Use este identificador para citar ou linkar para este item:
https://rigeo.sgb.gov.br/handle/doc/25024
Registro completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | COSTA, Iago Sousa Lima | - |
dc.contributor.author | TAVARES, Felipe Mattos | - |
dc.contributor.author | OLIVEIRA, Junny Kyley Mastop de | - |
dc.date.accessioned | 2024-10-25T13:46:42Z | - |
dc.date.available | 2024-10-25T13:46:42Z | - |
dc.date.issued | 2019-04 | - |
dc.identifier.citation | COSTA; Iago Sousa Lima; TAVARES, Felipe Mattos; OLIVEIRA, Junny Kyley Mastop de. Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil. Journal of the Geological Survey of Brazil, v. 2, n. 1, p. 26-36, April 2019. | pt_BR |
dc.identifier.uri | https://rigeo.sgb.gov.br/handle/doc/25024 | - |
dc.description.abstract | The Cinzento Lineament (Carajás Mineral Province) represents a complex deformational system with great associated mineral potential, mainly for IOCG deposits. However, the tropical vegetation of the Amazon rainforest considerably limits the number of outcrops available for systematic geological ma-pping. Therefore, the use of remote data such as airborne geophysics and remote sensing is essential to provide a reliable geological map. The airborne magnetometric data to define lithological units and its boundaries is a challenge, especially in regions with low magnetic latitude and/or remanent mag-netization. In this work, we proposed an approach using Magnetization Vector Inversion (MVI) to map the distribution of the magnetic susceptibility, in order to replace techniques such as pole reduction and total gradient. We applied the Random Forest algorithm (supervised Machine Learning algorithm) to recognize patterns in remote data and improve the current mapped lithological units. With 1400 training samples (2.5% of the total samples), we produced two Predictive lithological maps: a first with remote data only and a second with remote data and spatial coordinates. We evaluate the advantages and disadvantages of each Predictive map, and we conclude that both maps need to be analyzed together for the refinement of the current geological map. These predictive maps represent a powerful tool to combine remote data to improve current geological maps, or even generate the first-pass geological map for regions with scarce geological knowledge. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Serviço Geológico do Brasil | pt_BR |
dc.rights | open | pt_BR |
dc.subject | LINEAMENTO CINZENTO | pt_BR |
dc.subject | AEROGEOFÍSICA | pt_BR |
dc.subject | APRENDIZAGEM DE MÁQUINA | pt_BR |
dc.title | Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil | pt_BR |
dc.type | Article | pt_BR |
dc.local | [Brasília] | pt_BR |
dc.identifier.doi | https://doi.org/10.29396/jgsb.2019.v2.n1.3 | - |
dc.subject.en | RANDOM FOREST | pt_BR |
dc.subject.en | CINZENTO LINEAMENT | pt_BR |
dc.subject.en | MACHINE LEARN | pt_BR |
dc.subject.en | AIRBORNE GEOPHYSICS | pt_BR |
Aparece nas coleções: | Artigos de Periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
costa_et_al_predictive_lithological_mapping.pdf | Artigo | 9,22 MB | Adobe PDF | Visualizar/Abrir |
O uso do material disponibilizado neste repositório deve ser feito de acordo e dentro dos limites autorizados pelos Termos de Uso.