	Mauriti	9177987	524728	90	379	Missão Velha
AR0738	2300020247	Mauriti	9190487	519396	220	365	Brejo Santo
AR0739	2300020236	Mauriti	9179425	536017	150	563	Mauriti
AR0740		Mauriti	9174128	521637	92	371	Brejo Santo
AR0741	2300020231	Mauriti	9187652	532684	130	387	Brejo Santo
AR0745	2300002855	Mauriti	9191820	522505	80	382	Mauriti
AR0758	2300015472	Mauriti	9186985	528168	86	403	Mauriti
AR0781	2300015504	Mauriti	9198192	526281	80	576	Mauriti
AR0855	2300015580	Mauriti	9175775	519305	64	365	Missão Velha
AR0868	2300015593	Mauriti	9175092	521800	150	365	Missão Velha
AR0918	2300015646	Mauriti	9182742	520711	258	378	Brejo Santo
AR0920	2300015648	Mauriti	9179594	515718	69	358	Missão Velha
AR0922	2300015650	Mauriti	9176493	516225	80	360	Missão Velha
AR0928	2300019316	Mauriti	9192741	519235	96	386	Mauriti
AR0929	2300019317	Mauriti	9193489	519128	126	419	Mauriti
AR0930	2300019318	Mauriti	9187054	532466	150	386	Brejo Santo
AR0931	2300019319	Mauriti	9187052	536145	130	406	Brejo Santo
AR0932	2300019639	Mauriti	9187767	536296	147	406	Brejo Santo
AR0933	2300019688	Mauriti	9189389	529447	156	432	Mauriti
AR0934	2300019689	Mauriti	9189288	529014	150	426	Mauriti
AR0935	2300019690	Mauriti	9189530	529810	150	444	Mauriti
AR0936	2300020048	Mauriti	9170292	519450	80	379	Brejo Santo
AR0937	2300020049	Mauriti	9186292	532586	100	388	Breio Santo
AR0938	2300020050	Mauriti	9188002	519730	80	377	Brejo Santo
AR0940	2300001449	Milagres	9195870	514191	100	434	Mauriti
AR0941	2300001451	Milagres	9192334	507505	100	374	Breio Santo
AR0946	2300002882	Milagres	9195536	502278	90	344	Mauriti
AR0950	2300002888	Milagres	9195960	492230	84	439	Missão Velha
AR0968	2300014027	Milagres	9183037	506940	0	362	Missão Velha
AR0976	2300014035	Milagres	9181117	507427	80	362	Missão Velha
AR0981	2300014040	Milagres	9198621	499450	0	336	Missão Velha
AR0989	2300014048	Milagres	9199542	502122	120	342	Missão Velha
AR1014	2300017677	Milagres	9187908	514088	80	347	Missão Velha
AR1034	2300017697	Milagres	9192178	503832	63	335	Brejo Santo

Quadro 3. Continuação...

Continua...

N° de	Nº do	Municínio	UTM	UTM	Prof.	Coto	Litotipo
Ordem	SIAGAS	winnerpio	Ν	E	(m)	Cola	Associado
AR1058	2300001665	Missão velha	9197040	490344	139	378	Missão Velha
AR1060	2300002892	Missão velha	9199222	481908	80	393	Rio Batateira
AR1064	2300002901	Missão velha	9187048	481150	72	454	Rio Batateira
AR1066	2300005041	Missão velha	9198440	484840	72	374	Missão Velha
AR1075	2300010294	Missão velha	9199144	476905	140	358	Rio Batateira
AR1097	2300010316	Missão velha	9196164	482008	90	377	Rio Batateira
AR1112	2300010396	Missão velha	9189227	479398	72	426	Rio Batateira
AR1113	2300010397	Missão velha	9191165	478537	96	387	Rio Batateira
AR1119	2300010403	Missão velha	9185978	484678	80	443	Rio Batateira
AR1123	2300010407	Missão velha	9189660	483506	74	406	Rio Batateira
AR1128	2300010412	Missão velha	9194382	482770	70	383	Rio Batateira
AR1131	2300020248	Missão velha	9190322	479507	120	417	Rio Batateira
AR1132		Missão velha	9189524	480178	62	417	Rio Batateira
AR1133		Missão velha	9189639	480080	76	419	Rio Batateira
AR1134		Missão velha	9189956	479482	48	404	Rio Batateira
AR1135		Missão velha	9189742	479738	62	405	Rio Batateira
AR1136	2300010325	Missão velha	9189230	479403	65	441	Rio Batateira
AR1137	2300020309	Missão velha	9185745	476959	0	406	Rio Batateira
AR1139	2300020241	Missão velha	9197265	471754	120	415	Rio Batateira
AR1140		Missão velha	9189291	475540	0	452	Rio Batateira
AR1147	2300010263	Porteiras	9167755	492384	76	477	Brejo Santo
AR1152	2300010269	Porteiras	9161251	489370	100	455	Missão Velha
AR1155	2300010272	Porteiras	9165507	488419	78	477	Missão Velha
AR1158	2300010275	Porteiras	9164811	491018	120	472	Brejo Santo
AR1165	2300010282	Porteiras	9163660	486208	96	537	Missão Velha
AR1172	2300018503	Porteiras	9160877	497181	71	469	Missão Velha
AR1173	2300018504	Porteiras	9161858	486571	100	502	Missão Velha
AR1174	2300018505	Porteiras	9165661	493977	100	476	Missão Velha
AR1175	2300019575	Porteiras	9169641	488714	150	602	Missão Velha
AR1177	2300019786	Porteiras	9167846	489955	158	546	Missão Velha
AR1178	2300019787	Porteiras	9163623	489449	80	476	Missão Velha
AR1179	2300019788	Porteiras	9166435	496412	140	480	Brejo Santo
AR1181	2300019790	Porteiras	9159624	496164	60	481	Mauriti

Quadro 3. Continuação...

Os infiltrômetros ou lisímetros são dispositivos instalados no terreno, a cerca de 2 m de profundidade, sem alterar a estrutura natural do solo ou formação. Destina-se, assim, a avaliar realisticamente o volume infiltrado. Em presença de terreno plano, o escoamento superficial é desprezível na pequena área amostrada pelo lisímetro. Daí pode-se avaliar a evapotranspiração real como sendo a diferença entre a precipitação, medida pelo pluviômetro, e a infiltração, medida pelo lisímetro (Feitosa, 2000. p.66).

Apesar de existirem vários postos pluviométricos na área selecionada, a proposta do projeto era implantar estações hidroclimatológicas, onde fosse possível se medir os valores de precipitação, infiltração e da evapotranspiração num mesmo ponto da área de estudo.

Para isso, foram instaladas na Bacia do Araripe duas estações, compostas de pluviômetro, pluviógrafo e infiltrômetro (lisímetro), sendo uma na localidade de Jenipapeiro, município de Brejo Santo, e o outro no sítio Cantagalo, distrito de Missão Nova, no município de Missão Velha, conforme mostra a figura 4.

Figura 4. Estações hidroclimatológicas instaladas na Bacia do Araripe.

A instalação do pluviômetro junto ao pluviógrafo, deu-se por medida de precaução, já que esses equipamentos de registro automático estão sendo testados e, em caso se falha, os dados de precipitação não seriam perdidos, pois o observador registraria através do pluviômetro.

A figura 5 representa graficamente os totais mensais de precipitações nas estações de Jenipapeiro, em Brejo Santo, e Missão Nova, em Missão Velha, durante o período de dezembro de 2005 a maio de 2007. Observa-se uma predominância de chuvas nos meses de fevereiro a abril.

Figura 5. Distribuição das precipitações nas estações de Jenipapeiro (Brejo Santo) e Missão Nova (Missão Velha).

Com relação aos dados dos infiltrômetros, infelizmente, não serão utilizados no presente trabalho, em virtude do pequeno período de observação, pois, somente foram instalados em janeiro de 2007, como também, pelos constantes erros de leitura cometidos pelos observadores. Portanto, espera-se que, com a continuidade do projeto, novos equipamentos sejam instalados e os observadores orientados no procedimento correto de leitura do dispositivo.

2. NIVELAMENTO DOS POÇOS SELECIONADOS

Autores: MSc. Robério Boto de Aguiar – CPRM; MSC. Liano Silva Veríssimo – CPRM; Francisco Alves Pessoa - CPRM

Tendo por objetivo a elaboração de mapas potenciométricos, 59 poços integrantes da primeira rede representativa foram nivelados altimetricamente. Devido à exatidão necessária para se estabelecer a superfície potenciométrica dos sistemas aqüíferos, foi empregado o sistema geodésico de posicionamento global, utilizando-se a ferramenta denominada de GPS Geodésico, capaz de fornecer dados consistentes com precisão centimétrica. O trabalho de campo foi realizado pelos técnicos Jorge de Vasconcelos Oliveira, Julimar de Araújo e Carlos Alberto Ramos da Divisão de Cartografia da CPRM.

Devido ao acréscimo de novos poços à rede representativa, tornou-se necessário o nivelamento desses pontos. Como não foi possível uma nova campanha de campo para realização dessa atividade, utilizou-se o artifício de se extrair os valores altimétricos dos poços a partir de Modelos Digitais de Terreno (MDT), utilizando o aplicativo do *ArcMap*.

O Modelo de Elevação Digital de Terreno (MDT) caracteriza-se por ser uma representação matemática tridimensional da superfície terrestre, por meio de uma malha de elevação contínua com coordenadas tridimensionais. Além dos métodos convencionais de produção de MDTs, existe a interferometria, um método à base de imageamento por radar, que pode produzir MDTs com alto nível de precisão. Tal tecnologia foi utilizada pela Agência Espacial Norte Americana – NASA para a produção do *Shuttle Radar Topographic Mission* – SRTM, distribuído para todo o mundo com resolução espacial aproximadamente de 90m.

A figura 6 apresenta a reta de correlação dos valores de altimetria obtidos através do nivelamento com GPS Geodésico e os valores extraídos do Modelo Digital do Terreno (MDT), produzido a partir das imagens de radar do SRTM. Observa-se, pelo coeficiente de correlação linear, que os valores são bastante correlacionáveis, podendo ser utilizado quando da ausência de valores obtidos no campo.

3. MAPAS POTENCIOMÉTRICOS

Autores: MSc. Robério Boto de Aguiar – CPRM; Dra. Sônia Maria Silva Vasconcelos - Dept. de Geologia/UFC

Como resultado das etapas anteriores, ou seja, seleção da rede de poços representativos, medição periódica dos níveis d'água nos poços e nivelamento altimétricos dos mesmos, temse a elaboração dos mapas potenciométricos, com o objetivo de obter a distribuição espacial e temporal das cargas hidráulicas do sistema aqüífero.

O estudo das superfícies potenciométricas permite obterem-se dados básicos sobre o movimento e comportamento da água subterrânea. Tanto pode-se realizar uma interpretação

qualitativa, como também, quantitativa, seja por métodos simples, ou seja, através do estudo de uma mesma superfície em épocas diferentes.

Figura 6. Correlação entre os dados altimétricos medidos em campo e extraídos do MDT/SRTM.

Os mapas potenciométricos foram gerados através do método de interpolação linear da krigagem. O processo de krigagem estima um valor de um atributo, em uma posição não amostrada, a partir de um conjunto de amostras vizinhas. O método é semelhante ao de interpolação por média móvel ponderada, porém na krigagem os pesos dados a cada observação são determinados a partir de uma pré-análise espacial utilizando semivariogramas experimentais.

Para a elaboração dos mapas potenciométricos foram considerados apenas os dados dos poços que captam o aqüífero livre. Mesmo assim, para cada conjunto de dados foi construído um histograma e analisado a sua simetria. Caso exista algum dado com valor anômalo, ele é suprimido do conjunto e, se a simetria não esteja perfeita, é aplicado uma transformação logarítmica para melhorar essa distribuição. Essa mesma transformação é aplicada quando for realizada a interpolação dos dados através da krigagem.

A figura 7 apresenta as superfícies potenciométricas dos aqüíferos livres, referente às 56 medidas de nível d'água realizadas nos meses de outubro e dezembro de 2005 e abril de 2006. Observa-se, que há uma predominância do fluxo de água subterrânea de S-SW para N-NE, até alcançar a depressão dos vales dos principais rios que drenam a bacia: Rio Salgado e seus afluentes, na porção oeste e, Riacho dos Porcos, na porção leste. Essa área é representada predominantemente pelas formações Rio da Batateira, Abaiara e Missão Velha, que compõem o Sistema Aqüífero Médio.

No lado setentrional da área, onde afloram principalmente as rochas das formações Mauriti e Brejo Santo, que representam o Sistema Aqüífero Inferior, o fluxo se investe, vindo de norte para sul ou de leste para oeste, conforme a disposição da rede hidrográfica.

Figura 7. Mapas potenciométricos referente as medidas efetuadas em outubro (a) e dezembro (b) de 2005 e abril (c) de 2006.

A figura 8, que mostra as superfícies potenciométricas elaboradas a partir de 94 medidas de nível estático realizadas nos meses de julho e outubro de 2006, evidencia o mesmo comportamento do fluxo subterrâneo apresentado nas etapas de monitoramentos anteriores. Ou seja, existe uma direção preferencial no Sistema Aqüífero Médio, de SW para NE e, no Sistema Aqüífero Inferior, de NE para SW.

Figura 8. Mapa potenciométrico referente as medidas efetuadas em julho (a) e outubro (b) de 2006.

Ainda analisando os mapas potenciométricos acima, constata-se que os valores de gradiente hidráulico variaram durante as etapas do monitoramento. Em outubro de 2005, o valor máximo foi de 0,011 e o mínimo de $3,7 \times 10^{-5}$. Em dezembro de 2005 e abril de 2006, apenas o valores mínimos variaram para $2,5\times 10^{-5}$ e $3,7\times 10^{-5}$, respectivamente. Em julho de 2006 os valores variaram de $8,2\times 10^{-5}$ a 0,017. O valor máximo de outubro de 2006 foi de $5,8\times 10^{-5}$ e o mínimo de 0,016. Os maiores gradientes ocorrem geralmente próximos à borda da chapada, em virtude da influência exercida pelo relevo, e os mais fracos ao longo da pediplanície.

4. CONSTRUÇÃO DE POÇOS DE OBSERVAÇÃO

Autores: MSc. Robério Boto de Aguiar – CPRM; MSC. Liano Silva Veríssimo - CPRM

A construção de poços de observação é necessária para a determinação dos parâmetros hidrodinâmicos de um meio poroso, tais como, o coeficiente de armazenamento (S), a transmissividade (T) e a condutividade hidráulica (K). Estes dados são indispensáveis para que se possa fazer qualquer avaliação do aqüífero.

Na Bacia Sedimentar do Araripe foram selecionados apenas dois locais para construção dos piezômetros e, consequentemente, realização dos testes de aqüífero. Um piezômetro foi instalado na localidade de Jenipapeiro, município de Brejo Santo, e o outro no sitio Santana 3, município de Barbalha, conforme mostra a figura 9.

A perfuração para instalação dos dois poços de observação foi realizada por empresa terceirizada (Água Viva Poços Artesianos) e utilizou o método percussivo, com diâmetro de perfuração de 10", revestimento de 4" e profundidade de 50,0 m, conforme mostram as fichas técnicas (Anexo 1).

Figura 9. Localização dos poços de observação construídos nos municípios de Brejo Santo (Jenipapeiro) e Barbalha (Santana 3).

5. TESTE DE AQÜÍFERO

Autores: MSc. Robério Boto de Aguiar – CPRM; MSc. Walber Cordeiro – Geoplan; Manuel Pereira da Costa – Geoplan

Inicialmente, estava previsto a execução de dois testes de aqüíferos na Bacia Sedimentar do Araripe, sendo, um no município de Brejo Santo, no sitio Jenipapeiro, e o outro na localidade de Santana 3, no município de Barbalha. Ambos seriam realizados em poços tubulares próximos aos piezômetros construídos pelo projeto.

Por questões operacionais, não foi possível a realização do teste de aqüífero no poço localizado em Brejo Santo. Para tanto, foram selecionados outros poços, alem do poço de Santana 3 (9.190.940/471.560), que oferecessem condições para realização dos testes. Então foram escolhidos dois poços da Companhia de Água e Esgoto do Ceará (Cagece); um no município de Abaiara (9.186.900/495.040) e outro na sede do município de Barbalha (9.192.932/467.146), conforme mostra a figura 10.

Figura 10. Localização dos poços selecionados para execução dos testes de aqüífero na porção oriental da Bacia Sedimentar do Araripe.

Os ensaios e a interpretação dos resultados foram executados por uma empresa terceirizada (Geoplan – S/C Ltda) e consistiram nos bombeamentos dos poços, com vazões variáveis, e no acompanhamento da evolução dos rebaixamentos produzidos nos poços de observação.

Para a medição dos dados foram utilizados um medidor de vazão ultrasônico Panametrics, um transdutor de pressão hidrostática com escala de 0,0 a 20,0m, um notebook, uma placa de aquisição de dados com entradas analógicas e um software dedicado à coleta e armazenamento dos dados em tempo real.

A equipe técnica foi formada por um Físico, especialista em medidas digitais de parâmetros hidrometeorológicos; um Hidrogeólogo, especialista na execução e análise de testes de aqüífero e um Hidrogeólogo, fiscal da CPRM/Refo.

Neste trabalho foi utilizada a técnica de coleta de dados digitais do nível do poço de observação e a vazão do poço bombeado. As medidas de vazão por ultrasom foram realizadas pelo método tempo de trânsito (norma ISO TC30/WG 20 N 106 E). A coleta de dados de vazão instantânea e totalizada, foi realizada a cada minuto. O monitoramento dos níveis do poço de observação também teve a aquisição de dados realizada a cada minuto, utilizando-se de transdutor de pressão hidrostática com escala de 0,0 a 20,0 m, conforme mostra a figura 11.

Figura 11. Esquema da metodologia utilizada para a coleta de dados nos testes de aqüíferos.

No quadro 4 observa-se que o tempo total de coleta de dados nos três poços estudados foi de 02 dias e 08 horas, totalizando 3.134 linhas de arquivos gravados, ou ainda, 18.804 dados coletados, entre data/hora, nível dinâmico dos piezômetros e as informações sobre a vazão dos poços em produção.

Municipio/			NE (m)		Dist. (m)	Duração do Teste			
Poço	UIIVIIN	UIME	Pb*	Pz	Pb-Pz	Início	Fim	Total	
Barbalha / Poço	0 100 040	171 119	12 50	12 69	27.20	06/02/07	07/02/07	15.55 h	
Santana 3	9.190.940	4/1.448	12,30	15,08	27,20	17:14 h	08:39 h	15.55 11	
Barbalha / Poço	0 102 832	167 127	6.00	6 88	10.10	07/02/07	08/02/07	17.22 h	
Cagece PT03	9.192.032	407.157	0,90	0,00	10,10	15:25 h	08:47 h	17.22 11	
Abaiara / Poço	0 196 004	105 029	7 72	0.27	0.20	08/02/07	09/02/07	22.12 h	
Cagece PT01	9.160.904	495.050	1,15	9,27	9,20	11:19 h	10:02 h	22.45 11	
LEGENDA: $NE = Nf$	vel estático; l	Pb = Poço d	de bom	beamen	to; Pz = Piezó	òmetro.	Total	56:00 h	

Quadro 4. Resumo das informações sobre os testes de aquífero.

* Dado informado na ficha técnica.

A figura 12 apresenta um registro fotográfico dos equipamentos utilizados na execução dos testes de aqüíferos na Bacia Sedimentar do Araripe. A figura 12a mostra o sistema de captura e armazenamento de dados. Na figura 12b é possível observar o software de leitura e armazenamento de dados. A figura 12c mostra o sensor do medidor de vazão ultra-sônico. A figura 12d apresenta o sensor do medidor de nível potenciométrico.

Figura 12. Equipamentos utilizados na execução dos testes de aqüíferos.

A coleta de dados no poço Santana 3 (Barbalha) foi iniciada após o poço de produção (Pb) ter ficado em repouso por seis horas, tempo suficiente para ocorrer a estabilização do nível estático. Em seguida foi ligada a bomba, passando-se a gravar as informações por um período de 6h 37 min, já que o nível dinâmico estabilizou após 16 minutos, pois a bomba não tinha vazão suficiente para um rebaixamento maior em um poço de observação a 27,2 m do poço produtor. A partir daí, desligou-se a bomba e foram coletados os dados de recuperação do nível do poço.

No poço Cagece PT03, também em Barbalha, a coleta de dados foi iniciada início com o desligamento da bomba, pois este poço é operado ininterruptamente por 24 horas, (não permitindo muitas paralisações) e daí foram coletados os dados de recuperação do nível do poço e, após 2h 48 min o poço ter ficado em repouso, se deu o retorno ao nível estático, quando foi ligada a bomba, passando-se a gravar as informações por um período de 14h 27 min, tempo suficiente para a estabilização do nível dinâmico.

Em Abaiara, no poço Cagece PT01, a coleta de dados teve início com o desligamento da bomba, pois este poço também é operado ininterruptamente por 24 horas, (não permitindo muitas paralisações) e daí foram coletados os dados de recuperação do nível do poço e após 4h 04 min o poço ter ficado em repouso se deu o retorno ao nível estático, quando foi ligada a bomba, passando-se a gravar as informações do rebaixamento por um período de 18h 23 min, tempo suficiente para a estabilização do nível dinâmico.

Importante ressaltar que os níveis estático e dinâmico dos poços de observação foram corrigidos, referenciando-os à boca do poço, à qual foi arbitrada a cota 0 (zero) metro.

Todos os dados coletados durante os testes foram tratados e armazenados em mídia eletrônica, no formato de planilha *Excel*, contendo, para cada poço, a data/hora da coleta, os níveis estático e dinâmico do poço de observação e a diferença entre eles, as vazões instantânea e totalizada do poço bombeado e a velocidade de saída da água.

Para a interpretação desses testes foi utilizada uma planilha do *Excel* intitulada: "Ferramentas Analíticas Para Avaliação de Poços e Aqüíferos - Versão 1.0", desenvolvida por Rodrigues, Marques e Oliveira (2004). Os dados também foram interpretados através do aplicativo matemático *Aquifer Test (Pro)*, da Waterloo Hydrogeologic Inc.

O Anexo 1 contém as fichas de identificação dos testes realizados, as planilhas simplificadas com os dados de rebaixamento e recuperação dos testes, os resultados e interpretações dos ensaios de bombeamento utilizando as *"Ferramentas Analíticas para Avaliação de Poços e Aquíferos"*, assim como usando o aplicativo *Aquífer Test (PRO)*.

O poço Santana 3, que capta água de um aqüífero livre, teve seu teste interpretado através do aplicativo *Aquifer Test*, utilizando-se o método de Hantush, para aqüíferos semi-confinados. Utilizando as *"Ferramentas Analíticas para Avaliação de Poços e Aqüíferos - Versão 1.0"*, foi possível interpretar o teste do poço Santana 3 pelos os métodos de Theis com a correção de Dupuit, Hantush e Boulton.

O poço Cagece PT03, de Barbalha, capta água de um aqüífero livre/semi confinado e teve seu teste interpretado no *Aquifer Test* utilizando os métodos de Hantush e Neuman. Usando a planilha *Excel* foram aplicados os métodos de Theis com a correção de Dupuit, Hantush e Boulton.

O poço Cagece PT01, em Abaiara, capta água de um aqüífero confinado e teve seu teste interpretado no *Aquifer Test* pelos métodos de Hantush e Double Porosity. Na planilha *Excel* utilizou-se os métodos de Theis, Hantush e Boulton.

Os valores de permeabilidade (k), transmissividade (T) e coeficiente de armazenamento (S), calculados com os dados dos testes de aqüífero, são apresentados no quadro 10.

Nesse quadro 5 observa-se que os menores valores dos parâmetros hidrodinâmicos referem-se ao poço Cagece PT01, no município de Abaiara, que capta água de um aqüífero confinado com dupla porosidade (fraturado), ao passo que os maiores valores referem-se aos poços Santana 3 e Cagece PT03, instalados no município de Barbalha, que captam água de aqüíferos livres a semi-confinados.

	1	0			
Municipio / Ferramentas Poço utilizadas		Métodos	K (m/s)	T (m ² /s)	S
Barbalha / Poço	Excel	Hantush	4,04E-02	2,76E+01	2,32E-03
Santana 03	Aquifer Test	Hantush	4,02E-01	2,74E+01	2,10E-03
Barbalha / Poço	Excel	Hantush	3,06E-02	2,54E+01	1,33E-02
Cagece PT03	Aquifer Test	Hantush	3,80E-01	2,58E+01	1,64E-02
Abaiara / Poço	Excel	Hantush	1,77E-02	1,49E+00	3,62E-03
Cagece PT01	Aquifer Test	Double Porosity	1,59E-02	1,34E+00	3,62E-03
LECENDA V D	1.1.1.1.7	TT · · · 1 1 (

Quadro 5. Resultados da interpretação dos testes de aqüíferos utilizando a planilha Excel e o Aquifer Test.

LEGENDA: K = Permeabilidade; T = Transmissividade; S = Armazenamento

De acordo com os resultados obtidos, conclui-se que os poços onde foram realizados testes de bombeamento captam água de aqüíferos distintos, descritos aqui como:

- 1 O poço Santana 03, em Barbalha, capta água de um aqüífero livre/semi-confinado, com drenagem retardada;
- 2 .O poço Cagece PT03, em Barbalha, também capta água de um aqüífero livre/semiconfinado com drenagem retardada e;
- 3 O poço Cagece PT01, em Abaiara, capta água de um aqüífero confinado com dupla porosidade (Arenito fraturado).

6. BALANÇO HÍDRICO DA PORÇÃO ORIENTAL DA BACIA DO ARARIPE

Autores: Dra. Sônia Maria Silva Vasconcelos - Dept. de Geologia/UFC; MSc. Robério Boto de Aguiar- CPRM;

6.1. Introdução

A explotação racional dos recursos de água subterrânea deve estar condicionada à renovação das reservas, portanto deve estar baseada no estabelecimento do equilíbrio do balanço hídrico global da unidade hidrogeológica considerada: <u>o aqüífero</u>. O estabelecimento deste equilíbrio depende, em princípio, de um estudo detalhado das estruturas geológicas condicionantes e dos fatores climáticos.

O balanço hídrico aqui apresentado tem por objetivo fornecer uma estimativa da água de precipitação disponível para a recarga subterrânea que constitui a reserva renovável e, em certas circunstâncias, pode ser considerada como recurso explotável. Esta parcela do balanço hídrico é aqui denominada de <u>infiltração efetiva (I_e)</u>, e é calculada por diferença através da avaliação dos demais elementos do balanço hídrico a partir de dados de médias de totais mensais de precipitação e médias mensais de precipitação de séries históricas destes dados.

Considerando as restrições impostas a cálculos desta natureza, acreditamos que este método estabelece uma ordem de grandeza a respeito da recarga do sistema de aqüíferos livres.

6.2. Embasamento Teórico

Castany (1975), partindo do balanço hídrico global para um ano hidrológico, propõe uma expressão para o balanço hídrico de aqüíferos livres a partir de simples discriminação das parcelas em que se divide a água proveniente da precipitação.

Sabe-se que a lâmina precipitada sobre o solo (PPT) pode ser dividida em três parcelas: o escoamento superficial (ES), a infiltração total (I_T) e a evapotranspiração real (ETR). Portanto, a expressão geral do balanço hídrico médio é:

$$PPT = ES + ETR + I_T$$
(1)

A infiltração total (I_T) inclui a água retida no solo (I_r) e a água que penetra no sistema formado pelo aqüífero livre (I_e) denominada infiltração eficaz, que corresponde à parcela da precipitação que alimenta a reserva subterrânea. Esta parcela está diretamente relacionada com as flutuações da superfície potenciométrica que refletem a variação das reservas de água subterrânea.

As regras gerais de balanço hídrico, originalmente utilizadas em bacias hidrográficas, são aplicáveis no caso de aqüíferos livres sendo que o principal aporte de um aqüífero livre é a infiltração eficaz (I_e).

Castany (1975) sugere a introdução da infiltração eficaz (I_e), calculada por diferença a partir da precipitação (PPT), da evapotranspiração real (ETR) e do escoamento superficial (ES), segundo a expressão:

$$I_e = PPT - (ETR + ES)$$
(2)

No caso de balanço hídrico de aqüíferos, dependendo das características do solo, o escoamento superficial (ES) pode ser considerado insignificante por conta da morfologia do solo. Quando é importante, uma parte infiltra, outra evapora e o resto volta ao fluxo. Todas estas quantidades já estão contabilizadas no balanço e, portanto, pode-se omitir o escoamento superficial (ES) e escrever a seguinte expressão para a obtenção da infiltração eficaz:

$$I_e = PPT - ETR \tag{3}$$

A infiltração eficaz determinada desta maneira, rigorosamente, deveria ser considerada como infiltração potencial, de acordo com Rushton (1988).

A evapotranspiração real (ETR) é o termo mais importante, porém o menos conhecido, de um balanço hídrico. Em geral, sua determinação é feita com a utilização de fórmulas empíricas baseadas em fatores climáticos: temperatura média, altura de precipitação e, às vezes, insolação e velocidade dos ventos. No caso de regiões com estações secas e chuvosas bem distintas, a variação dos fatores climáticos com o tempo, no decorrer de um ano hidrológico é de extrema importância para a avaliação da evapotranspiração real (ETR), e a altura média mensal de precipitação é muito mais importante que dados anuais.

Deste modo, dentre algumas das diversas fórmulas propostas (Coutagne e Turc, In: Castany, 1975) para a determinação da evapotranspiração real, o método proposto por Thornthwaite é o que melhor se adapta às áreas com as características climáticas que apresentam alternância de períodos secos e chuvosos bem diferenciados (Vasconcelos, 1996).

A fórmula de Thornthwaite, considerando a temperatura média mensal, fornece a evapotranspiração potencial mensal (ETP), em milímetros, através da seguinte fórmula:

$$ETP = 16 (10 \text{ T/ I})^{a} \text{ K}$$
(4)

Onde, (T) é a temperatura média mensal em $^{\circ}$ C, (I) é o índice térmico e (K) é um fator de correção que depende da latitude (Vilela e Matos, 1975).

O índice térmico (I) é obtido da seguinte maneira:

$$I = \sum_{i=1}^{12} I_i$$
 (5)

Onde,

$$I_{i} = (T_{i}/5)^{1,5}$$
(6)

Sendo: (T) a temperatura média de cada mês do ano, portanto, (i) varia de 1 a 12 e os índices térmicos mensais, assim obtidos, somados darão o índice térmico anual.

O termo (a) é obtido em função do índice térmico através da seguinte expressão:

$$a = 0,49239 + 1792 \times 10^{-5} \text{ I} - 771 \times 10^{-7} \text{ I}^2 + 675 \times 10^{-9} \text{ I}^3$$
(7)

A evapotranspiração real (ETR) é obtida a partir da comparação da evapotranspiração potencial com a precipitação, estabelecendo-se um valor para a quantidade máxima de água que o solo pode armazenar. Este valor é arbitrado de acordo a com a natureza do terreno.

Sabe-se que é de 50 mm em solos arenosos e 200 mm em solos argilosos (Castany, 1975), e corresponde à quantidade de água retida no solo (C) que é denominada de capacidade de retenção do solo que pode é correlacionável com a Capacidade de campo utilizada em agronomia.

Então, a (ETR) é determinada para cada um dos meses do ano, considerando a retenção de água no solo **C**, as médias mensais de precipitação (PPT) e os valores de evapotranspiração potencial (ETP), calculados para a série de anos utilizada na determinação das médias mensais de precipitação e temperatura.

Com a (ETR) e a (PPT) chega-se a uma estimativa para a infiltração eficaz (I_e) que corresponde à recarga subterrânea e que, na ausência de medidas diretas da variação de carga hidráulica anual, pode ser também uma estimativa para a reserva renovável do sistema aqüífero.

6.3. Procedimento Metodológico

Foram coletados dados de todos os postos existentes na área da Bacia do Araripe através dos bancos de dados disponibilizados nos *sites* da Agencia Nacional de Águas – ANA (Hidro*web*) e da Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME. O quadro 6 apresenta a relação dos postos existentes na área de interesse do projeto, com as respectivas coordenadas, instituições responsável e operadora, séries de dados e os anos de observação.

Os dados dos 44 postos levantados foram analisados e optou-se por suprimir da série os anos que apresentavam falhas. Considerando o critério de mais longa série de observações, foram selecionados apenas sete estações dentre os postos situados na área. O quadro 7 mostra a relação desses postos selecionados com a série histórica de dados e os anos observados.

A infiltração efetiva foi obtida para cada um destes postos, calculando-se a evapotranspiração potencial (ETP) mensal pela fórmula de Thornthwaite, em seguida a evapotranspiração real (ETR) mensal e a infiltração efetiva, admitido que a retenção da água de precipitação no solo é de 100 mm. A partir destes valores de infiltração efetiva foi gerada uma malha de interpolação quadrada com 1 km de lado, utilizando-se o procedimento de *krigagem*, com modelo de variograma linear. Desta forma foi possível traçar um mapa de isolinhas de infiltração efetiva revelando sua variação espacial.

A infiltração efetiva calculada corresponde à disponibilidade da água de precipitação para a recarga subterrânea. Mesmo partindo da hipótese de que o sistema aqüífero é homogêneo no que se refere à porosidade efetiva e condutividade hidráulica, sabe-se que a recarga assimilada por este sistema é variável em função da posição, tendo em vista que a "transmissividade" e a carga hidráulica assumem valores diferenciados para diferentes locais. Desta forma, a estimativa de recarga exige a consideração de hipóteses simplificadoras tornando qualquer avaliação quantitativa vulnerável a questionamentos.

A avaliação aqui apresentada estabelece considerações simplificadoras, sem as quais seria impossível chegar-se a qualquer avaliação quantitativa da recarga direta para toda a área de estudo.

Nome da Estação	Município	Long.	Lat.	Responsável	Operadora	Serie	Anos
Abaiara	Abaiara	39 03	07 22	Funceme	Funceme	1981-2005	24
Arajara	Barbalha	39 23	07 22	Sudene	Desativada	1961-1998	37
Barbalha	Barbalha	39 19	07 19	Funceme	Funceme	1911-2006	95
Barbalha	Barbalha	39 18	07 19	Inmet	Inmet	1974-2005	31
Caldas	Barbalha	39 20	07 22	Funceme	Funceme	2000-2005	5
Poço	Brejo Santo	38 51	07 32	Sudene	Desativada	1962-1999	37
Brejo Santo	Brejo Santo	38 59	07 29	Funceme	Funceme	1911-2005	94
Poço do Pau	Brejo Santo	39 50	07 32	Funceme	Funceme	2000-2005	5
Jenipapeiro	Brejo Santo	38 54	07 29	Ana	CPRM	Nova	SD
São Felipe	Brejo Santo	39 04	07 23	Funceme	Funceme	2000-2005	5
Minguiriba	Crato	39 32	07 16	Sudene	Desativada	1962-1967	5
Crato	Crato	39 23	07 13	Funceme	Funceme	1912-2006	94
Dom Quintino	Crato	39 29	07 02	Sudene	Desativada	1961-2000	39
Crato	Crato	39 23	07 14	Sudene	Desativada	1974-2005	31
Dom Quintino	Crato	39 28	07 02	Funceme	Funceme	2000-2005	5
Ponta da Serra	Crato	39 25	07 07	Funceme	Funceme	1998-2005	7
Lameiro	Crato	39 25	07 14	Funceme	Funceme	Sem dados	SD
Jardim	Jardim	39 17	07 35	Funceme	Funceme	1911-2000	89
Jardim Mirim	Jardim	39 12	07 35	Funceme	Funceme	Sem dados	SD
Jati	Jati	39 00	07 41	Funceme	Funceme	Sem dados	SD
Jati	Jati	39.01	07 41	Dnocs	Dnocs	1934-1985	51
Juazeiro do Norte	Juazeiro do Norte	39 19	07 12	Funceme	Funceme	1912-2006	94
Horto de Juazeiro	Juazeiro do Norte	39 19	07 12	Dnocs	Desativada	1977-1983	6
Juazeiro do Norte	Juazeiro do Norte	39 16	07 21	Inmet	Inmet	1974-2005	31
Sítio Novo	Juazeiro do Norte	39 02	07 08	Funceme	Funceme	2000-2005	5
Marrocos	Juazeiro do Norte	39 13	07 01	Funceme	Funceme	2000-2005	5
Acude Quixabinha	Mauriti	38 43	07 26	Dnocs	Dnocs	1962-2005	43
Mauriti	Mauriti	38 47	07 24	Sudene	Desativada	1961-1987	26
Anaua	Mauriti	38 38	07 15	Sudene	Desativada	1962-2000	38
Mararuna	Mauriti	38 46	07 15	Sudene	Desativada	1961-1999	38
Anaua	Mauriti	38 38	07 15	Dnocs	Dnocs	Sem dados	SD
Ouixabinha	Mauriti	38.57	07 19	Dnocs	Dnocs	Sem dados	SD
Mararuna	Mauriti	38 46	07 15	Funceme	Funceme	1988-2005	17
São Miguel	Mauriti	38.04	07.02	Funceme	Funceme	2000-2005	5
Palestina do Cariri	Mauriti	38 46	07 28	Funceme	Funceme	1988-2005	17
Milagres	Milagres	38 57	07 19	Funceme	Funceme	1912-2006	94
Podimirim	Milagres	38 59	07 17	Ana	CPRM	1992-2005	13
Iamacaru	Missão Velha	39.08	07 24	Funceme	Funceme	1961-2000	39
Missão Velha	Missão Velha	39.09	07 15	Funceme	Funceme	1912-2006	94
Sítio Laninha	Missão Velha	39.08	07 21	Dnocs	Dnocs	Sem dados	SD
Ouimami	Missão Velha	39.05	07 11	Funceme	Funceme	2000_2005	50
São Sebastião	Missão Valha	30 12	07 24	Funceme	Funceme	Sem dados	5 50
Missão Nova	Missão Valha	39.12	07 24	CPRM	CPRM	Nova	SD SD
Porteiras	Porteiras	30 08	07 31	Funceme	Funceme	1911_2000	80
Porteiras	Porteiras	39 08	07 31	Funceme	Funceme	1911-2000	89

Quadro 6	. Postos	pluviométricos	levantados no	Banco de l	Dados Hidro	<i>veb</i> da ANA.

	io manpe.					
Código Nacional	Nome do Posto	UTM-E	UTM-N	Série	Anos sem Observação	Anos Observados
00739006	Crato	456450	9201050	1912-2006	2	93
00738006	Brejo Santo	501840	9172820	1911-2006	6	90
00739007	Missão Velha	483440	9198610	1912-2006	8	87
00738008	Milagres	505520	9191240	1912-2006	12	83
00739020	Barbalha	465660	9191230	1911-2006	33	63
00739039	Juazeiro do Norte	469343	9186319	1912-2006	48	47
00738001	Mauriti	522684	9182024	1962-2005	3	41

Quadro 7. Postos pluviométricos selecionados na porção oriental da Bacia Sedimentar do Araripe.

6.4. Resultados

Os quadros 8 a 14 apresentam o balanço hídrico com a obtenção da infiltração eficaz para cada um dos postos selecionados. Vale ressaltar que as temperaturas médias mensais foram estimadas por regressão múltipla e fornecidas pela FUNCEME.

Quadro 8. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1911 a 2006, com 33 anos de falhas, no Posto Barbalha.

Môc	T média	Im	K	ЕТР	РРТ	PPT-ETP	С	ETR	Ie
IVICS	(°C)	(mm)	К	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
JAN	26,1	11,93	1,08	139,1	188,0	48,9	48,9	139,1	0,0
FEV	25,0	11,18	0,97	108,7	211,6	102,9	100,0	108,7	51,8
MAR	24,8	11,05	1,05	114,6	262,7	148,1	100,0	114,6	148,1
ABR	24,7	10,98	0,99	106,7	177,7	71,1	100,0	106,7	71,1
MAI	24,3	10,71	1,01	103,2	50,8	-52,5	47,5	50,8	0,0
JUN	23,9	10,45	0,96	93,0	18,8	-74,2	0,0	18,8	0,0
JUL	23,9	10,45	1,00	96,9	13,1	-83,8	0,0	13,1	0,0
AGO	24,7	10,98	1,01	108,8	5,8	-103,1	0,0	5,8	0,0
SET	26,2	11,99	1,00	130,4	9,4	-121,0	0,0	9,4	0,0
OUT	26,9	12,48	1,06	150,5	26,5	-124,1	0,0	26,5	0,0
NOV	26,9	12,48	1,05	149,1	39,2	-109,9	0,0	39,2	0,0
DEZ	26,7	12,34	1,10	152,5	84,4	-68,1	0,0	84,4	0,0
	Ianual =	137,02	Tota	is anuais =	1087,9			717,0	271,0

Quadro 9. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 2 anos de falhas, no Posto Crato.

Môc	T média	Im	K	ЕТР	РРТ	PPT-ETP	С	ETR	Ie
IVICS	(°C)	(mm)	К	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
JAN	26,1	11,93	1,08	139,2	161,7	22,5	25,1	139,2	0,0
FEV	25,0	11,18	0,97	108,8	211,1	102,3	100	108,8	24,8
MAR	24,8	11,05	1,05	114,8	267,1	152,3	100	114,8	152,3
ABR	24,6	10,91	0,99	105,4	177,5	72,1	100	105,4	72,1
MAI	24,2	10,65	1,01	102,0	60,0	-42,1	58,8	60,0	0,0
JUN	23,8	10,39	0,96	91,9	19,6	-72,3	0	19,6	0,0
JUL	23,9	10,45	1,00	97,1	9,4	-87,6	0	9,4	0,0
AGO	24,6	10,91	1,01	107,6	4,2	-103,4	0	4,2	0,0
SET	26,1	11,93	1,00	128,9	10,3	-118,6	0	10,3	0,0
OUT	26,8	12,41	1,06	148,8	25,5	-123,3	0	25,5	0,0
NOV	26,9	12,48	1,05	149,1	48,5	-100,7	0	48,5	0,0
DEZ	26,6	12,27	1,10	150,7	88,6	-62,1	0	88,6	0,0
	Ianual =	136.55	Tota	Totais anuais $= 1$				734.3	249.2
	1			/		/			
-------	----------	--------	-------	---------------	-------	---------------	-------	-------	-------
Mês	T média	Im	К	ЕТР	PPT	PPT-ETP	С	ETR	Ie
ivics	(°C)	(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
JAN	26,5	12,20	1,08	145,7	149,1	3,4	3,4	145,7	0,0
FEV	25,4	11,45	0,97	113,5	192,5	79,0	82,4	113,5	0,0
MAR	25,1	11,25	1,05	118,1	239,2	121,1	100,0	118,1	103,5
ABR	25,0	11,18	0,99	109,9	149,3	39,5	100,0	109,9	39,5
MAI	24,7	10,98	1,01	107,6	53,1	-54,5	40,5	53,1	0,0
JUN	24,3	10,71	0,96	96,8	16,1	-80,7	0,0	16,1	0,0
JUL	24,4	10,78	1,00	102,3	11,8	-90,5	0,0	11,8	0,0
AGO	25,2	11,31	1,01	115,1	3,6	-111,5	0,0	3,6	0,0
SET	26,6	12,27	1,00	136,7	5,8	-130,9	0,0	5,8	0,0
OUT	27,4	12,83	1,06	160,0	14,2	-145,8	0,0	14,2	0,0
NOV	27,4	12,83	1,05	158,5	27,7	-130,8	0,0	27,7	0,0
DEZ	27,1	12,62	1,10	160,0	79,3	-80,7	0,0	79,3	0,0
	Ianual =	140,41	Totai	s anuais =	941,8			698,8	143,0

Quadro 10. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 48 anos de falhas, no Posto Juazeiro do Norte.

Quadro 11. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 6 anos de falhas, no Posto Missão Velha.

	-			,		,			
Mês	T média	Im	К	ETP	РРТ	PPT-ETP	С	ETR	Ie
Mics	(°C)	(mm)	n	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
JAN	26,6	12,27	1,08	147,5	137,6	-9,9	0,0	137,6	0,0
FEV	25,5	11,52	0,97	114,9	198,3	83,4	83,4	114,9	0,0
MAR	25,2	11,31	1,05	119,4	252,0	132,6	100,0	119,4	116,0
ABR	25,1	11,25	0,99	111,1	172,0	60,9	100,0	111,1	60,9
MAI	24,8	11,05	1,01	108,8	54,9	-53,9	46,1	54,9	0,0
JUN	24,4	10,78	0,96	97,9	15,7	-82,2	0,0	15,7	0,0
JUL	24,5	10,85	1,00	103,4	7,8	-95,6	0,0	7,8	0,0
AGO	25,3	11,38	1,01	116,4	4,3	-112,1	0,0	4,3	0,0
SET	26,7	12,34	1,00	138,3	7,3	-131,0	0,0	7,3	0,0
OUT	27,4	12,83	1,06	160,0	15,4	-144,6	0,0	15,4	0,0
NOV	27,4	12,83	1,05	158,5	40,1	-118,4	0,0	40,1	0,0
DEZ	27,2	12,69	1,10	162,0	67 <u>,</u> 1	-94,9	0,0	67,1	0,0
	Ianual =	140,41	Tota	is anuais =	972,5			695,6	176,9

Quadro 12. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1912 a 2006, com 12 anos de falhas, no Posto Milagres.

Môs	T média	Im	K	ЕТР	РРТ	PPT-ETP	С	ETR	Ie
wies	(°C)	(mm)	K	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
JAN	26,8	12,41	1,08	151,2	130,0	-21,2	0,0	130,0	0,0
FEV	25,5	11,52	0,97	114,5	190,5	76,0	76,0	114,5	0,0
MAR	25,3	11,38	1,05	120,7	245,3	124,6	100,0	120,7	100,6
ABR	25,2	11,31	0,99	112,2	154,4	42,2	100,0	154,4	42,2
MAI	24,9	11,11	1,01	109,9	53,8	-56,1	43,9	53,8	0,0
JUN	24,5	10,85	0,96	98,8	21,6	-77,2	0,0	21,6	0,0
JUL	24,7	10,98	1,00	105,9	11,0	-94,9	0,0	11,0	0,0
AGO	25,5	11,52	1,01	119,3	4,6	-114,7	0,0	4,6	0,0
SET	26,9	12,48	1,00	141,8	6,5	-135,3	0,0	6,5	0,0
OUT	27,6	12,97	1,06	164,1	17,8	-146,3	0,0	17,8	0,0
NOV	27,6	12,97	1,05	162,6	36,3	-126,3	0,0	36,3	0,0
DEZ	27,3	12,76	1,10	164,1	66,9	-97,2	0,0	66,9	0,0
	Ianual =	142,26	Totais	s anuais =	938,7			738,1	142,8

Môc	T média	Im	K	ЕТР	PPT	PPT-ETP	С	ETR	Ie
IVIES	(°C)	(mm)	K (mm)		(mm)	(mm)	(mm)	(mm)	(mm)
JAN	26,3	12,06	1,08	142,4	123,9	-18,5	0,0	123,9	0,0
FEV	25,0	11,18	0,97	108,4	148,3	39,9	39,9	108,4	0,0
MAR	25,0	11,18	1,05	117,3	186,7	69,4	100,0	117,3	9,3
ABR	24,9	11,11	0,99	109,2	140,6	31,4	100,0	109,2	31,4
MAI	24,5	10,85	1,01	105,6	48,3	-57,3	42,7	48,3	0,0
JUN	24,0	10,52	0,96	93,8	20,6	-73,2	0,0	20,6	0,0
JUL	24,1	10,58	1,00	99,1	12,8	-86,3	0,0	12,8	0,0
AGO	24,9	11,11	1,01	111,4	4,4	-107,0	0,0	4,4	0,0
SET	26,3	12,06	1,00	131,9	7,9	-124,0	0,0	7,9	0,0
OUT	26,9	12,48	1,06	150,5	14,3	-136,2	0,0	14,3	0,0
NOV	27,0	12,55	1,05	150,9	27,4	-123,5	0,0	27,4	0,0
DEZ	26,8	12,41	1,10	154,3	56,7	-97,6	0,0	56,7	0,0
	Ianual =	138,10	Totai	s anuais =	791,9			651,1	40,7

Quadro 13. Determinação da Infiltração efetiva (Ie) a partir de dados de precipitação no período de 1962 a 2005, com 3 anos de falhas, no Posto Mauriti.

Quadro 14. Determinação da Infiltração efetiva (I_e) a partir de dados de precipitação no período de 1911 a 2006, com 6 anos de falhas, no Posto Brejo Santo.

Môc	T média	Im	K	ЕТР	РРТ	PPT-ETP	С	ETR	Ie
IVIES	(°C)	(mm)	K	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
JAN	26,3	12,06	1,08	142,4	123,6	-18,8	0,0	123,6	0,0
FEV	25,0	11,18	0,97	108,3	183,2	74,9	74,9	108,3	0,0
MAR	24,9	11,11	1,05	115,7	213,9	98,2	100,0	115,7	73,1
ABR	24,8	11,05	0,99	107,7	147,7	40,0	100,0	107,7	40,0
MAI	24,5	10,85	1,01	105,6	44,5	-61,1	38,9	44,5	0,0
JUN	24,0	10,52	0,96	93,8	22,5	-71,3	0,0	22,5	0,0
JUL	24,1	10,58	1,00	99,0	12,4	-86,6	0,0	12,4	0,0
AGO	24,9	11,11	1,01	111,3	4,4	-106,9	0,0	4,4	0,0
SET	26,4	12,13	1,00	133,5	6,3	-127,2	0,0	6,3	0,0
OUT	27,1	12,62	1,06	154,2	19,3	-134,9	0,0	19,3	0,0
NOV	27,1	12,62	1,05	152,8	47,1	-105,7	0,0	47,1	0,0
DEZ	26,8	12,41	1,10	154,3	74,0	-80,3	0,0	74,0	0,0
	Ianual =	138,24	Tota	is anuais =	898,9			658,8	113,1

O quadro 15 mostra o resumo dos valores de precipitação e infiltração efetiva calculados para cada posto na área de interesse do projeto. Com estes valores de infiltração efetiva foi gerado um mapa de contorno de infiltração efetiva, apresentado na figura 13. Observa-se que os valores encontrados nos postos localizados na zona leste da área (Mauriti e Brejo Santo) são significativamente menores que os valores dos postos a oeste (Barbalha e Crato). Esse comportamento, provavelmente, deve-se ao efeito orográfico ocasionado pela posição de barlavento da chapada do Araripe.

Na tentativa de estimar um valor de recarga subterrânea para a área da bacia, para efeito de cálculo, foram consideradas três classes de áreas correspondentes à infiltração efetiva: i) inferior a 100 mm; ii) entre 100 e 200 mm e; iii) superiores a 200 mm, conforme mostra a figura 13. Para a primeira área foi considerada uma infiltração efetiva de 50 mm, para a segunda área foi considerado o valor de 150 mm e para a terceira o valor de 250 mm, conforme mostra o quadro 16. Portanto, se considerarmos que a área total da bacia é 2.900 km², teremos uma recarga de 451 x 10^6 m³/ano.

Posto	PPT _{anual} (mm)	I _e (mm)	(%)
Barbalha	1087,9	271,0	25
Crato	1083,6	249,2	23
Missão Velha	973,5	177,8	17
Juazeiro	941,8	143,0	15
Milagres	938,7	142,8	15
Brejo Santo	898,9	113,1	13
Maurití	791,9	40,7	5

Quadro 15. Resumo dos valores das médias de totais anuais precipitação e infiltração efetiva calculada para cada um dos postos pluviométricos.

Figura 13. Mapa de isolinhas de infiltração efetiva em milímetro calculada através do balanço hídrico.

Setor	I _e (mm)	Área (km²)	Recarga (x10 ³ m ³ /ano)
$I_e < 100 \text{ mm}$	50	430	21.500
$100 < I_e < 200 \text{ mm}$	150	1.289	193.350
$I_e > 200 \text{ mm}$	200	1.181	236.200
Total		2.900	451.050

Quadro 16. Estimativa da recarga subterrânea para a Bacia do Araripe.

7. ELABORAÇÃO DE MODELOS HIDROGEOLÓGICOS

Autores: Dr. Marco Aurélio Holanda de Castro; MSc. Carlos Roberto Moura Leal Júnior; MSc. Cláudio Damasceno de Souza – membros do Dept. de Engenharia Hidráulica e Ambiental/UFC.

Essa atividade foi realizada pelo Grupo de Pesquisas do Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará, sob a coordenação do Prof. Dr. Marco Aurélio Holanda de Castro.

As modelagens foram realizadas em duas áreas adjacentes inseridas no vale do Cariri, onde estão localizadas as cidades de Juazeiro do Norte, Crato, Barbalha e Missão Velha, e se concentra a maior explotação de água subterrânea da Bacia do Araripe.

7.1. Modelos Conceituais e Domínios de Interesses

Para uma avaliação hidrogeológica é preciso definir fronteiras mais representativa, embasadas nos contornos hidrográficos da região ou em outras estruturas reconhecidas, que permitam definir todo domínio de contribuição hidrogeológica. As definições das áreas para a realização da modelagem do fluxo hídrico subterrâneo consistiram, primeiramente, na aquisição de dados necessários para a simulação, como dados de medições de nível estático nos poços, vazões dos poços, mapas contendo topografia, hidrografia e definições dos sistemas de aqüíferos da bacia sedimentar do Araripe.

Com a superposição dos mapas de topografia, hidrografia, e das características geológica da região com os mapas digitalizados da locação dos poços foi definida as 2 áreas para a realização das simulações.

O modelo utilizado para as simulações do fluxo hídrico subterrâneo foi o MODFLOW, pacote contido no programa Processing Modflow Pro uma versão avançada do Processing Modflow para Windows. O Processing Modflow Pro suporta além do MODFLOW-2000, os seguintes pacotes MODFLOW-88/96/2000, MT3D, MT3DMS, MT3D99, RT3D, MOC3D, PMPATH, UCODE, E PEST-ASP. Os pacotes de estimação de parâmetros estão contidos em MODFLOW-2000, PEST-ASP e UCODE.

7.2. Modelo da área do Grabén Crato – Juazeiro do Norte (Modelo I)

A primeira área de estudo é dividida em dois Sistemas Aqüíferos: Médio e Inferior. O Sistema Médio é constituído por cinco camadas e o embasamento cristalino, enquanto o Sistema Inferior é formado por uma camada e o embasamento cristalino. A sua geometria perfaz uma área de 992 km², com altitudes que variam de 399 metros acima do nível médio do mar a 1299 metros abaixo do nível médio do mar. É mostrada na figura 14 a área com os sistemas aqüíferos divididos pela linha em verde.

Em termos hidrogeológicos, para os Sistemas Aqüíferos Médio e Inferior, as formações Rio da Batateira, Abaiara, Missão Velha e Mauriti comportam-se, de modo geral, como unidades aqüíferas (DNPM, 1996), enquanto a formação Brejo Santo se comporta predominantemente como aqüitardo (e.g. KIMURA, 2003). Assim a divisão hidrogeológica da bacia é feita da seguinte maneira:

- Sistema Aqüífero Médio (formações Rio da Batateira, Abaiara, Missão Velha): \pm 500 m de espessura.

- Aqüitardo Brejo Santo: ± 400 m de espessura; e,

- Sistema Aqüífero Inferior (Formação Mauriti e parte basal da Formação Brejo Santo): \pm 60 a 100 m de espessura.

Figura 14. Área I de estudo delimitada pelos contornos utilizados no modelo conceitual.

Nesta região do Vale ocorrem também os depósitos aluvionares, localizados ao longo da bacia do Rio Salgado, mas não foram discretizados no modelo, devido suas pequenas espessuras comparadas com a dimensão do modelo, ficando apenas representadas as formações acima citadas.

7.2.1. Entrada de dados do Modelo I

No quadro 17 são mostradas as principais características dos Sistemas Aqüíferos Médio e Inferior da área de estudo. E no quadro 18 são mostrados os parâmetros hidrogeológicos adotados na literatura para as formações da área de estudo na Bacia do Araripe.

Parâmetro	Sistema Aqüífero Médio	Sistema Aqüífero Inferior
Espessura média total (m)	500	100
Espessura saturada (m)	480	85
Coeficiente de transmissividade (m^2/s)	5×10^{-3}	$3x10^{-3}$
Coeficiente de permeabilidade (m/s)	5×10^{-3}	4×10^{-3}
Coeficiente de armazenamento	$2x10^{-4}$	5×10^{-5}
Área de recarga (km ²)	305,59	187,43
Precipitação pluvial (mm/ano)	970	900

Quadro 17. Características dos Sistemas Aqüíferos.

Fonte: DNPM (1996)

	-	-			
Unidade	Condutividade Hidráulica (K) (m/s)	Armazename nto Específico (Ss) (1/m)	Coef. Armazenamento Efetivo (Sy)	Porosidade Efetiva	Porosidade Total
Rio da Batateira	4,17x10 ⁻⁶ a 6,90x10 ⁻⁶ (6)	1,0x10 ⁻⁷ (6)	2,0x10 ⁻⁴ (2)a 8,0x10 ⁻³ (3)	0,1 (2)	0,32 a 0,48 (7)
Abaiara	1,6x10 ⁻⁵ a 5,0x10 ⁻ ⁶ (2)	1,0x10 ⁻⁷ (6)	2,0x10 ⁻⁴ (2) a 8,0x10 ⁻³ (3)	0,1 (2)	0,32 a 0,48 (7)
Missão Velha	$1,6x10^{-5}a5,0x10^{-5}(2)$	$1,0x10^{-7}(6)$	2,0x10 ⁻⁴ (2) a 8,0x10 ⁻³ (3)	0,1 (2)	0,32 a 0,48 (7)
Brejo Santo	$1,0x10^{-11}a 4,7x10^{-9}(7)$	$1,3x10^{-3}(7)$	0,01 a 0,18 (7)	0,005 a 0,05 (4)	0,45 a 0,55 (7)
Mauriti	$4,0x10^{-6}(2)$	-	$1,0x10^{-4}(2)$	0,02 (2)	0,1 a 0,2 (7)
Egntar (1) SU	DENIE $1067.(2)$	DNDM 1006	(2) IDI ANCE	1007, (4) DO	MENICO

Quadro 18. Parâmetros hidrogeológicos para as unidades hidroestratigráficas que compõem os sistemas aqüíferos da área de trabalho.

Fonte: (1) SUDENE, 1967; (2) DNPM, 1996; (3) IPLANCE, 1997; (4) DOMENICO & SCHWATZ, 1997, (5) ANJOS, 2000; (6) MENDONÇA, 2001; (7) KIMURA, 2003.

A recarga dos Sistemas Aqüíferos Médio e Inferior, na zona de vale, ocorre através da infiltração direta da água das chuvas e infiltração de parte das águas das fontes provenientes das formações do Sistema Aqüífero Superior (Exu, Arajara e Santana). A descarga natural do sistema aqüífero Médio ocorre através do escoamento de base para o rio Salgado e seus afluentes e a descarga artificial ocorre principalmente através de poços tubulares, que fornecem a quase totalidade de água para consumo da região.

Na porção norte da área, onde o sistema Aqüífero Inferior é aflorante, sua recarga é realizada pela infiltração direta das águas pluviais. A descarga natural ocorre através do rio Carás e a descarga artificial através do bombeamento de poços tubulares (FERNANDES, 2005).

7.2.2. Malha do Modelo I

A discretização do modelo é feita em um grid em três dimensões onde admitimos as camadas com seus respectivos litotipos. A área do modelo possui dimensões de 32000 x 31000 metros perfazendo uma área de 992 km², sendo 493 km² de área ativa. A distribuição horizontal da malha foi discretizada em células retangulares de 320m x 310m devido a dimensão da área de estudo, pois se essas dimensões fossem diminuídas o modelo ficaria muito carregado.

Em profundidade o modelo foi dividido em cinco camadas. Por questões didáticas e de simplificação dividiu-se o sistema aqüífero em dois: aqüífero inferior e médio. Na parte norte, onde se encontra o sistema aqüífero inferior, Formação Mauriti e parte basal da Formação Brejo Santo, apenas uma camada foi considerada com as características da Formação Mauriti. Na parte sul, onde temos o Sistema Aqüífero Médio, a Formação Mauriti fica na base do sistema aqüífero. Na ordem de baixo para cima, no Sistema Aqüífero Médio, as formações são: Mauriti, Brejo Santo, Missão Velha, Abaiara e Rio da Batateira. O nível altimétrico da superfície varia de 399 a 716 metros e da base da última camada de -1299 a -800 metros

7.2.3. Topografia e camadas do Modelo I

Os dados para formação da superfície do modelo e das camadas foram coletados de três seções geológicas na área de estudo, fornecida pela COGERH – Companhia de Gestão de Recursos Hídricos do Estado do Ceará, que foram retirados do Projeto Implantação do Sistema de Monitoramento/Gestão de Área Piloto do Aqüífero Missão Velha, na Bacia Sedimentar do Araripe.

Nesse projeto foi realizada uma revisão bibliográfica da geofísica em trabalhos anteriores na área de estudo, não só os relacionados diretamente ao tema (geofísica), mas também outros principalmente os de cunho estratigráfico, inclusive os perfis litológicos dos poços, de forma a auxiliar a interpretação das sondagens elétricas (SEV's).

O embasamento cristalino foi retirado de um trabalho realizado pelo laboratório de Geofísica de Prospecção e Sensoriamento Remoto (LGPSR/UFC) em parceria com a Divisão de Geociências do IBGE, realizado no Vale do Cariri, intitulado "Caracterização da arquitetura interna das bacias do Vale do Cariri (NE do Brasil) com base em modelagem gravimétrica 3-D".

Para a topografia da superfície da área de estudo foi gerado um arquivo .xyz, a partir das curvas de nível do arquivo no formato .dwg, através de uma rotina feita em autolisp, onde coletou-se 2000 pontos aleatórios e regularmente espaçados e em seguida esses pontos foram interpolados para o restante da área de pesquisa (Figura 15).

Figura 15. Curvas de nível na área do Modelo I de 40 em 40 metros

Na geração da topografia das camadas utilizou-se três seções geológicas que foram espaçadas de 50 em 50 metros. E foi coletado a altimetria de cada camada gerando assim um arquivo .xyz para as respectivas camadas e em seguida interpolado para a área restante. A figura 16 mostra a disposição das seções geológicas na área de estudo, enquanto as figuras 17, 18 e 19 apresentam as seções utilizadas para a elaboração das camadas do modelo.

Figura 16. Área de estudo com posicionamento das seções geológicas e os pontos onde foram retirados a altimetria das camadas para a elaboração das camadas do Modelo I.

Figura 17. Seção geológica I com as formações que compõem a área de estudo. Modificado de GOLDER/PIVOT (2005).

Figura 18. Seção geológica II com as formações que compõem a área de estudo. Modificado de GOLDER/PIVOT (2005).

Figura 19. Seção geológica III com as formações que compõem a área de estudo. Modificado de GOLDER/PIVOT (2005)

A figura 20 apresenta a distribuição das camadas geológicas em um corte transversal do aplicativo PMWIN.

Figura 20. Distribuição das formações no Modelo I gerada pelo PMWIN

7.2.4. Poços

Os poços de bombeamento da região foram fornecidos pela Companhia de Gestão dos Recursos Hídricos do Ceará (COGERH). Foi considerada uma média de dezesseis horas de bombeamento para os poços públicos e oito horas de bombeamento para os poços privados.

Na região de talude, entre o vale e a chapada, considerou-se como condição de contorno as nascentes que afloram no pé da chapada, e como não existe um pacote de fluxo específico para este caso, utilizou-se o pacote *Well* para simular água injetada no Sistema Aqüífero Médio. Este valor de drenança é de $2,0x10^6$ m³/ano para o Sistema Aqüífero Médio, segundo Kimura (2003).

7.2.5. Rios

Os rios que definiram o contorno do modelo foram os rios Salamanca e Batateira. O rio Salamanca é uma das condições de contorno, limitando toda a área estudada na porção leste. Já o rio Batateira está inserido dentro da área de estudo sendo então necessário conhecer as características hidráulicas destes rios. Os dados utilizados neste trabalho foram baseados na observação dos rios da região e em trabalhos anteriores. Os valores do nível de água no leito dos rios, em relação ao fundo, variam de 2 a 3 metros. A condutividade hidráulica do leito do rio foi de 10⁻⁵ m/s, valor compatível com outros estudos efetuados em regiões semi-áridas, segundo relatório final do "Modelamento Matemático da Área de Recarga do Aqüífero Açu, Rio Grande do Norte", desenvolvido através do Programa de Água Subterrânea no Nordeste do Brasil (PROASNE).

7.2.6. Recarga

No caso da simulação desse modelo foi determinada a recarga através do balanço hídrico da região a partir dos dados pluviométricos dos postos Crato e Juazeiro do Norte, nas respectivas cidades. Neste balanço tem-se como resultado uma infiltração efetiva de aproximadamente 108,7 mm/ano em Juazeiro do Norte e 281,3 mm/ano em Crato.

A Evapotranspiração Potencial foi determinada segundo o método de Thornthwaite. A retenção de água no solo, que define a quantidade máxima de água que o solo pode reter, foi estabelecida em 100 mm e no inicio do ano hidrológico (janeiro) C = 0.

Os dados resultantes do balanço hídrico executado, a partir dos dados de precipitação de 23 anos situados no período entre 1962 e 1987 eliminando as falhas, constam nos quadros 19 e 20.

Mês	T (oC)	Im (mm)	K	ETP (mm)	PPT (mm)	PPT-ETP (mm)	C (mm)	ETR (mm)	Ie (mm)
JAN	26.1	11.93	1.08	139.2	163.6	24.4	24.4	139.2	0.0
FEV	25.0	11.18	0.97	108.8	236.2	127.4	100	108.8	33.2
MAR	24.8	11.05	1.05	114.8	280.5	165.7	100	114.8	165.7
ABR	24.6	10.91	0.99	105.4	187.8	82.4	100	105.4	82.4
MAI	24.2	10.65	1.01	102.0	63.7	-38.3	61.7	63.7	0.0
JUN	23.8	10.39	0.96	91.9	25.7	-66.2	0.0	25.7	0.0
JUL	23.9	10.45	1.00	97.1	9.8	-87.3	0.0	9.8	0.0
AGO	24.6	10.91	1.01	107.6	5.5	-102.1	0.0	5.5	0.0
SET	26.1	11.93	1.00	128.9	10.7	-118.2	0.0	10.7	0.0
OUT	26.8	12.41	1.06	148.8	28.8	-120.0	0.0	28.8	0.0
NOV	26.9	12.48	1.05	149.1	53.4	-95.7	0.0	53.4	0.0
DEZ	26.6	12.27	1.10	150.7	89.9	-60.8	0.0	89.9	0.0
Anual		136.55		1444.3	1155.6			755.7	281.3
	11	1		DD	r · ·	~ ~ /1			

Quadro 19. Balanço hídrico do Posto Crato em	Crato, Latitude 07°	13' S, Longitude 39°
23' W, altitude	421 m.	

T = Temperatura média mensal

Im = Indice térmico anual

K = Fator de correção dependente da latitude

C = Retenção de água no solo

PPT = precipitação média ETP = Evapotranspiração Potencial

ETR = Evapotranspiração Real

Ie = Infiltração efetiva

Quadro 20. Balanço hídrico do Posto Juazeiro do Norte em Juazeiro do Norte, Latitud	e
07° 23' S, Longitude 39° 23' W, altitude 650 m.	

Mês	T (oC)	Im (mm)	K	ETP (mm)	PPT (mm)	PPT-ETP (mm)	C (mm)	ETR (mm)	Ie (mm)
JAN	26.5	12.20	1.08	145.7	134.3	-11.4	0.0	134.3	0.0
FEV	25.4	11.45	0.97	113.5	175.3	61.8	61.8	113.5	0.0
MAR	25.1	11.25	1.05	118.1	241.0	122.9	100.0	118.1	84.7
ABR	25.0	11.18	0.99	109.9	133.9	24.0	100.0	109.9	24.0
MAI	24.7	10.98	1.01	107.6	48.3	-59.3	40.7	48.3	0.0
JUN	24.3	10.71	0.96	96.8	18.8	-78.0	0.0	18.8	0.0
JUL	24.4	10.78	1.00	102.3	14.1	-88.2	0.0	14.1	0.0
AGO	25.2	11.31	1.01	115.1	7.4	-107.7	0.0	7.4	0.0
SET	26.6	12.27	1.00	136.7	8.2	-128.5	0.0	8.2	0.0
OUT	27.4	12.83	1.06	160.0	23.2	-136.8	0.0	23.2	0.0
NOV	27.4	12.83	1.05	158.5	34.6	-123.9	0.0	34.6	0.0
DEZ	27.1	12.62	1.10	160.0	79.5	-80.5	0.0	79.5	0.0
Anual		140.41		1524.3	918.6			709.9	108.7

T = Temperatura média mensal

Im = Índice térmico anual

PPT = precipitação média ETP = Evapotranspiração Potencial

EIP = E'

K = Fator de correção dependente da latitude C = Retenção de água no solo ETR = Evapotranspiração Real

Ie = Infiltração efetiva

7.3. Modelo da área de Barbalha – Missão Velha (Modelo II)

A figura 21 mostra a área estabelecida para a aplicação do modelo. As condições de limite para a simulação do fluxo hídrico subterrâneo são os rios Salgado no lado norte, o Salamanca no lado oeste, o riacho Seco na porção leste e a base da chapada do Araripe no lado sul.

A área de estudo escolhida para o modelo II tem como parte inferior a Zona de talude e situase quase que totalmente na Zona de Pediplano, região conhecida como Vale do Cariri. As camadas que compões a área de estudo pertencem aos Sistemas Aqüíferos Médio e Inferior, portanto as camadas hidrogeológicas do modelo conceitual têm as formações: Rio da Batateira, Abaiara, Missão Velha, Brejo Santo e Mauriti. Dessas, segundo Kimura (2003) a Formação Brejo Santo se comporta como aqüitardo e as demais como aqüíferos.

Figura 21. Localização da área II de estudo (contorno preto).

7.3.1. Entrada de dados do Modelo II

Os parâmetros hidrodinâmicos adotados no modelo II foram os mesmo do modelo I, já que se trata das mesmas formações hidrogeológicas.

7.3.2. Malha do Modelo II

A área abrange as cidades de Missão Velha e de Barbalha. A área total para a malha do modelo é de 728 km², entre os paralelos 463000 e 489000 de longitude leste e 9176000 e 9204000 de latitude norte, perfazendo 26.000 metros no sentido leste-oeste e 28.000 metros no sentido norte-sul.

Para determinar o modelo, o primeiro passo é fazer a discretização da área de forma que um grid é gerado em 3 dimensões pelo PMWIN. Nessa etapa o sistema aqüífero é substituído por um domínio discretizado de uma disposição de nós e associado aos blocos de diferenças finitas. A forma nodal da malha é a forma da estrutura do modelo numérico. A área escolhida, como foi citada, possui 26.000 metros no sentido leste-oeste e 28.000 metros no sentido norte-sul. A distribuição da malha foi discretizada então em 100 x 100 células, ficando então cada célula com 260 metros na direção x e 280 metros na direção y.

7.3.3. Topografia e camadas do Modelo II

Os dados de topografia para o modelo II também foram editados a partir dos mapas de curva de nível, fornecidos pela COGERH - Companhia de Gestão dos Recursos Hídricos do estado do Ceará. Os arquivos fornecidos em CAD, com extensão *.dwg, possuem as curvas de nível de 40 em 40 metros. Foi realizado então um corte selecionando as curvas topográficas que estavam dentro na malha escolhida para o modelo.

Em seguida foram alterados os tipos de entidades da curva, com a ferramenta UFC2 desenvolvida pelo Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará. Essa edição com o UFC2 converteu as curvas de nível de *Line* para *Spline*. Em seguida, foi utilizado, um aplicativo denominado de expcurva.lsp, que transformava o arquivo *.dwg em arquivo texto (*.txt) e limitava o número de vértices com dados topográficos em 2000 pontos, uma vez que o pacote do PMWIN, *Field Interpolator*, que interpola dados para toda área do modelo, restringe os números de pontos para a interpolação.

Com a falta de dados de geofísica da área de Missão Velha e Barbalha, optou-se no Modelo II, fazer uma média dos valores interpolados para a área do Modelo I, que é adjacente a deste Modelo. O quadro 21 indica quais foram os valores médios calculados e assim adotados para a modelagem da região à direita do rio Salamanca.

	Cota média (m)	Formação	Espessura (m)
Topografia	482.24	Rio da batateira	215.25
Topo camada 2	266.99 🗧	Abaiara	136.76
Topo camada 3	130.23	Missão Velha	313.49
Topo camada 4	-183.26	Brejo Santo	521.53
Topo camada 5	-704.79	Mauriti	357.5
Base cristalino	-1062.29	Cristalino	-

Quadro 21. Valores médios das cotas da área adjacente à área de estudo e espessuras das camadas.

A figura 22 mostra como ficaram discretizadas as camadas geológicas no aplicativo PMWIN do Modelo II.

Figura 22. Distribuição das camadas geológicas no Modelo II

7.3.4. Poços

Duas informações importantes foram retiradas dos dados de poços: a medição do nível estático e a vazão de bombeamento.

Os dados de poços foram fornecidos pela CAGECE – Companhia de Água e Esgoto do Estado do Ceará, pela CPRM - Companhia de Pesquisa de Recursos Minerais e pela COGERH.

Com os arquivos em forma de planilha contendo informações de poços de toda a região do Cariri, foi necessário realizar então uma triagem com os dados de nível estático e também com os dados de vazões dos poços. Com as coordenadas em UTM - Universal Transverse Mercator dos poços foi possível digitalizar em formas de pontos, todos os poços cadastrados pelas instituições, e assim excluir os poços que não pertenciam ao domínio da área escolhida para a modelagem. Além dessa triagem, os poços que não apresentavam dados de medição de nível estático e/ou de vazão de bombeamento, ou ainda alguns que apresentaram valores de nível estático que ultrapassaram a cota da topografia também foram dispensados.

Os valores de nível estático foram necessários para gerar as cargas observadas necessárias, tanto na simulação como na calibração do modelo, e as vazões de bombeamento foram utilizados no pacote *Well* do PMWIN para representar a retirada do fluxo hídrico subterrâneo nas simulações, ao qual foi estabelecido um funcionamento de oito horas diárias de bombeamento para todos os poços.

7.3.5. Rios

Os rios da área de estudo limitam o modelo para as condições do cálculo de fluxo hídrico subterrâneo. Ao norte o modelo é limitado por uma parte do rio Salgado, ao leste pelo riacho Seco e a oeste pelo rio Salamanca. A figura 23 mostra os rios como limites no modelo no PMWIN. O percurso dos rios foi obtido a partir dos mapas fornecidos pela COGERH.

Figura 23. Visualização dos rios limitantes nas células do PMWIN

Para a entrada no pacote *River* do PMWIN, são necessários cinco dados: a condutância hidráulica do leito do rio, a carga hidráulica, a elevação do fundo do rio, a largura e a espessura do leito do rio. Assumiu-se a partir da literatura um valor da condutância hidráulica de 10^{-5} m²/s para todos os três rios, fundamentado em outros estudos de que esse é um valor compatível aos rios da região, segundo o já citado relatório do Modelamento Matemático da Área de Recarga do Aqüífero Açu, Rio Grande do Norte, desenvolvido pelo Programa de Água Subterrânea no Nordeste do Brasil (PROASNE, 2003).

Com a ferramenta *Polyline* do PMWIN foi traçado o trajeto dos rios, a partir daí então foi possível atribuir os valores necessários para a simulação.

A elevação do fundo do rio Salamanca e do riacho Seco começou com um valor atribuído nas proximidades de sua nascente de 0,5 metros e foi interpolado pelo PMWIN até três metros no encontro com o rio Salgado. A carga hidráulica do rio foi admitida com dois metros abaixo do nível topográfico ao longo dos cursos dos rios. A largura dos dois rios que afloram da chapada foi admitida de 0,5 metros na nascente até 4,5 metros na confluência desses.

Os valores utilizados foram adquiridos com o uso do bom-senso, uma vez que não foi encontrado registro das medições dos parâmetros supracitados. Para efeito de conhecimento da resposta do modelo em questão à sensibilidade desses parâmetros, foram realizadas algumas mudanças nesses valores na ordem de 100%, e constatou-se pouca variabilidade no que concernem as equipotenciais e linhas de fluxo.

7.3.6. Recarga

Foi feito um balanço hídrico e o resultado da infiltração efetiva anual, ao qual foi utilizado para o valor de recarga adotado para o modelo, foi de 191,6 mm/ano no posto de Missão Velha. Os valores dos principais parâmetros do balanco hídrico estão resumidos no quadro 22.

Mês	Tmédia (oC)	Im (mm)	Kc	ETP (mm)	PPT (mm)	PPT-ETP (mm)	C (mm)	ETR (mm)	Ie (mm)
JAN	26.6	12.27	1.08	147.5	130.4	-17.1	0.0	130.4	0.0
FEV	25.5	11.52	0.97	114.9	202.9	88.0	88.0	114.9	0.0
MAR	25.2	11.31	1.05	119.4	267.6	148.2	100.0	119.4	136.2
ABR	25.1	11.25	0.99	111.1	166.5	55.4	100.0	111.1	55.4
MAI	24.8	11.05	1.01	108.8	49.2	-59.6	53.0	49.2	0.0
JUN	24.4	10.78	0.96	97.9	19.0	-78.9	0.0	19.0	0.0
JUL	24.5	10.85	1	103.4	7.8	-95.6	0.0	7.8	0.0
AGO	25.3	11.38	1.01	116.4	4.2	-112.2	0.0	4.2	0.0
SET	26.7	12.34	1	138.3	6.4	-131.9	0.0	6.4	0.0
OUT	27.4	12.83	1.06	160.0	17.9	-142.1	0.0	17.9	0.0
NOV	27.4	12.83	1.05	158.5	37.1	-121.4	0.0	37.1	0.0
DEZ	27.2	12.69	1.1	162.0	65.6	-96.4	0.0	65.6	0.0
Tot. Anual		141.09		1538.48	974.6			683.0	191.6
T _{media} = Temperatura média mensal			PPT = precipitação média						
Im = Índice térmico anual				ETP = Evapotranspiração Potencial					

Quadro 22. Balanço hídrico do Posto Missão Velha, com Latitude 07º 15' S, Longitude 39° 09' W. e altitude de 352 m.

 $K_c =$ Fator de correção dependente da latitude ETR = Evapotranspiração Real C = Retenção de água no solo

Ie = Infiltração efetiva

O quadro 23 mostra os valores do balanço hídrico realizado durante o ano. A técnica para o cálculo da Evapotranspiração Potencial foi determinada segundo o método de Thornthwaite.

Quadro 23. Resumo do balanço	hídrico do Posto Missão Velha
------------------------------	-------------------------------

POSTO MISSÃO VELHA	
Precipitação (mm)	974.6
Evapotranspiração potencial (mm)	1538.48
Evapotranspiração Real (mm)	683.0
Infiltração Efetiva (mm)	191.6

7.4. Calibração dos Modelos

Para a calibração da condutividade hidráulica dos modelos, como não há um zoneamento prédefinido deste parâmetro necessário para o pacote PEST (Parameter Estimation) do PMWIN, foi desenvolvido em linguagem FORTRAN (Fortran 90 – Compaq Visual Fortran Versão 6.5) um programa de calibração. Este programa, denominado de MIGHA - Método Iterativo do Gradiente Hidráulico Alternativo realiza a calibração da condutividade hidráulica e/ou transmissividade a partir dos dados de cargas hidráulica observadas.

7.5. Resultados

Os resultados aqui apresentados mostram três simulações para cada área de estudo (Modelo I e Modelo II): uma simulação no estado permanente chuvoso, e duas simulações no estado transiente, sendo uma para o período chuvoso e outra para o período seco. As saídas gráficas mostram o mapa das linhas equipotenciais. São mostrados os balanços hídricos e a velocidade média para as cinco camadas hidrogeológicas, e também os resultados da calibração pelo MIGHA.

7.5.1. Modelo I

Para as simulações foram utilizados os valores estimados de infiltração efetiva de 283 mm, a partir do balanço hídrico de dois postos pluviométricos da área de estudo, no período chuvoso. No período seco o valor de infiltração efetiva apenas de 11 mm. Foram consideradas dezesseis horas de bombeamento para os poços públicos e oito horas de bombeamento para os poços privados.

7.5.1.1. Estado permanente para o período chuvoso

O quadro 24 apresenta as características utilizadas para cada formação durante a simulação em estado permanente chuvoso no Modelo I.

Parâmetros		Valores
	Camada 1	Aqüífero inferior – 9x10 ⁻⁶ m/s Aqüífero médio – 5x10 ⁻⁶ m/s
Condutividada Hidráulica (V)	Camada 2	$1 \times 10^{-5} \text{ m/s}$
Conductividade Hidraulica (K)	Camada 3	$1 \ge 10^{-5} \text{ m/s}$
	Camada 4	$1 \ge 10^{-10} \text{ m/s}$
	Camada 5	$4 \ge 10^{-6} \text{ m/s}$
	Camada 1	Aqüífero inferior – 0.02 Aqüífero médio – 0.1
	Camada 2	0.1
Porosidade Efetiva	Camada 3	0.1
	Camada 4	0.03
	Camada 5	0.02
Infiltração Efetiva		283 mm
Regime de Escoamento		Permanente

Quadro 24. Características da simulação do estado permanente chuvoso.

Esta simulação apresentou linhas equipotenciais variando de 337,32 m a 453,44 m ao longo do aqüífero, como mostrado a figura 24, com um gradiente médio de 4,71 x 10^{-3} m/m e uma velocidade média no fluxo para as camadas 1, 2 e 3, com valores médios de 6,28 cm/dia, 3,69 cm/dia e 3,16 cm/dia, respectivamente. Já para as camadas 4 e 5 as velocidades médias do fluxo foram bem menores, em média de 0,0407 cm/ano e 1,08 cm/ano, respectivamente.

Figura 24. Vetores de fluxo e variação das linhas equipotenciais, de 5,0 em 5,0 metros, para a camada 1 no estado permanente chuvoso.

As linhas equipotenciais de fluxo e os vetores de direção de fluxo nas demais camadas estão nas figuras 25, 26, 27 e 28.

Figura 25. Fluxo na camada 2 e curvas potenciométricas de 5,0 em 5,0 metros no estado permanente chuvoso.

Figura 26. Fluxo na camada 3 e curvas potenciométricas de 5,0 em 5,0 metros no estado permanente chuvoso.

Figura 27. Fluxo na camada 4 e curvas potenciométricas de 5,0 em 5,0 metros no estado permanente chuvoso.

Figura 28. Fluxo na camada 5 e curvas potenciométricas de 0,01 em 0,01 metros no estado permanente chuvoso.

O balanço hídrico também foi realizado. A figura 29 e o quadro 25 mostram o balanço hídrico do cenário do estado permanente chuvoso. Pode-se observar a importância do rio no balanço hídrico do modelo.

Figura 29. Balanço hídrico do modelo no cenário de regime permanente chuvoso

Parâmetros	Entrada (m ³ /dia)	Saída (m ³ /dia)
Poços	4.012,41	41.649,99
Recarga	147.280,31	0,00
Drenança do Rio	622,90	110.264,84
Total	151.915,62	151.914,82
Diferença	0	,79

Quadro 25. Balanço hídrico calculado pelo modelo, Simulação 1 em regime permanente

7.5.1.2. Estado transiente para o período chuvoso

Essa Simulação foi realizada em regime transiente para avaliar o comportamento dos aqüíferos do modelo I durante o período chuvoso, e suas características estão no quadro 26.

Parâmetros		Valores
	Camada 1	Aqüífero inferior – 9x10 ⁻⁶ m/s
	Calliaua I	Aqüífero médio – 5×10^{-6} m/s
Condutividade Hidráulica	Camada 2	$1 \times 10^{-5} \text{ m/s}$
(K)	Camada 3	$1 \times 10^{-5} \text{ m/s}$
	Camada 4	$1 \times 10^{-10} \text{ m/s}$
	Camada 5	$4 \ge 10^{-6} \text{ m/s}$
	Camada 1	Aqüífero inferior – 0.02
		Aqüífero médio – 0.1
Donosido do Efotivo	Camada 2	0.1
Porosidade Efetiva	Camada 3	0.1
	Camada 4	0.03
	Camada 5	0.02
	Camada 1	$1 \ge 10^{-7} 1/m$
	Camada 2	1 x 10 ⁻⁷ 1/m
Armazenamento Específico	Camada 3	1 x 10 ⁻⁷ 1/m
	Camada 4	$1,3 \ge 10^{-3} 1/m$
	Camada 5	$1 \ge 10^{-4} \ 1/m$
	Camada 1	Aqüífero inferior – $1 \ge 10^{-4}$
	Calliada I	Aqüífero médio – $2 \ge 10^{-4}$
Coeficiente de	Camada 2	2×10^{-4}
Armazenamento	Camada 3	$2 \ge 10^{-4}$
	Camada 4	$1 \ge 10^{-2}$
	Camada 5	$1 \ge 10^{-4}$
Duração (tempo)		180 dias
Infiltração Efetiva		283 mm
Regime de Escoamento		Transiente
Resultado		Após 180 dias

Quadro 26. Características da simulação do estado transiente chuvoso do modelo I.

Esta simulação apresentou linhas equipotenciais variando de 337,34 m a 461,84 m ao longo do aqüífero, como mostrado na figura 30, com um gradiente médio de 5,05 x 10^{-3} m/m e uma velocidade média no fluxo para as camadas 1, 2 e 3 com valores médios de 6,47 cm/dia, 4,09 cm/dia e 3,48 cm/dia, respectivamente. Já para as camadas 4 e 5 a velocidade média do fluxo foi de 0,0672 cm/ano e 9,16 cm/dia, respectivamente.

Figura 30. Vetores de fluxo Variação das linhas equipotenciais de 10 em 10 metros, para a camada 1 no estado transiente chuvoso.

Era esperado que o resultado dessa simulação fosse semelhante à simulação do estado permanente chuvoso, já que os dados de entrada foram os mesmos, mudando-se apenas o regime de escoamento. Comparando as duas simulações pode-se perceber uma diferença entre as linhas potenciométricas e entre os gradientes de velocidades, isso pode ser explicado pelos valores de armazenamento específico, não muito confiáveis, utilizados nesta simulação.

As figuras 31, 32, 33 e 34 mostram os vetores de fluxo nas células do PMWIN.

Figura 31. Fluxo na camada 2, e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente chuvoso.

Figura 32. Fluxo na camada 3, e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente chuvoso.

Figura 33. Fluxo na camada 4, e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente chuvoso.

Figura 34. Fluxo na camada 5, e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente chuvoso.

A figura 35 e o quadro 27 mostram o balanço hídrico do cenário no estado transiente chuvoso.

Figura 35. Balanço hídrico do modelo no regime transiente para o período chuvoso.

Quadro 27. Balanço hídrico calculado pelo modelo, Simulação 2 em regime transien	te
período chuvoso.	

Parâmetros	Entrada (m ³ /dia)	Saída (m ³ /dia)
Armazenamento	76.456,57	62.757,71
Poços	4.012,41	41.649,99
Recarga	147.824,60	0,00
Drenança do Rio	4,42	123.912,94
Total	228.316,00	228.320,63
Diferença	4	,63

7.5.1.3. Estado transiente para o período seco

Os principais dados de entrada do modelo para o período seco e estado transiente estão apresentados no quadro 28.

Parâmetros		Valores
	Camada 1	Aqüífero inferior – 9x10 ⁻⁶ m/s Aqüífero médio – 5x10 ⁻⁶ m/s
Condutividade Hidráulica	Camada 2	$1 \times 10^{-5} \text{ m/s}$
(K)	Camada 3	$1 \ge 10^{-5} \text{ m/s}$
	Camada 4	$1 \ge 10^{-10} \text{ m/s}$
	Camada 5	$4 \ge 10^{-6} \text{ m/s}$
	Camada 1	Aqüífero inferior – 0.02 Aqüífero médio – 0.1
	Camada 2	0.1
Porosidade Efetiva	Camada 3	0.1
	Camada 4	0.03
	Camada 5	0.02
	Camada 1	1 x 10 ⁻⁷ 1/m
	Camada 2	1 x 10 ⁻⁷ 1/m
Armazenamento Específico	Camada 3	1 x 10 ⁻⁷ 1/m
	Camada 4	1,3 x 10 ⁻³ 1/m
	Camada 5	$1 \ge 10^{-4} \ 1/m$
	Camada 1	Aqüífero inferior – 1 x 10 ⁻⁴ Aqüífero médio – 2 x 10 ⁻⁴
Coeficiente de	Camada 2	2×10^{-4}
Armazenamento	Camada 3	2×10^{-4}
	Camada 4	$1 \ge 10^{-2}$
	Camada 5	1 x 10 ⁻⁴
Duração (tempo)	180 dias	
Infiltração Efetiva	11 mm	
Regime de Escoamento	Transiente	
Resultado	Após 180 dias	

Quadro 28. Características da simulação do estado transiente seco para o modelo I.

Esta simulação apresentou linhas equipotenciais variando de 337,33 m a 444,78 m ao longo do aqüífero da primeira camada, como mostrado na figura 36, com um gradiente médio de $3,69 \times 10^{-3}$ m/m e uma velocidade média no fluxo para as camadas 1, 2 e 3 com valores médios de 5,48 cm/dia, 4,09 cm/dia e 2,46 cm/dia, respectivamente. Já para as camadas 4 e 5 a velocidade média do fluxo foi de 0,0675 cm/ano e 9,16 cm/dia, respectivamente.

Figura 36. Vetores de fluxo e variação das linhas equipotenciais, de 5 em 5 metros, para a camada 1 no estado transiente seco.

As linhas equipotenciais de fluxo e os vetores de direção de fluxo nas demais camadas estão nas figuras 37, 38, 39 e 40.

Figura 37. Fluxo na camada 2 e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente seco.

Figura 38. Fluxo na camada 3 e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente seco.

Figura 39. Fluxo na camada 4 e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente seco.

Figura 40. Fluxo na camada 5 e curvas potenciométricas de 10,0 em 10,0 metros, no estado transiente seco.

O balanço hídrico para o estado transiente e período seco está mostrado na figura 41 e quadro 29.

Figura 41. Balanço hídrico do modelo no regime transiente para o período seco.

Parâmetros	Entrada (m ³ /dia)	Saída (m ³ /dia)
Armazenamento	82.467,28	61.499,77
Poços	4.012,41	41.649,99
Recarga	37.852,16	0,00
Drenança do Rio	17.848,68	39.039,67
Total	142.180,52	142.189,63
Diferenca	8	.91

Quadro 29. Balanço hídrico calculado pelo modelo em regime transiente período seco

7.5.2. Calibração (modelo I)

Com os dados disponíveis de duas fontes diferentes (COGERH e CPRM) obtivemos as linhas potenciométricas observadas. Após se avaliar o comportamento do aqüífero com os dados disponíveis da área fez-se uma tentativa de calibrar o modelo. Como tínhamos apenas as cargas observadas e não dispúnhamos de testes de bombeamento na área de estudo, que nos desse os contornos da condutividade hidráulica, mas apenas valores médios de toda a área. Então partindo dessas cargas potenciométricas observadas que resolvemos utilizar um método de calibração que leva em conta o gradiente hidráulico.

Com os dados disponíveis foram geradas as linhas potenciométricas observadas a partir da distribuição dos níveis estáticos observados. Com os dados fornecidos pela COGERH conseguimos um total de 76 poços com nível estático e da CPRM apenas 12 poços na área de estudo. As figuras 42, 43, 44 e 45 mostram as curvas potenciométricas observadas geradas a partir das duas fontes de dados e a distribuição de poços na área.

Figura 42. Linhas potenciométricas de 20 em 20 m, geradas a partir do nível estático de 76 poços com dados fornecidos pela COGERH.

Figura 43. Distribuição dos 76 poços, com nível estático medido, fornecidos pela COGERH

Figura 44. Linhas potenciométricas de 2 em 2 m, geradas a partir do nível estático de 12 poços com dados fornecidos pela CPRM.

Figura 45. Distribuição dos 12 poços, com nível estático medido, fornecidos pela COGERH.

Uma maior quantidade e distribuição podem ser percebidas nos dados da COGERH e isso explica a variação entre as linhas equipotenciais observadas que ficaram entre 454,4 m e 678,9 m. Enquanto nos dados de monitoramento fornecidos pela CPRM a variação das linhas potenciométricas ficou entre 353 e 424 m.

Isso pode ser explicado pela diferença de quantidade e distribuição desses dados. Como não há o conhecimento do zoneamento das condutividades hidráulicas da região de estudo, sendo esse zoneamento essencial para a calibração do modelo pelo pacote PEST contido no PMWIN-Pro, é que foi desenvolvido um programa de calibração em linguagem Fortran que retorna as condutividades hidráulicas a partir do gradiente hidráulico observado, denominando de MIGHA – Método Iterativo do Gradiente Hidráulico Alternativo.

Primeiramente a calibração foi feita com os dados da COGERH, por estes serem em maior quantidade e melhores distribuídos na área, e o resultado da raiz do erro quadrático médio é mostrado na figura 46. Os valores variam de 49,35 metros no inicio até 329,58 metros na iteração 15.

Figura 46. Curva da raiz do erro quadrático médio (RMSEH) em relação às cargas calculadas e observadas (todas as células ativas) versus as iterações (Dados COGERH).

A figura 47 mostra a variação da média dos ângulos ϕ (ângulos entre os vetores dos gradientes das cargas observadas e calculadas).

Os valores dos ângulos φ mostram a divergência do fluxo ao longo das 15 iterações. Os valores variaram de 65,24 graus, no inicio da iteração, a 68,71 graus na iteração 15.

Com esses resultados pode-se ver que não foi possível calibrar o modelo com os dados observados. Uma explicação para o fato é que os dados fornecidos pela COGERH foram coletados em campanhas diferentes e com diferença de 2 anos de coleta (2001 e 2002). E ao longo do ano os níveis estáticos variam muito, além do que a distribuição e a quantidade destes poços é muito pequena comparada com a área de trabalho.

Figura 47. Curva da média dos ângulos φ entre os gradientes das cargas calculados e observados (todas as células ativas) versus as iterações (Dados COGERH).

Apesar de não ter-se conseguido resultados satisfatórios com os poços da COGERH, mesmo assim, tentou-se fazer a calibração com a bateria de deze poços (CPRM), com medições feitas em quatro campanhas entre os anos de 2005 e 2006, devido à freqüência nessas medições e serem mais confiáveis. Os resultados obtidos das 6 iterações podem ser observados nas figuras 48 e 49. Os valores da raiz do erro quadrático médio foram melhores do que a tentativa anterior de calibração, mas mesmo assim não satisfatórios. A média dos ângulos ϕ chegou a um mínimo de 34,36 graus e a variância 74,47 m.

Foram obtidos resultados melhores com a utilização de apenas 12 poços da CPRM devido a estes serem mais confiáveis e medidos em campanha regulares sem intervalos grandes. Há uma impressão da convergência do modelo, mas com as condutividades hidráulicas obtidas na iteração 7 não foi possível rodar o modelo no PMWIN, devido aos valores de condutividade hidráulica serem irreais pra a região.

Figura 48. Curva da raiz do erro quadrático médio (RMSEH) em relação às cargas calculadas e observadas (todas as células ativas) versus as iterações (Dados CPRM).

Figura 49. Curva da média dos ângulos φ entre os gradientes das cargas calculados e observados (todas as células ativas) versus as iterações.

7.5.3. Modelo II

7.5.3.1. Estado permanente para o período chuvoso

Com o PMWIN foi realizada uma saída gráfica das curvas equipotenciais de 10 em 10 metros (Figura 50). O quadro 30 sumariza alguns dos dados de entrada do modelo para essa simulação.

Figura 50. Linhas equipotenciais na camada 1, de 10 em 10 metros para o estado permanente chuvoso.

Q	uadro	30.	Características	da	simulação	do e	estado	permanente chuvoso
· ·					~			

	Condutividade Hidráulica	Porosidade Efetiva	Infiltração Efetiva
Camada 1	$5 \times 10^{-6} \text{ m/s}$	0.1	191 mm
Camada 2	$1 \ge 10^{-5} \text{ m/s}$	0.1	-
Camada 3	$1 \ge 10^{-5} \text{ m/s}$	0.1	-
Camada 4	$1 \ge 10^{-10} \text{ m/s}$	0.03	-
Camada 5	4 x 10 ⁻⁶ m/s	0.02	-

O valor mínimo de carga hidráulica calculada pelo PMWIN foi de 328.54 metros e o máximo de 513.35 metros para a primeira camada. O quadro 31 mostra os resultados dos valores das velocidades médias para cada camada.

Quadro 31. Velocidades médias das camadas	para estado estacionário chuvoso.
---	-----------------------------------

	Camada	Camada	Camada	Camada	Camada
	1	2	3	4	5
Velocidade Média (cm/dia)	1.204	1.854	1.651	2.07×10^{-5}	4.24×10^{-4}

Esses valores definidos como velocidade média dos aqüíferos e do aqüitardo Brejo Santo, foi calculado pela média aritmética dos valores das velocidades médias de cada célula que foi gerado pelo PMWIN. A camada 4, por ser um aqüitardo apresentou um valor baixo de velocidade. A formação Maurití (camada 5) também apresentou uma baixa velocidade, talvez por esta se encontrar "isolada" dos demais aqüíferos pelo aqüitardo, que não permite um movimento significativo de fluxo hídrico.

As linhas de fluxo para a formação Rio da Batateira (camada 1), calculadas com o pacote PMPATH, do PMWIN, são mostradas na figura 7.38. A tendência do fluxo (direção da maior para a menor carga) tende acompanhar também a topografia do terreno, o que é justificado pelas linhas potenciométricas começar com valores maiores próximo à chapada do Araripe e decrescerem conforme a topografia.

Pela figura 51 é possível notar a direção de fluxo em cada célula. Os pontos em vermelho são os poços de bombeamento. Pode-se notar que alguns poços "puxam" com mais intensidade as linhas de fluxo. Isto está relacionado à vazão, quanto maior for a retirada de água do poço mais células irão contribuir com vetores de fluxo.

Figura 51. Linhas de fluxo na camada 1 para o estado permanente chuvoso.

As figuras 52, 53, 54 e 55 mostram as linhas equipotenciais e de fluxo das camadas 2, 3, 4 e 5, respectivamente, para a simulação no estado permanente e período chuvoso.

Na figura 52, os vetores de fluxo da segunda camada próximos aos poços apresentam ainda uma pequena reação ao bombeamento. Isso pode se dever ao fato que ao inserir uma célula com propriedade de poço no pacote Well do PMWIN, o modelo reconhece como profundidade do poço a profundidade da camada (CHIANG & KINZELBACH, 2003). A menor carga calculada nessa camada foi de 343.70 metros e a maior de 506.66 metros.

Figura 52. Fluxo na camada 2 e curvas potenciométricas de 10 em 10 metros, para o período chuvoso e estado permanente.

A figura 53 mostra o comportamento das linhas de fluxo na formação Missão Velha (camada 3), que parecem não sofrer mais interferência dos poços de bombeamento. A diferença entre a menor e maior célula de carga hidráulica calculada pelo PMWIN foi de 152.4 metros.

Figura 53. Fluxo na camada 3 e curvas potenciométricas de 10 em 10 metros, para o período chuvoso e estado permanente.

Na figura 54, a camada 4 (Formação Brejo Santo) se comporta como aqüítardo, devido à sua baixa porosidade e condutividade hidráulica, portanto há pouco fluxo nessa camada o que resulta em pequenos vetores de fluxo. A variação do nível potenciométrico calculado, para a simulação permanente e para o período chuvoso, foi de 390.37 a 464.13 metros.

Figura 54. Fluxo na camada 4 e curvas potenciométricas de 1 em 1 metro, para o período chuvoso e estado permanente.

A figura 55 mostra que, na última camada (Formação Mauriti), praticamente as linhas e os vetores de fluxo não variaram. As linhas de fluxos, e vetores de fluxo quase que como pontos. As equipotenciais calculadas nessa camada, praticamente se mantiveram constantes ao longo da Zona de Pediplano e estão no curto intervalo entre 426.08 metros e 426.20 metros.

Figura 55. Fluxo na camada 5, e curvas potenciométricas de 0.001 em 0.001 metro, para o período chuvoso e estado permanente.

O quadro 32 mostra o balanço hídrico calculado com a ferramenta Water Budget do PMWIN para o modelo concebido.

Parâmetros	Entrada (m ³ /dia)	Saída (m³/dia)
Poços	4492.80	10550.61
Recarga	99969.00	0.00
Drenança do Rio	3546.45	97464.43
Total	108008.2515	108015.03
Diferença	-6	5.78

\mathbf{O}		TT/1 . P. 4	1 .	TON ATTATAT		~ ~		
Unadro :	32. Balanco	Hidrico feif	o neio		para simil	iacao no	estado	estacionario.
X and o t	Duran yo	11101100 1010	o pero		Para Sinta	uşuo no	coudo	corderoniar rot

7.5.3.2. Estado transiente para o período chuvoso

Para a simulação no estado transiente é necessário entrar com mais dois tipos de parâmetros no PMWIN: o armazenamento específico e o coeficiente de armazenamento. A simulação foi feita para o período correspondente ao final de seis meses e alguns dados de entrada estão no quadro 33.

Parâmetros	Camada	Valores
	Camada 1	5×10^{-6}
	Camada 2	$1 \ge 10^{-5}$
Condutividade Hidráulica (K) [m/s]	Camada 3	$1 \ge 10^{-5}$
	Camada 4	$1 \ge 10^{-10}$
	Camada 5	4 x 10 ⁻⁶
	Camada 1	0.1
	Camada 2	0.1
Porosidade Efetiva	Camada 3	0.1
	Camada 4	0.03
	Camada 5	0.02
	Camada 1	1 x 10 ⁻⁷
	Camada 2	1 x 10 ⁻⁷
Armazenamento Específico [1/m]	Camada 3	1 x 10 ⁻⁷
	Camada 4	$1,3 \ge 10^{-3}$
	Camada 5	$1 \ge 10^{-4}$
	Camada 1	2 x 10 ⁻⁴
	Camada 2	$2 \ge 10^{-4}$
Coeficiente de Armazenamento	Camada 3	2 x 10 ⁻⁴
	Camada 4	1 x 10 ⁻²
	Camada 5	1 x 10 ⁻⁴
Duração [dias]	*	180
Infiltração Efetiva (recarga) [mm]	*	191

Quadro 33. Características da simulação do estado transiente chuvoso.

Os resultados das velocidades médias que foram determinadas a partir da matriz de velocidade gerada pelo PMWIN estão no quadro 34.

	Camada 1	Camada 2	Camada 3	Camada 4	Camada 5
Velocidade Média (cm/dia)	2.429	3.70	3.318	8.78x10 ⁻⁵	8.69x10 ⁻⁶

O desempenho das linhas equipotenciais, de 10 em 10 metros, para a simulação do estado transiente ao final dos 180 dias de simulação está representado na figura 56 para a formação Rio da Batateira. O valor máximo de carga calculada foi de 491.04 metros e a mínima de 328.5 metros.

Na figura 57 está representado os vetores de fluxos da camada 1. É perceptível que as intensidades dos vetores de fluxo tornam-se maiores próximos ao rio (limites ao norte, leste e oeste do modelo) e também aos redores dos poços de bombeamento (células em vermelho).

Os poços que possuem mais vazão solicitaram mais vetores de fluxos do que os poços de menores vazões.

Figura 56. Linhas equipotenciais na camada 1 de 10 em 10 metros na 1ª camada, para o período chuvoso e estado transiente.

Figura 57. Linhas Vetores de fluxo na camada 1, para o período chuvoso e estado transiente.

As figuras 58, 59, 60 e 61 mostram as linhas equipotenciais e dos vetores de fluxo no modelo conceitual adotado para esta pesquisa nas formações Abaiara, Missão Velha, Brejo Santo e Mauriti para a simulação do estado transiente chuvoso.

Figura 58. Direção do Fluxo na camada 2, e curvas potenciométricas de 10 em 10 metros, para o período chuvoso e estado transiente.

Figura 59. Direção do Fluxo na camada 3, e curvas potenciométricas de 5,0 em 5,0 metros, para o período chuvoso e estado transiente.

Figura 60. Direção do Fluxo na camada 4, e curvas potenciométricas de 0.0001 em 0.0001 metros, para o período chuvoso e estado transiente.

Figura 61. Direção do Fluxo na camada 5, e curvas potenciométricas de 0.0001 em 0.0001 metros, para o período chuvoso e estado transiente.

Na formação Abaiara, os comportamentos das equipotenciais e das linhas de fluxo foram mais suaves que na primeira camada. O valor máximo de carga calculada para essa camada foi de 485.79 metros e a mínima de 343.89 metros. A figura abaixo mostra a saída gráfica do PMWIN para a camada 3, que representa a formação Missão Velha.

É possível observar que houve uma melhor uniformidade tanto das linhas equipotenciais, como dos vetores de fluxo. Isso se deve ao fato da terceira camada se encontrar sem muitas influências do rio e das possíveis perturbações dos poços de bombeamento. O valor máximo de carga calculada para essa camada foi de 483.92 metros e a mínima de 351.96 metros. A figura 63 abaixo representa as linhas equipotenciais e vetores de fluxo da camada 4.

Os valores de carga hidráulica calculada nas camadas 4 e 5 praticamente se mantiveram na ordem dos 381 metros. O comportamento já esperado da formação Brejo Santo como aqüitardo, foi justificado pelas linhas equipotenciais e pela baixa velocidade, mas a formação Mauriti, que é definida como aqüífero e parte integrante do Sistema Aqüífero Inferior (FERNANDES, 2005) teve um comportamento semelhante à formação Brejo Santo, nas 3 simulações, no que concerne às equipotenciais, vetores de fluxo e velocidade média. Isso pode ser explicado pelo fato de que a maioria dos parâmetros hidrodinâmicos, encontrados na literatura, da 4^a camada sejam valores da mesma ordem de grandeza da 5^a camada, com exceção da condutividade hidráulica, além de que há o "isolamento" da formação Mauriti, pelo aqüitardo Brejo Santo com os demais aqüíferos.

7.5.3.3. Estado transiente para o período seco

Para a simulação computacional do período seco no estado transiente foi estabelecida os mesmos dados que para o período chuvoso permanente, com exceção da recarga. O quadro 35 sumariza os principais dados de entrada do modelo.

Parâmetros	Camada	Valores
	Camada 1	5×10^{-6}
	Camada 2	1 x 10 ⁻⁵
Condutividade Hidráulica (K) [m/s]	Camada 3	1 x 10 ⁻⁵
	Camada 4	$1 \ge 10^{-10}$
	Camada 5	4 x 10 ⁻⁶
	Camada 1	0.1
	Camada 2	0.1
Porosidade Efetiva	Camada 3	0.1
	Camada 4	0.03
	Camada 5	0.02
	Camada 1	1 x 10 ⁻⁷
	Camada 2	1 x 10 ⁻⁷
Armazenamento Específico [1/m]	Camada 3	1 x 10 ⁻⁷
	Camada 4	1,3 x 10 ⁻³
	Camada 5	1 x 10 ⁻⁴
	Camada 1	2 x 10 ⁻⁴
	Camada 2	2 x 10 ⁻⁴
Coeficiente de Armazenamento	Camada 3	2 x 10 ⁻⁴
	Camada 4	1 x 10 ⁻²
	Camada 5	1 x 10 ⁻⁴
Duração [dias]	*	180
Infiltração Efetiva (recarga) [mm]	*	0

Quadro 35. Algumas características para a simulação no estado transiente seco.

O quadro 36 mostra o resultado das velocidades médias calculada para as células do modelo nessa simulação.

	Camada 1	Camada 2	Camada 3	Camada 4	Camada 5
Velocidade Média (cm/dia)	1.406	2.139	1.948	3.71x10 ⁻⁵	1.13x10 ⁵

Quadro 36. Velocidades médias das camadas para estado transiente seco.

Para a primeira camada no estado transiente seco o modelo gerou a figura 62 que possui as linhas equipotenciais, de 10 em 10 metros, ao final dos 180 dias de simulação.

Figura 62. Fluxo na camada 1 de 10 em 10 metros para o período seco e estado transiente.

O valor máximo de carga hidráulica calculada foi de 443.96 metros e a mínima de 328.39 metros. Os vetores de fluxo gerados pelo PMWIN estão representados na figura 63.

Figura 63. Vetores de fluxo na camada 1 para o período seco e estado transiente.

O comportamento das equipotenciais e dos vetores de fluxo no período seco no estado transiente mostrado nas figuras 62 e 65, respectivamente, se assemelham na configuração do período chuvoso no estado transiente, diferenciando-se na diminuição do nível potenciométrico e da redução da intensidade dos vetores de fluxo, uma vez que as condições de contorno e de bombeamento são as mesmas para os dois períodos, mas caracterizadas no momento das modelagens diferentes apenas na recarga (infiltração efetiva).

As figuras abaixo mostram as linhas equipotenciais e dos vetores de fluxo no modelo conceitual adotado para esta pesquisa nas formações Abaiara, Missão Velha, Brejo Santo e Mauriti para a simulação do estado transiente seco.

A figura 64 mostra a camada 2 que representa a formação Abaiara para esta simulação. O nível potenciométrico calculado nas células variou de 439.10 a 341.17 metros.

A figura 65 mostra as equipotenciais e vetores de fluxo para a formação Missão Velha pertencente ao Sistema Aqüífero Médio e definido como aqüífero. O valor máximo de carga calculada para essa camada foi de 437.42 metros e a mínima de 347.89 metros.

A formação Brejo Santo (Figura 66) não mostrou, como nas outras simulações, nenhuma variabilidade das equipotenciais e dos vetores do fluxo. A camada 4 apresentou um comportamento esperado, pois como aqüitardo possui condições de armazenar água, mas sem condições de movimentá-las. A carga máxima e mínima calculada pelo modelo ficou na casa dos 381 metros, mesmo valor que para a simulação do período chuvoso.

Figura 64. Direção do Fluxo na camada 2, e curvas potenciométricas de 10 em 10 metros, para o período seco e estado transiente.

Figura 65. Direção do Fluxo na camada 3, e curvas potenciométricas de 5,0 em 5,0 metros, para o período seco e estado transiente.

Figura 66. Direção do Fluxo na camada 4, e curvas potenciométricas de 0.0001 em 0.0001 metros, para o período seco e estado transiente.

Como já mencionado na simulação do período chuvoso transiente a camada 5, formação Mauriti, mostrou um comportamento parecido com o da camada 4 também para o período seco, conforme ilustra a figura 67. Uma possível vertente para essa pouca variabilidade e baixa velocidade, já que essa formação é definida como aqüífero e não como aqüitardo, é de que a formação Mauriti não possui uma conexão hidráulica com os rios nem com os aqüíferos do Sistema Aqüífero Médio, pois se isola desse pela Formação Brejo Santo, e nem tampouco está propensa aos estresses produzidos pelo bombeamento da primeira camada.

Essas foram as simulações realizadas com o programa PMWIN, os resultados da próxima etapa foi a tentativa de calibração da condutividade hidráulica para a área do modelo.

Figura 67. Direção do Fluxo na camada 5, e curvas potenciométricas de 0.0001 em 0.0001 metros, para o período seco e estado transiente.

7.5.4. Calibração (modelo II)

A partir do mapa potenciométrico observado gerado com os dados de poços fornecidos pela CPRM, foi realizado o processo de calibração do modelo. Como já referido neste trabalho, o procedimento adotado foi o método inverso direto através do Método Iterativo do Gradiente Hidráulico.

O parâmetro calibrado foi o da condutividade hidráulica para a primeira camada que corresponde à formação Rio Batateira. A primeira tentativa de calibração foi a partir dos poços coletados pela CPRM realizado no ano de 2006, e a segunda tentativa somente com os poços da COGERH coletados no ano de 2001. Uma idéia para atingir a área ao máximo com dados de carga hidráulica medida seria vincular todos os dados disponíveis, mas pela diferença das épocas de medição certamente não iria ser realizado uma calibração condizente com as características do nível potenciométrico observado.

A figura 68 mostra a distribuição dos poços na região de estudo. A partir da carga conhecida desses poços foi gerado o mapa de carga hidráulica observada (Figura 69) para toda a área do modelo, sendo esse arquivo de saída o primeiro necessário para a calibração. Pelas medições da CPRM terem sido realizadas na maior parte no período chuvoso do estado do Ceará (dezembro de 2005 a julho de 2006) foi então considerada, para a calibração da condutividade, a modelagem do estado permanente chuvoso.

Figura 68. Distribuição dos poços medidos pela CPRM.

Figura 69. Linha potenciométricas observadas de 3 em 3 metros para a região de estudo.

A partir dos dados observados de nível estático é que foi gerado o mapa potenciométrico. Pela figura 69 é possível perceber o comportamento das equipotenciais de fluxo hídrico, um aspecto a se notar é que algumas "ilhas" de equipotenciais se formam ao redor dos poços de nível estático, o que pode vir a dificultar o procedimento de calibração.

Depois de gerar a carga hidráulica observada, foi gerada a carga calculada pelo PMWIN. A figura 70 mostra as linhas em azul das cargas observadas e as linhas vermelhas das cargas calculadas, o resultado dessa figura abaixo ainda não entrou no processo iterativo para a calibração, uma vez que foi calculado para o valor inicial da condutividade de 0.000005 m/s encontrado na literatura para a formação Rio Batateira.

O gráfico da figura 71 mostra o erro quadrático médio - RMSEH (root mean square error of head) de acordo com o número de iterações.

Figura 70. Linha potenciométricas observadas em azul (2 em 2 metros) e calculadas em vermelho (4 em 4 metros).

Figura 71. Curva da raiz do erro quadrático médio (RMSEH) em relação às cargas calculadas e observadas versus o número de iterações com os poços da CPRM.

O processo iterativo, conforme o gráfico começou com um valor de erro de 34.12 metros e variou até 27.88 metros na 15^a iteração. O RMSEH mostra como estão variando, na respectiva iteração, as novas cargas calculadas em relação às cargas observadas em campo. Os valores altos do erro quadrático médio apontam para a pequena quantidade e certa irregularidade da distribuição dos poços em relação à área de estudo, o que dificulta na convergência de valores satisfatórios das condutividades hidráulica a partir do gradiente hidráulico calculado.

Pode-se constatar isso também devido à divergência do fluxo a partir da soma dos ângulos φ (ângulos entre os vetores dos gradientes observados e calculados) como mostra a figura 72. Os valores da soma dos ângulos φ variaram de valores na primeira iteração de 64.67 graus, passando por valores como 48.54 graus na sexta iteração, chegando a 66.1 graus na décima quinta iteração.

Figura 72. Curva da soma dos ângulos φ entre os gradientes das cargas calculadas e observadas versus o número de iterações com os poços da CPRM.

A realização da calibração não produziu resultados satisfatórios pela não aproximação das novas cargas calculadas geradas para as cargas observadas bem como pela variação irregular do erro quadrático médio (que indica a minimização das diferenças entre as cargas observadas e calculadas) e pelo não ajuste da direção do fluxo que é indicado pelo somatório dos ângulos formados pelos vetores dos gradientes hidráulicos observados e calculados. A figura 73 mostra a tendência de algumas linhas equipotenciais se ajustarem (compare à Figura 70 que retrata a 1ª iteração).

Essa disposição de ajuste entre as cargas calculadas e observadas ocorre devido às novas condutividades hidráulica gerada pelo MIGHA tenderem em cada ciclo iterativo seguirem o gradiente das cargas hidráulicas de cada célula, mas com uma área extensa não foi possível realizar a calibração devido ao reduzido número de poços que possuem nível estático conhecido, o que dificulta um ajuste simultâneo para todas as células do modelo na área em estudo.

Figura 73. Linha potenciométricas observadas em azul (2 em 2 metros) e calculadas em vermelho (4 em 4 metros) na quarta iteração.

Apesar de não calibrado, na 4^a iteração obteve-se um erro das diferenças entre as cargas observadas e calculadas de 14.1 metros. O zoneamento dos valores das condutividades hidráulica gerados na 4^a iteração está na figura 74.

Valores da condutivida hidráulica
distribuído na área de estudo

5.969823E-08	-	3.068152E-07
3.068152E-07	-	6.136244E-06
6.136244E-06	-	9.204336E-05
9.204336E-05	-	1.227243E-04
1.227243E-04	-	1.534052E-03
1.534052E-03	-	1.840861E-02
1.840861E-02	-	.0214767
.0214767	-	2.454479E-02
2.454479E-02	-	2.761289E-02
2.761289E-02	-	3.068098E-02
3.068098E-02	-	1.532844E+1

Figura 74. Valores de condutividade hidráulica obtidos através do MIGHA, visualizado no PMWIN.

Uma tentativa de calibração também foi realizada com os dados fornecidos pela Companhia de Gestão de Recursos Hídricos do Estado do Ceará (COGERH).

A distribuição dos poços na área de estudo está indicada na figura 75.

O comportamento das cargas observadas geradas pelo PMWIN está configurado na figura 76.

Figura 75. Distribuição dos poços da COGERH na área de estudo.

Figura 76. Linha potenciométricas observadas de 3 em 3 metros a partir dos dados da COGERH para a região de estudo.

Depois de realizar o mesmo procedimento feito para os poços da CPRM, foi gerado o gráfico do erro quadrático médio (Figura 77) e da soma dos ângulos entre os gradientes observado e calculado em função dos números de iterações (figura 78). O número de iterações com os dados da COGERH só foi possível até a 7ª tentativa, pois o PMWIN, ao rodar, mostrou como resultado um valor elevado (10³⁰ m) para todas as células de carga hidráulica calculada, depois de ler o arquivo de condutividade hidráulica da 7ª iteração do MIGHA. Esse valor de carga calculada não permitiu a convergência do método para valores mais satisfatórios de condutividade.

Figura 77. Curva da raiz do erro quadrático médio (RMSEH) em relação às cargas calculadas e observadas versus o número de iterações com os poços da COGERH.

Figura 78. Curva da média dos ângulos φ entre os gradientes das cargas calculados e observados versus o número de iterações com os poços da COGERH.

Pelo gráfico da figura 76 percebe-se que na 4^a e 5^a iteração o erro das diferenças entre a carga hidráulica observada e calculada chegou em 13.07 metros e 14.44 metros, respectivamente na 4^a e 5^a iteração. E a soma dos ângulos formados entre os gradientes hidráulicos calculados e observados chegou a 49.6 graus e 39.8 graus, na mesma ordem. Como dito, o RMSEH corrige a diferença entre a carga calculada e observada já a soma dos ângulos corrige a direção do fluxo em cada iteração.

A figura 79 mostra então as linhas equipotenciais das cargas calculadas nesta iteração (em vermelho) e das observadas (em azul).

Figura 79. Linha potenciométricas observadas de 3 em 3 metros e calculadas de 4 em 4 metros a partir dos dados da COGERH na 4ª iteração.

As condutividades geradas para determinar a carga calculada da figura acima nessa iteração estão mapeadas conforme a figura 80. Os valores estão na unidade em m/s e distribuídos no intervalo conforme legenda. Lembrando que esse resultado tem a intenção de mostrar o mapeamento da condutividade hidráulica feito pelo MIGHA, uma vez que não houve a convergência do processo de calibração.

Contract design and contract de la		and the second second second second
5.969823E-08	-	3.068152E-07
3.068152E-07	-	6.136244E-06
6.136244E-06	-	9.204336E-05
9.204336E-05	-	1.227243E-04
1.227243E-04	1-	1.534052E-03
1.534052E-03	1-	1.840861E-02
1.840861E-02	-	.0214767
.0214767	-	2.454479E-02
2.454479E-02	-	2.761289E-02
2.761289E-02	-	3.068098E-02
3.068098E-02	-	1.532844E+1

Figura 80. Valores de condutividade hidráulica obtidos através do MIGHA,na 4^a iteração para os poços da COGERH, visualizado no PMWIN.

Os valores das condutividades mostrado na figura 85 foram gerados a partir das cargas hidráulicas conhecidas e das calculadas pelo PMWIN. A não convergência para um zoneamento de valores da condutividade se deu justamente pela ausência de dados bem distribuídos, principalmente de poços e rios (cargas hidráulicas conhecidas). Apesar dos poços fornecidos pela COGERH serem em maior quantidade, eles estão concentrados no lado sudoeste da área de estudo, o que resulta em um cálculo disperso do gradiente hidráulico que é necessário para gerar as condutividades no processo iterativo.

7.5.5. Conclusões

As conclusões deste trabalho são relatadas em função de dois contextos: primeiramente as conclusões referem-se a análise que retrata a aplicação do PMWIN, como ferramenta de modelagem nas áreas definidas de estudo e dos dados necessários para as simulações. O outro contexto aborda a aplicação do Método Iterativo do Gradiente Hidráulico (MIGHA), desenvolvida para o procedimento de calibração.

A modelagem realizada com o PMWIN mostrou uma análise do comportamento do fluxo hídrico subterrâneo existente na região. Os mapas potenciométricos simulados dão uma idéia da direção do fluxo e da interferência dos usos pelos poços de bombeamento. A respeito dos mapas potenciométricos observados, que foram gerados também pelo PMWIN a partir somente das cargas conhecidas dos poços, vale a pena salientar que a carga hidráulica, das células dos poços, foi obtida a partir da diferença entre a topografia interpolada pelo modelo e o nível estático medido em campo (altura da boca do poço até a zona saturada). Este procedimento certamente levou a produzir erros na elaboração dos mapas potenciométricos observados e consequentemente na matriz de carga observada, o que pode ter contribuído para a não calibração da condutividade das duas áreas do modelo conceitual.

Sabe-se que a qualidade dos dados é imprescindível para qualquer modelagem numérica. No caso da simulação de fluxo hídrico subterrâneo, o conhecimento das camadas hidrogeológicas é peça fundamental para a realização das simulações. Na área do modelo I (Grabén Crato-Juazeiro) há os dados das espessuras das formações geológicas que permitiu uma interpolação de valores de base e de fundo de cada formação para toda a área.

Na região de estudo do modelo II (Barbalha e Missão Velha) foi elaborado um modelo conceitual, em que foram atribuídos às camadas existentes da região valores médios interpolados da área adjacente do modelo II, com exceção da topografia e do embasamento cristalino. Esse procedimento de se colocar espessuras médias de aqüíferos ocorre em vários trabalhos de modelagem de águas subterrâneas, mas uma mensuração ideal do comportamento do fluxo hídrico subterrâneo seria a partir dos dados de geofísica do local, o que não foi possível ser obtido nesta pesquisa para a segunda área modelada. No entanto, como dito, é de praxe adotar valores médios constantes de camadas de sistemas aqüíferos.

Um outro dado que merece comentário é o valor adotado como recarga. Como o único dado disponível, e a primeira vista, aceitável, foi a infiltração efetiva calculado no balanço hídrico dos postos de Juazeiro do Norte, Crato, e Missão Velha, adotou-se os valores para toda a região dos modelos, o que não acontece na prática, uma vez que, tanto a precipitação pluviométrica quanto as condições de recarga do solo apresentam variabilidade espacial e temporal.

O que se deve ter em mente é que há uma diferença entre as simulações a partir do modelo conceitual adotado e o cenário real de fluxo hídrico existente. A dificuldade de se modelar fluxo de água subterrânea é que a obtenção de dados não é algo imediato e prontamente reparável. No entanto o PMWIN mostrou coerência nos resultados, no sentido de mostrar as equipotenciais saindo da chapada em direção ao vale do Cariri, o que era previsto para as duas áreas modeladas, pois esse é o sentido do fluxo das águas superficiais obedecendo a topografia. Além disso, quando da diminuição da recarga, para simular o regime seco, houve um decréscimo no valor do nível freático, o que comprova a resposta do modelo à sensibilidade na mudança dos parâmetros de entrada.

No que concerne ao Método Iterativo do Gradiente Hidráulico, pode-se dizer que há uma vantagem desse procedimento em relação aos tradicionais, como o PEST (Parameter Estimation). A principal vantagem, além da redução do tempo computacional, pois o procedimento de otimização multidimensional (PEST e UCODE) é transformado em múltiplos procedimentos unidimensionais (MIGHA), é que para a calibração da direção do fluxo pelo MIGHA não necessita de um zoneamento pré-definido das condutividades (ou transmissividades), caso requerido pelo PEST. Esse zoneamento é definido através de testes

de bombeamento distribuídos pela região, o que na prática torna o trabalho um pouco oneroso e cansativo. Ou pode, ainda, ser determinado através de amostras no laboratório. Já para uma calibração correta com o MIGHA, é suficiente o conhecimento das cargas hidráulicas (medição do nível estático dos poços e nível dos rios, lagos, córregos etc.), desde que sejam em uma quantidade suficientes e distribuídos em toda a região.

Um aspecto interessante desse processo, é que a otimização através do MIGHA, minimiza a diferença entre os vetores dos gradientes hidráulicos observados (interpolados para a área) e dos calculados, e também, minimiza simultaneamente, as diferenças das cargas hidráulicas. A aplicação nas áreas de estudo deste procedimento de calibração, não apresentou convergência para valores ótimos, pelo motivo perceptível nas duas áreas, no caso da tentativa dos poços da CPRM tem-se a pouca quantidade de poços com nível estático, e no caso da COGERH a má distribuição dos poços nas áreas.

Por fim, pode-se afirmar, apesar de não ter funcionado para a área de estudo pelos motivos supracitados, que a utilização do Método Iterativo de Gradiente Hidráulico (ou Calibração da Direção do Fluxo) pode ser utilizado sem restrições, mas que deve ser empregado somente em aqüíferos sedimentares, em meios porosos, pois nesses meios o gradiente hidráulico obedece às trajetórias das linhas equipotenciais, o que não ocorrem em meios fraturados, onde os gradientes hidráulicos podem apresentar valores corretos, mas pode haver um desvio significativo das ortogonalidades entre as linhas de corrente (direção do gradiente) e das equipotenciais.

7.5.6. Recomendações

As recomendações para futuros trabalhos com relação à modelagem de fluxo hídrico subterrâneo, não só para esta área do Cariri, mas de uma maneira generalista, estão apresentadas nos tópicos numerados a seguir, no âmbito das aquisições de dados mais precisos:

1. Fazer a geofísica da região de estudo do modelo II, para determinar o comportamento da espessura das camadas hidrogeológicas.

2. Instalar pluviômetros distribuídos na região do Cariri para uma melhor avaliação da infiltração efetiva a partir do balanço hídrico, bem como da aquisição de mapas de usos de solo para quantificar melhor o zoneamento da recarga. Ou ainda, instalar infiltrômetros e tensiômetros para uma mensuração mais precisa da recarga.

3. Coletar dados de carga hidráulica e de profundidade dos rios, reservatórios etc.

4. Realizar o maior número possível de testes de bombeamento distribuídos na área de estudo para se conhecer alguns parâmetros hidrodinâmicos (porosidade, condutividade hidráulica e coeficiente de armazenamento) na área de abrangência do poço de observação, e/ou realizar testes laboratoriais do material poroso;

5. Coletar, em uma maior gama possível, dados de nível estático, se possível um monitoramento durante os períodos secos e chuvosos;

6. Fazer um levantamento dos principais usos dos recursos hídricos, principalmente da bateria de poços que utilizam da técnica de bombeamento para os usos agrícolas, industrial e abastecimento de povoados e cidades.

No que concerne ao aprimoramento da técnica de calibração e da facilitação ao usuário (modelador) do emprego do Método Iterativo do Gradiente Hidráulico, sugere-se como pesquisa:

1. Implementar adicionalmente ao método iterativo que gera as matrizes das novas condutividades hidráulica, um outro método opcional ao usuário para gerar essas novas matrizes, como a técnica do Algoritmo Genético;

2. Elaborar um modo automático para a calibração. Da forma que, um único clique na interface de um executável entre com os dados (saída do MIGHA) no PMWIN, faça o rodar, e o resultado (cargas) seja lido na MIGHA para gerar uma nova matriz, repetindo esse processo até atingir o critério estabelecido para a calibração.

8. RESERVAS E DISPONIBILIDADES

Autor:Dr. Itabaraci Nazreno Cavalcante - Dept. de Geologia/UFC

Vários parâmetros influenciam no cálculo de reservas das águas subterrâneas, tais como precipitação pluviométrica, tipo de aqüífero, características dimensionais e hidrodinâmicas do meio e qualidade da água.

O cálculo das reservas hídricas subterrâneas deve ser incorporado a qualquer projeto direcionado ao planejamento e gestão integrada de recursos hídricos. O planejamento dos recursos hídricos (superficial e subterrâneo) deve considerar o uso integrado das reservas, recursos e disponibilidades de água, associados a qualidade hídrica, ocupação do meio físico, uso e proteção (Cavalcante, 1998).

As rochas sedimentares possuem porosidade e condutividade hidráulica primárias decorrentes da própria diagênese, facilitando o armazenamento e fluxo d'água, a exemplo dos litotipos das formações Rio da Batateira e Missão Velha. Entretanto, existem rochas sedimentares que sofreram a ação de processos tectônicos rupturais, com aporte de sílica, e que passam a ter características anisotrópicas e heterogêneas, a exemplo da Formação Mauriti, onde o armazenamento e fluxo hídrico subterrâneo ocorrem nas fraturas, interconectadas e abertas, dificultando sobremaneira o cálculo de reservas hídricas.

O fluxo da água em sub-superfície se processa de modo muito lento. Os tempos de residência das águas nos aqüíferos são da ordem de dezenas de anos e, em alguns casos, se atinge a escala de centenas e até de milhares de anos, o que permite dizer que a água subterrânea pode ser um recurso mineral esgotável à escala da vida humana. Assim, o conceito de esgotabilidade do recurso hídrico está intrinsecamente a renovabilidade, ou seja, a velocidade de recarga hídrica subterrânea.

Assim, é recomendável que o planejamento de utilização dos sistemas aqüíferos considere os potenciais de renovabilidade, a integração com o meio hidro-ambiental, a capacidade de regeneração das águas servidas que retornam ao manancial em apreço e, principalmente, o limite de intervenção humana que não deve ultrapassar o aceitável pelas condições inerentes ao meio local.

Os volumes hídricos armazenados nos sistemas aqüíferos representam as reservas e podem ser avaliadas segundo um ponto de vista natural ou utilitário. Tradicionalmente, estas reservas são classificadas como renováveis (dinâmicas ou reguladoras) e não renováveis (permanentes ou geológicas). As reservas totais são obtidas pela somatória das reservas renováveis e permanentes. Sob uma análise integrada, em função de escala de tempo de renovação e uso das águas, a classificação de reservas permanentes (não renováveis) não encontra respaldo, pois se sabe que a água subterrânea não está desconectada do ciclo hidrológico, participando efetivamente à medida que existe recarga, extração através de poços tubulares e descarga.

8.1. Reservas Renováveis (Rr)

São representadas pelo volume hídrico armazenado entre os níveis de flutuação máximo e mínimo dos aqüíferos livres. Participa do ciclo hidrológico numa escala de tempo anual, interanual ou sazonal estando, desta forma, em constante movimento. Existem várias maneiras de se realizar o cálculo destas reservas, sendo as mais comuns:

 1^{0}) cálculo da Vazão de Escoamento Natural (VEN), que sob condições de equilíbrio natural representa a recarga anual efetiva do aqüífero, expressa por: **VEN = T i L**, onde T = transmissividade hidráulica (L²T⁻¹), i = gradiente hidráulico e L= comprimento da frente de escoamento (L).

Este método é recomendado e empregado no dimensionamento das reservas das águas subterrâneas com a utilização de mapas potenciométricos que permitem o cálculo do gradiente hidráulico local, direção do fluxo subterrâneo e do comprimento da frente de escoamento. O valor da transmissividade é obtido de testes de bombeamento.

 2^{0}) Hidrograma de escoamento superficial, com cálculos a partir das curvas de recessão, no trecho correspondente à restituição do excesso infiltrado no meio poroso. A restituição das reservas hídricas somente inicia-se quando toda a água superficial é escoada, ou seja, no período de estiagem (Costa, 1997).

 3^{0}) Método volumétrico, tendo-se por base a flutuação (Δh) dos níveis d´água nos aqüíferos livres, sendo expressa por **Rr** = **A**. Δh. ηe, onde **A** = área de ocorrência do aqüífero (L²), Δh = variação do nível d´água (L) e ηe = porosidade efetiva (adimensional) para aqüíferos livres ou **S** = Coeficiente de armazenamento para aqüíferos confinados a semi-confinados. Este será o método utilizado na área em estudo.

8.1.1. Sistema Aqüífero Médio

Foram realizadas cinco (05) campanhas de campo entre outubro/2005 e outubro/2006 objetivando o monitoramento dos níveis estáticos dos poços tubulares, sendo 56 poços objetos comuns a todas elas e, nestes, observou-se que a variação média do nível estático foi de 2,0m. Considerando-se uma área de 2.130 km² e porosidade efetiva de 10% para os tipos litológicos que compõem esse sistema, mesmo sabendo ser este um valor conservador, tem-se que as reservas renováveis, definidas pela equação $\mathbf{Rr} = \mathbf{A} \cdot \Delta \mathbf{h} \cdot \mathbf{\eta} \mathbf{e}$, são de 426 milhões de m³/ano.

Adotando-se um fator de segurança (Fs) de 0,7 sobre o valor das reservas renováveis, por entender que existem fatores que podem interferir no cálculo destas reservas, a exemplo de interferência de cones de bombeamentos e variações litológicas, obtém-se para o Sistema Aqüífero Médio um volume de recarga de 298,2 milhões de m³/ano a partir da precipitação pluviométrica. Adotando-se o valor de 2,32 milhões de m³/ano como contribuição das fontes para o Sistema Aqüífero Médio (Mont´Alverne et al, 1996) tem-se, ao todo, como reservas renováveis 300,5 milhões de m³/ano, o que resulta em uma lâmina de água infiltrada de 14,1 cm/ano.

8.1.2. Sistema Aqüífero Inferior

Este sistema aqüífero é representado basicamente pelo Sistema Hidrogeológico Mauriti que possui uma área de afloramento de 763 km². Sabendo que ele possui um comportamento de meio fraturado, optou-se utilizar para o cálculo da reserva renovável o coeficiente de infiltração eficaz (Ie) médio calculado para a região onde ele aflora, ou seja, Ie = 11%, oriundo do cálculo para os postos pluviométricos de Brejo Santo (Ie = 13%), Mauriti (Ie = 5%) e Milagres (Ie = 15%).

Utilizando a precipitação média de 970,6 mm/ano obtém-se para a área um volume hídrico precipitado de 740,4 milhões de m³/ano. Destes, com Ie = 11% e um fator de segurança de 0,7, obtém-se uma recarga de 57 milhões de m³/ano a partir da precipitação pluviométrica e, adotando-se a recarga fluvial de 3 milhões de m³/ano ((Mont'Alverne et al, 1996), tem-se como recarga total 60 milhões de m³/ano.

8.2. Reservas Permanentes (Rp)

Estas reservas representam o volume de água subterrânea que participa do ciclo hidrológico numa escala de tempo plurianual, centenária ou milenar. Correspondem aos volumes estocados abaixo do limite inferior de flutuação sazonal do nível de saturação dos aqüíferos livres ou dos níveis potenciométricos dos aqüíferos confinados (Rebouças, 1997; Cavalcante, 1998).

As reservas permanentes serão calculadas pelo método volumétrico utilizando-se as seguintes fórmulas: **Rp** = **A. ho.** η **e**, onde **A** = área de ocorrência do sistema aqüífero (L²), ho = espessura saturada (L), e η e = porosidade efetiva (adimensional) no caso de sistema livre. No caso do sistema aqüífero confinado, as reservas permanentes são calculadas pela somatória de **Rp** = **A. ho.** η **e** mais o volume armazenado sob pressão dado pela equação **Rp** =**A.ho.S**, onde S = coeficiente de armazenamento.

A ausência de um modelo geométrico definindo as espessuras reais e saturadas por blocos estruturais (grabens/horst) e uma profundidade máxima de 250m adotada a partir de perfis de poços tubulares, com múltiplas variações de perfis litológicos na área, foram aspectos observados para o cálculo dessas reservas, resultando na adoção de um fator de segurança de 0,7. As espessuras saturadas consideradas provêm da interpretação de 53 perfis técnico-construtivos e litológicos adotados, onde se buscou conhecer o comprimento total de filtros utilizados por poço e a espessura de sedimentos clásticos arenosos, considerados como bons armazenadores de água subterrânea. Deve ser ressaltado que inúmeros perfis mostram níveis argilosos contínuos a partir de 120m de profundidade, exemplificado pelo poço construído em Juazeiro do Norte para a CAGECE – Companhia de Água e Esgoto do Estado do Ceará - em um sistema aqüífero livre, com 248m de profundidade, 57,6m de filtros, vazão de 120 m³/h, sedimentos arenosos até 134m e, daí até 248m, um nível contínuo de argila com 114m de espessura.

8.2.1. Sistema Aqüífero Médio

Considerando-se a área (A) de 2130 km², espessura médias saturadas (ho) de 64,0m e 32,0m para o meio livre e confinado, respectivamente, porosidade efetiva (η e) de 10% e coeficiente de armazenamento (S) de 2,0 x 10⁻⁴ e fator de segurança de 0,7, temos que:

Sistema Livre Sistema Confinado	$Rp1 = 9,54 \text{ x } 10^9 \text{ m}^3$ $Rp2 = 4,77 \text{ x } 10^9 \text{ m}^3$
Reservas Permanentes	$Rp_{total} = 14,31 \times 10^9 \text{ m}^3$

8.2.2. Sistema Aqüífero Inferior

Este sistema é composto, no âmbito da área de estudo e na profundidade adotada (248m), pelo Sistema Hidrogeológico Mauriti que possui um comportamento hidrogeológico essencialmente fraturado. As espessuras saturadas consideradas na literatura (ho = 100m no sistema livre e ho = 66m no confinado) (Mont'Alverne et al, 1996) não são compatíveis com os dados da área e para o aqüífero fraturado.

A ausência de um modelo geométrico do sistema hidrogeológico e a falta de dados relativos aos intervalos das zonas fraturadas, potenciais armazenadoras de água subterrânea, nas fichas dos poços cadastrados, fazem com que não seja possível se realizar um cálculo de reservas permanentes, nesse momento, para este sistema aqüífero.

8.3. Recursos explotáveis (Re) ou Potencialidade Aqüífera (P)

Os recursos explotáveis das águas subterrâneas representam os volumes que podem ser utilizados das reservas naturais, em função das reservas renováveis (reguladoras) ou dos meios técnico-financeiros de que se disponha, ou seja, da variável de decisão que leva em consideração outros objetivos e fatores limitantes, a exemplo da taxa de renovabilidade natural (Rebouças, 1997; Cavalcante, 1998). É interessante observar que a utilização dos recursos hídricos explotáveis está associada a responsabilidade de uso dos recurso hídricos que estão disponíveis sem que haja comprometimento do aqüífero nem do meio ambiente.

Em princípio, para que não haja comprometimento do aqüífero, é recomendável a explotação do volume correspondente à recarga, ou seja, a reserva reguladora do aqüífero sem provocar qualquer depleção nas reservas permanentes. Porém, dentro de uma visão sistêmica, o uso depende fundamentalmente do conhecimento técnico das reservas, com monitoramento em tempo real, integrado a evolução da demanda.

Costa (1996, 1997) define recursos explotáveis como sendo "*aqueles que estão disponíveis sem que haja comprometimento do aqüífero nem do meio ambiente*" e os associa com as disponibilidades hídricas do sistema aqüífero, resultando no dimensionamento da potencialidade aqüífera. Admite-se que, sem prejuízo para o aqüífero, se possa explotar toda a reserva renovável e mais uma parcela da reserva permanente, que representem no período de 50 anos um valor de 30% dessas reservas. Assim, tem-se que:

P = **Rr** + (0,006 x **Rp**), onde:

P – Potencialidade aquífera; Rr – Reserva renovável; Rp – Reserva permanente.

Desta forma, tem-se para o Sistema Aqüífero Médio uma potencialidade de 386,36 milhões de m^3/ano e para o Sistema Aqüífero Inferior, adotando-se exclusivamente as reservas renováveis, o volume de 60 milhões de m^3/ano , totalizando 446,36 milhões de m^3/ano disponível para uso.

Ressalta-se, ainda, que os recursos hídricos dependem das variáveis de decisão impostas pela política socioeconômica de desenvolvimento, ou seja, constitui-se em um bem valorado fundamentado na importância que a água representa no meio.

8.4. Disponibilidade

Além de reservas e recursos/potencialidades aqüíferas, o termo denominado de disponibilidade vem sendo empregado comumente nos trabalhos sobre planejamento das águas subterrâneas.

A disponibilidade refere-se ao volume que pode ser explotado sem risco de exaustão do sistema aqüífero (Costa, 1997), que pode ser classificada na área de estudo nos seguintes tipos: (a) disponibilidade potencial do aqüífero; (b) disponibilidade instalada dos poços, e; (d) disponibilidade instalável dos poços.

A definição utilizada para Recursos Explotáveis também se emprega para *Disponibilidade Potencial do Aqüífero*, já calculada anteriormente. *A Disponibilidade Instalada dos Poços* corresponde ao volume de água subterrânea que pode ser captado a partir das obras instaladas, adotando-se a vazão máxima permissível de cada poço em regime de bombeamento contínuo.

8.4.1. Disponibilidade Efetiva (Disponibilidade Instalada)

A *Disponibilidade Efetiva dos Poços* representa os volumes atualmente captados, utilizandose as vazões dimensionadas de bombeamento e o regime de bombeamento operante. O tempo médio de bombeamento varia de acordo com a necessidade do usuário, sendo considerados os seguintes tempos: 20 horas/dia para abastecimento público nos poços operados pela CAGECE e SAAEC – Sistema Autônomo de Água e Esgoto do Ceará, 3 horas/dia para demais usos públicos/particulares. Assim, tem-se que:

Sendo que: De = Disponibilidade efetiva (m^3/ano); Q = vazão do poço (m^3/h); p = n°. de poços por município, e; t = período de operação (365 dias).

Observa-se que somente os poços operados pela CAGECE/SAAEC, com dados de vazão, bombeiam 35,59 milhões de m^3/ano , enquanto que os públicos (226) e privados (423) explotam 16,70 milhões de m^3/ano resultando em um volume explotado total de 52,29 milhões de m^3/ano . É conveniente ressaltar que este volume representa 11,7% da potencialidade hídrica da área, não implicando, porém, que não devam existir normas a fim de regulamentar o uso racional das águas subterrâneas para os fins diversos.

É importante se observar a necessidade de dados atualizados no que se refere a oferta hídrica a partir dos poços operados pela CAGECE e SAAEC na área, haja vista que a estimativa de oferta utilizando o cadastro de poços de Viana (2007) – 1126 poços para Crato, Juazeiro do Norte, Barbalha e Missão Velha - mostra que o volume hídrico explotado somente nesses municípios é de 69,9 milhões de m³/ano, 15,66% dos recursos explotáveis.

8.4.2. Disponibilidade Instalável

Representa o volume de água subterrânea que poderá ser bombeado pelos poços atualmente paralisados, passíveis de entrarem em funcionamento. O tempo de bombeamento foi considerado igual ao adotado para a disponibilidade efetiva. Observa-se do cadastro de poços que 63 deles são passíveis de funcionamento que juntos podem ceder uma vazão de 1,48 milhões de m³/ano.

8.4.3. Disponibilidade Hídrica Total

Para a projeção de oferta dos recursos hídricos subterrâneos utiliza-se a Disponibilidade Total, resultante da soma das vazões cedidas pelos poços operantes, mais as vazões que poderão ser fornecidas posteriormente pelos poços que poderão entrar em operação, tendo em vista ser o conceito mais adequado para fins de planejamento e gestão das águas subterrâneas. Desta forma, tem-se um volume hídrico subterrâneo de 53,77 milhões de m³/ano como Disponibilidade Total, o que representa 12% da Disponibilidade Total dos Recursos Hídricos da área estudada, mesmo com cálculos restritivos as reservas permanentes do Sistema Aqüífero Inferior.

9. REFERENCIAS BIBLIOGRÁFICAS

ANDERSON, P. M.; WOESNER, W. W. 1992. Applied Groundwater Modeling Simulation of Flow and Advective Transport. San Diego, California. Academic Press.

ANJOS, F.T. 2000. Estudo Hidrogeológico do Aqüífero Rio da Batateira e Caracterização da Possibilidade de Abastecimento d'água nos Municípios de Crato, Juazeiro do Norte e Barbalha - CE, no ano de 2020. Centro de Tecnologia e Geociências, Universidade Federal do Ceará.

BEAR, J. 1972. Dynamics of Fluids in Porous Media. New York. American Elsevier. 764 p.

BOUWER, H. 1978. Groundwater Hydrology. McGraw-Hill Book Company.

CABRAL, J. P. 1997. Movimento das Águas Subterrâneas. In: FEITOSA, F.A.C.;

CAICEDO, N. L. (2001). Água Subterrânea. In: TUCCI, C.E.M. Hidrologia: ciência e aplicação. 2^a.ed. Porto Alegre: Editora da Universidade : ABRH. (Coleção Brasileira de Recursos Hídricos; v4). Volume 4, Capítulo 8.

CASTANY,G., 1975. Prospección y explotación de las aguas subterráneas. Barcelona: Ediciones Omega. 738 p.

COSTA, C. T. F. 2005. Modelagem Numérico-Analítica do Fluxo Hídrico e da Contaminação de Água Subterrânea por Derivados de Petróleo. Tese de Doutorado. Universidade Federal do Ceará. UFC.

COSTA, W. D.; NETO, M. S. C. C.; SOUZA, F. J. A. 1998. Plano de Gestão da APA da Chapada do Araripe – CE/PE/PI – Estudos dos Recursos Hídricos. FUNDETEC, 99 p.

DOHERTY, J.; BREBBER, L. and WHYTE P. 1994. PEST - Model-Independent Parameter Estimation. User's manual. Watermark Computing. Australia.

DOMENICO, P. A. & SCHWARTZ, W. 1997. Physical and Chemical Hidrogeology. 2 ed. New York: John Wiley & Sons. 506 p.

FEITOSA, F.A.C. & MANOEL FILHO, J. (Coord.). 2000. Hidrogeologia: Conceitos e Aplicações. 2^a. Ed. Fortaleza: CPRM/REFO, LABHID-UFPE. 391 p il.

FERNANDES, R. A. 2005. Gestão Integrada de Águas Subterrâneas: Critérios Gerais Orientadores para Definição e Caracterização de Áreas Estratégicas de Abastecimento. Tese de Doutorado. Universidade Federal de Minas Gerais. UFMG.

FUNCEME. Disponível em: <http://www.funceme.br>. Acessado em maio de 2007.

GOLDER/PIVOT. 2005. Implantação do Sistema de Monitoramento/Gestão de Uma Área Piloto do Aqüífero Missão Velha na Bacia Sedimentar do Cariri, no Estado do Ceará. Relatório Final do Projeto. IX volumes.

GUO, X.; ZHANG, C. M. 2000. Hidraulic Gradient Comparison Method to Estimate Aquifer Hidraulic Parameters Under Stead-State Conditions. GroundWater 38. no. 6:815-826.

HEATH, R.C.1983. Water Supply Paper. U.S. Geological Survey. 81 p

HIDROWEB. Disponível em: http://hidroweb.ana.gov.br. Acessado em maio de 2007.

HILL, M. C. 1992. MODFLOW/P - A computer program for estimating parameters of a transient, three-dimensional, groundwater flow model using nonlinear regression. U.S.Geological Survey, Open-file report 91-484.

IBGE. Instituto Brasileiro de Geografia e Estatísticas. 2000. Sistema IBGE de Recuperação automática – SIDRA. Disponível em:

IPLANCE – Fundação Instituto de Planejamento do Ceará. 1997. Atlas do Ceará. Governo do Estado do Ceará. Secretaria do Planejamento e Coordenação – SEPLAN. 65 p.

KIMURA, G. 2003. Caracterização Hidrogeológica do Sistema Sedimentar do Gráben Crato-Juazeiro, no Vale do Cariri (CE). Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte. Dissertação de Mestrado, 198 p

KRESIC, N. 1997. Quantitative Solution in Hydrogeology and Groundwater Modeling. Lewis Publishers, Florida.

MANOEL FILHO, J. (Coord.) Hidrogeologia: Conceitos e Aplicações. Capitulo 3. Fortaleza: CPRM, LABHID-UFPE.

MANOEL FILHO, J. 1997. Contaminação das Águas Subterrâneas In: FEITOSA, F.A.C.; MANOEL FILHO, J. (Coord.) Hidrogeologia: Conceitos e Aplicações. Fortaleza: CPRM, LABHID-UFPE. Capitulo 6.

MCDONALD, M. G.; HARBAUGH, A. W. 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. Technical report, U.S. Geol. Survey, Reston, VA.

MENDONÇA, L. A. R. 2001. Recursos Hídricos da Chapada do Araripe. Centro de Tecnologia, Universidade Federal do Ceará. Tese de Doutorado, Fortaleza, 193 p.

MIYASAKI, G. S. 2006. Modelagem Computacional do Fluxo Hídrico Subterrâneo de um Aqüífero Aluvial, Ibicuitinga e Morada Nova (CE). Dissertação de Mestrado. Universidade Federal do Ceará. UFC.

MONT'ALVERNE et al. 1996. Projeto Avaliação Hidrogeológica da Bacia Sedimentar do Araripe. Programa Nacional de Estudos dos Distritos Mineiros. Departamento Nacional de Produção Mineral (DNPM), Distritos Regionais Pernambuco e Ceará. Recife,101 p.

NEWELL, C. J.; MCLEOD, R. K.; GONZALEZ, J. R. 1996. Bioscreen User's Manual. National Attenuation Decision Support System. Version 1.3, National Risk Management Research Laboratory, EPA/600/R-96/087, August.

POETER, E. P. and Hill, M. C. 1998. Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey, Water-Resources Investigations Report 98-4080.

PONTE, F. C. & PONTE-FILHO, F. C. 1996. Estutura Geológica e Evolução Tectônica da Bacia do Araripe. Recife. DNPM, 68 p.

PROASNE. 2003. Modelamento Matemático da Área de Recarga do Aqüífero Açu, Rio Grande do Norte – *Relatório Final*. Disponível em: < <u>http://proasne.net/acufinalreport.html#Tratamento</u> > Acesso em: 10 jan. 2007.

RUSHTON,K.R., 1988. Numerical and conceptual models for recharge estimation in arid and semi-arid zones. In: Simmers,I., Estimation of Natural Groundwater Recharge, Dordrecht: D. Reidel. p. 223-238.

SCHUSTER, H. D. M. 2002. Modelagem Matemática do Uso Conjunto das Águas Superficiais e Subterrâneas da Sub-Bacia do Rio das Fêmeas – Bahia. - Projeto de gerenciamento integrado das atividades na Bacia do São Francisco – Ana/GEF/PNUMA/OEA,Salvador-BA, 59 p.

SCHUSTER, H. D. M.; ARAÚJO, H. D. B. 2004. Uma Formulação Alternativa do Método Iterativo de Gradiente Hidráulico no Procedimento de Calibração dos Parâmetros Hidrodinâmicos do Sistema Aqüífero. RBRH – Revista brasileira de recursos hídricos. Volume 9, no 2: 31-37.

SIAGAS. Disponível em <http://www.cprm.gov.br>. Acessado em agosto de 2007.

SOUZA, C.D. 2007. Simulação Computacional do Fluxo Hídrico Subterrâneo na Região do Cariri e Calibração Utilizando Gradiente das Cargas Hidráulicas. Dissertação de Mestrado. Universidade Federal do Ceará - UFC. 134 p.

STRACK, O. D. L. 1989. Groundwater Mechanics. New Jersey: Prentice-Hall, 732 p.

SUDENE. 1967. Estudo geral de base do Vale do Jaguaribe. Recife, Série Hidrogeologia 7, 245 p.

TODD, D. K. 1980. Groundwater Hydrology. New York: John Wiley.

TUCCI, C. E. M. (org.) 2001. Hidrologia: Ciência e Aplicação. ABRH-EDUSP- Editora da Universidade (UFRGS).

VASCONCELOS, S.M.S., 1996. Estimativa da Recarga Subterrânea a partir do Balanço Hídrico - Exemplo de Fortaleza, (CE). Revista de Geologia, Fortaleza: UFC/DEGEO, v. 7, p. 27-34.

VERISSIMO, L. S. 1999. A importância das Águas Subterrâneas para o Desenvolvimento Socioeconômico do Eixo CRAJUBAR, Cariri Ocidental - Estado do Ceará. Dissertação de Mestrado. Universidade Federal do Ceará - UFC. 140p.

VILLELA, S.M., MATTOS, A., 1975, Hidrologia Aplicada. Rio de Janeiro: McGraw-Hill. p. 96.

<<u>http://www.sidra.ibge.gov.br/bda/popul/default.asp?z=t&o=21&i=P</u>>. Acesso em: 10 dez. 2006.

ANEXO 1

PIEZÔMETROS

						CÓDIGO DO POÇO				
		CARACTERISTIC	CAS GERAIS	DOS P	OÇOS		CÓDIGO DE C	AMPO		
MUNICÍPIO	DISTRITO	LOCAL:	ENERGIA:	X	SIM	NÃO	INÍC	CIO	CONCLUSÃO	
BARBALHA	ZONA RURAL-St.	SANTANA III	TIPO: TRIFÁSIO	CA ' NICC	DIST:		19/12/	2006	27/12/2006	
BASE CARTOGRÁFIC	CA	ALTITUDE	COORDENADA	AS UTM	0				ESCALA	
FOLHA CRATO - SB-24-Y-D-III			N: 9.190.948 E: 471.595					1:/100.000		
MÉTODO LOCAÇÃO		AEROFOTO	RESPONSÁVEI	L PELA	LOCAÇ	ÃO	CREA		REGIÃO	
BACIA HIDROGRÁFI JAGUARIBE	CA	•	SUB.BACIA SALGADO				USO PREVIST PIEZOMET	0 T RO	•	
AQUÍFEROS:			•		TIPO:		TOPO:		BASE:	
BATATEIRA					Sedime	ntar				
	,	DAI	DOS CONST	RUT	VOS	,				
EXECUTOR:	ÁGUA VIVA	TIPO DE SONDA: Rot	opneumática		PROPR	IETÁRIO:	CPRM			
AGUA VIVA POÇOS	ARTESIANOS LTDA				CREA	CE5521-D			REGIÃO:	
	PERFURAÇÃO)	~		REVES	TIMENTO: (Geomecânico S	standart	~	
Ø (Pol.)	INTERVALO (m)	METODO DE	PERFURAÇAO		Ç	Ø (Pol.)	INTERVA	ALO (m)	EXTENSAO (m)	
10	0,00 A 50,0	PERCUSSIVO				4	(+) 0,70	A 15,30	16,00	
						4	24,0 A	40.0	4,00	
						4"	36,0 A	50.0	4,00	
						4	40,0 A	. 50,0	2,00	
					_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
FILTROS: Geomecai	nico Standari			```		NTERVALOS	S DE SATURAÇA	O (SEDIME	NTO)	
Ø (Pol.)	INTERVALO (m)	EXTENSÃO (m)	ABERTURA ((n	nm)			VALO (m) EXTER		34 00	
4	28.0	A 24,0	8,00			10,0 A 30,0 34		34,00		
4''	40,0	A 48,0	8,00							
					PROFI			50.0m		
PRÉ-FILTRO: Cascal	ho		DESENVOLVIN	MENTO	i itoi e		C	MENTACÃ)	
GRANULOMETRIA	VOLUME (m ³)	MÉ	ГОDO		D	URAÇÃO	INTERV	ALO (m)	VOLUME (m ³)	
1,0 A 3,0mm	3,0	AIR	LIFT STE DE PRO		0 1Ã0	6:00 hs	5,0 A	8,0		
DATA	CRIVO	DURAÇÃO	VAZÃO)	Q.E	SPECÍFICA	REB.	N.E.	N.D	
27/12/2006	BOMBA (m) COMPRESSOR	(hora) 4	(m ³ /h) 5,7			(m ³ /h/m) 1,17	(m) 4,88	(m) 14,12	(m) 19,0	
		1					Ĩ o po pogo			
SIM() NÃO()	ANALISE QUIMICA: SIM () NÃO (x)					SITUAÇ	Concluído			
	DISTRICT	ļ	INSTALAÇ	CÃO						
KESPUNSAVEL PELA	A INSTALAÇAU					MARCA	MOD	FLO	POTÊNCIA	
FONTE ENERGÉTICA	:					MARCA	MOD	LLO	TOTENCIA	
BOMBA:					ı					
TIPO:	MARCA:	MODELO	DIÂM. NOMIN	AL	PROFU	NDIDADE C	RIVO	DIÂM. DE	SCARGA	
			OBSERVA	ÇOES						

				CÓDIGO DO POÇO					
CARACTERÍSTICAS GERAIS DOS P			OÇOS		CÓDIGO DE C.	АМРО			
MUNICÍPIO	DISTRITO	LOCAL:	ENERGIA:	X	SIM	NÃO	INÍC	IO	CONCLUSÃO
							20/12/	2004	(1)/2007
BREJU SANTU	ZUNA KUKAL - S	I. JENIPAPEIKO	TIPO: TRIFÁSICA		DIST:		29/12/2	2006	6/1/2007
		J	DADOS TÉCNI	[CC	DS				
BASE CARTOGRÁFIC	CA	ALTITUDE	COORDENADAS U	JTM					ESCALA
FOLHA MILAGR	ES - SB-24-Z-C-I		N: 9.171.490					1:/100.000	
ΜΈΤΟΡΟΙΟΟΛΟΙΟ		AEROEOTO	E: 508.961 RESPONSÁVEL PELA LOCAÇÃO		CDEA		PECIÃO		
METODO LOCAÇÃO		AEKOFOTO	RESI ONSAVEL I ELA LOCAÇÃO		CKEA		REGIAO		
BACIA HIDROGRÁFI	CA	4	SUB.BACIA			USO PREVISTO	C		
JAGUARIBE			SALGADO			PIEZOMETRO			
AQUÍFEROS:					TIPO: TOPO: BA		BASE:		
MAUKITI E MISS	SAU VELHA	DA	DOS CONSTRI	Sedimentar					
EXECUTOR			onnoumático		PROPRI	ET Á ΡΙΟ·	CDDM		
A GUA VIVA DOGOG	AGUA VIVA	TIPO DE SONDA: KOU	opneumatica		PROPRIETARIO: CPRM			DEGLÃO	
AGUA VIVA POÇOS	ARTESIANOS LTDA				CREA: 0	CE5521-D			REGIAO:
(A (Bol)	PERFURAÇA) MÉTODO DE	DEDELIDAÇÃO		REVEST	(Pol)	eomecânico S	tandar1	EVTENSÃO (m)
0 (Pol.) 10''		PERCUSSIVO	PERFURAÇAU		V (POL) INTERV			25 30	26 00
10	0,00 A 50,0	TERCOSSIVO					30 0 A	32.0	20,00
							36 0 A	38.0	2,00
							42 0 A	<u> </u>	2,00
						- 4''	42,0 A	50.0	2,00
						•	10,011	20,0	2,00
FILTROS: Geomecâi	nico Standart		•		IN	TERVALOS	DE SATURAÇÃ	O (SEDIME	NTO)
Ø (Pol.)	INTERVALO (m)	EXTENSÃO (m) ABERTURA ((mm)			INTERVALO (m)		EXT	TENSÃO (m)	
4''	26,0	A 30,0	4,00		26,0 A 36,0		10,00		
4''	32,0	A 36,0 4,00			39,0 A 42,0			3,00	
4''	38,0	38,0 A 42,0 4,00			45,0 A 50,0			5,00	
4''	44,0	A 48,0	4,00						
					PROFUN	JDIDADE FI		50.0m	
PRÉ-FILTRO' Cascal	ho	DESENVOI VIMENTO		JTO.	IKOPUT	DIDADETI	CI	MENTACÃO)
GRANULOMETRIA	VOLUME (m ³)	MÉ	TODO		DU	RAÇÃO	INTERVALO (m)		VOLUME (m ³)
1,0 A 3,0mm	2,0	AIR	LIFT		06	:00 hs	10,0 A	15,0	
	-	ТЕ	<u>ESTE DE PROE</u>	UÇ	CÃO				-
DATA	CRIVO	DURAÇÃO	VAZÃO		Q.ES	PECÍFICA	REB.	N.E.	N.D
6/1/2007	BOMBA (m)	(hora)	(m ² /h)		(1	n ^r /h/m)	(m) 6 14	(m) 22.16	(m) 28 30
0/1/2007	COMINESSOR		5,1			0,5	0,14	22,10	20,50
						CITUL C Â		•	
PERFILAGEM:	AGEM: ANALISE QUIMICA:			SITUAÇÃO DO POÇO					
$\begin{array}{c} \text{SIM}() & \text{NAU}() & \text{SIM}() & \text{NAU}(x) \\ \text{TIPO:} & & & \end{array}$							Concluido		
111 01	Į	ļ	INSTALACÃ	0					
RESPONSÁVEL PELA	INSTALAÇÃO		<u> </u>	_					
MOTOR:					М	ARCA	MODI	ELO	POTÊNCIA
FONTE ENERGÉTICA									
BOMBA									
TIPO:	MARCA:	MODELO	DIÂM. NOMINAL		PROFUN	NDIDADE CI	RIVO	DIÂM. DES	SCARGA
) TC					
			OBSERVAÇO	JES)				

ANEXO 2

DADOS REFERENTES AOS TESTES DE AQÜÍFERO REALIZADOS NA BACIA SEDIMENTAR DO ARARIPE

FICHA DE MEDIÇÃO DE VAZÃO COM ULTRASOM			
IDENTIFIC	AÇÃO		
Nome do Poco :	Santana 03		
Nível Dinâmico do Piezômetro (m):	13,70		
Nível Estático do Piezômetro (m) :	13,67		
Rebaixamento máximo do piezômetro (m):	0,03		
Município :	Barbalha		
Contato :	Cicero José Ferreira		
Telefone :	(88) 92.19.93.65		
COORDENAD	AS POÇO		
Latitude (UTM) :	9.190.940		
Longitude (UTM) :	471.548		
COORDENADAS F	PIEZÔMETRO		
Latitude (UTM) :	9.190.912		
Longitude (UTM):	471.560		
Distância ente o Poco e o Piezômetro (m)	27,20		
MEDIÇÃO DA	VÁZÃO		
Numero do Transdutor Utilizado na Medição :	24		
Material do Tubo :	PVC		
Perímetro do Tubo (mm) :	100		
Diâmetro Externo do Tubo (mm):	32		
Diâmetro Interno do Tubo (mm) :	28		
Espessura da Parede do Tubo (mm) :	2		
Tipo de Revestimento do Tubo :	-		
Espessura do Revestimento (mm) :	0,0		
Numero de Travessas utilizada na Medição :	2		
Espaçamento dos Transdutores (mm):	27,2		
Vazão Medida pelo Ultrasom (m ³ /h) :	5,6		
Velocidade Medida pelo Ultrasom (m/s):	2,5		
OBSERVA	ÇÕES		
	-		
FOTO	S		
Poço	Piezômetro		
Data / Hora do inicio da medição :	0/2/07 17:14		
Data / Hora do termino da medição :	//2/07 8:39		
Tempo de Medição :	15:25		
Responsável pela medição :	Manuel Pereira da Costa		
Assinatura:			

FICHA DE MEDIÇÃO DE VAZÃO COM ULTRASOM			
IDENTIFICAÇÃO			
Nome do Poco :	CAGECE PT - 03		
Nível Dinâmico do Piezômetro (m) :	7.58		
Nível Estático do Piezômetro (m)	6.88		
Rebaixamento máximo do piezômetro (m):	0.7		
Município :	Barbalha Alto da Alegria		
Contato	Franklin		
Telefone ·	(88) 99 08 80 28 (88) 31 02 11 97		
COORDENAD	AS POCO		
Latitude (UTM):	9.192.832		
Longitude (UTM) :	467 137		
COORDENADAS F	PIEZÔMETRO		
Latitude (UTM):	9 192 828		
Longitude (UTM)	467 146		
Distância ente o Poco e o Piezômetro (m)	10.10		
MEDICÃO DA	VAZÃO		
Numero do Transdutor Utilizado na Medição	30		
Material do Tubo :	Eerro Eundido		
Perímetro do Tubo (mm):	538		
Diâmetro Externo do Tubo (mm)	171		
Diâmetro Interno do Tubo (mm) :	150		
Espessura da Parede do Tubo (mm) :	2		
Tipo de Revestimento do Tubo	Asbesto Cimento		
Espessura do Revestimento (mm):	2,5		
Numero de Travessas utilizada na Medição :	2		
Espacamento dos Transdutores (mm) :	153,7		
Vazão Medida pelo Ultrasom (m ³ /h) :	56,6		
Velocidade Medida pelo Ultrasom (m/s): 0,89			
OBSERVA	CÕES		
FOTOS	S		
	PT-03		
Poço	Piezômetro		
Data / Hora do início da medição :	7/2/07 15:25		
Data / Hora do termino da medição :	8/2/07 8:47		
Tempo de Medição :	17:22		
Responsável pela medição :	Manuel Pereira da Costa		
Assinatura:			

FICHA DE MEDIÇÃO DE VAZÃO COM ULTRASOM				
IDENTIFICAÇÃO				
Nome do Poco	CAGECE PT - 01			
Nível Dinâmico do Piezômetro (m)	11.56			
Nível Estático do Piezômetro (m)	9 27			
Rebaixamento máximo do piezômetro (m)	2 29			
Município :	Abaiara			
Contato :	Francisco Linhares de Souza			
Telefone :	(88) 35 58 12 18			
COORDENAD	AS POCO			
Latitude (UTM):	9 186 904			
Longitude (UTM):	495.038			
COORDENADAS	PIEZÔMETRO			
Latitude (UTM)	9 186 900			
Longitude (UTM)	495.040			
Distância ente o Poco e o Piezômetro (m)	9 20			
MEDIÇÃO DA	VAZÃO			
Numero do Transdutor Utilizado na Medição :	30			
Material do Tubo :	Ferro Galvanizado			
Perímetro do Tubo (mm) :	284			
Diâmetro Externo do Tubo (mm):	90 90			
Diâmetro Interno do Tubo (mm) :	84			
Espessura da Parede do Tubo (mm) :	3			
Tipo de Revestimento do Tubo	-			
Espessura do Revestimento (mm) :	0,0			
Numero de Travessas utilizada na Medicão :	2			
Espacamento dos Transdutores (mm) :	82			
Vazão Medida pelo Eltrasom (m ³ /h) ·	11,4			
Velocidade Medida pelo Ultrasom (m/s): 0,57				
OBSERVA	COES			
FOTO	\$			
Poço	Piezômetro			
Data / Hora do início da medição :	8/2/07 11:19			
Data / Hora do termino da medição :	9/2/07 10:02			
Tempo de Medição :	22:43			
Responsável pela medição :	Manuel Pereira da Costa			
Assinatura:	•			

GRAFICOS VAZAO x TEMPO PARA CADA POÇO TESTADO

104

GRAFICOS VARIAÇAO DO NÍVEL x TEMPO PARA CADA POÇO TESTADO

SANTANA - 03

TEMPO (min)	Rebaixamento (m)
1	0,01
2	0,01
4	0,01
6	0,02
10	0,02
15	0,03
20	0,03
25	0,03
30	0,03
35	0,03
40	0,03
45	0,03
60	0,03
70	0,03
80	0,03
90	0,03
100	0,03
120	0,03
140	0,03
160	0,03
180	0,03
200	0,03
240	0,03
280	0,03
300	0,03
350	0,03
400	0,04
450	0,03
500	0,03
550	0,03
600	0,04
650	0,03

TEMPO (min)	Recuperação (m)
1	13,70
2	13,70
3	13,70
4	13,70
5	13,69
8	13,69
10	13,69
15	13,68
20	13,68
25	13,68
30	13,68
35	13,68
40	13,68
45	13,68
50	13,68
55	13,68
60	13,68
65	13,68
70	13,68
75	13,68
80	13,68

PT03 - BARBALHA

TEMPO (min)	Rebaixamento (m)
1	0,04
2	0,11
4	0,21
6	0,27
10	0,34
15	0,40
20	0,45
25	0,48
30	0,51
35	0,52
40	0,54
45	0,55
60	0,59
70	0,60
80	0,62
90	0,63
100	0,64
120	0,65
140	0,66
160	0,66
180	0,67
200	0,68
240	0,68
280	0,69
300	0,69
350	0,69
400	0,69
450	0,68
500	0,68
550	0,68
600	0,68
650	0,68
700	0,68
750	0,68
800	0,68
850	0,69
860	0,69

TEMPO (min)	Recuperação (m)
1	7,51
2	7,46
3	7,41
4	7,37
5	7,35
8	7,28
10	7,25
15	7,18
20	7,14
25	7,11
30	7,08
35	7,06
40	7,04
45	7,02
50	7,01
55	7,00
60	6,99
65	6,98
70	6,97
75	6,96
80	6,95
85	6,94
90	6,94
120	6,91
140	6,89
160	6,88
170	6,88

PT01 – ABAIARA

TEMPO (min)	Rebaixamento (m)
1	0,01
2	0,06
4	0,19
6	0,32
10	0,56
15	0,80
20	0,99
25	1,13
30	1,23
35	1,31
40	1,38
45	1,43
60	1,55
70	1,60
80	1,65
90	1,69
100	1,72
120	1,78
140	1,82
160	1,86
180	1,89
200	1,92
240	1,97
280	2,01
300	2,02
350	2,06
400	2,09
450	2,10
500	2,13
550	2,15
600	2,16
650	2,18
700	2,19
750	2,20
800	2,21
850	2,21
900	2,22
950	2,23
1000	2,24
1100	2,25

TEMPO (min)	Recuperação (m)
1	11,54
2	11,48
3	11,42
4	11,36
5	11,30
8	11,12
10	11,00
15	10,77
20	10,58
25	10,44
30	10,33
35	10,24
40	10,16
45	10,10
50	10,05
55	10,00
60	9,96
65	9,92
70	9,88
75	9,85
80	9,82
85	9,79
90	9,76
120	9,63
140	9,55
160	9,48
180	9,43
200	9,37
240	9,28

RESULTADOS E INTERPRETAÇÃO DOS ENSAIOS DE BOMBEAMENTO COM A "FERRAMENTAS ANALÍTICAS PARA AVALIAÇÃO DE POÇOS E AQÜÍFEROS – VERSÃO 1.0"

RESULTADOS E INTERPRETAÇÃO DOS ENSAIOS DE BOMBEAMENTO COM O $AQUIFER\ TEST$

BARBALHA - SANTANA 3

BARBALHA – CAGECE PT03

ABAIARA – CAGECE PT01