Proximal sensing provides clean, fast, and accurate quality control of organic and mineral fertilizers

dc.contributor.authorANDRADE, Renata
dc.contributor.authorSILVA, Sérgio Henrique Godinho
dc.contributor.authorBENEDET, Lucas
dc.contributor.authorMANCINI, Marcelo
dc.contributor.authorLIMA, Geraldo Jânio
dc.contributor.authorNASCIMENTO, Kauan
dc.contributor.authorAMARAL, Francisco Hélcio Canuto
dc.contributor.authorSILVA, Douglas Ramos Guelfi
dc.contributor.authorOTTONI, Marta Vasconcelos
dc.contributor.authorCARNEIRO, Marco Aurélio Carbone
dc.contributor.authorCURI, Nilton
dc.creator.affilliationUniversidade Federal de Lavras - Minas Geraispt_BR
dc.creator.affilliationCompanhia de Promoção de Agricultura - CAMPO - Paracatu - Minas Geraispt_BR
dc.creator.affilliationEldorado Brasil - Três Lagoas - Mato Grosso do Sulpt_BR
dc.creator.affilliationAnálises Agrícolas e Pecuárias - 3º Laboratório - Lavras - Minas Geraispt_BR
dc.creator.affilliationServiço Geológico do Brasil - CPRMpt_BR
dc.date.accessioned2023-12-27T21:08:55Z
dc.date.available2023-12-27T21:08:55Z
dc.date.issued2023-07-26
dc.description.abstractFarms use large quantities of fertilizers from many sources, making quality control a challenging task, as the traditional wet-chemistry analyses are expensive, time consuming and not environmentally-friendly. As an alternative, this work proposes the use of portable X-ray fluorescence (pXRF) spectrometry and machine learning algorithms for rapid and low-cost estimation of macro and micronutrient contents in mineral and organic fer tilizers. Four machine learning algorithms were tested. Whole (i.e., as delivered by the manufacturer) (CP) and ground (AQ) samples (429 in total) were analyzed to test the effect of fertilizer granulometry in prediction performance. Model validation indicated highly accurate predictions of macro (N: R2 = 0.92; P: 0.97; K: 0.99; Ca: 0.94, Mg: 0.98; S: 0.96) and micronutrients (B: 0.99; Cu: 0.99; Fe: 0.98; Mn: 0.91; Zn: 0.94) for both organic and mineral fertilizers. RPD values ranged from 2.31 to 9.23 for AQ samples, and Random Forest and Cubist Regression were the algorithms with the best performances. Even samples analyzed as they were received from the manufacturer (i.e., no grinding) provided accurate predictions, which accelerate the confirmation of nutrient contents contained in fertilizers. Results demonstrated the potential of pXRF data coupled with machine learning algorithms to assess nutrient composition in both mineral and organic fertilizers with high accuracy, allowing for clean, fast and accurate quality control. Sensor-driven quality assessment of fertilizers improves soil and plant health, crop management efficiency and food security with a reduced environmental footprint.pt_BR
dc.description.embargo2023-12-27
dc.identifier.citationANDRADE, R.; SILVA, S. H. G.; BENEDET, L.; MANCINI, M.; LIMA, G. J.; NASCIMENTO, K.; AMARAL, F. H. C.; SILVA, D. R. G.; OTTONI, M. V.; CARNEIRO, M. A. C.; CURI, N. Proximal sensing provides clean, fast, and accurate quality control of organic and mineral fertilizers. Environmental Research, Amsterdam, v. 236, 2023. DOI: https://doi.org/10.1016/j.envres.2023.116753.pt_BR
dc.identifier.issn0013-9351
dc.identifier.urihttps://rigeo.sgb.gov.br/handle/doc/24602
dc.language.isoeng
dc.localAmsterdam
dc.publisherElsevierpt_BR
dc.rightsopenpt_BR
dc.subject.enpXRFpt_BR
dc.subject.enMachine learningpt_BR
dc.subject.enGreen analysispt_BR
dc.subject.enSoil healthpt_BR
dc.subject.enSoil contaminationpt_BR
dc.subject.enMacronutrientspt_BR
dc.subject.enMicronutrientspt_BR
dc.titleProximal sensing provides clean, fast, and accurate quality control of organic and mineral fertilizerspt_BR
dc.typeArticlept_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Andrade et al., 2023 Fertilizers.pdf
Tamanho:
9.44 MB
Formato:
Adobe Portable Document Format
Descrição:
Artigo de periódico

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: