PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

ATLAS PLUVIONETRICO DO BRASIL

Equações Intensidade-Duração-Frequência

Estado: São Paulo

Município: Alumínio

Estação Pluviométrica: Mairinque

Código ANA: 02347038 Código DAEE: E4-041

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL - CPRM

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL

DEPARTAMENTO DE HIDROLOGIA

DEPARTAMENTO DE GESTÃO TERRITORIAL

SUPERINTENDÊNCIA REGIONAL DE RECIFE

PROGRAMA GEOLOGIA DO BRASIL
LEVANTAMENTO DA GEODIVERSIDADE
CARTA DE SUSCETIBILIDADE A MOVIMENTOS
GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

(Desagregação de Precipitações Diárias)

Município: Alumínio/SP

Estação Pluviométrica: Mairinque Códigos: 02347038 (ANA) - E4-041 (DAEE/SP)

Adriano da Silva Santos Karine Pickbrenner Eber José de Andrade Pinto

Equação definida por Santos, Pickbrenner e Pinto em 2019

PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Recife

Copyright @ 2019 CPRM - Superintendência Regional de Recife

Avenida Sul, 2291 - Afogados

Recife – PE – 50770-011 Telefone: +55(81) 3316-1400

Fax: +55(81) 3316-1403 http://www.cprm.gov.br

Dados Internacionais de Catalogação-na-Publicação (CIP)

S237 Santos, Adriano da Silva

Atlas Pluviométrico do Brasil: Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias): Município Alumínio/SP / Adriano da Silva Santos, Karine Pickbrenner; Eber José de Andrade Pinto. – Recife: CPRM, 2019.

12p.; anexos

Programa Geologia do Brasil. Levantamento da Geodiversidade

ISBN 978-85-7499-553-3

1. Hidrologia. 2. Pluviometria - Brasil. 3. Equações IDF I. Pickbrenner, Karine. II. Pinto, Eber José de Andrade. III. Título

CDD 551.570981

Ficha catalográfica elaborada pela Bibliotecária Ana Lúcia B. F. Coelho CRB10 - 840

Direitos desta edição: CPRM - Serviço Geológico do Brasil É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Bento Costa Lima Leite de Albuquerque Junior

SECRETÁRIO EXECUTIVO

Marisete Fátima Dadald Pereira

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Alexandre Vidigal de Oliveira

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Otto Bittencourt Netto

Vice-Presidente

Esteves Pedro Colnago

Conselheiros

Cassio Roberto da Silva

Geraldo Medeiros de Morais

Lília Mascarenhas Sant'Agostino

DIRETORIA EXECUTIVA

Diretor-Presidente

Esteves Pedro Colnago

Diretor de Hidrologia e Gestão Territorial

Antônio Carlos Bacelar Nunes

Diretor de Geologia e Recursos Minerais

José Leonardo Silva Andriotti

Diretor de Infraestrutura Geocientífica

Fernando Pereira de Carvalho

Diretor de Administração e Finanças

Cassiano de Souza Alves

SUPERINTENDÊNCIA REGIONAL DE RECIFE

Vanildo Almeida Mendes Superintendente

Robson de Carlo da Silva Gerente de Hidrologia e Gestão Territorial

Silvana de Carvalho Melo Gerente de Geologia e Recursos Minerais

Douglas Silva Luna

Gerente de Infraestrutura Geocientífica

Gilberto Augusto Pinto Ribeiro Júnior Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

Departamento de Hidrologia Frederico Cláudio Peixinho

Divisão de Hidrologia Aplicada Adriana Dantas Medeiros Achiles Monteiro (In memoriam)

Coordenação Executiva do DEHID Projeto Atlas Pluviométrico Eber José de Andrade Pinto Departamento de Gestão Territorial Maria Adelaide Mansini Maia

Divisão de Geologia Aplicada Sandra Fernandes da Silva

Coordenação do Projeto Cartas Municipais de Suscetibilidade Tiago Antonelli

Coordenadores Regionais do Projeto Atlas Pluviométrico

José Alexandre Moreira Farias (*In memoriam*) - REFO Karine Pickbrenner - SUREG PA

Equipe Executora

Adriana Burin Weschenfelder - SUREG /PA
Adriano da Silva Santos - SUREG /RE
Caluan Rodrigues Capozzoli – SUREG /SP
Catharina dos Prazeres Campos de Farias– SUREG /BE
Jean Ricardo da Silvado Nascimento – RETE
Luana Késsia Lucas Alves Martins – SUREG /BH
Osvalcélio Mercês Furtunato - SUREG /SA

Sistema de Informações Geográficas e Mapa

Ivete Souza do Nascimento- SUREG/BH

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida por Santos, Pickbrenner e Pinto (2019) para o município de Mairinque/SP, onde foram utilizados os registros de precipitações diárias máximas por ano hidrológico da estação pluviométrica Mairinque, códigos 02347038(ANA) e E4-041(DAEE/SP). A equação IDF aqui apresentada pode ser utilizada para o município de Alumínio, cuja sede está localizada a 8 km da estação pluviométrica utilizada no estudo de Mairinque.

SUMÁRIO

1 – INTRODUÇÃO	01
2 – EQUAÇÃO	01
3 – EXEMPLO DE APLICAÇÃO	04
4 – REFERÊNCIAS	
ANEXO I	05
ANEXO II	06

LISTA DE FIGURAS

Figura 01 – Localizações dos municípios e da estação pluviométrica

Figura 02 – Curvas intensidade-duração-frequência

LISTA DE TABELAS

Tabela 01 – Intensidade da chuva em mm/h

Tabela 02 – Altura de chuva em mm

1 - INTRODUÇÃO

A equação elaborada para Mairinque pode ser utilizada no município de Alumínio/SP.

O município de Alumínio está localizado a 74 km de São Paulo, capital do estado de São Paulo e faz fronteira com os municípios de Mairinque, Sorocaba, Votorantim e Ibiúna. O município possui uma área aproximada de 83,66 km² (Instituto Brasileiro de Geografia e Estatística - IBGE, 2010) e localiza-se a uma altitude de 790 metros em sua sede. A população de Alumínio, segundo IBGE (2010), é de 16.839 habitantes.

A estação Mairinque, códigos 02347038(ANA) e E4-041(DAEE/SP), está localizada na Latitude 23º33'00.00"S e Longitude 47º10'59.88"O, na sub-bacia 62, dos rios Paraná, Tietê e outros. A estação pluviométrica localiza-se na sede do município de Mairinque e está em operação desde 1940. O período utilizado na elaboração da IDF foi de 1940 a 2012. Os dados para definição da equação IDF foram obtidos a partir dos registros diários de precipitação, sendo a estação operada pelo Departamento de Águas e Energia Elétrica de São Paulo - DAEE.

A Figura 01 apresenta as localizações dos municípios e da estação pluviométrica.

Figura 01 – Localizações dos municípios e da estação pluviométrica

2 - EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Mairinque, foi utilizada a série de precipitações diárias máximas por ano hidrológico (01/Out a 30/Set), apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a Exponencial, com os parâmetros calculados pelo Método dos Momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações, obtidas com as relações IDF estabelecidas por Weschenfelder, Pickbrenner e Pinto (2016) para o município de Ibiúna/SP. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 02 apresenta as curvas ajustadas.

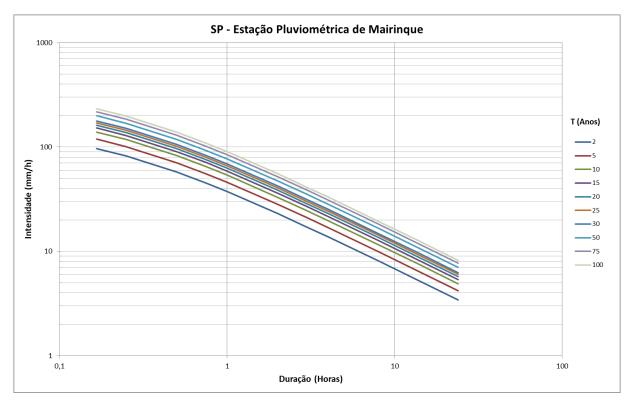


Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

Té o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Mairinque, para durações de 10 minutos a 24 horas, os parâmetros da equação são os seguintes:

10min ≤ $t \le 24h$

a = 965,3; b = 0,2242; c = 11,8 e d = 0,7967;

$$i = \frac{965,3 \, T^{0,2242}}{(t+11,8)^{0,7967}} \tag{02}$$

As equações definidas podem ser utilizadas no município de Alumínio e são válidas para tempos de retorno de até 100 anos. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de

retorno, enquanto que, na Tabela 02, constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva (mm/h)

Duração	Tempo de Retorno, T (anos)												
da Chuva	2	5	10	15	20	25	30	40	50	60	75	90	100
10 Minutos	96,8	118,9	138,8	152,1	162,2	170,5	177,6	189,5	199,2	207,5	218,1	227,2	232,7
15 Minutos	82,1	100,8	117,8	129,0	137,6	144,6	150,7	160,7	169,0	176,0	185,0	192,8	197,4
20 Minutos	71,6	88,0	102,8	112,6	120,1	126,2	131,5	140,2	147,4	153,6	161,5	168,2	172,2
30 Minutos	57,6	70,8	82,7	90,5	96,6	101,5	105,7	112,8	118,6	123,5	129,9	135,3	138,5
45 Minutos	45,1	55,4	64,7	70,9	75,6	79,5	82,8	88,3	92,9	96,7	101,7	106,0	108,5
1 HORA	37,4	46,0	53,7	58,8	62,7	66,0	68,7	73,3	77,1	80,3	84,4	87,9	90,0
2 HORAS	23,1	28,3	33,1	36,3	38,7	40,7	42,4	45,2	47,5	49,5	52,0	54,2	55,5
3 HORAS	17,1	21,0	24,6	26,9	28,7	30,2	31,4	33,5	35,2	36,7	38,6	40,2	41,1
4 HORAS	13,8	16,9	19,8	21,6	23,1	24,3	25,3	27,0	28,4	29,5	31,1	32,4	33,1
5 HORAS	11,6	14,3	16,7	18,3	19,5	20,5	21,3	22,7	23,9	24,9	26,2	27,3	27,9
6 HORAS	10,1	12,4	14,5	15,9	16,9	17,8	18,5	19,8	20,8	21,7	22,8	23,7	24,3
7 HORAS	9,0	11,0	12,9	14,1	15,0	15,8	16,5	17,6	18,5	19,2	20,2	21,1	21,6
8 HORAS	8,1	9,9	11,6	12,7	13,5	14,2	14,8	15,8	16,6	17,3	18,2	19,0	19,4
12 HORAS	5,9	7,2	8,4	9,3	9,9	10,4	10,8	11,5	12,1	12,6	13,3	13,8	14,2
14 HORAS	5,2	6,4	7,5	8,2	8,7	9,2	9,6	10,2	10,7	11,2	11,8	12,3	12,5
20 HORAS	3,9	4,8	5,7	6,2	6,6	6,9	7,2	7,7	8,1	8,4	8,9	9,3	9,5
24 HORAS	3,4	4,2	4,9	5,4	5,7	6,0	6,3	6,7	7,0	7,3	7,7	8,0	8,2

Tabela 02 – Altura de chuva (mm)

Duração	Tempo de Retorno, T (anos)												
da Chuva	2	5	10	15	20	25	30	40	50	60	75	90	100
10 Minutos	16,1	19,8	23,1	25,3	27,0	28,4	29,6	31,6	33,2	34,6	36,4	37,9	38,8
15 Minutos	20,5	25,2	29,4	32,2	34,4	36,2	37,7	40,2	42,2	44,0	46,3	48,2	49,3
20 Minutos	23,9	29,3	34,3	37,5	40,0	42,1	43,8	46,7	49,1	51,2	53,8	56,1	57,4
30 Minutos	28,8	35,4	41,3	45,3	48,3	50,8	52,9	56,4	59,3	61,8	64,9	67,6	69,3
45 Minutos	33,8	41,6	48,6	53,2	56,7	59,6	62,1	66,3	69,7	72,6	76,3	79,5	81,4
1 HORA	37,4	46,0	53,7	58,8	62,7	66,0	68,7	73,3	77,1	80,3	84,4	87,9	90,0
2 HORAS	46,2	56,7	66,2	72,5	77,3	81,3	84,7	90,4	95,0	99,0	104,0	108,4	111,0
3 HORAS	51,3	63,1	73,7	80,7	86,0	90,5	94,2	100,5	105,7	110,1	115,7	120,6	123,4
4 HORAS	55,1	67,7	79,1	86,6	92,4	97,1	101,2	107,9	113,4	118,2	124,2	129,4	132,5
5 HORAS	58,1	71,4	83,4	91,3	97,4	102,4	106,6	113,7	119,6	124,6	131,0	136,4	139,7
6 HORAS	60,6	74,4	86,9	95,2	101,6	106,8	111,2	118,6	124,7	129,9	136,6	142,3	145,7
7 HORAS	62,8	77,1	90,0	98,6	105,2	110,6	115,2	122,9	129,2	134,6	141,5	147,4	150,9
8 HORAS	64,7	79,4	92,8	101,6	108,4	113,9	118,7	126,6	133,1	138,6	145,7	151,8	155,5
12 HORAS	70,7	86,8	101,4	111,0	118,4	124,5	129,7	138,3	145,4	151,5	159,3	165,9	169,9
14 HORAS	73,1	89,7	104,8	114,8	122,4	128,7	134,1	143,0	150,3	156,6	164,7	171,5	175,6
20 HORAS	78,8	96,8	113,1	123,8	132,1	138,8	144,6	154,3	162,2	169,0	177,6	185,0	189,5
24 HORAS	81,9	100,6	117,5	128,7	137,2	144,3	150,3	160,3	168,5	175,6	184,6	192,3	196,9

3 - EXEMPLO DE APLICAÇÃO

Em Alumínio, foi registrada uma chuva de 60 mm com duração de 30 minutos. Qual é o tempo de retorno dessa precipitação?

Resposta: Inicialmente, para se calcular o tempo de retorno, será necessária a inversão da equação 01. Dessa forma, temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{03}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 60 mm divididos por 30 minutos são iguais a 120 mm/h. Substituindo os valores na equação 03 temos:

$$T = \left[\frac{120(30 + 11.8)^{0.7967}}{965.3}\right]^{1/0.2242} = 52.7 \approx 53 \ anos$$

O tempo de retorno de 53 anos corresponde a uma probabilidade de 1,9% de que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou seja:

$$P(i \ge 120 \ mm/h) = \frac{1}{T}100 = \frac{1}{53}100 = 1,9\%$$

4 - REFERÊNCIAS

GOOGLE EARTH. Imagem de localização da Estação pluviométrica de Alumínio. Disponível em: http://www.google.com/earth. Acesso em: 09 set. 2019.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Panorama do município de Alumínio** (SP). Brasília: IBGE, 2010. Disponível em: https://cidades.ibge.gov.br/brasil/sp/aluminio/panorama. Acesso em: 09 set. 2019.

PINTO, Eber José de Andrade. **Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico**. Belo Horizonte: CPRM, 2013.

WIKIPEDIA. **Município de Alumínio (SP)**. Disponível em: https://pt.wikipedia.org/wiki/Alum%C3%ADnio. Acesso em: 09 set. 2019.

WESCHENFELDER, Adriana Burin; PICKBRENNER, Karine; PINTO, Eber José de Andrade. **Atlas Pluviométrico do Brasil**: Equações Intensidade-Duração-Frequência; município: Ibiúna/SP. Porto Alegre: CPRM, 2016. 16p. Programa Geologia do Brasil. Levantamento da Geodiversidade. Carta de Suscetibilidade a Movimentos Gravitacionais de Massa e Inundação.

SANTOS, Adriano da Silva; PICKBRENNER, Karine; PINTO, Eber José de Andrade. **Atlas Pluviométrico do Brasil**: Equações Intensidade-Duração-Frequência; município: Várzea Paulista/SP. Recife: CPRM, 2019. 12p. Programa Geologia do Brasil. Levantamento da Geodiversidade. Carta de Suscetibilidade a Movimentos Gravitacionais de Massa e Inundação.

ANEXO I

Série de Dados Utilizados – Altura de Chuva diária (mm) Máximos por ano hidrológico (01/Out a 30/Set)

N	Data	Precipitação Máxima Diária (mm)	N	Data	Precipitação Máxima Diária (mm)
1	22/01/1941	47,5	22	22/08/1986	58,4
2	01/01/1942	53,4	23	24/01/1987	116,4
3	05/03/1947	63,0	24	18/12/1987	127,7
4	11/12/1947	104,6	25	30/07/1989	92,0
5	26/01/1951	90,0	26	12/11/1989	48,5
6	05/02/1967	56,4	27	06/10/1991	82,0
7	16/05/1968	77,8	28	12/01/1993	60,0
8	28/10/1968	67,4	29	09/01/1994	65,0
9	19/11/1969	86,8	30	27/12/1994	127,8
10	21/12/1970	52,8	31	14/10/1995	57,0
11	13/07/1972	55,2	32	02/02/1997	82,0
12	13/12/1974	72,3	33	08/01/1998	85,0
13	04/06/1976	67,8	34	15/01/1999	70,0
14	09/06/1978	99,6	35	18/03/2000	81,5
15	05/11/1978	97,4	36	07/02/2001	64,5
16	16/12/1979	63,2	37	02/10/2001	90,0
17	14/01/1981	69,0	38	12/11/2002	90,7
18	30/11/1981	117,8	39	26/01/2004	88,0
19	02/02/1983	152,5	40	24/05/2005	120,0
20	04/04/1984	76,6	41	27/01/2010	97,0
21	18/03/1985	99,0	42	13/02/2012	74,0

ANEXO II

As razões entre as alturas de chuvas de diferentes durações, utilizadas para a desagregação dos quantis diários, foram obtidas a partir das relações IDF estabelecidas por Weschenfelder, Pickbrenner e Pinto (2016) para o município de Ibiúna, SP.

Relação 24h/1dia: 1,13

Relação	Relação	Relação	Relação	Relação	Relação
14h/24h	8h/24h	4h/24h	3h/24h	2h/24h	1h/24h
0,78	0,73	0,64	0,61	0,56	0,41

Relação	Relação	Relação	Relação
45min/1h	30min/1h	15min/1h	10min/1h
0,91	0,82	0,54	0,43

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília - DF - CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Infraestrutura Geocientífica

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

www.cprm.gov.br

Superintendência Regional de Recife

Avenida Sul, 2291 – Afogados Recife - PE - CEP: 50770-011 Tel.: 81 3316-1400 - Fax: 81 3316-1403

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495 E-mail: ouvidoria@cprm.gov.br

Serviço de Atendimento ao Usuário - SEUS

Tel: 21 2295-5997 - Fax: 21 2295-5897

E-mail: seus@cprm.gov.br

